Accepted Manuscript

Hermite-Gaussian model for quantum states

Marcelo Losada, Ignacio S. Gomez, Federico Holik

PII: \quad S0378-4371(19)31064-7
DOI: https://doi.org/10.1016/j.physa.2019.121806
Article number: 121806
Reference: PHYSA 121806

To appear in: Physica A
Received date : 26 October 2018
Revised date: 6 May 2019

Please cite this article as: M. Losada, I.S. Gomez and F. Holik, Hermite-Gaussian model for quantum states, Physica A (2019), https://doi.org/10.1016/j.physa.2019.121806

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HIGHLIGHTS (for review)

- Motivated by the quantum harmonic oscillator states, the He mit e-Gaussian model is proposed as a generalization of the standard Gaussian ore.
- Mixture and real (or imaginary) superpositions of eigenst .tei have a diagonal Fisher metric.
- Hermite-Gaussian model can be used for geometrica char aterizations of unknown parameters in scenarios that employ quantum harmc nic os illators.
- Fisher metric of a general state of the quantun h= .mı nic oscillator only depends on the variance.

*Manuscript

Hermite-Gaussian model for quantum states
 Marcelo Losada ${ }^{\text {a, }, *}$, Ignacio S. Gomez ${ }^{\text {b,c }}$, Federico Holik ${ }^{\text {d }}$
 ${ }^{a}$ Universidad de Buenos Aires - CONICET Ciudad Universitaria, 1428 Buenos Aires, . ${ }^{\circ} \mathrm{o}$. tina.
 ${ }^{b}$ Instituto de Física, Universidade Federal da Bahia, Rua Barao de Jeremoabo, 40170-11. Calvaa BA, Brazil
 ${ }^{c}$ National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, Rio de נ. -iro 22290-180, Brazil
 ${ }^{d}$ IFLP, UNLP, CONICET, Facultad de Ciencias Exactas, Calle 115 y 49, 1900 I . r . ta, Argentina

Abstract

In order to characterize quantum states within the context of informati n ge ... try, we propose a generalization of the Gaussian model, which we called the Hermite-Gaussian model. Wt ${ }^{-1}$ ain \dagger.e Fisher-Rao metric and the scalar curvature for this model, and we show its relation with the one-dimens ' nal y.untum harmonic oscillator. Using this model we characterize some families of states of the quantum harmonic osc 'lator. We find that for eigenstates of the Hamiltonian, mixtures of eigenstates and even or odd superpositions feiger states, the associated Fisher-Rao metrics -which are relevant in the context of quantum parameter estimaı» ^ theory - are diagonal. Finally, we consider the action of the amplitude damping channel and discuss the relationchin stween the quantum decay and the different geometric indicators.

Keywords: Fisher-Rao metric, statistical models, Gaussia inv. . Yermite-Gaussian model

1. Introduction

The information geometry approach [1-10] studies the differential geometric structure of statistical models. A statistical model consists of a family of probabil' y dist hution functions (PDFs) parameterized by continuous variables. In order to endow these models with a geon. tric stru ture, it is necessary to define the Fisher-Rao metric [4], which in turn, is linked with the concepts of ent $\boldsymbol{s p y}$ anc. ${ }^{\circ}$ 'sher information. Once we have a statistical manifold, the main goal of the information geometry appro ch is to characterize the family of PDFs using geometric quantities, like the geodesic equations, the Riemann curvatur . enss , the Ricci tensor or the scalar curvature.

The geometrization of thermody amics aı.. statistical mechanics are some of the most important achievements in this field, expressed mainly by t'.e tu. ndational works of Gibbs [11], Hermann [12], Weinhold [6], Mrugała [13], Ruppeiner [14], and Caratheódor* ${ }^{\text {r15 }}$]. These investigations lead to the Weinhold and Ruppeiner geometries, where a Riemann metric tensor in th f spar 2 of thermodynamic parameters is provided and a notion of distance between macroscopic states is obtained. . vever, the utility of information geometry is not only limited to those areas. For instance, it has been applie in quaıı im mechanics leading to a quantum generalization of the Fisher-Rao metric [16], and also in nuclear r asm $s\left[1^{-}, 18\right]$. Moreover, generalized extensions of the information geometry approach to the non-extensive formula. $\eta^{2} r$. statistical mechanics [19] have been also considered [20-23]. Applications of information geometry ${ }^{+}$, chaos can also be performed by considering complexity on curved manifolds [24-28], leading to a criterion for chat cterizin global chaos on statistical manifolds, from which some consequences concerning dynamical systems have 'vor ixplored [29]. More generally, the curvature has been proved to be a quantifier which measures interact ons in 'hermodynamical systems, where the positive or negative sign corresponds to repulsive or attractive correlai ons, res ectively [7].

Motivated by pı : \quad, works of some of us [29, 30], we propose a generalization of the Gaussian model which we

[^0]Email addresses: marcelolosada@yahoo.com (Marcelo Losada), nachosky@fisica.unlp.edu.ar (Ignacio S. Gomez)

ACCEPTED MANUSCRIPT

The use of information geometry techniques in the description of quantum harmonic oscille ors can be useful, for example, in the study of the translational modes in a quantum ion trap. These modes can ${ }^{1} \mathrm{a}$ - scribed as quantum harmonic oscillators (see discussion in [31]), that need to be characterized and controlled in order to void coherence losses. Given the close connection between the Fisher metric and the Cramer-Rao ined alit our contribution may serve as a tool for the characterization of unknown parameters in those scenarios. The pı , `en' work can be also useful for characterizing global dynamics on a new family of curved statistical manifolds [24. 78].

The paper is organized as follows. In Section II, we review the main features of the \cdot formation geometry approach. In Section III, we present the Hermite-Gaussian model, we obtain the fist : Rao metric and the scalar curvature for this model, and we show its relation with the one-dimensional quan η^{1} armonic oscillator. We employ the Hermite-Gaussian model to characterize some families of states of the qurntum . .rmonic oscillator. We focus on three different families: Hamiltonian eigenstates, mixtures of eigenstates and sup rposition of eigenstates. Then, in Section IV, we illustrate with the exampled of the amplitude damping cha nel. W show that the geometrical effect of the channel is expressed in a decrease of the scalar curvature tow ${ }^{-}$'s an w, mptotical value associated to the decohered state. Finally, in Section V, we present the conclusions and sr me f. . u_{1}, research directions.

2. Information geometry

The information geometry approach studies the differential \leftrightharpoons omı in structure possessed by families of probability distribution functions (PDFs). In this section we introduce the e' neral features of this approach, which will be used in the next sections. The presentation is based on the bo un s. Amari and H. Nagaoka [9].

2.1. Statistical models

Information geometry applies techniques of differential ${ }_{c}$ ometry to study properties of families of probability distribution functions parameterized by continuous va. 'ac 'os. These families are called statistical models. More specifically, a statistical model is defined as follows. We ronsider the probability distribution functions defined on $X \subseteq \mathbb{R}^{n}$, i.e., the functions $p: X \rightarrow \mathbb{R}$ which satisfy

$$
\begin{equation*}
p(x)-0, \text { an } \quad \int_{X} p(x) d x=1 \tag{1}
\end{equation*}
$$

When X is a discrete set the integral nust be replaced by a sum. A statistical model is a family S of probability distribution function over X, whose ele.. $\neg n t$ can ee parameterized by appealing to a set of m real variables, i.e.,

$$
\begin{equation*}
S=\left\{p_{\theta}(x) \cdot p(x \mid \theta) \mid \theta=\left(\theta^{1}, \ldots, \theta^{m}\right) \in \Theta \subseteq \mathbb{R}^{m}\right\} \tag{2}
\end{equation*}
$$

with $\theta \mapsto p_{\theta}$ an injective map ang. The dimension of the statistical model is given by the number of real variables used to parameterized the family ~

When statistical models are pplied to physical systems, the interpretation of X and Θ is the following. X represents the microscopic vari hler of tr \pm system, which are typically difficult to determine, for instance the positions of the particles of a gas. Θ renres ${ }^{\text {to }}$,he macroscopic variables of the system, which can be easily measured. The set X is called the microspa e and t e variables $x \in X$ are the microvariables. The set Θ is called the macrospace and the variables $\theta^{1}, \ldots, \theta^{m}$ ar, the mar ovariables.

Given a physic»1 ysu.., we can define many statistical models. First, we have to choose the microvariables to be considered, and t ' en we i. 've to choose the macrovariables which parameterized the PDFs defined on the microspace. All statistical mo are qually valid, but no all of them are equally useful. In general, the choice of the statistical model would he bastu vil pragmatic considerations.

ACCEPTED MANUSCRIPT

2.2. Geometric structure of statistical models

In order to apply differential geometry to statistical models, it is necessary to endow ther . $W_{1}=$ a metric structure. This is accomplished by means of the Fisher-Rao metric

$$
\begin{equation*}
\mathbf{I}=I_{i j}=\int_{X} d x p(x \mid \theta) \frac{\partial \log p(x \mid \theta)}{\partial \theta^{i}} \frac{\partial \log p(x \mid \theta)}{\partial \theta^{j}}, \quad i, j=1, \ldots, m \tag{3}
\end{equation*}
$$

The metric tensor I gives to the macrospace a geometrical structure. Therefore, thf raı ilv S is a statistical manifold, i.e., a differential manifold whose elements are probability distribution functions

From the Fisher-Rao metric, we can obtain the line element between two nearb, ${ }^{\text {D }}$ DFs with parameters $\theta^{i}+d \theta^{i}$ and θ^{i}

$$
d s=\sqrt{I_{i j} d \theta^{i} d \theta^{j}}, \quad i, j=1, \ldots, m
$$

Using the metric tensor we can obtain the geodesic equations for th *. acror ariables θ_{i} along with relevant geometrical quantities, like the Riemann curvature tensor, the Ricci tensor $r \boldsymbol{r}$ the dar curvature.

$$
\begin{align*}
& \text { Geodesic equations: } \quad \frac{d^{2} \rho}{d^{2} \tau}+\Gamma_{i j}^{n} d \tau \frac{j}{d \tau}=0 \text {, } \tag{4}\\
& \text { Christoffel symbols: } \quad \Gamma_{i j}^{k}=1 \text { rim } \tag{5}\\
& \text { Riemman curvature tensor: } \quad R_{i k l m}=\frac{1}{2}\left(I_{i m, k l}+I_{k l i m}-\iota_{l l,, n}-I_{k m, i l}\right)+I_{n p}\left(\Gamma_{k l}^{n} \Gamma_{i m}^{p}-\Gamma_{k m}^{n} \Gamma_{i l}^{p}\right) \text {, } \tag{6}\\
& \text { Ricci tensor: } \quad R_{i k}=I^{l m} R_{\text {limk }}, \tag{7}\\
& \text { Scalar curvature: } \tag{8}\\
& R=I^{i k} R_{i k} .
\end{align*}
$$

The comma in the subindex denotes the partial :...rati ? operation (of first and second orders), $I^{k l}$ is the inverse of $I_{i j}$, and τ is a parameter that characterizes the geode. ${ }^{\circ}$ curves.

Moreover, the Fisher-Rao metric gives information about the estimators of the macrovariables. Given an unbiased estimator $\mathbf{T}=\left(T_{1}, \ldots, T_{m}\right)$ of the parameters $\left(f_{1}, \ldots, \iota.\right)$, i.e., $E(\mathbf{T})=\left(\theta_{1}, \ldots, \theta_{m}\right)$, the Cramér-Rao bound gives a lower bound for the covariance matrix of \mathbf{T},

$$
\begin{equation*}
\operatorname{cov}(\mathbf{T}) \geq \mathbf{I}^{-1} \tag{9}
\end{equation*}
$$

where the matrix inequality $A \geq B \mathrm{~m}$ ans, at t te matrix $A-B$ is positive semi-definite. In particular, this relation gives bounds for the variance of the hiased estimators T_{i},

$$
\begin{equation*}
\operatorname{var}\left(T_{i}\right) \geq\left\{\mathbf{I}^{-1}\right\}_{i i} \tag{10}
\end{equation*}
$$

This bound is important when . ng for optimal estimators. In what follows, we present an important statistical model used in the informatir a geonı y approach, the Gaussian model.

2.3. Gaussian model

One of the most rel , vant strtistical models used in the information geometry approach is the Gaussian model. This model is useful due tc its vers: ility for describing multiple phenomena: linear diffusion in Brownian motion, error statistical distribution in \quad n ments, Central Limit Theorem in probability theory, wave-packet function modelling a free particle, G ussian ooise in master equations, among others. The Gaussian model is obtained by choosing the family S as the st of mult variate Gaussian distributions. For instance, if $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ are the microvariables and there are no correlaı. vetween them, then $\left(\mu_{1}, \ldots, \mu_{n}, \sigma_{1}, \ldots, \sigma_{n}\right) \in \mathbb{R}^{n} \times \mathbb{R}_{+}^{n}$ are the set of macrovariables, where μ_{i} and σ_{i}^{2} con. ${ }^{\text {spu }} \cdots$ the mean value and the variance of the microvariable x_{i}.

If we consic only one microvariable x, the Gaussian model is given by the following probability distribution function

$$
\begin{equation*}
p(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{11}
\end{equation*}
$$

which is parameterized by the mean value μ and the standard deviation σ. From equatio. (5) to (8), one can obtain the Fisher-Rao metric and the scalar curvature of this model,

$$
\begin{gather*}
I_{\alpha \beta}=\left(\begin{array}{cc}
\frac{1}{\sigma^{2}} & 0 \\
0 & \frac{2}{\sigma^{2}}
\end{array}\right) \quad \text { with } \quad \alpha, \beta=\mu, \sigma, \tag{12}\\
R=-1 .
\end{gather*}
$$

The Gaussian model is a curved manifold with constant curvature. In som contey s , the sign of the curvature is interpreted as modeling interactions, like in the 3D Bose gas, the 3D Ferm; ors anu ue ideal gas, where their respective curvatures are negative, positive and zero [8].

In the next section, we introduce a generalization of the Gaussian mourt, bas don the eigenstates of the quantum harmonic oscillator Hamiltonian.

3. Hermite-Gaussian model

We propose a generalization of the Gaussian model, call - tne Hermite-Gaussian model, which is motivated by the quantum harmonic oscillator. Given the microspace $X=\mathbb{R}$ anu he macrospace $\Theta=\{(\mu, \sigma)\}$, we define for each n the Hermite-Gaussian model as the family of probability c sun . . 1 functions given by (see Appendix B)

$$
\begin{equation*}
\left.p_{n}(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} a_{n}^{2} H_{n}^{\prime} \cdot \frac{-\mu}{\sqrt{2} \sigma}\right), \quad a_{n}=\frac{1}{\sqrt{2^{n} n!}} . \tag{14}
\end{equation*}
$$

Figure 1: Some plots of the PDF s of the Hermite-Gaussian model for $n=0,1,2,3$. The curves correspond to the expression of $p_{n}(x \mid \mu, \sigma)$ of Eq. (14) for $\mu=\sigma=1$.

In particular, $\wedge^{`} n=v$, me Gaussian model is recovered. The Fisher-Rao metric of the Hermite-Gaussian model takes the form

$$
\begin{equation*}
I_{\alpha \beta}^{(n)}=\int_{X} \frac{1}{p(x \mid \mu, \sigma)} \partial_{\alpha} p(x \mid \mu, \sigma) \partial_{\beta} p(x \mid \mu, \sigma) d x, \quad \alpha, \beta=\mu, \sigma \tag{15}
\end{equation*}
$$

and its explicit formula is the following (see Appendix B)

$$
I_{\alpha \beta}^{(n)}=\left(\begin{array}{cc}
\frac{2 n+1}{\sigma^{2}} & 0 \tag{16}\\
0 & \frac{2\left(n^{2}+n+1\right)}{\sigma^{2}}
\end{array}\right)
$$

Taking into account that the scalar curvature is given by

$$
\begin{equation*}
R^{(n)}=-\frac{1}{n^{2}+n+1}, \tag{17}
\end{equation*}
$$

we can express the Fisher-Rao metric in terms of $R^{(n)}$

$$
I_{\alpha \beta}^{(n)}=\left(\begin{array}{cc}
\frac{2 n+1}{\sigma^{2}} & 0 \tag{18}\\
0 & -\frac{2}{\sigma^{2} R^{(n)}}
\end{array}\right) .
$$

From the Fisher-Rao metric, we can compute the Cramér-Rao bound foı nblased estimators of the parameters μ and σ. This bound is of fundamental importance for the theory of par meter est mation. The lower covariance matrix of any pair of unbiased estimators T_{1}, T_{2} of the parameters μ, σ, is \leftrightharpoons iven

$$
\operatorname{cov}\left(T_{1}, T_{2}\right) \geq\left(\begin{array}{cc}
\frac{\sigma^{2}}{2 n+} & \vdots \tag{19}\\
0 & \frac{\sigma^{2} R^{(n)}}{?}
\end{array}\right)
$$

For the covariance of the estimators we obtain

$$
\begin{align*}
& \operatorname{var}\left(T_{1}\right) \geq \frac{\sigma^{2}}{1+i} \tag{20}\\
& \operatorname{var}\left(T_{2}\right) \geq \frac{\iota^{2}}{2\left(n^{2}+n+1\right)}=-\frac{\sigma^{2} R^{(n)}}{2} . \tag{21}
\end{align*}
$$

In what follows, we show the connection be reen the fermite-Gaussian model and the quantum harmonic oscillator. We use these model to characterize the DFs is a by quantum states of the harmonic oscillator. We focus on Hamiltonian eigenstates, mixtures of eic nst \boldsymbol{f} es and superposition of eigenstates.

3.1. Hamiltonian Eigenstates

The relation between the Hern te-L. 'ssian model and the quantum harmonic oscillator is straightforward. We start considering the Hamiltoniar \because the harmonic oscillator

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2}\left(\hat{x}-x_{0}\right)^{2}, \tag{22}
\end{equation*}
$$

where m is the mass, ω_{0} is n ireq ency, x_{0} is the equilibrium position of the oscillator, and \hat{x} and \hat{p} are the position and momentum operatr .. This . odel is relevant for the study of quantum ion traps [31]. Its eigenstates $|n\rangle$ satisfy the time-independent ichrödiu er equation, $\hat{H}|n\rangle=E_{n}|n\rangle$, with $E_{n}=\hbar \omega_{0}\left(n+\frac{1}{2}\right)$. Moreover, the eigenstates satisfy orthogonality and com ${ }^{1}$ 'etener, relations

$$
\begin{array}{ll}
\langle n \mid m\rangle=\delta_{n m} & \text { (orthogonality) } \\
\sum_{n=0}^{\infty}|n\rangle\langle n|=\hat{I} & \text { (completeness) }
\end{array}
$$

where \hat{I} is the iden ty operator.

ACCEPTED MANUSCRIPT

The wave function of the eigenstate $|n\rangle$, in the coordinate representation, is given by

$$
\begin{equation*}
\varphi_{n}(x)=\langle x \mid n\rangle=\frac{1}{\sqrt{\sqrt{2 \pi} \sigma}} e^{-\frac{(x-\mu)^{2}}{4 \sigma^{2}}} a_{n} H_{n}\left(\frac{x-\mu}{\sqrt{2} \sigma}\right), \tag{23}
\end{equation*}
$$

with $\mu=x_{0}, \sigma^{2}=\frac{\hbar}{2 m \omega_{0}}$, and $a_{n}=\frac{1}{\sqrt{2^{n} n!}}$. Then, the PDF of the position operator for \sim eigenstate $|n\rangle$ is $P_{n}(x)=$ $\left|\varphi_{n}(x)\right|^{2}$.

Therefore, if we consider the eigenstate $|n\rangle$ of an harmonic oscillator with : ram ters μ and σ, the PDF of the position operator $P_{n}(x)$ is equal to the probability distribution function $p_{n}(x \mid \mu, \sigma)$ u the Hermite-Gaussian model, given in equation (14). Moreover, the Fisher-Rao metric and the scalar cr vature associated with the probability distribution function $P_{n}(x)$ are given in equations (16) and (17), respectively.

It is important to remark that the Fisher-Rao metric is diagonal, and the su. ${ }^{1 n n}$, urvature is always negative and decreases with the quantum number n, tending to zero in the limit of ' $1 \mathrm{gh} r^{\prime}$. tum numbers. Moreover, from the Cramér-Rao bound we obtain that the minimal variance of the estima-, of the parameter μ grows with σ^{2} and decreases with the eigenstate number, and the minimal variance of est. `ator . 1 the parameter σ also grows with σ^{2} but decreases with the square of the eigenstate number. Equivalently, the Λ_{1} : nimal variance of the estimators of σ is proportional to the scalar curvature.

3.2. General states

We are going to consider the PDF of the position operator obu : ined from general states of the harmonic oscillator. Let us consider the basis of the Hamiltonian eigenstates \{| and a state represented by a density matrix $\hat{\rho}$ of the form

$$
\begin{equation*}
\hat{\rho}=\sum_{n, m}^{\zeta} \lambda_{n m}|r \cdot, m| . \tag{24}
\end{equation*}
$$

The probability distribution function of the positio..

$$
\begin{equation*}
P(x)=\langle x| \hat{\rho}|x\rangle=\sum_{n, m} \lambda_{n m} \varphi_{n}\left(x^{\prime}, \ldots \prime \cdot r\right)=\sum_{n, m} \frac{\lambda_{n m} a_{n} a_{m}}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} H_{n}\left(\frac{x-\mu}{\sqrt{2} \sigma}\right) H_{m}\left(\frac{x-\mu}{\sqrt{2} \sigma}\right), \tag{25}
\end{equation*}
$$

where $\varphi_{n}(x)$ is the wave function of the ei', enstan ' n ', given in equation (23).
For practical reasons, we define the ${ }^{f}$ inct ${ }^{\text {i }}$ n $f(y)$,

$$
\begin{equation*}
f(y)=\sum_{n, m} \frac{\lambda_{n m} a_{n} a_{m}}{\sqrt{2 \pi}} e^{-y^{2}} H_{n}(y) H_{m}(y) . \tag{26}
\end{equation*}
$$

Then, we have $P(x)=\frac{f(y(x))}{\sigma}$, w: n $y()=\frac{x-\mu}{\sqrt{2} \sigma}$.
In order to calculate the Fish. . ao metric associated with $P(x)$, we need the partial derivatives $\partial_{\mu} P(x)$ and $\partial_{\sigma} P(x)$, which are given by

$$
\begin{gather*}
\partial P(x)=\partial_{\mu}\left(\frac{f(y(x))}{\sigma}\right)=\frac{-f^{\prime}(y(x))}{\sqrt{2} \sigma^{2}} \tag{27}\\
\partial_{\sigma} P(x)=\partial_{\sigma}\left(\frac{f(y(x))}{\sigma}\right)=\frac{-f(y(x))}{\sigma^{2}}+\frac{-y(x) f^{\prime}(y(x))}{\sigma^{2}}, \tag{28}
\end{gather*}
$$

with $f^{\prime}(y)=\frac{d}{d y} f(\cdot)$.
Replacing the PL: - 25) and the partial derivatives (27) and (28) in the integral of equation (15), and making the
change of variable $y=y(x)$, we obtain the Fisher-Rao metric

$$
\begin{aligned}
I_{\mu \sigma} & =I_{\sigma \mu}=\int_{-\infty}^{+\infty} \frac{\partial_{\mu} P(x) \partial_{\sigma} P(x)}{P(x)} d x=\frac{1}{\sigma^{2}} \int_{-\infty}^{+\infty}\left(f^{\prime}(y)+\frac{y\left(f^{\prime}(y)\right)^{2}}{f(y)}\right) d y=\frac{1}{\sigma^{2}} \int_{-\infty}^{+\infty} \frac{y(f(y))^{2}}{f(y} d y, \\
I_{\mu \mu} & =\int_{-\infty}^{+\infty} \frac{\left(\partial_{\mu} P(x)\right)^{2}}{P(x)} d x=\frac{1}{\sqrt{2} \sigma^{2}} \int_{-\infty}^{+\infty} \frac{\left(f^{\prime}(y)\right)^{2}}{f(y)} d y, \\
I_{\sigma \sigma} & \left.=\int_{-\infty}^{+\infty} \frac{\left(\partial_{\sigma} P(x)\right)^{2}}{P(x)} d x=\frac{\sqrt{2}}{\sigma^{2}} \int_{-\infty}^{+\infty} \frac{\left(f(y)+y f^{\prime}(y)\right)^{2}}{f(y)} d y=\frac{\sqrt{2}}{\sigma^{2}} \int_{-\infty}^{+\infty}(-f(y)+2 y f(y))^{\prime}+\frac{y^{2}\left(f^{\prime}(y)\right)^{2}}{f(y)}\right) d y= \\
& =\frac{\sqrt{2}}{\sigma^{2}} \int_{-\infty}^{+\infty} \frac{y^{2}\left(f^{\prime}(y)\right)^{2}}{f(y)} d y-\frac{1}{\sigma^{2}},
\end{aligned}
$$

where in the first equation we used that $\int_{-\infty}^{+\infty} f^{\prime}(y) d y=0$, and in the last $\left\llcorner\right.$ 'ation we used that $\int_{-\infty}^{+\infty} f(y) d y=\frac{1}{\sqrt{2}}$ and $\int_{-\infty}^{+\infty}(y f(y))^{\prime} d y=0$.

Therefore, we can write the Fisher-Rao metric as follows:

$$
I_{\alpha \beta}=\frac{1}{\sigma^{2}}\left(\begin{array}{cc}
\tilde{I}_{\mu \mu} & \dot{-}-1 \tag{29}\\
\tilde{I}_{\mu \sigma} & \dot{\tilde{I}}_{\sigma \sigma}
\end{array}\right)
$$

where $\tilde{I}_{\mu \sigma}, \tilde{I}_{\mu \sigma}$ and $\tilde{I}_{\mu \sigma}$ are independent of μ and σ, and they ${ }^{\mathrm{r}}$ given by

$$
\begin{aligned}
& \tilde{I}_{\mu \sigma}=\int_{-\infty}^{+\infty} \frac{y\left(l^{\prime \prime}(y,)^{2}\right.}{f /} d y, \\
& \tilde{I}_{\mu \mu}=\frac{1}{\sqrt{n}} \int_{-\infty} \frac{\left(f^{\prime}(y)\right)^{2}}{f(y)} d y, \\
& \tilde{I}_{\sigma \sigma}-\sqrt{2} \int_{-\infty}^{+\infty} \frac{y^{2}\left(f^{\prime}(y)\right)^{2}}{f(y)} d y-1 .
\end{aligned}
$$

From the Fisher-Rao metric and using f luat ons (弓) to (8), we can obtain the scalar curvature

$$
\begin{equation*}
R=\frac{2 \tilde{I}_{\mu \mu}}{\tilde{I}_{\mu \sigma}^{2}-\tilde{I}_{\mu \mu} \tilde{I}_{\sigma \sigma}} \tag{30}
\end{equation*}
$$

The Cramér-Rao bound gives $t^{\prime} ¿$ lor er covariance matrix of any pair of unbiased estimators T_{1}, T_{2} of the parameters μ, σ,

$$
\operatorname{cov}\left(T_{1}, T_{2}\right) \geq \frac{\sigma^{2}}{\tilde{I}_{\mu \mu} \tilde{I}_{\sigma \sigma}-\tilde{I}_{\mu \sigma}^{2}}\left(\begin{array}{cc}
\tilde{I}_{\sigma \sigma} & -\tilde{I}_{\mu \sigma} \tag{31}\\
-\tilde{I}_{\mu \sigma} & \tilde{I}_{\mu \mu}
\end{array}\right) .
$$

Finally, we can express varia. e of T_{2} in terms of the scalar curvature,

$$
\begin{equation*}
\operatorname{var}\left(T_{2}\right) \geq-\frac{\sigma^{2} R}{2} \tag{32}
\end{equation*}
$$

Corollary 1: Th Fisher- :ao metric for a general state of the harmonic oscillator is independent of the parameter μ and it only depends $\sim^{\text {tr }}$ - parameter σ by a general factor $1 / \sigma^{2}$.

Corollary 2: i ' s scalar curvature for a general state of the harmonic oscillator is independent of the parameters μ and σ, and it only ' $\mathrm{\eta volves}$ integrals of the dimensionless function $f(y)$ and its derivative $f^{\prime}(y)$.

Corollary 3: The lower variance of unbiased estimators of the parameter σ is proportional to $\sigma^{2} R$.

ACCEPTED MANUSCRIPT

3.3. Mixtures of Hamiltonian eigenstates

We consider quantum states which are mixtures of the Hamiltonian eigenstates. Mixtur s u_{2} sigenstates are particular cases of the states given in equation (24), with $\lambda_{n m}=\delta_{n m} \lambda_{n}$ i.e., $\hat{\rho}=\sum_{n} \lambda_{n}|n\rangle\langle n|$. Therefore, the probability distribution function of the position operator, the Fisher-Rao metric and the scalar curvat re c n be obtained from the general expressions (25), (29) and (30), considering $\lambda_{n m}=\delta_{n m} \lambda_{n}$.

In this case, the PDF of the position operator takes the form

$$
P(x)=\sum_{n} \lambda_{n}\left|\varphi_{n}(x)\right|=\sum_{n} \lambda_{n} p_{n}(x \mid \mu, \sigma)
$$

The diagonal elements of the Fisher-Rao metric are zero, and the element $\Lambda_{\mu \sigma}=I_{\sigma \mu}$ are given in equation (29),

$$
\begin{equation*}
I_{\mu \sigma}=I_{\sigma \mu}=\frac{1}{\sigma^{2}} \int_{-\infty}^{+\infty} \frac{y\left(f^{\prime}(y)\right)^{2}}{f(y)} d^{\prime} \tag{33}
\end{equation*}
$$

with $f(y)=\sum_{n} \frac{\lambda_{n} a_{n}^{2}}{\sqrt{2 \pi}} e^{-y^{2}} H_{n}^{2}(y)$. Since Hermite polynomials $H_{n}(y)$ are oven or $_$d functions of the variable $y, H_{n}^{2}(y)$ are even functions. Then, $f(y)$ is also an even function and its derivative $f^{\prime} u^{\prime}$ is an odd function. Finally, the integrand of equation (33) is an odd function of y. Therefore, $I_{\mu \sigma}=I_{\sigma \mu}=0$,

Finally, the scalar curvature is obtained from equation (30),

$$
R=-\frac{2}{\tilde{I}_{\sigma \sigma}}
$$

As an example, we consider the mixture state $\hat{\rho}_{01}=\frac{1}{2}\left|0 \wedge^{\prime} \gamma\right|\left\ulcorner\frac{1}{2}|1\rangle\langle 1|\right.$. The Fisher-Rao metric is given by

$$
I_{\alpha \beta}^{(01)}=\frac{1}{\sigma^{2}}\left(\begin{array}{cc}
2+\sqrt{2 e \pi}\left(\operatorname{Erf}\left(\frac{1}{\sqrt{2}}\right)-1\right. & 0 \tag{34}\\
0 & 2+\sqrt{2 e \pi}\left(1-\operatorname{Erf}\left(\frac{1}{\sqrt{2}}\right)\right)
\end{array}\right)
$$

where $\operatorname{Erf}(x)$ is the Gauss error function, with $\operatorname{rff}\left(\frac{1}{\sqrt{2}}, \quad \approx 0.317\right.$. The scalar curvature is approximately $R^{(01)} \approx-0.604$.

3.4. Superposition of Hamiltonian eigens ates

We consider quantum states which re s aperr ssitions of Hamiltonian eigenstates. Superpositions of eigenstates of the form $|\psi\rangle=\sum_{n} \alpha_{n}|n\rangle$ are partic' iar cu ${ }^{\text {s }}$ i states given in equation (24), with $\lambda_{n m}=\alpha_{n} \alpha_{m}^{*}$, i.e., $\hat{\rho}=|\psi\rangle\langle\psi|=$ $\sum_{n m} \alpha_{n} \alpha_{m}^{*}|n\rangle\langle m|$. Therefore, the $\mathrm{PD}^{\prime} \quad f$ the position operator, the Fisher-Rao metric and the scalar curvature can be obtained from the general expressiuns ($2 \nu, 129$) and (30), considering $\lambda_{n m}=\alpha_{n} \alpha_{m}^{*}$

3.4.1. Even or odd superpositi ns

In this section we focus or a faı ${ }^{1} \mathrm{~V}$ of superpositions that yield analytic expressions. If we consider a superposition of eigenstates with only evf . 1 or dd eigenstates, i.e.,

$$
\dot{\rho} \cdot \sum_{\substack{n, m \\ \text { even indices }}} \alpha_{n} \alpha_{m}^{*}|n\rangle\langle m|, \quad \text { or } \quad \hat{\rho}=\sum_{\substack{n, m \\ \text { odd indices }}} \alpha_{n} \alpha_{m}^{*}|n\rangle\langle m|,
$$

we obtain that the diagu. . ${ }^{1}{ }^{1}$ ments of the Fisher-Rao metric are zero. The proof is similar to the case of mixtures of eigenstates. Tr - diage al elements are given in equation (29),

$$
\begin{equation*}
I_{\mu \sigma}=I_{\sigma \mu}=\frac{1}{\sigma^{2}} \int_{-\infty}^{+\infty} \frac{y\left(f^{\prime}(y)\right)^{2}}{f(y)} d y \tag{35}
\end{equation*}
$$

with

$$
f(y)=\sum_{\substack{\text { even or odd } \\ \text { indices }}} \frac{\alpha_{n} \alpha_{m}^{*} a_{n} a_{m}}{\sqrt{2 \pi}} e^{-y^{2}} H_{n}(y) H_{m}(y) .
$$

ACCEPTED MANUSCRIPT

If the indices n, m can only take even or odd values, then the product $H_{n}(y) H_{m}(y)$ is always a even function of the variable y. Then, $f(y)$ is also an even function and its derivative $f^{\prime}(y)$ is an odd function. 1. ${ }^{11} \mathrm{y}$, the integrand of equation (35) is an odd function of y, and the result of the integral is zero.

Again, we obtain that the scalar curvature, given in equation (30), is

$$
R=-\frac{2}{\tilde{I}_{\sigma \sigma}} .
$$

3.4.2. Real or imaginary superpositions

Analytic expressions can also be obtained for superpositions of eigenstates that h. olve only real coefficients, i.e., $\hat{\rho}=\sum_{n, m} \alpha_{n} \alpha_{m}|n\rangle\langle m|$. In order to compute the Fisher-Rao metric, we neer the fu tion $f(y)$, given in (26), and it derivative $f^{\prime}(y)$,

$$
\begin{align*}
& f(y)=\frac{e^{-y^{2}}}{\sqrt{2 \pi}}\left(\sum_{n} \alpha_{n} a_{n} H_{n}(y)\right)^{2}, \tag{36}\\
& \left.f^{\prime}(y)=\frac{2 e^{-y^{2}}}{\sqrt{2 \pi}}\left(\sum_{n} \alpha_{n} a_{n} H_{n}(y)\right)\left[\left.\sum_{n} \alpha_{n} a_{n}\right|^{\prime} \cdot-\frac{H_{n+1}(y)}{2}\right)\right],
\end{align*}
$$

where in the last equation we have used the recurrence relatio. - ot the Hermite polynomials (A.2). Replacing expressions (36) in the Fisher-Rao metric (29), and taking into account l ? \imath tions (A.1) and (A.2), we obtain

$$
\begin{aligned}
I_{\mu \sigma}=I_{\sigma \mu} & =\frac{1}{\sigma^{2}} \int_{-\infty}^{+\infty} \frac{4 y e^{-y^{2}}}{\sqrt{2 \pi}}\left[\sum_{n} \alpha_{n} a_{n}\left(n H_{n-1}(y)-\frac{H_{n}, 1(y)}{2}\right)^{2} \quad v=\right. \\
& =\frac{1}{\sigma^{2}} \sum_{n} \alpha_{n}\left(\alpha_{n-3} \sqrt{n(n-1)(n-2)}+\alpha_{n-1} \cdot v_{n} \cdot \cdots n+1(n+1) \sqrt{n+1}+\alpha_{n+3} \sqrt{(n+3)(n+2)(n+1)}\right) \\
I_{\mu \mu} & =\frac{1}{\sigma^{2}} \int_{-\infty}^{+\infty} \frac{2 e^{-y^{2}}}{\sqrt{\pi}}\left[\sum_{n} \alpha_{n} a_{n}\left(n H_{r-1}\left(y,--\frac{H_{n}}{2} \frac{1(y)}{2}\right)\right]^{2} d y=\right. \\
& =\frac{1}{\sigma^{2}} \sum_{n} \alpha_{n}\left(-\alpha_{n-2} \sqrt{n(n-1)}-,(2 n, 1)-\alpha_{n+2} \sqrt{(n+2)(n+1)}\right) \\
I_{\sigma \sigma} & =\frac{1}{\sigma^{2}} \int_{-\infty}^{+\infty} \frac{4 y^{2} e^{-y^{2}}}{\sqrt{\pi}}\left[r^{\prime} \alpha a_{n}\left(n H_{n-1}(y)-\frac{H_{n+1}(y)}{2}\right)\right]^{2} d y-\frac{1}{\sigma^{2}}= \\
& =\frac{1}{\sigma^{2}} \sum_{n} \alpha_{n}\left(-\alpha-4 \sqrt{(n-1)(n-2)(n-3)}+\alpha_{n}\left(2 n^{2}+2 n+3\right)-\alpha_{n+4} \sqrt{(n+4)(n+3)(n+2)(n+1)}\right)-\frac{1}{\sigma^{2}} .
\end{aligned}
$$

If we consider a s perpo ition of eigenstates with only imaginary coefficients, we obtain a similar result, but replacing the coefficie ts α_{n} by its imaginary part, i.e., by $\operatorname{Im}\left(\alpha_{n}\right)$.

4. Example: an slitude , amping channel

In this sertion we ulustrate how the scalar curvature changes in connection with the dynamics of a physical processes. In , art jutar, we consider a dynamical evolution of a two-level system given by the amplitude damping channel. This c_{1} nnel has several applications in the context of quantum information processing for modeling the effects of quantum noise. It describes in a simplified way the spontaneous decay process of a two-level quantum system due to the effect of the quantum noise of an environment.

ACCEPTED MANUSCRIPT

We consider an initial state $\hat{\rho}$ in a superposition of the ground state and the first excited state of the harmonic oscillator. In order to use the results of the subsection 3.4 . 2 we consider a superposition $\left.\left|\psi^{\prime}-{ }^{\prime}\right| 0\right\rangle+b|1\rangle$ with real coefficients ($a, b \in \mathbb{R}$). Its density matrix is given by

$$
|\psi\rangle\langle\psi|=\left(\begin{array}{cc}
a^{2} & a b \tag{37}\\
a b & b^{2}
\end{array}\right)
$$

Using the results of the section 3.4.2, we obtain the elements $I_{\mu \mu}, I_{\mu \sigma}$ and $I_{\sigma \sigma}$ of th Γ^{\prime} ' 'er marix of the state $|\psi\rangle\langle\psi|$

$$
I_{\alpha \beta}(\psi)=\frac{1}{\sigma^{2}}\left(\begin{array}{cc}
a^{2}+3 b^{2} & a b \tag{38}\\
a b & 3 a^{2}+7 b^{2}-1
\end{array}\right)
$$

and its scalar curvature

$$
\begin{equation*}
R_{\psi}=\frac{2\left(a^{2}+3 b^{2}\right)}{(2 a b)^{2}-\left(a^{2}+3 b^{2}\right)\left(3 a^{2}+7 b^{2}--1\right)} \tag{39}
\end{equation*}
$$

Since $a^{2}+b^{2}=1$, the scalar curvature can be rewritten as

$$
\begin{equation*}
R_{\psi}=\frac{-3+2 a^{2}}{9-14 a^{2}+6 a^{4}} \quad, \quad-1 \leq 1 \leq 1 \tag{40}
\end{equation*}
$$

Now, we consider the time evolution given by the amplitude dain ing channel. It is important to remark that, if the system is in the ground state there is no emission, and it in the ground state. But, if the system is in the excited state, after an interval of time τ, there is a probabilh. ${ }^{\prime}$, that the state has decayed to the ground state due to spontaneous emission. In terms of Kraus operators, the . . nlith. 'e damping channel can be expressed as

$$
\begin{equation*}
\hat{\mathcal{E}}_{\tau}\left(\hat{\hat{\kappa}} \quad \hat{\Lambda}_{\sim} \hat{o}_{t}^{\dagger}+\hat{A}_{1} \hat{\rho} \hat{A}_{1}^{\dagger}\right. \tag{41}
\end{equation*}
$$

with the Krauss operators given by

$$
\hat{A}_{0}=\left(\begin{array}{cc}
1 & 0 \tag{42}\\
0 & v-p
\end{array}\right) \quad, \quad \hat{A}_{1}=\left(\begin{array}{cc}
0 & \sqrt{p} \\
0 & 0
\end{array}\right)
$$

where p is the probability of decay duri g th tim interval τ.
We restrict the initial state to the •bss, 次 \quad nerated by the ground state and the first excited state. An arbitrary state of the two-level system is of th form $\hat{\rho}=\rho_{00}|0\rangle\langle 0|+\rho_{01}|0\rangle\langle 1|+\rho_{10}|1\rangle\langle 0|+\rho_{11}|1\rangle\langle 1|$. If we apply the amplitude damping channel n times [32], we vbtain \because state $\hat{\mathcal{E}}_{n \tau}(\hat{\rho})$

$$
\left.\hat{\mathcal{E}}_{n \cdot}^{\prime} \cdot \hat{o}\right)=\left(\begin{array}{cc}
\rho_{00}+\rho_{11}\left(1-(1-p)^{n}\right) & (\sqrt{1-p})^{n} \rho_{01} \tag{43}\\
(\sqrt{1-p})^{n} \rho_{10} & (1-p)^{n} \rho_{11}
\end{array}\right)
$$

which is the state of the s; ter at ti, ee $n \tau$. For long times, when $n \rightarrow \infty$, the limit state $\hat{\mathcal{E}}_{\infty}(\hat{\rho})$ becomes

$$
\begin{equation*}
\hat{\rho}_{\infty}=\hat{\mathcal{E}}_{\infty}(\hat{\rho})=|0\rangle\langle 0| . \tag{44}
\end{equation*}
$$

Therefore, when time ge cto : finite, all initial states decay to the ground state as a consequence of the quantum noise of the enviromen \dagger

As an examp e, we ci nsider the amplitude damping channel with decay probability $p=0.1$ during the time interval τ, and an in. \because_{n}, ate $|\psi\rangle=\frac{|0\rangle+11\rangle}{\sqrt{2}}$. The evolved state at time $n \tau$ is given by $\hat{\rho}_{n}=\hat{\mathcal{E}}_{n \tau}(\hat{\rho})$. In Figure 2 shows the values of the ssur scalar curvature for each state $\hat{\rho}_{n}$. We can see that the amplitude damping channel transforms the scalar curva. ' e to the asymptotic value $R_{\infty}=-1$, which corresponds to the decay state $\hat{\rho}_{\infty}=|0\rangle\langle 0|$.

Figure 2: Plot of the scalar curvature of the evolved states $\hat{\rho}_{n}=\hat{\mathcal{E}}_{n \tau}(\hat{\rho}),,^{\circ} \mathrm{h}$ an initial state $|\psi\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and decay probability $p=0.1$.

5. Conclusions

In this work we have proposed a generalization of t - し י Issian model -namely, the Hermite-Gaussian modeland we have studied its properties from the point : : of the information geometry approach. We have shown its relation with the probabilities associated to the one- \quad 'mensional quantum harmonic oscillator model and analytic expressions for some particular classes of states were provided. Specifically, we found that for finite mixtures of eigenstates and finite superpositions of (eve or ω^{\prime}) eigenstates the Fisher metric is always diagonal. Real and imaginary superpositions of eigenstates do at imply a diagonal Fisher metric and the matrix elements are given in terms of a series sum. The computation of the $\mathrm{F}_{\mathrm{n}}{ }^{\wedge} \wedge$ e metric results fundamental in the derivation of the Cramer-Rao inequality, which plays a key role in par net . estimation theory. Our contribution could be useful for characterizing the different parameters associated to a 4^{-}' cum 'armonic oscillator.

An analytic expression for the ss dar curv. are was obtained for the case of diagonal Fisher, being negative and inversely proportional to the $\sigma \sigma$ ele ne.. We have illustrated the dynamics of the model using the amplitude dumping channel. We have showed that the geometical effect of the channel is to decrease the initial value of the scalar curvature of the Hermite-Gauss an r odel towards its asymptotic and minimum value $R=-1$ which corresponds to the ground state.

Appendix A. Hermite pu mial

The Hermite polyr smials Ψ_{n} are given by the expression

$$
H_{n}(y)=(-1)^{n} e^{y^{2}} \frac{d^{n}}{d y^{n}} e^{-y^{2}},
$$

and their orthogos. lity re' tion is

$$
\begin{equation*}
\int_{-\infty}^{+\infty} e^{-y^{2}} H_{n}(y) H_{m}(y) d y=\sqrt{\pi} 2^{n} n!\delta_{n, m} \tag{A.1}
\end{equation*}
$$

An important feature of these polynomials is that if n is even, $H_{n}(y)$ is an even function; and if n is odd, $H_{n}(y)$ is an odd function.

Some relevant recurrence relations are the following:

$$
\begin{equation*}
H_{n}^{\prime}(y)=2 n H_{n-1}(y), \quad H_{n+1}(y)=2 y H_{n}(y)-2 n H_{n-1} . \tag{A.2}
\end{equation*}
$$

Appendix B. Hermite-Gaussian model

For parameters μ and σ, the probability distribution of the n-Hermite-Gaussian modc. :c

$$
\begin{equation*}
p_{n}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-y^{2}} a_{n}^{2} H_{n}^{2}(y), \quad \text { with } \quad a_{n}=\frac{1}{\sqrt{2^{n} n!}}, \quad \therefore=\frac{y-\mu}{\sqrt{2} \sigma} . \tag{B.1}
\end{equation*}
$$

In order to obtain the elements of the metric tensor, we need to calculate ${ }^{1}$ ie parti 1 derivatives of the probability distribution. It easy to show that

$$
\begin{align*}
& \partial_{\mu} p_{n}(x)=-\frac{p_{n}^{\prime}(y)}{\sqrt{2} \sigma} \tag{B.2}\\
& \partial_{\sigma} p_{n}(x)=-\frac{p_{n}(y)+y p_{n}^{\prime}(y,}{\sigma} \tag{B.3}
\end{align*}
$$

with

$$
\begin{equation*}
p_{n}^{\prime}(y)=\frac{d p_{n}}{d y}(y)=\frac{2 a_{n}^{2}}{\sqrt{2 \pi} \sigma} e^{-y^{2}} H_{n}\left(\stackrel{)}{1}(n \omega \quad . j)-\frac{1}{2} H_{n+1}(y)\right), \tag{B.4}
\end{equation*}
$$

where we have used the recurrence relations (A.2). It shou ${ }^{1 \mathrm{~d}}$ he notei that $p_{n}(y)$ is even an function of y, thus $p_{n}^{\prime}(y)$ is an odd function of y.

Also, we will need to express $y p_{n}^{\prime}(y)$ in terms of He^{-}-mite ${ }_{1}$ lynomials,

$$
\begin{aligned}
y p_{n}^{\prime}(y) & \left.\left.=\frac{2 a_{n}^{2}}{\sqrt{2 \pi} \sigma} e^{-y^{2}} H_{n}(y), \quad \boldsymbol{H}+\vartheta\right)-\frac{1}{2} y H_{n+1}(y)\right)= \\
& =\frac{2 a_{n}^{2}}{\sqrt{2 \pi} \sigma} e^{-y^{2}} H
\end{aligned}
$$

where we have used expression (B.4) and the , 'urre' ce relations (A.2).

Off-diagonal elements

Since the metric tensor is symmetri it i eno' gh to calculate the element $I_{\mu \sigma}^{(n)}$, given by

$$
\begin{equation*}
\boldsymbol{I}_{\because \sigma}^{(n)}=\int_{-\infty}^{+\infty} \frac{1}{p_{n}(x)} \partial_{\mu} p_{n}(x) \partial_{\sigma} p_{n}(x) d x \tag{B.5}
\end{equation*}
$$

Replacing expressions (B.2) an' (B..) in (B.5) and doing some easy manipulations, we obtain

$$
\begin{equation*}
\left.I_{\mu \sigma}^{(n)}=\int_{-c}^{+\infty} \frac{1}{\sigma^{2}}\left(p_{n}^{\prime}(y, x)\right)+y(x) \frac{\left[p_{n}^{\prime}(y(x))\right]^{2}}{p_{n}(y(x))}\right) d x=\int_{-\infty}^{+\infty} \frac{\sqrt{2}}{\sigma}\left(p_{n}^{\prime}(y)+y \frac{\left[p_{n}^{\prime}(y)\right]^{2}}{p_{n}(y)}\right) d y \tag{B.6}
\end{equation*}
$$

where in the last equatime we ι. τ ged from variable x to the variable $y=\frac{x-\mu}{\sqrt{2} \sigma}$. Since $p_{n}(y)$ and $p_{n}^{\prime}(y)$ are even and odd functions of y, res sectively then the integrand of (B.6) is an odd function. Therefore, $I_{\mu \sigma}^{(n)}=0$.

Element $I_{\mu \mu}^{(n)}$

The element $I_{\mu \mu}^{\prime \prime}$ is gi en by

$$
\begin{equation*}
I_{\mu \mu}^{(n)}=\int_{-\infty}^{+\infty} \frac{1}{p_{n}(x)}\left[\partial_{\mu} p_{n}(x)\right]^{2} d x \tag{B.7}
\end{equation*}
$$

Replacing exprt on (B.2) in (B.7), we obtain

$$
\begin{equation*}
I_{\mu \mu}^{(n)}=\int_{-\infty}^{+\infty} \frac{1}{2 \sigma^{2}} \frac{\left[p_{n}^{\prime}(y(x))\right]^{2}}{p_{n}(y(x))} d x=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2} \sigma} \frac{\left[p_{n}^{\prime}(y)\right]^{2}}{p_{n}(y)} d y \tag{B.8}
\end{equation*}
$$

ACCEPTED MANUSCRIPT

In the last step, we have changed from variable x to the variable y. Then, if we replace express ons (B.1) and (B.4) in (B.8) and we rearrange the expression, we obtain

$$
\begin{aligned}
I_{\mu \mu}^{(n)} & =\frac{2 a_{n}^{2}}{\sqrt{\pi} \sigma^{2}}\left[n^{2} \int_{-\infty}^{+\infty} e^{-y^{2}} H_{n-1}^{2}(y) d y-n \int_{-\infty}^{+\infty} e^{-y^{2}} H_{n-1}(y) H_{n+1}(y) d y+\frac{1}{4} \int_{-\infty}^{+\infty} e^{-y^{2}} I_{n+1}^{2}(y) d y\right]= \\
& =\frac{2}{\sqrt{\pi} \sigma^{2}} \frac{1}{2^{n} n!}\left(n^{2} \sqrt{\pi} 2^{n-1}(n-1)!+\frac{1}{4} \sqrt{\pi} 2^{n+1}(n+1)!\right)
\end{aligned}
$$

In the last step we have used the orthogonality relation (A.1). Finally, we obtain $\Lambda_{\mu \mu}^{\mu)}=\frac{2 n+1}{\sigma^{2}}$.

Element $I_{\sigma \sigma}^{(n)}$

The element $I_{\mu \mu}^{(n)}$ is given by

$$
\begin{equation*}
I_{\sigma \sigma}^{(n)}=\int_{-\infty}^{+\infty} \frac{1}{p_{n}(x)}\left[\partial_{\sigma} p_{n}(x)\right]^{2} d \tag{B.9}
\end{equation*}
$$

Replacing expression (B.3) in (B.9), we obtain

$$
\begin{equation*}
I_{\sigma \sigma}^{(n)}=\int_{-\infty}^{+\infty} \frac{1}{p_{n}(y(x))}\left(-\frac{p_{n}(y(x))+y(x) p_{n}^{\prime}(y(x))}{\sigma}\right)^{2} c^{\prime} r=\int_{-\infty} \frac{\sqrt{2}}{\sigma} \frac{\left[p_{n}(y)+y p_{n}^{\prime}(y)\right]^{2}}{p_{n}(y)} d y . \tag{B.10}
\end{equation*}
$$

In the last equation we have changed from variable x to the variable y. Then, if we replace expressions (B.1) and (B.5) in (B.10) and we rearrange the expression, we obtain

$$
\begin{aligned}
I_{\sigma \sigma}^{(n)} & =\int_{-\infty}^{+\infty} \frac{a_{n}^{2}}{\sqrt{\pi} \sigma^{2}} e^{-y^{2}}\left(2 n(n-1) H_{n-2}(y)-\frac{-}{2} \Psi_{n}(y)\right)^{2} d y= \\
& =\int_{-\infty}^{+\infty} \frac{a_{n}^{2}}{\sqrt{\pi} \sigma^{2}} e^{-y^{2}}\left(4 n^{2}(n-1)^{2} H_{n-2}^{2}(y)-\frac{1}{4} \cdot x_{n+2}^{2}(y)-2 n(n-1) H_{n-2}(y) H_{n+2}(y)\right) d y= \\
& =\frac{1}{\sqrt{\pi} \sigma^{2}} \frac{1}{2^{n} n!}\left(4 n^{2}(n-1)^{2} \sqrt{\pi} 2^{n-2}(n-2)!+\frac{1}{4} \sqrt{\pi} 2^{n+2}(n+2)!\right) .
\end{aligned}
$$

In the last step, we have used the orthogonai. \because relatic 1 (A.1). Finally, we obtain $I_{\sigma \sigma}^{(n)}=\frac{2\left(n^{2}+n+1\right)}{\sigma^{2}}$.

ACKNOWLEDGMENTS

This research was founded by t^{1} • CONIC $\llcorner T$, CAPES / INCT-SC (Universidade Federal da Bahia, Brazil), the National University of La Plata an the \llcorner iversity of Buenos Aires.

References

[1] R. Fisher, Phil. Trans. R. Sor Lonr' A 22ム, 309-368 (1922).
[2] R. Frieden. Physics from F* her i, orme ion: a unification; Cambridge, UK, Cambridge University Press, 1998.
[3] E.T. Jaynes, Information The and s atistical Mechanics, I, II. Phys. Rev. 1957, 106, 620-630; 108, 171-190.
[4] C. R. Rao, Bull. Calcut \quad ath. Su , 7, 81 (1945).
[5] C. R. Rao, Differentia Geometı, in Statistical Inference. In chap. Differential metrics in probability spaces; Institute of Mathematical Statistics, Hayward, CA, 1s '7.
[6] F. Weinhold, J. Chem. . . 6^{2} L479, 2488 (1975); 65, 559 (1976).
[7] G. Ruppeiner, R. Mod. Phys. 67, 605 (1995); Erratum: 68, 313 (1996).
[8] G. Ruppeiner, f n. J. Phys. 78, 1170 (2010).
[9] S. Amari, H. Na ${ }_{2}$ `oka. Me ıods of Information Geometry; Oxford University Press: Oxford, UK, 2000.
[10] H. Janyszek, Rep. ın.' hys. 24, 1, 11 (1986).
[11] J. W. Gibt im "anted works, Vol. 1, Thermodynamics, Yale University Press, 1948.
[12] R. Hermann. ₹e netry, physics and systems, Dekker, New York, 1973.
[13] R. Mrugała. $R e_{\vdash}$ Math. Phys. 14, 419 (1978).
[14] G. Ruppeiner, Phys. Rev. A 63, 20 (1979).
[15] C. Caratheódory. Untersuchungen über die Grundlagen der Thermodynamik, Gesammelte Mathematische Werke, Band 2, Munich, 1995.
[16] D. Bures, Trans. Am. Math. Soc. 135, 199 (1969).
[17] G. Verdoolaege, AIP Conf. Proc. 1641, 564-571 (2014).
[18] G. Verdoolaege, Rev. Sci. Instrum. 85, 11E810 (2014).
[19] C. Tsallis, J. Stat. Phys. 52, 479 (1988).
[20] S. Abe, Phys. Rev. E 68, 031101 (2003).
[21] J. Naudts, Open Sys. and Information Dyn. 12, 13 (2005).
[22] M. Portesi, A. Plastino, F. Pennini, Physica A 365, 173-176 (2006).
[23] M. Portesi, A. Plastino, F. Pennini, Physica A 373, 273-282 (2007).
[24] C. Cafaro, Chaos Solitons E Fractals 41, 886-891 (2009).
[25] C. Cafaro, S. Mancini, Physica D 240, 607-618 (2011).
[26] C. Cafaro, A. Giffin, C. Lupo, S. Mancini, Open Syst. Inf. Dyn. 19, 1250001 (2012).
[27] D.-H. Kim, S. A. Ali, C. Cafaro, S. Mancini, Physica A 391, 4517-4556 (2012).
[28] A. Giffin, S. A. Ali, C. Cafaro, Entropy 15, 4622-4623 (2013).
[29] I. S. Gomez, Physica A 484, 117-131 (2017).
[30] I. S. Gomez, M. Portesi, AIP Conf. Proc. 1853, 100001 (2017).
[31] D.F.V. James, Appl. Phys. B 66, 181-190 (1998)
[32] M. Losada, S. Fortin, M. Gadella and F. Holik, International Journal of Modern Physir 3, lon - , (2018)

[^0]: *Corresponding author

