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Sorites, Curry and Suitable Models

Abstract. In this paper we present two new approaches for dealing with
semantic paradoxes and soritical predicates based on fuzzy logic. We show
that both of them have conceptual advantages over the more traditional
Łukasiewicz approach, and that the second one even avoids standard proofs
of w-inconsistency.
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1. Introduction

Usually, different kinds of logics are used to deal with semantic paradoxes
on the one and with the sorites paradox on the other. The main rea-
son usually raised against this discrepancy has to do with the Principle

of Uniform Solution [19], which states that kindred paradoxes should
be solved the same way. In this vein, for instance Priest in [21, 20] ar-
gues that the Liar and vagueness-related paradoxes share the same form.
More specifically, these antinomies fit the so-called Inclosure Schema (see
[19] for details) and so he proposes to deal with both of them by adopting
a dialetheic solution.

There are also some other authors who, even though believe that
these paradoxes should be considered two different kinds of phenomena,
they still sympathize with the need to block them by rejecting the same
classical principles in both cases  for instance, Field [9], who abandons
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Excluded Middle, and some conditional contraction, or Cobreros et al.
[5], who abandon the structural rule of Cut.1

Our proposal fits better with this second group, in that we also be-
lieve that the sorites and the semantic paradoxes may cause the failure
of the same principles, although for different reasons. But, contrary to
them, we think this difference should somehow be reflected in the se-
mantics of the language. Thus, in this paper we propose a model theory
suitable for dealing non-trivially with both vague vocabulary and which
is rich enough to distinguish between them.

Our starting point will be one of the most prominent candidates
in the literature, which is the infinitely many-valued Łukasiewicz logic,
given that it is indeed possible to build a consistent theory of truth over
this logic (as proved by [23] and [13]), and also to provide a nice expla-
nation for the cases of vagueness. However, consistency is not enough
for a theory to be completely satisfactory. Even though the theory has a
model, it lacks the intended one, in what concerns the semantic part of
the language. On the one hand, the theory is w-inconsistent, and on the
other one, some paradoxical sentences have to necessarily be considered
truer/falser than others  which we find undesirable. Nonetheless, we
still think that Łukasiewicz logic provides a good solution to the sorites
and the phenomenon of vagueness related with it.

Thus, we will propose a subsystem of the infinitely many-valued
Łukasiewicz logic, Type-2 Interval Fuzzy Logic (T2) (introduced by [7]).
These models, we think, fare better as they allow finer distinctions re-
garding the assignment of truth values to paradoxical sentences. At
the same time, we get to keep the solution to vagueness as an inheri-
tance from Łukasiewicz logic. However, we still have the problem of w-
inconsistency. To resolve this issue, we will define a new concept which
is that of a suitable model as a refinement of the concept of intended
interpretation. We will show that although the theory of truth and
vagueness based on T2 cannot have the latter, it does have the former.
So, we consider this system to be a good step forward and we will end
by sketching some possible routes to avoid these problems.

It is worth mentioning that we here take a semantic standpoint.
Proof-theoretic approaches, which are quite common when dealing with

1 Although it is not the aim of this paper to argue against these theories, it is
worth noting that there is no definitive consensus in favor of any of them. In other
words, here we adopt a positive attitude, putting the criticism aside.
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the Liar and related paradoxes, are not as useful in some sub-classical
first order theories, when no complete axiomatization is possible (Łuka-
siewicz logic is Π2). Algebraic approaches, on the other hand, can be
very fruitful from a technical point of view, but sometimes there is no
structure that can be regarded as an intuitive semantics for the language.
However, we believe that formal semantics can shed philosophical light
over natural language, and that this is especially important in the case of
formalising vague vocabulary. Hence, when we talk about a given logic,
we will mean the arguments determined by a relation between models of
some kind, for a given language.

We assume familiarity with the use of corner quotes p q, overline
notation to indicate that n is the numeral of n, and with dot notation
(see [14], for details).

The rest of this paper is organized as follows: in Section 2, we present
the paradoxes we want to tame. In Section 3, we introduce the approach
based on Łukasiewicz logic and we argue against it. In Section 4, we
propose a new approach based on Interval-Type-2 Fuzzy Logic (T2), and
then we prove the limitative result of w-inconsistency. We end by sug-
gesting another theory based on Interval-Type-2 Fuzzy Logic (T2⋆) that,
in virtue of its conditional, avoids the usual proof of w-inconsistency.
Finally, in Section 5, we conclude with some remarks.

2. Paradoxes

The sorites paradox arises in languages containing vague predicates, un-
derstood as those which satisfy what Wright [24, p. 334] calls Tolerance:

F is tolerant with respect to [a concept] Φ if there is also some positive
degree of change in respect of Φ insufficient ever to affect the justice
with which F is applied to a particular case.

The problem comes when one faces a soritical sequence, i.e. a series
of objects a1, . . . , an ranging from clearly-F to clearly not-F , and where
each object is just marginally Φ-different from the ones nearby in the
sequence. Presumably then, the sentences Fa1, ¬Fan and ∀i(Fai →
Fai+1) should all be true, but they imply a contradiction just by Modus
Ponens and Universal Instantiation. So the two horns of the dilemma are:
to either reject the major premise, thus abandoning Tolerance, or weaken
the logic, giving up at least one of the most seemingly uncontroversial
rules of inference.
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Semantic paradoxes, on the other hand, arise when we have some
kind of semantic vocabulary (for the sake of simplicity, we will just deal
with the truth predicate) and a language in which we can state its own
theory of syntax. For then we will have to assign some truth value to
sentences such as the following:

(Liar) This sentence is false.

(Curry) If this sentence is true, then everything is.

However, assuming they are true leads to contradiction, as well as as-
suming they are false does, and so there is no stable assignment of truth
values to either of them. If our theory of syntax is, for instance, Peano
Arithmetic (PA), this means we cannot add a truth predicate ‘Tr’ to
the language, satisfying the induction schema and the unrestricted T-
schema2:

(T-schema) Trpφq ↔ φ

If we did, assuming classical logic, the resulting theory would be incon-
sistent, since we can prove by the fixed-point theorem the existence of a
sentence λ equivalent to its own falsity, as well as a sentence κ, equivalent
to the one saying that the truth of κ implies everything. In general, we
understand semantically paradoxical (sets of) sentences in the following
way3:

Definition 2.1. A (PA-consistent) set of sentences Γ stated in the
language of PA augmented with a truth predicate ‘Tr’ is semantically
paradoxical if PA ∪ Γ ∪ {Trpγq ↔ γ : γ ∈ Γ} lacks a classical model.

In this sense, sentences such as the Liar or Curry count as paradoxical
and those like the Truth-teller:

(Truth-teller) This sentence is true.

do not.

A common feature behind the two kinds of paradoxes is that they
rely on the perhaps unwarranted assumption that there are just two

2 In other words, formulas possibly containing the predicate ‘Tr’.
3 This definition is actually a very simple characterisation of what a paradoxical

set is. In particular, strictly speaking, it overgenerates, since sets such as {Trp0 = 1q}
turn out to be paradoxical. One way of avoiding this is to consider that inconsistent

with PA includes not only the arithmetically inconsistent sentences, but also each of
their truth predications. For our purposes, we will ignore these cases and focus only
on the truly problematic ones, such as the Liar or the Curry sentence.



Sorites, Curry and suitable models 5

semantic statuses available to evaluate sentences expressing propositions.
Thus, it seems natural to give up bivalence and adopt instead some type
of plurivalent logic. Amid them, the Łukasiewicz family stands out in
virtue of their strong conditionals, which allow us to have identity as a
logical theorem, Modus Ponens as a rule and the T-schema as valid in a
theory of truth.

The problem is that all finitely valued semantics face immediate re-
venge paradoxes (see for instance [1]). The Liar can be generalized to
sentences saying they do not have a designated value, and the sorites by
appealing to higher order vagueness: just as one hair cannot make any
predication of baldness go from true to false, it cannot make it switch
from true to indeterminate either.

Of special interest to us will be the generalization of the Curry para-
dox via the following sequence of sentences:

1. κ1 ↔ (Trpκ1q → ⊥)
2. κ2 ↔ (Trpκ2q → (Trpκ2q → ⊥))
3. κ3 ↔ (Trpκ3q → (Trpκ3q → (Trpκ3q → ⊥)))

...

In many non-classical logics (other than the n-Łukasiewicz family),
since the conditional is weakened4, it is possible to assign to each κn the
same value as the conditional to which it is equivalent. But, as it was
aforementioned, we do not want to weaken the conditional too much, and
this set of sentences is inconsistent with any finite-valued Łukasiewicz
logic5. Nonetheless, it is indeed consistent with any infinitely-valued
Łukasiewicz logic, which is why we want to focus on systems based on
sub-logics of it.

At this point, one question that might arise is: what kind of solution
to the paradoxes are we looking for? In other words, what kind of
interpretations do we consider to be adequate for both the vague and
semantic predicates? A natural characterisation of an intended model
might be:

4 We are referring to the most usual solutions to semantic paradoxes, based on
Strong Kleene matrices (e.g. see [18] in the paraconsistent case and [16, 9], in the
paracomplete case).

5 For those readers who are familiar with the Łukasiewicz family of logics, Łn is
inconsistent with κn+1, for any n. So no finite many-valued logic of the Łukasiewicz
family will be consistent with the above sequence (see [1] for details).
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Definition 2.2. A model M for a theory containing Peano arithmetic,
vague vocabulary and a truth predicate is intended if the following con-
ditions hold:

1. It is an extension of the standard model of arithmetic.6

2. It satisfies all of the instances of the T-schema and does not estab-
lish any order among semantically paradoxical sentences (it does not
make any paradoxical sentence truer/falser than another).

3. If F is a vague predicate, a1 is the name of an object that is clearly-
F , an is the name of an object that is clearly not-F, and a1 . . . an is
a soritical sequence of objects, then Fa1 is true in the model, Fan is
false in the model, and for any i ∈ {1, . . . , n− 1}, Fai is at least as
true as Fai+1 in the model.

Regarding this definition, to have an intended model for a theory is
to be able to capture the intuitive interpretation of the sentences. But
even though it is not always possible to have the intended model, not all
of the unintended interpretations are equally erroneous. In particular,
the following is a more relaxed condition:

Definition 2.3. A model M for a theory containing Peano arithmetic,
vague vocabulary and paradoxical sentences is suitable if it satisfies at
least one of the above conditions.

The first  trivial  thing to note is that for a model to be intended
implies that it is suitable. Secondly, although our final aim is to provide
an intended interpretation to the complete set of sentences, we consider a
model-theory which provides a suitable model to be better than another
one lacking even that. And also, we consider a model satisfying more of
these conditions to be more suitable than another one satisfying less.

3. The problem with the solution based on Łukasiewicz logic

In this section, we argue against the solution of the paradoxes based on
Łukasiewicz logic. For that, we first introduce the logic and then show
the limitations of this approach.

6 A model M is an extension of the standard model of the arithmetic if restricted
to arithmetical vocabulary is the standard model.
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3.1. Łukasiewicz Logic

Let LPA be a first order language with the signature Σ = {s,+,×,
=, 0}, where = is a binary relation, + and × are two place functors,
s is a one place functor and 0 is a name; and the logical operator
names Θ = {⊥,¬,∧,→, ∃}. In order to interpret the language, we need
to define a logical matrix and a class of models. Regarding the ma-
trix: the set of truth values is the closed interval [0, 1] of real numbers;
the set of designated values is just {1}; the propositional operations
{botŁ, negŁ, conjŁ, condŁ} of arity 0, 1, 2 and 2 over [0, 1]:

• botŁ = 0
• negŁ(a) = 1 − a
• conjŁ(a, b) = ⊓(a, b), where ⊓ := min

• condŁ(a, b) =

{

1 if a ≤ b

1 − a+ b if a > b

and the distribution function existŁ over 2[0,1] → [0, 1] for the quantifier
are defined as follows:

• existŁ(A) = supA, where A is a subset of [0, 1].

A (standard)7 Łukasiewicz-model MŁ is a structure 〈D,A〉, where D
is a non-empty set and A is an interpretation function such that:

• aA ∈ D for each constant a,
• fA = Dn → D for each n-ary functor f ,
• FA = Dn → [0, 1] for each n-ary predicate F .

The value of a term t[α] relative to a variable assignment α can be
defined inductively as usual. Finally, a valuation vŁ,α relative to a model
MŁ and a variable assignment α is determined by the operations previ-
ously defined:

• vŁ,α(Ft1, . . . , tn) = FA(〈t
A[α]

1 . . . t
A[α]
n 〉)

• vŁ,α(⊥) = botŁ

• vŁ,α(φ ∧ ψ) = conjŁ(vŁ,α(φ), vŁ,α(ψ))
• vŁ,α(φ → ψ) = condŁ(vŁ,α(φ), vŁ,α(ψ))
• vŁ,α(¬φ) = negŁ(vŁ,α(φ))
• vŁ,α(∃xφ) = existŁ({vŁ,αx(φ) : αx is an x-variant of α})

7 Here and throughout the article, by Łukasiewicz logic we mean the logic char-
acterised only by the infinite-valued semantics over the real interval [0, 1] with the
specified Łukasiewicz truth functions. This is usually called the standard semantics

of Łukasiewicz logic. We do not take into account the general semantics, based on
MV-algebras.
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We will call the arguments determined by the class of such models,
together with the relation of 1-preservation Ł∞. Other connectives de-
finable from these are, for instance, the (strong) conjunction (fusion),
weak and strong disjunction (fission)8.

When it comes to the sorites, building a Łukasiewicz-model allows us
to set the interpretation of the predicate in question to reflect the degree
to which each object possesses the property. Because of the way the
valuation function is defined, truth turns out to be a matter of degree
too. Worries about sharp boundaries then tend to vanish, since we can in
some sense capture the smooth transition from one object in the sequence
to the next one. And even though the paradoxical reasoning is deemed
unsound  as it would be if we were using classical models  that does
not mean we have to reject the inductive premise, because it is just
slightly untrue, and certainly much truer than its negation.

On the other hand, with respect to the semantic paradoxes, Restall
[22] and Hájek et al. [13] proved that if we extend LPA to L+

PA with a truth
predicate, the closure under Łukasiewicz consequence of the axioms of
PA9 plus all instances of the T-schema has a Łukasiewicz model. We
will call such a theory PA+

Ł . More specifically, in every PA+
Ł -model, the

Liar and Curry sentences (mentioned in the last section) receive value
1/2. More interesting is the case of the infinite sequence of paradoxical
sentences {κi}i∈N:

Remark 3.1. Take the set {κi}i∈N, with each κi as defined in Section 2.
For every PA+

Ł -model, and for every m, vŁ(κm) = m/(m+ 1) ∈ [0, 1].

As a consequence of the above, note the following:

Remark 3.2. For any natural number m, and for any PA+
Ł -model,

vŁ(κm) < vŁ(κm+1). In other words, {vŁ(κi)}i∈N is an increasing se-
quence with 1 as its least upper bound.

This last remark will play a crucial role in the following section, where
we will argue against PA+

Ł .

8 We have not followed the usual way of defining the conditional as the residuum
of a continuous t-norm (strong conjunction), because we will focus on the conditional
(see, e.g., [12]).

9 We are assuming the formulation of arithmetic with an induction rule schema,
instead of an axiom schema (see [22, p. 306] for details). Note that the set of
Łukasiewicz consequences of the axioms of PA is the same as the set of classical
consequences of these axioms (see for instance [22, p. 2]).
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3.2. Trouble for Łukasiewicz logic

From our point of view, Łukasiewicz semantics offers one of the most sat-
isfactory frameworks for dealing with vague vocabulary. If so, a solution
to the semantic paradoxes would have to somehow accommodate these
sort of models. As we will see, this cannot be as straightforward as one
would like. There are two main problems: one is more of a conceptual
issue, while the other one is strictly of technical nature.

Let us start with the first one. We want to consider the formal
semantics as models, not only in the sense of them being useful inter-
pretations (for instance, of show consistency), but in a quite stronger
one, the same sense we find for instance in Goguen [10], Edgington [8]
or Cook [6]. Just as a scale model of a building represents the building,
our semantics are meant to represent those of natural language, and
in particular, real numbers are used in place of verities, which are the
semantic values that relate to English sentences. Łukasiewicz models are
used both by vagueness-theorists and  although much less frequently 
by truth-theorists. The issue here is that even if the models are iso-
morphic, this does not necessarily mean that, from a conceptual point
of view, they are characterising the same semantic interpretation. Here,
we follow Cook:

Sometimes theorists will introduce a particular many-valued logic,
demonstrate how this logic, and the semantics built upon it, solves both
the Liar paradox and the sorites paradox, and then conclude that this
logic is the correct logic. The problem, however, is that the relations
between statements and the world represented by the additional truth
values when the logic is applied to languages involving the semantic
paradoxes might be a different from the relations that those same truth
values represent when applied to languages involving vague expressions.

[6, p. 188]

The first problem with the solution based on Łukasiewicz logic is then
that we find the semantic and the vague interpretations to be indeed
mutually incompatible.

In the case of vagueness, the usual understanding of the semantic
values is that of degrees of truth: the maximum represents truth, the
minimum represents falsehood, with all the intermediate values repre-
senting a smooth transition between them. The interpretation of the
connectives is then somewhat justified by the fact that they are natural
extensions of the crisp operations to the case of degrees of truth: it seems
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intuitive, for instance, to consider that a sentence ¬φ is as true as φ is
false, and vice versa.

In the case of theories of truth, though, it is in fact important not to

consider values between 0 and 1 as degrees of truth, but instead as just
different indeterminacies. Otherwise, we would have to say that a Curry
sentence κn is falser than a Curry sentence κn+1, and it is not easy to
understand what would that mean (see Remark 3.2).

According to Definition 2.3, although Łukasiewicz logic can accom-
modate a suitable interpretation for the vague vocabulary, it does not
have a suitable interpretation for the truth predicate.

The second problem with Łukasiewicz logic has nothing to do with
vagueness, but only with the truth predicate. We say that a theory isw-inconsistent if there is a formula φ(x), such that in every model and
for every numeral n, φ(n) is not true, but ∃xφ(x) is true10. It means that
each model of the theory is non-standard (it has non-standard numbers
in its domain, in this case, satisfying the existential formula). Unfortu-
nately, PA+

Ł , although satisfiable, is in fact w-inconsistent [22, 13]. See
for instance Field [9], Barrio [2] and Barrio and Picollo [3], Barrio and
Da Ré [4], among others who argue against w-inconsistent theories11.

More recently, Bacon [1], in order to proof-theoretically derive the
proof of w-inconsistency, showed that it is sufficient to have the following
two rules:

(∃ 1) if φ ⊢ ψ then ∃xφ ⊢ ∃xψ
(∃ 2) φ → ∃xψ ⊢ ∃x(φ → ψ)

Both rules are valid in Łukasiewicz logic and the second one relies
on the provability of the axiom of prelinearity (also valid in Łukasiewicz
logic): ⊢ (φ → ψ) ∨ (ψ → φ). In the next section, we will explore
sublogics of Łukasiewicz where prelinearity fails. However, as we will
prove in the case of the logic T2, failure of prelinearity is not sufficient
for avoiding w-inconsistency.

Before going into our proposal, it is important to mention that some
authors have tried to find sublogics of Łukasiewicz logic suitable to sup-
port a theory that deals with semantic paradoxes. For instance, we

10 Although, usually, the notion of w-inconsistency is syntactic, here we define it
semantically.

11 However, there are some authors that still defend w-inconsistent theories of
truth, such as Yatabe [25], and Gupta [11].
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dismiss the logic developed in [17] by Pailos and Rosenblatt, because
the conditional there presented is non-deterministic. Therefore, it is
very weak compared with the logic that we will favour here. Also, the
authors did not try to give an account of the sorites problem. On the
other hand, in order to avoid the derivation of w-inconsistency, Bacon in
[1] mentions two logics: BCKN and BCKD. Nevertheless, although these
logics are weaker than Ł∞, it is really straightforward to check that the
semantics that he presents for each logic are incompatible with the truth
predicate.12

4. A new approach

In this section, we will focus on Type-2 Interval Fuzzy Logic (T2). We
roughly follow one of the logics presented in [7].13

4.1. Type-2 Interval Fuzzy Logic (T2)

This new semantics is built upon a class of models which are, in a sense,
fuzzier than the Łukasiewicz ones. Instead of taking the set [0, 1] as the
set of semantic values, the logic T2 is characterised by taking the set of
its closed intervals LI = {[a, b] :< a, b >∈ [0, 1]2 and a ≤ b} whereas the
designated value is the interval [1,1] and the propositional operations
and the distribution function of the existential quantifier will be now
defined as follows:14

• neg2([a, b]) = [1 − b, 1 − a],
• cond2([a, b], [c, d]) = [⊓{1, 1 + c− a, 1 + d− b},⊓{1, 1 + d− a}],
• conj2([a, b], [c, d]) = [⊓{a, c},⊓{b, d}],
• bot2 = [0, 0],

12 For BCKD, the point was made by Pailos and Rosenblatt in [17]. In the case of
BCKN, Bacon offers a semantics via a truth table for the conditional. Although these
semantics invalidate the rule (∃2) and the axiom of prelinearity mentioned before,
they still validate the particular instance required for the w-inconsistency proof (for
details of the semantics of BCKN, see [1]).

13 As far as we know, there is not in the literature any attempt to connect these
logics with semantic vocabulary. It is worth noting that here we will focus on the
more natural logic presented in [7], although the limitative result can be extended to
the rest of the logics straightforwardly.

14 Here, as in Section 3.1, we will only consider T2 as the logic characterised
by the semantics over the closed intervals of the real unit [0, 1] with truth functions
derived from the standard semantics.
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• exist2(A) = [sup{a : [a, b] ∈ A}, sup{b : [a, b] ∈ A}], where A is a
subset of LI ,

where ⊓ and sup are the same meet and join operations as in Section 3.1.

Type-2 models are defined exactly as before, but with type-2 char-
acteristic functions for the predicates. Valuations v2 relative to those
models can be defined as usual. We will call the class of all type-2-valid
arguments Type-2 Interval Fuzzy Logic or T2 for short. Accordingly,
PA+

2 will be the theory obtained by closing the axioms of PA and the
instances of the T-schema under T2-consequence.15

As we saw, we need to represent two sorts of values: indeterminacies
and degrees of truth. In order to do this, we distinguish between two
types of members of the space. Degenerate intervals, which are those
containing only one point, represent degrees of truth and their order is
the natural one corresponding to the order between real numbers. On
the other hand, non-degenerate ones represent modes of indeterminacy
and they are not ordered.16

Formally, the structure of both subsets has some elements meant to
be taken seriously, and some that are not. Degenerate intervals represent
real verities in terms of how many of them are, their order, their density,
and some of the distances between them (we follow Cook [6]).

What about the representativeness of non-degenerate ones? Their
standard interpretation in these kind of semantics is meant to be epis-
temic: a sentence assigned the value [0.3, 0.5] has a value between those
endpoints, but we do not know which one. In the same vein, one can
go for a more semantic flavor, and say that any value in the interval is
admissible. We do not want to adopt any of these sorts of interpreta-
tions, though. If a sentence gets assigned an interval instead of a precise
degree of truth, it means that something in the process of its evaluation
has failed, and there is no deep difference between one indeterminacy and
another one besides the fact that they need to be different for technical
reasons.

This leads to a very well-known problem with the logic-as-modelling
view we are following. As in any model, there are some features of
the space of values which do not correspond with any natural language
phenomenon. For instance, just like the size of a model of a building is

15 Note that the closure of the axioms of PA under Łukasiewicz consequence
coincides with its closure under T2-consequence.

16 And so, the axiom of prelinearity fails in T2.
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not intended to represent the size of the actual building, the absolute
precision of real numbers does not reflect a property that real verities
have. Can we identify the non-artefactual features though? Rosanna
Keefe in [15]  when arguing against Łukasiewicz models  claims that
obtaining all acceptable valuations by linear transformations is the way
to make sense of the idea that the exact number corresponding to a
sentences is not meant to be taken seriously: even though φ gets the
value 0.567 in the model, it could just as easily have been evaluated as
0.568, and so on, within some range. The problem is that if in addition
of demanding linear transformations, you expect all suitable models to
keep the endpoints fixed  as it is expected, if some sentences are true or
false no matter what  then the only available transformation is identity.

However, are transformations actually an accurate guide to which
element are representative? That the size of a scale model of, say, the
MOMA is not representative can indeed be stated by affirming that any
transformation that preserves everything but size is equally good. But
there are some properties that, although invariant through transforma-
tions, are not to be regarded as representative. Take for instance the
property of not being located where the MOMA is. Every model will
necessarily share that property, but of course, the MOMA does not have
the property of not being located where it in fact is.

Hence, since remaining fixed  even if necessary  it certainly is not
sufficient, we are left with no clue as to which elements of the model
should be taken seriously and which ones should not. The answer is, we
think, to give up the idea that the representative elements can be pin-
pointed by a mathematically rigorous concept, and to adhere to Cook’s
proposal that the relation between the formal semantics and the natural
language will always be stated in a vague language [6].

Leaving this problem aside, we can now ponder how the desired model
would have to look like. The idea is that, now that we have values
representing modes of indeterminacy, we can use them to evaluate para-
doxical sentences, whereas the non-paradoxical ones  among them, in
particular, sentences involving vague vocabulary  receive a degenerate
interval.

As an example, take PA with the T-schema for the Liar and the
Curry sequence we considered above. This theory has a suitable model,
in which λ gets value [0, 1], κ2 gets value [1/3, 1], κ3 gets value [2/4, 1],
and in general, for any κi, its value is [(i − 1)/(i + 1), 1]. Sentences
like the Truth-teller may be considered either true, false, or any other
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semantic value one pleases, and the choice between these options involves
metaphysical and semantical commitments we will not try to settle here.
Thus, we will let our models roam free with respect to them. Accommo-
dating vagueness, on the other hand, is an easy task. We just interpret
soritical predicates by means of characteristic functions giving only de-
generate intervals as their values. Finally, extending these models to
one which is a suitable for the whole theory  that is, with the full T-
schema, and all paradoxical sentences inside  is an open problem that
we leave for future work.17 This would complete our goal of finding a
model which is suitable both for the semantic and the vague parts of the
language.

4.2. Some limitative results

The first thing to notice is that the interaction between these two frag-
ments of the language is not always as expected. In fact, some sentences
containing a mixed vocabulary could be evaluated in a dubious way. For
example, given a semantically paradoxical sentence that takes a non de-
generate value, e.g. [1/3, 1] in some suitable model, its conjunction with
a vague sentence with value [0.2, 0.2] would also receive the degenerate
interval [0.2, 0.2] as its semantic value. This may count as an undesirable
behaviour on the part of the models, although intuitions are not as clear
in these cases as they may be in the pure ones. Be this as it may, this
problem goes beyond the original task of finding suitable models in the
sense of Definition 2.3. Next, we will present what we take as the biggest
problem for T2.

As in the case of the theory built over Łukasiewicz logic, the main
issue here is that models of the theory built over T2 cannot be extended
to the intended ones, given that the same w-inconsistency phenomenon
arises in PA+

2 , as we will prove in the rest of this section.

The hope of there being standard T2-models might be grounded on
the fact that in T2 the prelinearity axiom is not valid ((φ → ψ) ∨ (ψ →

17 Proving a result like this is not such an easy task, given that we cannot simply
use Brouwer’s fixed point theorem (as in [13]), since our space of values (the one
lacking degenerated intervals other than [0, 0] and [1, 1]) does not satisfy the initial
conditions for its application. However, it is worth noting that it is closed under the
operations corresponding to the connectives  in particular, the conditional  which
is also a necessary condition for the general result.
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φ)).18 And  recall  prelinearity is needed in order to prove the rule
(∃2). Unfortunately, this is not enough to guarantee the existence of a
standard model: PA+

2 is just as w-inconsistent as PA+
Ł . Before proving

the main theorem, we need first to prove the following two lemmas:

Lemma 4.1. Let f be a function such that f(0, x) = x →. ⊥. and

f(n+ 1, x) = x →. f(n, x) 19. For any γ and n, if v2(γ) = [a, b] then

v2(Tr(f(n, pγq)))= [⊓{1, n+ 1 − (na+ b)},⊓{1, (n+ 1)(1 − a)}].

Proof. We will prove this lemma by induction over n.

Base case v2(f(0, pγq)) = v2(Tr(pγq→. ⊥. )) = cond2([a, b], [0, 0]) =
[⊓{1, 1 − b},⊓{1, 1 − a}], because 1 − b ≤ 1 − a. And it is easy to check
that this satisfies the lemma.

Inductive step: Let us assume that the lemma holds for n = h. We
need to show that it also holds for n = h+ 1. Using the hypothesis, we
have that v2(Tr(f(h, pγq))) = [⊓{1, h+1−(ha+b)},⊓{1, (h+1)(1−a)}].
And we know by definition of f that v2(Tr(f(h+ 1, pγq)))= v2(Tr(pγq
→. f(h, pγq))).

Hence, v2(Tr(f(h+ 1, pγq))) = cond2([a, b], [⊓{1, h + 1 − (ha + b)},
⊓{1, (h+1)(1−a)}]). Thus we have to check four cases according to the
possible semantic value of each infimum:

Case 1. v2(Tr(f(h+ 1, pγq))) = cond2([a, b], [1, 1]).

It is easy to check that a conditional with a true consequent is true, so
cond2([a, b], [1, 1]) = [1, 1]. Now, we need to prove that [1, 1] = [⊓{1, (h+
2) − ((h + 1)a + b)},⊓{1, (h + 2)(1 − a)}], that is we need to prove the
pointwise identity. For the first endpoint, by hypothesis of the case,
h + 1 − (ha + b) ≥ 1, and since 1 ≥ a, by arithmetic we have that
h+ 2 ≥ 1 + (h+ 1)a+ b. Therefore, 1 = ⊓{1, h+ 2 − ((h+ 1)a− b)}. For
the second point, by hypothesis of the case we have that (h+1)(1−a) ≥ 1.
Again, since 1 ≥ a, by arithmetic we know that (h+1)(1−a)+(1−a) ≥ 1.
Then also 1 = ⊓{1, (h+ 2)(1 − a)}.

Case 2. v2(Tr(f(h+ 1, pγq))) = cond2([a, b], [1, (h+ 1)(1 − a)])
By hypothesis of this case, 1 > (h+ 1)(1 − a), and then by definition of
interval, (h+1)(1−a) = 1. But these conditions are mutually exclusive,
so this case cannot occur.

18 To see this, take for instance a model where φ gets value [0.2, 0.8] and ψ gets
value [0.3,0.7]

19 For readability, we omit the dot notation for the symbol that represents the
function f in the theory.
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Case 3. v2(Tr(f(h+ 1, pγq))) = cond2([a, b], [h+ 1 − (ha+ b), 1]).
By definition, cond2([a, b], [h+1−(ha+b), 1]) = [⊓{1, h+2−((h+1)a+

b), 2−b},⊓{1, 2−a}]. Given that a ≤ b ≤ 1 and then 2−a ≥ 2−b ≥ 1, we
have that cond2([a, b], [h+1−(ha+b), 1]) = [⊓{1, h+2−((h+1)a+b)}, 1].
Now, it remains to check that in this case 1 ≤ (h + 2)(1 − a). But this
is trivial, given that, by hypothesis of the case, 1 ≤ (h + 1)(1 − a) and
1 − a ≥ 0. Thus, cond2([a, b], [h+ 1 − (ha+ b), 1]) = [⊓{1, h+ 2 − ((h+
1)a+ b)},⊓{1, (h+ 2)(1 − a)}].

Case 4. v2(Tr(f(h+ 1, pγq))) = cond2([a, b], [h + 1 − (ha + b), h +
1(1 − a)]).

In this case, it is enough to apply the definition of the valuation
of the conditional. cond2([a, b], [h + 1 − (ha + b), (h + 1)(1 − a)]) =
[⊓{1, h+ 2 − ((h+ 1)a+ b)},⊓{1, (h+ 2)(1 − a)}]. ⊣

Lemma 4.2. Let φ be such that �PA+
2
φ ↔ ∃xTr(f(x, pφq)), where

f is the function defined in Lemma 4.1. For each n, we have that

v2(Tr(f(n, pφq))) 6= [1, 1].

Proof. Suppose, on a contrary, that there is a k such that v2(Tr(f(k,
pφq))) = [1, 1].Then, by definition of the existential, v2(∃xTr(f(x, pφq)))
= [1, 1]. Let v2(φ) = [a, b]. Thus, by definition of the biconditional
[a, b] = [1, 1]. Nonetheless, by the previous lemma v2(Tr(f(k, pφq))) =
[⊓{1, k+1−(ka+b)},⊓{1, (k+1)(1−a)}]. Therefore, v2(Tr(f(k, pφq))) =
[⊓{1, 0},⊓{1, 0}], which contradicts the initial assumption. ⊣

Finally, with these results we can prove what we wanted:

Theorem 4.3. PA+
2 is w-inconsistent.

Proof. We will argue by reductio. Let φ be as in Lemma 4.2 and
suppose v2(φ) = [a, b] 6= [1, 1]. Because of the definition of interval, this
implies that a < 1. Also, thanks to Lemma 4.1, we know that for any n,
v2(Tr(f(n, pφq)))=[⊓{1, n + 1 − (na + b)},⊓{1, (n + 1)(1 − a)}]. But
because of Lemma 4.2 and the definition of an interval, we know the
first endpoint cannot be 1. Thus, v2(Tr(f(n, pφq))) = [n+ 1 − (na+ b),
⊓{1, (n+ 1)(1 − a)}]. But for the same reason, it must be the case that
n+1−(na+b) < 1 and so, by arithmetic: n(1−a) < b. But no matter how
small 1 − a is, there will be a number n such that 1 < n(1 − a) and thus
1 < b. Contradiction. Hence, v2(φ) = [1, 1]. But since Lemma 4.2 shows
that the theory does not force any of the instances of the existential, this
suffices to show that it is w-inconsistent. ⊣
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This shows that T2 fares no better than Ł∞ when it comes to pro-
viding a standard model for arithmetic.20

4.3. Some possible routes to w-consistency

Improving upon T2 to capture the intended interpretation of the whole
set of sentences of the theory is a challenging task. Thus, our purpose
in this section is mainly exploratory, and we do not wish to claim that
the proposal hereafter presented is definitive in any sense. We will play
around with a possible modification and show that the theory built over
this other logic has a model where the value of the sentence φ presented
in the last proof is different from [1,1], avoiding the derivation of w-
inconsistency.

Let T2⋆ have  as in the case of T2  the set of all closed intervals
of [0, 1] as its set of truth values, [1, 1] as its only designated value,
and the same propositional operations and distribution function for the
quantifier as before, with the exception of the conditional, which will be
characterised the following way:

cond⋆
2([a, b], [c, d]) =















cond2([a, b], [c, d]) if [a, b] ∩ [c, d] = ∅ or

[a, b] = [c, d]

[(a+ c)/2, (b+ d)/2] otherwise

This new conditional works exactly as T2’s, for the cases where the
two intervals share either no point or all of them. This allows us to
retain the Łukasiewicz-like behavior for degenerate intervals, and also
identity as a law, which was one of the original motivating features. It
is worth noting that there are an infinite number of ways to modify the
conditional, avoiding the derivation of w-inconsistency. We just chose
one among them, which we found simple enough.

This faces us with a more general problem, which concerns the cri-
teria for choosing the right truth-functional operations in the case of
fuzzy theories of truth. It seems that quite often, the justification for
the interpretation of the connectives is just transposed from theories of

20 As an anonymous referee has pointed out, in [13] the authors show that (what
we call here) PA+

Ł
lacks a standard model even for non-standard semantics, i.e. for

any linear MV-algebra. One could ask whether a similar point holds for PA+

2 . The
proof of the Theorem 4.3 (and the previous results) strongly depends on the standard
semantics, so whether or not it can be generalised is left for future work.
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vagueness, since it is not common to find in the literature an explanation
other than “they generalise the two-valued case”. Nevertheless, although
this generalisation is obvious for three-valued theories, it is not so when
we have infinite values; much less if they are taken to be  as we think
they have to  just different modes of indeterminacy, and not genuine
degrees of truth.

Our proposal is to be liberal, and allow connectives to be legitimately
interpreted by any function, as long as they behave properly, in the case
that they satisfy some desirable principles or rules. If so, even if at
first sight, the conditional of T2⋆ could seem sort of artificial, it actually
complies with a lot of the standard requirements of a conditional. Some
of these nice properties are, for instance:

1. (Modus Ponens) φ, φ → ψ �T2⋆ φ
2. (Identity) �T2⋆ φ → φ
3. (Contraposition) φ → ψ �T2⋆ ¬ψ → ¬φ
4. (Contraposition′) ¬ψ → ¬φ �T2⋆ φ → ψ
5. (De Morgan) ¬(φ ∧ ¬ψ) �T2⋆ φ → ψ21

6. It is Łukasiewicz-normal, in the sense that, when the intervals are
degenerate, the output is the interval-equivalent of the Łukasiewicz
conditional.

From this list, it is possible to conclude that, despite its non-standard
features, this conditional is still a strong contender among the non-
classical ones, and that it behaves in a very natural way.

As in the case of T2, we will also refer by PA+⋆
2 to PA+⋆ closed under

T2⋆ consequence. This theory still has a suitable model in which λ gets
value [0, 1], κ2 gets value [1/3, 1], κ3 gets value [2/4, 1], and in general,
for every κi, its value is [(i-1)/(i+1), 1].

However, we do not know if the theory has an intended model, since
the usual proof of the absence of such a model cannot go through. Take
the function defined in Lemma 4.1: f(0, x) = x →. ⊥. and f(n+ 1, x) =
x →. f(n, x), and let again φ be the sentence such that �PA+⋆

2
φ ↔

∃xTr(f(x, pφq)). We have seen that in the case of PA+
2 , for every model,

vM(φ) = [1, 1], leading to w-inconsistency. However, in PA+⋆
2 that is not

the case. Simply to illustrate this point, let M be a model such that
vM(φ) = [0.3, 0.8]. It is easy to check that vM(φ ↔ ∃xTr(f(x, pφq))) =

21 However, the other direction does not hold, i.e. φ → ψ 2T2⋆ ¬(φ ∧ ¬ψ). We’d
like to thank an anonymous referee for pointing this out.
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[1, 1], even though φ does not have the designated value. If the value of
each Tr(f(i, pφq)) is [ai, bi], then we have the following:

• [a0, b0] = vM (Trf(0, pφq)) = vM(φ →. ⊥. ) = [0.2, 0.7],
• for any k > 0, 0.2 < ak < ak+1 < sup{ai : i ∈ w} = 0.3,
• for any k > 0, 0.7 < bk < bk+1 < sup{bi : i ∈ w} = 0.8.

Informally, this means that, with each iteration of the conditional, the
first point increases towards 0.3, and the second one increases towards
0.8. So, as vM (∃xTr(f(x, pφq)) is the supremum pointwise of the above
sequence of values, vM(∃xTr(f(x, pφq)) = [0.3, 0.8]. So, neither φ nor
∃xTr(f(x, pφq) receive a designated value in every model (of course the
biconditional still holds since is an instance of the diagonal lemma), and
thus they cannot be used to show w-inconsistency any longer.

5. Conclusion

In this paper, we introduced two new approaches for dealing with se-
mantic paradoxes and soritical predicates, one based on Type-2 Interval
Fuzzy Logic and one based on Type-2⋆ Interval Fuzzy Logic. First,
we characterised the concept of intended model for a theory containing
Peano arithmetic, vague and semantic vocabulary as an interpretation
that: (a) is an extension of the standard model of arithmetic; (b) satis-
fies all of the instances of the T-schema and does not establish any order
among paradoxical sentences (it does not make any paradoxical sentence
truer/falser than another), and finally (c) if F is a vague predicate, a1

is the name of an object that is clearly-F, an is the name of an object
that is clearly not-F, and a1 . . . an is a soritical sequence of objects,
then Fa1 is true in the model, Fan is false in the model, and for each
i ∈ {1, . . . , n− 1}, Fai is at least as true as Fai+1.

We also defined the concept of suitable model for a theory containing
Peano arithmetic, vague and semantic vocabulary as a partial adequacy
criterion, where an interpretation is suitable when it satisfies at least
some of the above requirements. Then, we introduced the solution based
on Łukasiewicz logic and showed its limitations.

Next, we presented Type-2 Interval Fuzzy Logic and we showed that
although it is w-inconsistent, it is possible to build a theory for some
paradoxical sentences (such as the Liar and the sequence of Curry sen-
tences) and vague vocabulary with a suitable interpretation. Finally,
we presented Type-2⋆ Interval Fuzzy Logic whose models are more suit-
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able than those of its competitors, and also avoids the usual proof ofw-inconsistency (although we have not proved that T2⋆ is w-consistent).
This work is exploratory and we hope further research will enlighten the
problems investigated.
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