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We consider a vector gauge theory in 2 +1 dimensions of the type recently proposed by Radzihovsky and 
Hermele [1] to describe fracton phases of matter. The theory has U (1) × U (1) vector gauge fields coupled 
to an additional vector field with a non conventional gauge symmetry. We added to the theory scalar 
matter in order to break the gauge symmetry. We analyze non trivial configurations by reducing the field 
equations to first order self dual (BPS) equations which we solved numerically. We have found vortex 
solutions for the gauge fields which in turn generate for the extra vector field non-trivial configurations 
that can be associated to magnetic dipoles.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The study of non-trivial solutions in quantum field theories has 
historically played an essential role in describing non-perturbative 
phenomena usually linked to topological properties of these theo-
ries, both in High Energy applications [2] and in condensed matter 
systems [3]. Vortices play a fundamental role in the descriptions 
of many properties of Superconductors and have been also inves-
tigated in connection with symmetry-breaking phase transitions in 
the early universe as cosmic strings, one dimensional stable ob-
jects that can play the role of cosmological sources of gravitational 
waves, a subject that is actively investigated at present (see [4]
and references therein). They can also arise in superstring theory 
as cosmologically-stretched fundamental strings (see [5] and refer-
ences therein).

In the last year, there has been a growing interest in the study 
of a new class of quantum states of matter in which quasiparticles 
called “fractons” were introduced in quantum spin-liquid models 
[6]. Afterwards, topological quantum order was studied in Majo-
rana fermion models in which only composites of such elementary 
excitations were free to move in certain directions [10]. Later on, 
a connection in the low energy limit between fracton phases and 
tensor gauge theories was studied in ref. [7]. Since then, interest 
in the subject grew in various directions of condensed matter and 
quantum field theories physics including studies on gravity and 
elasticity areas (for reviews see [8,9] and references therein).

More recently Radzihovsky and Hermele (RH) have considered a 
description of fracton phases in 2 + 1 dimension in terms of gauge 
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vector fields [1]. The model discussed by these authors consists 
of U (1) × U (1) (conventional) vector gauge fields coupled to an
additional vector field in such a way that the resulting Lagrangian 
is invariant under a deformed gauge transformation.

In this work we will consider a theory where the U (1) × U (1)

vector gauge fields in the RH model are minimally coupled to 
scalar matter implementing the Higgs mechanism. We will show 
that also this model having an additional vector field has magnetic 
like vortex solutions of the Nielsen-Olesen type, which in turn gen-
erate a non trivial configuration for the extra vector field of the 
model. In addition, proceeding as in the original simpler U (1) case, 
we will be able to reduce the second order field equations to first 
order self-dual equations [11,12]. The well known Nielsen-Olesen 
ansatz leads to radial equations that can be solved numerically. The 
solution corresponds to stable vortex magnetic fields associated to 
the U (1) ×U (1) gauge field sector and an additional magnetic field 
associated to the extra vector field.

2. The model

We shall consider a d = 2 + 1 dimensional U (1) × U (1) gauge 
theory with gauge fields Aa

i , A
a
0 with i = 1, 2 spatial and a = 1, 2

“flavor” indices. There is also an additional vector field (V 0, V i). 
The corresponding Lagrangian density LG is the one introduced in 
[1] (without external sources),

LG = −
∑

a

1

4
F a
μν F aμν + 1

2
(∂t V 1 + ∂1 V 0 − A(1)

0 )2

+ 1

2
(∂t V 2 + ∂2 V 0 − A(2)

0 )2 − 1

2
(εi j∂i V j +A)2. (1)
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We assume the standard summation convention for space-time in-
dices with a metric (− ++) but we write explicitly sums involving 
flavor indices. Here Fij = ∂i A j − ∂ j Ai and

A =
∑

a

εia Aa
i . (2)

We will also introduce scalar matter minimally coupled to the 
fields Aa

μ together with a scalar potential to implement gauge 
symmetry breaking and the Higgs mechanism

LS = −
∑

a

Dμφa† Dμφa − V [φa] (3)

with the covariant derivatives (μ = 0, 1, 2) defined as

Dμφa = (∂μ − iga Aa
μ)φa (4)

and

V [φa] =
∑

a

λa(|φa|2 − (ηa)2)2. (5)

In principle the potential could include a mixing λ̃|φ(1)|2||φ(2)|2
but for simplicity we will assume λ̃ = 0.

The total Lagrangian density L is then given by

L = LG + LS . (6)

The theory is invariant under “deformed” gauge transformations 
[1],

�Aa
i → Aa

i + ∂iα
a Aa

0 → Aa
0 + ∂0α

a,

V i → V i + ∂iβ − αi V 0 = V 0 − ∂0β,
(7)

together with

φa → exp(igaαa)φa. (8)

In this work we will be interested only in static, purely mag-
netic configurations, so that the energy density can be written as

E =
∑

a

1

4
F a

i j F a
i j +

1

2
(εi j∂i V j +A)2 +

∑
a

(Di

a)† (Di


a)+ V [φa].

(9)

Euler-Lagrange equations are then

∂i F a
ik = εka(εi j∂i V j +A) + ig(φa Dkφ

a† − φa† Dkφ) (10)

Dk Dkφ
a = − δV

δφa†
(11)

εi j∂k∂i V j = ∂kA. (12)

Instead of solving these second order field equations, we shall fol-
low the standard Bogomolny procedure [11] and we rewrite the 
energy density as

E =
∑

a

(
1

2
|Di


a − iγ aεi j D j

a|2

+ 1

4

(
F a

i j − γ a gaεi j(φ
aφa† − (ηa)2)

)2

+ 1

2
(εi j∂i V j +A)2 +

∑
a

(
λa − (ga)2

2

)
(
a 
a† − (ηa)2)2

− γ a ga

2
(ηa)2εi j F a

i j

)
(13)
2

where γ a = ±1 and we have discarded total derivatives which 
vanish after integration for appropriate boundary conditions (in 
this case we require finite energy in R(2) which implies vanish-
ing of the scalar covariant derivatives at infinity). So, if

λa = (ga)2

2
(14)

the minimal value of the energy E

E =
∫

d2xE (15)

is reached when the three squared terms in eq. (13) vanish

Di

a − iγ a εi j D j


a = 0 (16)

F a
i j − γ a ga εi j(


a 
a† − (ηa)2) = 0 (17)

εi j∂i V j +A = 0. (18)

If eqs. (16)-(18) are satisfied the energy E is

E =
∫

d2xE = −
∑

a

γa ga(η
a)2

∫
d2xBa = 2π

∑
a

(ηa)2|ma| (19)

where ma is the winding number associated to the quantized mag-
netic flux.

Now, the simplicity and convenience of the self dual equations 
are apparent. Equations for (A(1)

i , 
(1)) a (A(2)
i , 
(2)) are first order 

and decoupled. After solving them, we can use A(1)
i , A(2)

i as sources 
for V i . On the other hand, the energy can be calculated explicitly 
and their stability is ensured because they satisfy the Bogomolny 
bound. The self-dual equations are valid only when the relation 
Eq. (14) is valid. It is simple to see that this relation implies the 
equality between vector and scalar masses of the theory. It is also 
well established the connection between the existence of self dual 
equations and N = 2 supersymmetry for several models [12,13]. In 
the original Ginzburg-Landau theory of superconductivity (which 
has a single U (1) sector) relation Eq. (14) signals the boundary 
between Type I and Type II superconductors.

We will look for axially symmetric configurations for (A(1)
i ,


(1)) and (A(2)
i , 
(2)), so we make the following ansatz in polar 

coordinates (r, ϕ)

Aa
ϕ = −Aa

xr sinϕ + Aa
yr cosϕ = 1

ga
aϕ(r) (20)

Aa
r = Aa

x cosϕ + Aa
y sinϕ = 0 (21)


a = ηa f a(r)eimaϕ. (22)

Then, the first two equations become

∂r f a = −γ a

r
(ma − aa

ϕ) f a (23)

1

r
∂raa

ϕ = (ηa)2γ a(g2)a(( f a)2 − 1). (24)

Finite energy requires the following boundary conditions

aa
ϕ(0) = 0 , aa

ϕ(∞) = ma

f a(0) = 0 , f a(∞) = 1. (25)

It is easy to check that consistency requires γ a/ma < 0. It will also 
be convenient to redefine

ρ = |g1η|r ãa
ϕ = aa

ϕ − ma (26)

then
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Fig. 1. We show the magnetic field B1 associated to a vortex with winding number m(1) = 1, (blue), m(2) = −1 (green) and the magnetic field associated to the field ai

(orange). Parameters have been chosen so that ga = 1 and ηa = 1 for a = 1, 2.
∂ρ f (1) = γ (1)

ρ
(ã(1)

ϕ ) f (1) 1

ρ
∂ρ ã(1)

ϕ = γ (1)(( f (1))2 − 1)) (27)

∂ρ f (2) = γ (2)

ρ
(ã(2)

ϕ ) f (2) 1

ρ
∂ρ ã(2)

ϕ = γ (2)δ2(( f (2))2 − 1)) (28)

where δ = g(2)η(2)

g(1)η(1) and

ãa
ϕ(0) = ma , ãa

ϕ(∞) = 0

f a(0) = 0 , f a(∞) = 1 (29)

One can then show that

∂2
ρ2 ã(1)

ϕ − 1

ρ
∂ρ ã(1)

ϕ (1 + 2γ aã(1)
ϕ ) − 2ã(1)

ϕ = 0 (30)

∂2
ρ2 ã(2)

ϕ − 1

ρ
∂ρ ã(2)

ϕ (1 + 2γ aã(2)
ϕ ) − 2δ2ã(2)

ϕ = 0. (31)

It is obvious that, if m(1) = m(2) then ã(2)(ρ∗) = ã(1)(ρ) with ρ∗ =
δρ .

The equation (18) for V i can be now written in terms a(1)
ϕ and 

a(2)
ϕ ,

B̃ ≡ εi j∂i V j = −A(2)
x + A(1)

y = a(1)
ϕ cosϕ + a(2)

ϕ sinϕ

r
(32)

so that once we have solved the equations for aa
ϕ , we can easily 

obtain the solution for B̃ .
We have found numerical solutions of Eqs. (29)–(31) by using a 

relaxation method. We have analyzed different topological sectors 
with different winding numbers (m(1), m(2)) and fluxes Ba


a =
∫

d2xBa =
∫

d2xF a
12 = 2π

ga
ma. (33)

We show in Fig. 1 a solution for the case in which the topologi-
cal numbers m(1) = 1 and m(2) = −1, and where for simplicity we 
have set g(1) = g(2) = 1 and η(1) = η(2) . The upper peak (in blue) 
corresponds to the magnetic field associated with the vortex with 
winding number m(1) = 1, and the lowest one to the magnetic 
field of the vortex with m(2) = −1. In the same plot (in orange) 
we show the B̃ field defined in Eq. (32), which present a double 
peak structure. We remark that the particular (mirror) symmetry 
of the figures originates from our choices for ηa and ma but more 
generic cases can be considered without additional computational 
effort.
3

Notice that the sources of this generalized magnetic field are 
the vector potentials of the U (1) × U (1) sector via the term ∑

a εia Aa
i . Thus, both U (1) gauge fields contribute to the B̃ field. 

Nevertheless, it is enough to have only one of these gauge fields 
different from zero to produce a non-zero B̃ field. Indeed in Fig. 2
we display contour plots of the B̃ field for two different choices 
of gauge fields of the U (1) × U (1) sector. Panel (a) corresponds to 
the contour plot of B̃ associated to the Fig. 3, this is (m(1), m(2)) =
(1, −1). Panel (b), corresponds to a contour plot of B̃ for the case 
(m(1), m(2)) = (1, 0), where only the A(1) acts as a source for B̃ . 
Notice that not only the intensity of the field changes depending 
on the choice of ma but also figure in the panel (b) is rotated with 
respect to the one in panel (a).

Looking in more detail to panel (b) in Fig. 2, the contour plot 
looks qualitatively very similar to those of the magnetic field pro-
duced by a magnetic dipole placed outside the (x, y) plane, at a 
certain height in a z axis in three spatial dimensions, as repre-
sented schematically in Fig. 3 for the A(1) field. In this figure we 
display the B(1) magnetic field tube (in light blue), and the two 
effective magnetic dipoles �μ (represented as orange arrows) as-
sociated to the B̃ field. Notice that the direction of the dipole is 
correlated with the flavor of the gauge field (a = 1 in this case). 
Had we chosen, the other flavor a = 2, the orientation of the dipole 
would be different. In fact, panel (b) of Fig. 2 results from the 
superposition of these cases. Associated to the generalized gauge 
transformation of the V i field, a conserved (and gauge invariant) 
density jm

0 was identified in Ref. [1],

jm
0 = εi j∂i V j +A− riεi j Jm

0 j (34)

with

Jm
0 j =

∑
l

ε jl B
(l). (35)

In our case jm
0 reduces to

jm
0 = xB(1) + yB(2). (36)

We show in Fig. 4 a plot of this density jm
0 for the case in which 

(m(1), m(2)) = (1, −1). Similar plots can be obtained for the differ-
ent sectors.

The Lagrangian (1) proposed in [1], when coupled to appropri-
ate currents leads to Gauss law of a symmetric tensor gauge theory 
coupled to an external electric charge which encodes conservation 
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Fig. 2. Contour plots for the magnetic field associated to the field B̃[ai ] for different winding numbers (m(1), m(2)). Parameters have been chosen so that ga = 1 and ηa = 1. 
Panel (a) corresponds to contour plots for sector (1, −1) while panel (b) to sector (1, 0).

Fig. 3. We represent in three spatial dimensions the magnetic field associated to a B(1) vortex with m(1) = 1, (light blue) and the B̃ field associated to ai (orange). Orange 
arrows μ represent the two effective magnetic dipoles, in this case in the x direction.

Fig. 4. Plot of the density jm
0 for the (1,−1) sector. Parameters have been chosen so that ga = 1 and ηa = 1.
not only of such charge but also conservation of an electric dipole 
moment [9]. In the present work, we have shown that the model 
described by Lagrangian (6), presents an interesting magnetics sec-
tor where in addition to the Nielsen-Olesen type vortex solutions 
typical of the standard U (1) Higgs models, the coupling between 
the gauge fields and the vector field V i gives rise to additional 
magnetic fields which are qualitatively similar to those produced 
4

by an effective magnetic dipole as reflected by the conserved den-
sity jm

0 .
In this letter we have analyzed the vortices at the BPS point. It 

is well known that for conventional superconductors, this relation 
between coupling constants signals the boundary between Type I 
and Type II superconductors. At this point, vortex-vortex interac-
tions also change from attractive to repulsive. It was later discov-
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ered that at this point the model coincided with the bosonic sector 
of an N=2 SUSY version of the Abelian Higgs model [13]. A rele-
vant question that arises is then how these features can be present 
in this system and what could it be the role of this kind of struc-
tures in fracton models. Even a more interesting situation could be 
expected if in addition to Maxwell term considered here, a Chern-
Simons term is added. It is well-known that in the presence of 
Chern Simons term in the standard case vortices that carry both, 
electric and magnetic charge are present [14,15]. It is also well 
known that BPS equations can be found for conveniently tuned 
models both in the relativistic and non-relativistic cases [16–18]. 
We expected that the analysis presented here can be also applied 
to this case. We hope to report on this issue soon.
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