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Abstract 13 

Ponds and tidal courses are significant landforms that frequently arise in 14 

marshes and tidal flats environments. An understanding of their development 15 

and permanence is relevant to determine future dynamic processes that alter 16 

tidal flats and salt marshes environments, such as changes in the sea level, 17 

increase in the wave activity, and some other variations associated to the climate 18 

change. Direct access for monitoring in these regions is complex, extremely 19 

expensive and not always feasible. Remote sensing imagery represents a 20 

monitoring alternative, but requires the research of specific image processing 21 

procedures to extract the information concerning to these environmental studies. 22 

In this work, we developed a methodology for assessing the relevant 23 

morphological parameters of ponds and tidal courses using Google Earth 24 

imagery. An automatic classifier identifies these landforms as such (accuracy 25 

over 86 %), producing a shape descriptors dataset. Then, ponds and tidal 26 

courses in tidal flats are morphologically characterized, and their behavior is 27 

compared to the surrounding environment. Subsequent analysis found 28 

significant differences in morphological characteristics that arise independently 29 

of the marsh environmental conditions. The evidence suggests that the evolution 30 
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processes of the depressions in salt flat environments are clearly different in 31 

comparison with salt marshes environments. In salt marshes, the permanence 32 

and evolution of the depressions is related to the age of marshes, whereas in 33 

tidal flats the dynamic processes and sediment input have influence on 34 

depressions evolution. 35 

Keywords: ponds; tidal courses; digital image processing; classification; shape 36 

descriptors. 37 
 38 

1 Introduction 39 

Estuary systems are one of the most productive ecosystems in the planet. 40 

They are subject to diverse processes (i.e., geomorphological, physical, 41 

biological, hydrological, ecological, among others). Tidal flats and salt marshes 42 

are typical coastal environments that are morphologically similar, but differ 43 

according to the presence or absence of halophytic vascular vegetation (Perillo et 44 

al., 2001; Ginsberg and Perillo, 2004). Tidal flats generally present a low relief 45 

topography and are found in low areas directly influenced by the tides. Tidal 46 

propagation, waves, wind, rain and evaporation are dynamic factors that play an 47 

important role in the origin and development of different landforms common in 48 

tidal environments, such as ponds and tidal courses (Chapman, 1960; Perillo, 49 

2009). Ponds are depressions on tidal flats or marsh surface where water may 50 

or may not be retained after tidal inundation (Perillo and Iribarne, 2003; Perillo, 51 

2019). In this paper we will be concerned only with ‘ponds’ as intertidal 52 

depressions with areas between 2 and 20 m2 and a maximum depth of 50 cm that 53 
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preserve water during the whole tidal cycle except in regions with high 54 

evaporation (Perillo, 2019). 55 

In the fields of morphodynamics and morphology of coastal environments, the 56 

analysis of ponds is of great interest, since they are an integral part of the 57 

biological processes such as the infauna habitat, bird feeding, etc. (Perillo, 2009, 58 

2019). Furthermore, this understanding is essential for the management of 59 

restoration sites in coastal wetlands (Brand et al., 2012; Shih et al., 2015). 60 

Notwithstanding their importance, detailed geomorphologic studies of ponds in 61 

tidal flat environments are scarce (Revollo Sarmiento et al., 2016). Systematic 62 

observations performed by Perillo (2019) in the flats of the Bahía Blanca Estuary 63 

(Argentina) show evident differences between marsh and tidal flats as regards 64 

the formation, classification and interaction mechanisms. For the purpose of the 65 

present paper, we only consider tidal depressions falling into the pond category 66 

defined above. 67 

The study of ponds formation was pioneered by Yapp et al. (1917), who 68 

typified them morphologically into two types: primary (barely circular depressions) 69 

and secondary (longer and more winding courses). According to current theories 70 

in the literature, primary ponds are formed in the marshes’ first stages of 71 

development (Steers, 1964; Pestrong, 1965; Verger, 1968), whereas secondary 72 

ponds are formed in fully developed marshes (Packham and Liddle, 1970; 73 

Pethick, 1974; Perillo and Iribarne, 2003). Considering theories from several 74 

authors (Boston, 1983; Frey, 1985; Perillo and Iribarne, 2003; Escapa et al., 2015), 75 

Perillo (2019) proposed that ponds are formed by three different mechanisms: 76 

a) dynamical, b) geomorphological, and c) biological. Dynamical mechanisms 77 
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are related to the action of waves, water currents, climatic factors that rework the 78 

surface. Geomorphologic mechanisms refer to closure or expansion of parts of 79 

tidal courses, like sediment compaction or levee formation, among others. 80 

Biological mechanisms include plant avoidance, active burrowing by crabs, etc. 81 

The characterization of ponds is commonly performed through 82 

measurements taken in situ. The typical parameters are area, perimeter, largest 83 

diameter, depth and also other shape descriptors such as form factor, 84 

roundness, etc. This process involves a significant burden, including i) limited 85 

access whether by sea or by land due to regular tidal flooding, ii) high 86 

transportation cost and time, and iii) a negative environmental impact of 87 

measurement campaigns. Indeed, direct access to the study area alters the 88 

natural state of depressions and the surrounding environment, which prevents 89 

an unbiased analysis of their future evolution. 90 

Remote sensing allows high scale geographical and temporal studies without 91 

altering the natural state of the subject matter (Revollo et al., 2016; Ijaz et al., 92 

2018) and currently is widely used to perform analyses in areas such as 93 

biotechnology, precission agriculture, and earth sciences (Wang et al., 2017; 94 

Rishikeshan and Ramesh, 2017; Belgiu and Csillik, 2018). This technology 95 

encompasses several challenges in the analysis of small landforms (m to cm) 96 

arising in coastal environments. Freely available satellite imagery (i.e., 97 

LANDSAT) lacks the resolution to identify these features (30 m resolution) and 98 

higher resolution imagery (i.e., IKONOS) is expensive for geographically 99 

extensive studies (Revollo Sarmiento et al., 2016; Tatar et al., 2018). Indeed, 100 

applying different techniques to improve the free available images resolution 101 
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(Cipolletti et al., 2012, 2014) is not enough to identify different sizes of ponds. 102 

Google Earth (GE), in turn, is a powerful information source that can be used for 103 

a variety of purposes and has enabled innovative research in Earth Sciences 104 

(Goudie, 2013; Gorelick et al., 2017). 105 

The aim of this work is the morphological characterization of ponds and tidal 106 

courses and their variations in tidal flat environments using GE images. We 107 

applied the methodology to the extensive tidal flats of the Bahía Blanca Estuary, 108 

which has very large fields of ponds widely distributed. 109 

2 Materials and Methods 110 

2.1 Selection of study areas 111 

Fourteen tidal flat sites with all possible varied morphological characteristics of 112 

ponds and tidal courses (sizes, shapes and orientations) were selected (Table 113 

1). According to the surface morphology, these sites (Fig. 1) are located between 114 

the internal and the middle sector of the Bahía Blanca Estuary (Perillo and 115 

Piccolo, 1999). The total surface of the estuary is bounded in approximately 116 

2300 km2, corresponding only 410 km2 to islands, the intertidal sector covers 117 

1150 km2 whereas the subtidal one is 740 km2. The total area of the present 118 

study covers approximately 1503 km2 and comprises almost 79.5 % of the total 119 

surface of the tidal flats in the Bahía Blanca Estuary (Perillo and Piccolo, 1999). 120 

Mean tidal range in the estuary varies from 2.2 m at the mouth to 4 m at the head 121 

(Perillo and Piccolo, 1991) The differences between spring and neap levels is 122 

about 0.50 to 1 m. Unfortunately all tidal stations are located along the northern 123 

coast of the Canal Principal and the degree of flooding of the tidal flats can be 124 

inferred only from estimations made by researchers at Instituto Argentino de 125 
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Oceanograf´ıa (IADO) and sailors, during surveys that are carried out periodically 126 

since more than 50 years. In all cases the reports coincide that most of the 127 

intertidal areas are covered by about 0.5 to 1.5 m of water, although there are no 128 

adequate mapping of these floodings. When measured, maximum tidal currents 129 

on the tidal flats are on the order of 0.5 m/s (Pratolongo et al., 2010). Wind is a 130 

major dynamic component of the estuary with average speed of the order of 18 131 

km/h but often reaching value of over 40 to 70 km/h. More than 40 % of the time 132 

wind blows from the NW and N being less frequent from the SW and SE (Piccolo 133 

et al., 1989). 134 

Fig. 1. Bahía Blanca Estuary, distribution of tidal flat study sites (in red). 135 
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Table 1. Geographic location of the study areas and acquisition date. 136 

Sites Latitude (S) Longitude (W) Acquisition date 
Sites 1 −38.898074◦ −62.271961◦ 12/26/2012 
Sites 2 −38.901586◦ −62.220930◦ 12/26/2012 
Sites 3 −38.959019◦ −62.226407◦ 12/26/2012 
Sites 4 −38.914293◦ −62.321013◦ 12/26/2012 
Sites 5 −39.008280◦ −62.192548◦ 03/18/2011 
Sites 6 −39.212749◦ −62.300189◦ 03/18/2011 
Sites 7 −38.952229◦ −62.311871◦ 12/26/2012 
Sites 8 −39.001640◦ −62.144144◦ 03/18/2011 
Sites 9a −39.002303◦ −62.144591◦ 03/18/2011 
Sites 9b −39.019532◦ −62.161046◦ 03/18/2011 
Sites 10 −38.917989◦ −62.315777◦ 12/26/2012 
Sites 11 −38.946148◦ −62.334869◦ 12/26/2012 
Sites 12 −39.002224◦ −62.182938◦ 12/26/2012 
Sites 13 −39.032259◦ −62.212384◦ 12/26/2012 
Sites 14a −39.003146◦ −62.143629◦ 03/18/2011 
Sites 14b −39.020109◦ −62.163469◦ 03/18/2011 

GE images provide a wide spatial coverage, at the same time, enough spatial 137 

resolution because it maps the Earth by superimposing satellite images from 138 

different spatial missions (i.e., Landsat8, Spot 6/7, Ikonos, GeoEye, WorldView, 139 

etc.) and aerial photography. GE imagery resolution ranges from 15 m of 140 

resolution to 15 cm. This spatial resolution allows to establish accurate and 141 

precise individual measurements using specifically developed image processing 142 

algorithms, despite some limitations (i.e., images have only three visible spectral 143 

bands, and low revisit rate in many regions worldwide). Also there are other 144 

similar tools such as Bing Maps and Apple Maps that deliver high resolution 145 

imagery. GE, however, is still unique in the sense that it provides the time line 146 

search feature, which for this research is required to be able to perform 147 

geomorphological studies involving the target landforms: ponds and tidal 148 

courses in tidal flats, considering that the images of this tidal zones should match 149 

with low tide moments. 150 
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Twenty-four 1290 × 496 pixel GE frames were used to analyze the tidal flats. 151 

These frames were exported from GE application (version 5.2.1.1588) as images in 152 

RGB format with their corresponding spatial reference. The virtual altitude (eye alt) 153 

of the frames was set to 290 m, corresponding to a geographic extent of 360 × 174 154 

m per frame. The scale at this altitude in GE is 64 m and it is consistent with the 155 

required spatial resolution (~30 cm/pixel), allowing measurements with an 156 

appropriate accuracy and precision to make reasonable comparison among sites. 157 

Different factors were considered during image selection, including the time of day in 158 

which the satellite captured the image (dark areas in a visible satellite image 159 

represent geographic regions where only small amounts of visible sunlight are 160 

reflected back to space), the tidal status, and other weather conditions such as 161 

clouds. Given the image records offered by GE, the images selected were the ones 162 

obtained on March 18, 2011 and December 26, 2012 due to these two timeline 163 

images consider the factors mentioned above (Table 1). 164 

2.2 Processing, Measurement and Computation of Morphological Descriptors 165 

The images were segmented into foreground (ponds, tidal courses, others 166 

landforms) and background pixels (not landforms) using a ‘multi-distance’ 167 

algorithm (Revollo Sarmiento et al., 2016). After this procedure, every connected 168 

set of foreground pixels was candidate to be identified either as pertaining to a 169 

pond, a tidal course, or to other spurious landforms (Fig. 2). An unsupervised 170 

classifier and a set of shape descriptors (dimensionless values) introduced by 171 

Revollo Sarmiento et al. (2016) were computed in all sites of the estuary. The 172 
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shape descriptors proposed in prior works (Revollo Sarmiento et al., 2016) were 173 

the minimax rectangular box area (abox), form factor (ff), Feret’s diameters 174 

with modulus and angles (Fmax, Fmin), extension (ext), and compactness (cp). 175 

However, to get a complete morphological characterization, an additional set of 176 

new shape descriptors was computed. In this context, five shape descriptors were 177 

selected for a better shape characterization: roundness (rd), aspect ratio (ar), 178 

elongation (elg), curl (cr), and net area-main diagonal relationship (amd) (Russ, 179 

1999) (Table 2). These modifications were introduced in a new version of the 180 

developed software using Qt Creator IDE and OpenCV (Open Source Computer 181 

Vision Library). However, the processing methodology can easily be developed 182 

in other software platforms (i.e., Python, Matlab, Delphi, Java, etc). 183 
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Fig. 2. Site 12 in the Bahía Blanca Estuary. (A) Original GE image. (B) Binary 184 

image (foreground pixels in white representing ponds and tidal courses). 185 Jo
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Table 2. Shape descriptors and their mathematical definition. 186 

Name Symbol Math Definition 
 

 

Roundness rd 4A 
 

 

2 
máx 

 

 Fmáx 

Aspect Ratio ar 
Fmiın 

 
Elongation elg  

L 
W 

Curl cr 
 Fmáx

 

L 

 Anet  
Amd amd 

Fmáx 

Form factor (ff) formally describes the deviation of the perimeter of a given shape 187 

with respect to the perimeter of an ideal circle of equivalent area. However, several 188 

rather different shapes may have the same ff (Fig. 4A). 189 

Roundness (rd) also measures how a shape deviates from an ideal circle, but 190 

in terms of the relationship between area and diameter. In this regard, these two 191 

descriptors (ff and rd) are able to distinguish different shapes more precisely. 192 

Feret’s diameters (Fmax and Fmin) are the largest and smallest distances arising 193 

between two parallel lines tangent to the shape (Feret, 1931). A quick although 194 

accurate measurement can be obtained rotating the shape with respect to its 195 

centroid and about a significant amount of angles [0, Π]. The discretization of 196 

interval is done in steps of Π/180 (1 degree). For each rotation the extension of 197 

the shape along a principal axis is measured, and the largest and198 
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 199 

Fig. 3. Maximum and minimum Feret diameter. (A) Feret diameter 200 

measurement. (B) Feret diameter for a rotation of 30◦. (C) Feret diameter for a 201 

rotation of 80◦. 202 

smallest values are estimations of Fmax and Fmin, respectively (Fig. 3). The 203 

elongation descriptor (elg) measures how long is the shape, computing the fiber 204 

length (L) and the mean width of the shape (W). A prior shape skeletonization is 205 

required to compute L, using a conditional thinning algorithm, such as proposed 206 

by Zhang and Suen (1984). The resulting L is measured (Fig. 5A) and, assuming 207 

that the shape can be regarded as ribbon with uniform width W ,  net area A  208 

and length L,  W  can  be estimated  as  W   ≈  A/L (Fig. 5B).  The descriptor elg 209 

is the ratio between L and W.  Finally, curl (cr) provides a measure regarding 210 

how twisted or arched the shape is. Shapes with greater degree of curl 211 

correspond with lower values and vice versa (Fig. 4B). 212 
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Fig. 4. Shape descriptors. (A) Set of synthetic figures visually different but with 

identical shape factor values. (B) Set of figures with different curl values (cr); cr 

values indicate the curl degree. 

 
 

Fig. 5. Elongation shape descriptor. (A) Fiber length and medium width 

parameters. (B) Geometrical model for a fiber considered as a ribbon length L 

with square endings and a constant medium width W. 

2.3 Landform Classification and Statistical Analysis 213 

Landforms were classified into three classes: ponds (P), tidal courses (C), 214 

and other structures (O) applying the automatic methodological classification 215 

proposed by Revollo Sarmiento et al. (2016). In this context, the classifier was 216 

applied to all the segmented landforms, and its accuracy was evaluated. The 217 

confusion matrix (Congalton and Green, 2008) was computed to analyze the 218 

performance of the classifier (Table 3B). Several parameters were calculated 219 
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14  

from the confusion matrix (Table 3A) to estimate the accuracy of the classifier 220 

depending on the total of the studied features (T). Cohen’s Kappa coefficient (κ) 221 

(Cohen, 1960; Wilkinson, 2005) was computed to measure a consensus among 222 

automatic classifier and the evaluation of expert geomorphologists. Cohen’s κ 223 

has become a standard accuracy assessment in the remote sensing literature 224 

(Congalton and Green, 2008) despite some criticisms regarding its interpretation 225 

(Pontius et al., 2011). 226 

Table 3. Performance matrix. (A) Confusion matrix. (B) Quality standard 
terms. 

A 

 
Predicted 

 
 

Actual 
 

 
 

Negative Positive  Total 
Negative T n  Fp An = T n + Fp 
Positive Fn T p Ap = Fn + T p 

Total Pn = T n + Fn Pp = Fp + T p T 
    B 
 227 

Definition Symbol Math Definition 
Global Accuracy Ag T n + T p/(An + Ap) 
True positive rate RT p T p/Ap 
True negative rate RT n T n/An 
False negative rate RFn T n/Pn 
False positive rate RFp T p/Pp 
Auxiliary parameter Pr(a) (T n + T p)/T 
Auxiliary parameter Pr(e) (An ∗ Pn + Ap ∗ Pp)/T 2 
Cohen’s kappa coefficient κ Pr(a) − Pr(e)/(1 − Pr(e)) 
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An analysis of variance (ANOVA) was performed to explore the variability 228 

among different sites. At first, a separate class analysis was performed using the 229 

shape descriptors associated to each site. The statistical significance test was 230 

based on the Fisher’s Test (Fisher’s Least Significant Difference) with a 231 

significance level α = 0.05 (Day and Quinn, 1989). Then, the complete dataset was 232 

analyzed using the same strategy. 233 

In each study site, the number of ponds and tidal courses were automatically 234 

computed through the processing stage and the density of each class was also 235 

computed. The drainage density of courses was estimated as Dc ≈ total length 236 

courses (km)/Areasite (km2), considering the sum of L as total length courses. 237 

The average of area measurements provided information of sites with bigger 238 

ponds. Morphologically and according to the criteria of Yapp et al. (1917), it was 239 

possible to discriminate between primary and secondary ponds, correlating the 240 

values associated to the shape descriptors roundness and aspect ratio. Values 241 

closer to one mean that ponds were more likely to be of the primary type 242 

(circular), and values closer to zero could represent long ponds. Moreover, the 243 

average of these descriptors allowed to appreciate the general shape of ponds in 244 

each site, whereas the standard deviation showed the degree of the shape 245 

dispersion with respect to the average. Both the elongation and curl of tidal 246 

courses were characterized with the corresponding descriptors (elg and curl), 247 

and the maximum length (TML) and orientation were derived directly from the 248 

Feret’s diameters (Fmax and Fmin).  249 
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3  Results 250 

3.1 Automatic Identification 251 

The methodology for automatic classification introduced by Revollo 252 

Sarmiento et al. (2016) was applied in fourteen sites of the estuary of Bahía 253 

Blanca and the results were evaluated both quantitatively (model accuracy)  and  254 

visually  (expert knowledge). The classifier accuracy was above 86 % in all sites, 255 

being as high as 100 % in site 9. Moreover, sites 12 and 13 have global accuracy 256 

(Ag) of 97 (Table 4) and 96 % (Table 5), respectively (Figs. 6 and 7). Despite the 257 

high geomorphological variation of these landforms, the results are quite 258 

satisfactory, and the global error percentages associated to the study site are in 259 

the 5.5 % range (see Fig. 8). The κ value was within the interval [0.7, 0.92] in all 260 

sites, which means that the consensus results were optimal. 261 
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Table 4. Performance matrix, Site 12. (A) and (B): Confusion matrix and Quality 
standard terms in site 12a. (C) and (D): Confusion matrix and Quality standard 
terms in site 12b. 
 

A B  

Predicted Parameter Value 

  P C O Ag[%] 97.57 

 P 570 5 6 RT p 0.98 

Actual C 0 54 0 RT c 1.00 
 O 6 0 59 RT o 0.91 

     RFp 0.99 
     RFc 0.91 
     RFo 0.91 
     Pr(a) 0.98 
     Pr(e) 0.70 
     κ 0.92 

 

 

C D 

 

 

Predicted Parameter Value 

  P C O Ag[%] 97.02 

 P 844 1 20 RT p 0.98 

Actual C 0 48 0 RT c 1.00 
 O 7 1 53 RT o 0.87 

     RFp 0.99 

     RFc 0.96 
     RFo 0.72 
     Pr(a) 0.97 

     Pr(e) 0.78 
     κ 0.86 
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Table 5. Performance matrix, Site 13. (A) and (B): Confusion matrix and Quality 
standard terms in site 13a. (C) and (D): Confusion matrix and Quality standard 
terms in site 13b. 
 

A B  

Predicted Parameter Value 

  P C O Ag[%] 96.98 

 P 386 5 7 RT p 0.97 

Actual C 0 44 0 RT c 1.00 
 O 3 0 51 RT o 0.94 

     RFp 0.99 
     RFc 0.90 
     RFo 0.88 
     Pr(a)  0.97 
     Pr(e) 0.65 
     κ 0.91 

 

C D 
Predicted Parameter Value 

  P C O Ag[%] 96.31 

 P 284 2 1 RT p 0.99 

Actual C 0 31 0 RT c 1.00 
 O 10 0 24 RT o 0.70 

     RFp 0.96 

     RFc 0.94 
     RFo 0.96 
     Pr(a) 0.96 
     Pr(e) 0.70 
     κ 0.88 

262 
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k 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Classification results in Bah´ıa Blanca Estuary; site 12 with its global precision. (A) 
Supervised classification Ag = 100 %. (B) Automatic classification Ag = 97.6 %. (C) 
Supervised classification Ag = 100 %. (D) Automatic classification Ag = 97 %. Ponds, 
tidal courses and others are shown in red, green, and cyan, respectively. 
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Fig. 7. Classification results in Bahía Blanca Estuary; site 13 with its global precision. (A) 
Supervised classification Ag = 100 %. (B) Automatic classification Ag = 96.9 %. (C) 
Supervised classification Ag = 100 %. (D) Automatic classification Ag = 96 %. Ponds, tidal 
courses and others are shown in red, green, and cyan, respectively. 
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Fig. 8. Accuracy of the automatic classification (red) and its error (green) in each 
study site. 

3.2 Morphological Landforms Characterization 263 

3.2.1. Ponds 264 

The study sites correspond to lower flats in the estuary and Fig. 9A displays 265 

the density of ponds distributed in each site. Sites located in the internal zone of 266 

the estuary, close to courses Del Embudo and Tres Brazas (sites 2, 3 and 10) 267 

presented a higher density of ponds (22 per 100 m2), whereas the sites closer to 268 

courses Bermejo, Paso San Juan and Del Embudo (sites 4, 6, 7, 8, 9, 12, 13 and 269 

14) showed a low density of ponds (7 per 100 m2). Site 3 presented the highest 270 

density, 25 ponds per 100 m2. The lowest density was located in site 9, 6 ponds 271 

per 100 m2. This site presented a higher number of bigger tidal courses in 272 

comparison to other zones. 273 
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Fig. 9. Ponds density and mean angle orientation per site. (A) Ponds density 

from low to high values in tidal flats per 100 m2, in cyan, green, yellow and red. 

(B) Ponds mean angle orientations. 
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Post hoc morphometric parameter analyses showed significant differences 274 

among sites in the average of the morphological variables (ANOVA, p < 0.0001), 275 

which were more notorious in sites 3 and 9. Considering size, measured in m2, 276 

sites 3 and 9 were representative of ponds with lowest and highest dimensions 277 

(average areas 3.5 and 13 m2, respectively). In site 3, the lowest and highest 278 

sizes of ponds were 0.10 and 24 m2, whereas in site 9 they were 0.30 and 173 279 

m2, respectively. Both sites were characterized by numerous big ponds with 280 

atypical values. Regarding the shape, the first two main components in principal 281 

component analysis explained 98 % of the variance. 282 

The correlation among roundness and aspect ratio (r = −0.88), roundness and 283 

elongation (r = −0.81), and aspect ratio and elongation (r = 0.58) were highly 284 

significant. Sites 7 and 13 presented a higher number of rounded (primary) 285 

ponds, whereas in site 3 these landforms were more elongated (secondary). In 286 

site 4, ponds were more symmetrical, characterized by their aspect ratio. 287 

Regarding the total maximum length (TML), the minimum and maximum values 288 

corresponded to sites 3 and 8 (average values 3 m and 6 m, respectively). The 289 

lowest maximum length of the ponds was 0, 14 m, and the highest one 31 m. The 290 

orientation angle was directly related to the total maximum length, which was 291 

predominant in the N-W and S-W quadrants. In most of the sites, ponds 292 

presented orientations in the N-W quadrant and 270◦ degrees. However, the 293 

internal sector sites (1, 2, 3, 4 and 10) and site 9 that is located in the middle 294 

region of the estuary contained ponds with orientations between 250◦ and 270◦. 295 

Sites 10 and 14 exhibited the maximum and minimum orientations, respectively, 296 

with mean angles of 250◦ and 284◦ (Fig. 9B). 297 
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3.2.2. Tidal courses 298 

In general, in all sites, tidal courses are less numerous than ponds so the 299 

density of these landforms in tidal flats is very low (Table 6). The highest 300 

densities was in sites 2, 5, 8, 12, 13 and 14 (between 0.07 and 0.1 km/km2), 301 

whereas in sites 6 and 7 the presence of tidal courses was zero. The variance 302 

analyses showed differences only among elongation, curl, and area parameters 303 

(ANOVA, p < 0.0003). Regarding size (area), sites 11 and 14 presented tidal 304 

courses of lower and higher values (mean area 27 and 577 m2, respectively). 305 

The smallest and biggest tidal course corresponded to areas of 4.3 and 4696 306 

m2, respectively. Regarding shape, the first two principal components explained 307 

100 % of the variance (elongation and curl). The correlation between both 308 

descriptors was (r=−0.46).  Considering tidal course length, sites 7 and 11 had 309 

the lowest and highest values of elongation coefficients, registering mean values 310 

of 30,1 and 88,75, respectively. The total maximum length (TML) lowest and 311 

highest values corresponded to sites 7 and 14 with mean values of 22 m and 86 312 

m, respectively. The lowest maximum length of the tidal course was 13,9 m and 313 

the highest 209 m. Sites 1, 10 and 9 had tidal courses with the highest and 314 

lowest curl, with mean coefficients of 0,5 and 0,6, respectively. The highest and 315 

lowest tidal course curl correspond with coefficients of 0,12 and 1,12, 316 

respectively. The TML measurements had a predominant orientation towards N-317 

W, S-W quadrants (Fig. 10). Sites 2, 6 and 11 had orientations in S-W quadrant, 318 

with mean angles between 250° and 270°.  The remaining 11 zones presented 319 

orientations in N-W quadrant with mean angles over 275°.320 
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Fig. 10. Tidal courses mean angle orientation per site. 
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4 Discussion322 

Table 6. Drainage density of courses per site. 323 
Site Dc (km/km2) 
Zone 1 0.03 
Zone 2 0.08 
Zone 3 0.04 
Zone 4a 0.06 
Zone 4b 0.05 
Zone 5a 0.1 
Zone 5b 0.05 
Zone 7 0 
Zone 8a 0.07 
Zone 8b 0.04 
Zone 9a 0.06 
Zone 9b 0.05 
Zone 10a 0.04 
Zone 10b 0.02 
Zone 11 0.04 
Zone 12a 0.07 
Zone 12b 0.10 
Zone 13a 0.07 
Zone 13b 0.06 
Zone 14a 0.05 
Zone 14b 0.07 

The automatic classification using specific algorithms of image processing applied 324 

to GE images provided a set of data about morphological characteristics of ponds 325 

and tidal courses in tidal flat environments. This information allowed to research 326 

the variability of the shapes of these geoforms, and their geographical distribution 327 

in tidal flats. As compared to in-situ measurements, our methodology required 328 

considerably less time and lower costs, and the amount and quality of the gathered 329 

information is remarkably higher. 330 
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The accuracy of the automatic classifier massively applied in tidal flat areas was 331 

high (Ag over 86 %), with a consensus measurement compared to the manual 332 

classification for all zones (κ-index over 0.8). Morphological data analysis of 333 

ponds evidenced remarkable differences in relation to the mechanisms of their 334 

formation and evolution between marsh and tidal flat environments. According to 335 

different theories and from the morphological point of view proposed by Yapp et 336 

al. (1917), primary ponds are formed in the first stages of marsh development, 337 

whereas the secondary ones are originated as marshes mature. This process 338 

was different in ponds formed in tidal flat environments, because it was possible 339 

to distinguish according to their shape between primary and secondary ponds in 340 

mature flats. Sites located in the internal sector of the estuary presented the 341 

highest density of ponds, due to the constant flooding of flats given their low 342 

slopes and high drainage net (Melo, 2004; Melo and Perillo, 2006; Piccolo et al., 343 

2008). Sites in the middle sector of the estuary had low density of ponds, and 344 

however they presented more tidal courses. 345 

According to the theory proposed by Boston (1983), densities should be 346 

higher in zones with little flooding, which allows a higher persistence of ponds. 347 

However, Boston’s theory is not consistent with our results, where high densities 348 

are in low slope flats with constant flooding. The main difference with Boston’s 349 

theory is that his work refer to vegetated environments which have completely 350 

different behavior than denuded tidal flats as in our research.   Most of the 351 

tidal flats in Bahía Blanca are low flats, being inundated about 730 times per 352 

year (Perillo and Piccolo, 1999). Therefore, they are subject to constant dynamic 353 

processes which are not regulated by the presence of significant vegetation. 354 

Furthermore, the extensive network of large tidal courses (courses and creeks) 355 

provide the means for the frequent flooding of the studied areas. In essence, 356 
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depressions in marshes and tidal flats clearly have different evolution processes. 357 

As indicated by Perillo (2019) marsh depressions, in many cases, have been 358 

inherited from the previous tidal flats. Their persistence and evolution depends on 359 

the sediment input into the marsh, dynamic processes (waves, tides, currents, 360 

etc.) and the vegetation dynamics. Whereas, in tidal flats, except for the 361 

influence of the infauna, the evolution of the depressions is only affected by the 362 

dynamic processes and sediment input. In the particular case of Bahia Blanca 363 

Estuary, which is sediment starved (Perillo and Piccolo, 1999), the most 364 

important factors are the dynamic. 365 

Several authors agree that ponds and tidal courses densities are inversely 366 

related. If tidal courses density is higher than ponds density, ponds probability to 367 

drain or to be covered by vegetation, in the case of marshes, is also higher 368 

(Packham and Liddle, 1970; Pethick, 1974). In our case, tidal courses density 369 

was low in all sites and the sediment provision was also low. The Bahia Blanca 370 

Estuary is a former delta that presently has neither major sediment input from 371 

the continent nor from the sea. Most of the suspended sediment is provided by 372 

the direct erosion of the intertidal areas by tidal currents and intense locally-373 

generated wind waves (Perillo et al., 2001). Therefore, the formation of the ponds 374 

is most likely due to dynamic processes as proposed by Perillo (2019). 375 

Moreover, we observed that ponds density change in time, increasing and 376 

diminishing regardless of the flat age. This observation was confirmed by means 377 

of temporal analyses of ponds distribution using the image record of the GE 378 

application (Fig. 11). 379 

Zones with higher density of ponds also have bigger ponds, so size of ponds 380 
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seemed to be related with their density in a determined region. In the internal 381 

region of the estuary, zones 3, 4 and 7, have longer, more symmetric, and more 382 

round ponds, respectively. These zones had the maximum tidal range, which 383 

suggest that the currents are more significant in the last periods of reflux. This 384 

drives the primary ponds to become longer or to join together, forming secondary 385 

ponds. Wind is also other factor of influence, landforms have general angles 386 

coincident with the dominant N-W wind direction. Even though there is not 387 

conclusive data to relate the morphological variables with other environmental 388 

factors (e.g., stream-flow, tidal flat age, erosion level, relative changes in the sea 389 

level, wind speed, precipitation, humidity rates), the presented results allow us to 390 

state that the influence of these factors is relevant in the formation and evolution 391 

of these landforms in tidal flat environments. 392 
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Fig. 11. Variation in size and form of landforms over time in site 13. (A) Date of 

acquisition - March 19, 2011. (B) Date of acquisition - December 12, 2012. (C) 

Merge of thresholded images, years 2011 (red foreground pixels) and 2012 

(green foreground pixels), respectively. Yellow foreground pixels represent ponds 

and tidal courses without variation. 
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5 Conclusion 393 

We presented a methodology for assessing relevant morphological 394 

parameters of ponds and tidal courses using Google Earth imagery. As an 395 

expansion of prior research (Revollo Sarmiento et al., 2016), we introduced new 396 

shape descriptors in the development of an automatic classifier, which identifies 397 

ponds and tidal courses morphology in coastal wetlands with very high accuracy. 398 

Fourteen sites were studied within the Bahía Blanca Estuary, covering almost 399 

80% of the total area. The evidence suggests that ponds densities tend to be 400 

higher in the internal region of the estuary, a region of constant flooding where 401 

the tidal range is maximum. In these zones also the longest, most symmetrical, 402 

and most rounded ponds were located. A likely explanation of this observation is 403 

that the continuous flooding in low flats contributed to higher densities that play a 404 

role in the size and shape of ponds. Considering the type of sediment of tidal 405 

flats in the estuary, no differences were found in the densities, because tidal flats 406 

were dominated by silty clay. In general, the densities of tidal courses located 407 

over the flats were not high in the whole study site, being only higher in areas of 408 

permanent flooding. In this context, notorious differences were observed in the 409 

formation mechanisms of geoforms in marshes and tidal flats. These results over 410 

tidal flats differ from the theories proposed in Boston (1983), according to which, 411 

ponds and tidal courses have a higher probability of persistence associated to a 412 

high density if they were developed in areas with low flooding, and that high 413 

densities were directly related to the marsh age. We also highlighted the 414 

importance of wind as a main influence in ponds and tidal courses development 415 

considering that the main geoforms orientation agree with the dominant winds. 416 
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This methodology enables and complements other research lines, such as a 417 

temporal evolution study (geomorphological analysis). Comparing the evolution 418 

of these geoforms in recent years will allow to identify the dynamic processes 419 

that has influence in different environments, such as tidal flats and tidal marshes.  420 

This  evaluation,  together  with other environmental data (i.e., current flow, tidal 421 

flat ages, level of erosion, relative changes in sea levels, wind speed, rainfall, 422 

etc.) would complement the morphological characterization presented here, 423 

providing further understanding of the behavior of these geoforms in its own 424 

environment. In this research aim, we are currently carrying out surveys of 425 

ponds to correlate in situ information with the data gathered by remote sensing 426 

techniques. 427 
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espacial del viento en el Area de Bah ı́a Blanca. Revista Geof ı́sica 31, 205–506 

220. 507 

Piccolo, M. C., Perillo, G. M. E., Melo, W., 2008. The Bah ı́a Blanca Estuary: an 508 

integrated overview of its geomorphology and dynamics. In: Neves, R., 509 

Baretta, J. and Mateus, 510 

M. (Eds.). Perspectives on integrated coastal zone management in South 511 

America. IST Press, Lisboa. 1, 221–231. 512 

Pontius, J., Robert, G., Millones, M., 2011. Death to Kappa: birth of quantity 513 

disagreement and allocation disagreement for accuracy assessment. 514 

International Journal of Remote Sensing 32 (15), 4407–4429. 515 

Pratolongo, P., Perillo, G. M. E., Piccolo, M. C., 2010. Combined effects of 516 

waves and marsh plants on mud deposition events at a mudflat-saltmarsh 517 

edge. Estuarine, Coastal and Shelf Sciences 87, 207–212. 518 

Jo
urn

al 
Pre-

pro
of



37  

Revollo, N. V., Delrieux, C. A., Perillo, G. M. E., 2016. Automatic methodology 519 

for mapping of coastal zones in video sequences. Marine Geology 381, 87–520 

101. 521 

Revollo Sarmiento, G. N., Cipolletti, M. P., Perillo, M. M., Delrieux, C. A., Perillo, 522 

G. M. E., 2016. Methodology for classification of geographical features with 523 

remote sensing images: Application to tidal flats. Geomorphology 257, 10–22. 524 

Rishikeshan, C., Ramesh, H., 2017. A novel mathematical morphology based 525 

algorithm for shoreline extraction from satellite images. Geo-spatial 526 

Information Science 20 (4), 345–352. 527 

Russ, J. C., 1999. The Image Processing Handbook, 3rd Edition. CRC Press, 528 

Boca Raton, FL. 529 

Shih, S., Hwang, G., Hsieh, H., Chen, C., Chen, Y., 2015. Geomorphologic 530 

dynamics and maintenance following mudflat, creek and pond formation in an 531 

estuarine mangrove wetland. Ecological Engineering 82, 590–595. 532 

Steers, J. A., 1964. The coastline of England and Wales. Cambridge Univ. 533 

Press, Reidel, Dordrecht. 534 

Tatar, N., Saadatseresht, M., Arefi, H., Hadavand, A., 2018. A robust object-based 535 

shadow detection method for cloud-free high resolution satellite images over 536 

urban areas and water bodies. Advances in Space Research 61 (11), 2787–537 

2800. 538 

Verger, F., 1968. Marais et wadden du littoral français: étude de géomorphologie. 539 
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Supplement 

 
Classification results and performance matrix per site. 

 
Site 1 

 

 
 

Fig. 12. Classification results in Bahía Blanca Estuary; site 1 with it global 

precision. (A) Supervised classification Ag = 100 %. (B) Automatic classification 

Ag = 90.6 %. Ponds, tidal channels and others are shown in red, green, and 

cyan, respectively. 

 
 

Table 7. Performance matrix Site 1. (A) Confusion matrix. (B) Quality standard 
terms. 

 

A 

Predicted 

B 

Parameter Value 
 

 P C O Ag[%] 90.57 
P 520 4 31 RT p 0.94 

Actual C 0 27 1 RT c 0.96 
O 26 1 58 RT o 0.68 

 RFp 0.95 

RFc 0.84 
RFo 0.64 
Pr(a) 0.90 
Pr(e) 0.70 
κ 0.69 
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Site 2 

 
 

 

Fig. 13. Classification results in Bahía Blanca Estuary; site 2 with it global 

precision. (A) Supervised classification-Ag = 100 %. (B) Automatic classification -

Ag = 86 %. Ponds, tidal channels and others are shown in red, green, and cyan, 

respectively. 

 
 

Table 8. Performance matrix Site 2. (A) Confusion matrix. (B) Quality standard 
terms. 

 

A 

Predicted 

B 

Parameter Value 
 

 P C O Ag[%] 86.10 
P 833 6 78 RT p 0.91 

Actual C 1 37 0 RT c 0.97 
O 72 6 140 RT o 0.64 

    RFp 0.92 
    RFc 0.75 
    RFo 0.64 
    Pr(a) 0.86 
    Pr(e) 0.64 
    κ 0.61 
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Site 3 
 
 
 

Fig. 14. Classification results in Bahía Blanca Estuary; site 3 with it global 

precision. (A) Supervised classification Ag = 100 %. (B) Automatic classification 

Ag = 89.5 %. Ponds, tidal channels and others are shown in red, green, and 

cyan, respectively. 

 
 
 

Table 9. Performance matrix Site 3. (A) Confusion matrix. (B) Quality standard 
terms. 

 

A 

Predicted 

B 

Parameter Value 
 

 P C O Ag[%] 89.46 
P 183 0 20 RT p 0.90 

Actual C 0 37 0 RT c 1.00 
O 11 2 60 RT o 0.82 

    RFp 0.94 
    RFc 0.95 
    RFo 0.75 
    Pr(a) 0.89 
    Pr(e) 0.47 
    κ 0.80 
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Site 4 
 
 
 
 
 

 
 

 

Fig. 15. Classification results in Bahía Blanca Estuary; site 4 with it global 

precision. (A) Supervised classification Ag = 100 %. (B) Automatic classification 

Ag = 92 %. (C) Supervised classification Ag = 100 %. (D) Automatic classification 

Ag = 90 %. Ponds, tidal channels and others are shown in red, green, and cyan, 

respectively. 
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Table 10. Performance matrix Site 4. (A) and (B): Confusion matrix and Quality 
standard terms site 4a. (C) and (D): Confusion matrix and Quality standard terms 
site 4b. 

 

A 

Predicted 

B 

Parameter     Value 
 

 P C O Ag[%] 91.85 
P 230 0 4 RT p 0.98 

Actual C 0 29 3 RT c 0.90 
O 14 5 34 RT o 0.64 

 RFp 0.94 
RFc 0.85 
RFo 0.83 
Pr(a) 0.92 
Pr(e) 0.59 
κ 0.80 

 

C 

Predicted 

D 

Parameter Value 
 

 P C O Ag[%] 90.33 
P 208 1 9 RT p 0.95 

Actual C 0 37 2 RT c 0.95 
O 15 2 26 RT o 0.60 

 RFp 0.93 

RFc 0.92 
RFo 0.70 
Pr(a) 0.90 
Pr(e) 0.57 
κ 0.77 
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Site 5 
 
 
 
 
 

 
 

 

Fig. 16. Classification results in Bahía Blanca Estuary; site 5 with it global 

precision. (A) Supervised classification Ag = 100 %. (B) Automatic classification 

Ag = 92 %. (C) Supervised classification Ag = 100 %. (D) Automatic classification 

Ag = 91 %. Ponds, tidal channels and others are shown in red, green, and cyan, 

respectively. 
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Table 11. Performance matrix Site 5. (A) and (B): Confusion matrix and Quality 
standard terms in site 5a. (C) and (D): Confusion matrix and Quality standard 
terms in site 5b. 

 

A 

Predicted 

B 

Parameter Value 
 

 P C O Ag[%] 92 
P 473 0 31 RT p 0.94 

Actual C 0 38 0 RT c 1.00 
O 17 2 63 RT o 0.77 

 RFp 0.97 
RFc 0.95 
RFo 0.67 
Pr(a) 0.92 
Pr(e) 0.66 
κ 0.77 

 

C 

Predicted 

D 

Parameter Value 
 

 P C O Ag[%] 91 
P 378 2 11 RT p 0.97 

Actual C 0 38 1 RT c 0.97 
O 31 1 53 RT o 0.62 

 RFp 0.92 

RFc 0.93 
RFo 0.82 
Pr(a) 0.91 
Pr(e) 0.63 
κ 0.76 
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Site 6 
 
 

 
 

 

 

 

Fig. 17. Classification results in Bahía Blanca Estuary; site 6 with it global 

precision. (A) Supervised classification Ag = 100 %. (B) Automatic classification 

Ag = 94 %. (C) Supervised classification Ag = 100 %. (D) Automatic classification 

Ag = 94 %. (E) Supervised classification Ag = 100 %.  (F) Automatic classification 

Ag = 92 %.  Ponds, tidal channels and others are shown in red, green and cyan, 

respectively. 
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Table 12. Performance matrix Site 6. (A) and (B): Confusion matrix and Quality 
standard terms in site 6a. (C) and (D): Confusion matrix and Quality standard 
terms in site 6b. 

 

A 

Predicted 

B 

Parameter Value 
 

 P C O Ag[%] 93.9 
P 227 0 8 RT p 0.97 

Actual C 0 1 0 RT c 1.00 
O 8 0 20 RT o 0.71 

 RFp 0.97 
RFc 1.00 
RFo 0.71 
Pr(a) 0.94 
Pr(e) 0.80 
κ 0.70 

 

C 

Predicted 

D 

Parameter Value 
 

 P C O Ag[%] 94 
P 197 0 3 RT p 0.99 

Actual C 0 0 0 RT c NaN 
O 10 0 7 RT o 0.41 

 RFp 0.95 

RFc NaN 
RFo 0.7 
Pr(a) 0.94 
Pr(e) 0.88 
κ 0.5 
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Table 13. Performance matrix Site 6c. (A) Confusion matrix and (B) Quality 
standard terms. 

 

A 

Predicted 

B 

Parameter Value 
 

 P C O Ag[%] 92.2 
P 186 0 4 RT p 0.98 

Actual C 0 0 0 RT c NaN 
O 12 1 16 RT o 0.55 

    RFp 0.94 
    RFc 0.00 
    RFo 0.8 
    Pr(a) 0.92 
    Pr(e) 0.80 
    κ 0.62 

 
Site 7 

 
 
 
 
 

 

Fig. 18. Classification results in Bahía Blanca Estuary; site 7 with it global 

precision. (A) Supervised classification Ag = 100 %. (B) Automatic classification 

Ag = 95 %. Ponds, tidal channels and others are shown in red, green, and cyan, 

respectively. 
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Table 14. Performance matrix Site 7. (A) Confusion matrix and (B) Quality 
standard terms. 

 

A 

Predicted 

B 

Parameter Value 
 

 P C O Ag[%] 95.28 
P 515 1 14 RT p 0.97 

Actual C 0 7 0 RT c 1.00 
O 10 2 23 RT o 0.66 

    RFp 0.98 
    RFc 0.70 
    RFo 0.62 
    Pr(a) 0.95 
    Pr(e) 0.85 
    κ 0.67 
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Site 8 

 
 
 
 
 

 
 

 

Fig. 19. Classification results in Bahía Blanca Estuary; site 8 with it global 

precision. (A) Supervised classification Ag = 100 %. (B) Automatic classification 

Ag = 99.4 %. (C) Supervised classification Ag = 100 %. (D) Automatic 

classification Ag = 99.2 %. Ponds, tidal channels and others are shown in red, 

green, and cyan, respectively. Jo
urn

al 
Pre-

pro
of
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Table 15. Performance matrix Site 8. (A) and (B): Confusion matrix and Quality 
standard terms site 8a. (C) and (D): Confusion matrix and Quality standard terms 
site 8b. 

 

A 

Predicted 

B 

Parameter Value 
 

 P C O Ag[%] 99.4 
P 486 1 0 RT p 0.99 

Actual C 0 25 0 RT c 1.00 
O 2 0 10 RT o 0.83 

 RFp 0.99 
RFc 0.96 
RFo 1.00 
Pr(a) 0.99 
Pr(e) 0.87 
κ 0.96 

 

C 

Predicted 

D 

Parameter Value 
 

 P C O Ag[%] 99.2 
P 225 2 0 RT p 0.99 

Actual C 0 12 0 RT c 1.00 
O 0 0 2 RT o 1.00 

 RFp 1.00 

RFc 0.86 
RFo 1.00 
Pr(a) 0.99 
Pr(e) 0.88 
κ 0.93 
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Site 9 

 
 
 
 
 

 

 

 

Fig. 20. Classification results in Bahía Blanca Estuary; site 9 with it global 

precision. (A) Supervised classification Ag = 100 %. (B) Automatic classification 

Ag = 97 %. (C) Supervised classification Ag = 100 %. (D) Automatic classification 

Ag = 100 %. Ponds, tidal channels and others are shown in red, green, and cyan, 

respectively. Jo
urn

al 
Pre-

pro
of
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Table 16. Performance matrix Site 9. (A) and (B): Confusion matrix and Quality 
standard terms site 9a. (C) and (D): Confusion matrix and Quality standard terms 
site 9b. 

 

A 

Predicted 

B 

Parameter Value 
 

 P C O Ag[%] 96.6 
P 381 1 2 RT p 0.99 

Actual C 1 27 0 RT c 0.96 
O 11 0 16 RT o 0.59 

 RFp 0.97 
RFc 0.96 
RFo 0.88 
Pr(a) 0.96 
Pr(e) 0.78 
κ 0.84 

 

C 

Predicted 

D 

Parameter Value 
 

 P C O Ag[%] 100 
P 126 0 0 RT p 1.00 

Actual C 0 15 0 RT c 1.00 
O 0 0 4 RT o 1.00 

 RFp 1.00 

RFc 1.00 
RFo 1.00 
Pr(a) 1.00 
Pr(e) 0.77 
κ 1.00 
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Site 10 

 
 
 
 
 

 
 

 

Fig. 21. Classification results in Bahía Blanca Estuary; site 10 with it global 

precision. (A) Supervised classification Ag = 100 %. (B) Automatic classification Ag 

= 96 %. (C) Supervised classification Ag = 100 %. (D) Automatic classification Ag 

= 94 %. Ponds, tidal channels and others are shown in red, green, and cyan, 

respectively. Jo
urn

al 
Pre-

pro
of
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Table 17. Performance matrix Site 10. (A) and (B): Confusion matrix and Quality 
standard terms site 10a. (C) and (D): Confusion matrix and Quality standard 
terms site 10b. 

 

A 

Predicted 

B 

Parameter Value 
 

 P C O Ag[%] 96.2 
P 240 0 1 RT p 0.99 

Actual C 0 31 0 RT c 1.00 
O 9 2 37 RT o 0.77 

 RFp 0.96 
RFc 0.94 
RFo 0.97 
Pr(a) 0.96 
Pr(e) 0.61 
κ 0.90 

 

C 

Predicted 

D 

Parameter Value 
 

 P C O Ag[%] 94.2 
P 275 0 5 RT p 0.98 

Actual C 1 25 0 RT c 0.96 
O 14 1 42 RT o 0.74 

 RFp 0.95 

RFc 0.96 
RFo 0.89 
Pr(a) 0.94 
Pr(e) 0.64 
κ 0.84 
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Site 11 

 
 
 
 
 

 

Fig. 22. Classification results in Bahía Blanca Estuary; site 11 with it global 

precision. (A) Supervised classification Ag = 100 %. (B) Automatic classification 

Ag = 95 %. Ponds, tidal channels and others are shown in red, green, and cyan, 

respectively. 

 
 
 
Table 18. Performance matrix Site 11. (A) Confusion matrix and (B) Quality 
standard terms. 

 

A 

Predicted 

B 

Parameter Value 
 

 P C O Ag[%] 95.44 
P 247 0 2 RT p 0.99 

Actual C 0 37 0 RT c 1.00 
O 13 0 30 RT o 0.70 

    RFp 0.95 
    RFc 1.00 
    RFo 0.94 
    Pr(a) 0.95 
    Pr(e) 0.62 
    κ 0.88 

Jo
urn

al 
Pre-

pro
of



57  

 
Site 14 

 
 
 
 
 

 

 

 

Fig. 23. Classification results in Bahía Blanca Estuary; site 14 with it global 

precision. (A) Supervised classification Ag = 100 %. (B) Automatic classification Ag 

= 96 %. (C) Supervised classification Ag = 100 %. (D) Automatic classification Ag 

= 96 %. Ponds, tidal channels and others are shown in red, green and cyan, 

respectively. Jo
urn

al 
Pre-

pro
of
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Table 19. Performance matrix Site 14. (A) and (B): Confusion matrix and Quality 
standard terms site 14a. (C) and (D): Confusion matrix and Quality standard 
terms site 14b. 

 

A 

Predicted 

B 

Parameter Value 
 

 P C O Ag[%] 95.87 
P 383 5 5 RT p 0.97 

Actual C 0 7 0 RT c 1.00 
O 6 1 5 RT o 0.42 

 RFp 0.98 
RFc 0.53 
RFo 0.5 
Pr(a) 0.95 
Pr(e) 0.90 
κ 0.57 

 

C 

Predicted 

D 

Parameter Value 
 

 P C O Ag[%] 96.3 
P 214 0 5 RT p 0.98 

Actual C 0 9 0 RT c 1.00 
O 4 0 11 RT o 0.73 

 RFp 0.98 

RFc 1.00 
RFo 0.68 
Pr(a) 0.96 
Pr(e) 0.81 
κ 0.80 
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