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Abstract  

Emerging evidence shows that Rab11 recycling endosomes (REs Rab11) are essential 

for several neuronal processes, including the proper functioning of growth cones, 

synapse architecture regulation and neuronal migration. However, several aspects of 

REs Rab11 remain unclear, such as its sub-cellular distribution across neuronal 

development, contribution to dendritic tree organization and its consequences in 

memory formation. In this work we show a spatio-temporal correlation between the 

endogenous localization of REs Rab11 and developmental stage of neurons. 

Furthermore, Rab11-suppressed neurons showed an increase on dendritic branching 

(without altering total dendritic length) and misdistribution of dendritic proteins in 

cultured neurons. In addition, suppression of Rab11 in adult rat brains in vivo (by 

expressing shRab11 through lentiviral infection), showed a decrease on both the 

sensitivity to induce long-term potentiation and hippocampal-dependent memory 

acquisition. Taken together, our results suggest that REs Rab11 expression is required 

for a proper dendritic architecture and branching, controlling key aspects of synaptic 

plasticity and spatial memory formation.  
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Abbreviations 

REs, recycling endosomes; TfR, transferrin receptor; mGluR1, metabotropic glutamate 

receptor 1; LTP, long-term potentiation; VAMP2, vesicle-associated membrane protein 

2; DIV, days in vitro; PI, polarity index; sCFC, standard Contextual Fear Conditioning; 

OF, open field; CS, conditioned stimulus 

 

1. Introduction 

The mammalian Rab proteins belong to the Ras superfamily of small GTPases, being 

evolutionarily conserved and critical regulators of vesicle trafficking and sorting 

proteins to their target membranes [1-3]. Sub-cellular localization of the Rabs 

contributes to identifying the endosomal membrane source, allowing cargoes reaching 

suitable domains in the cell [4, 5]. Rabs also have multiple protein-binding domains, 

allowing interactions with regulatory and effector molecules, participating in a large 

number of activities in polarized and non-polarized cells [6-9]. Rab11 is one of the best 

characterized recycling endosomes (REs) marker, able to regulate the slow recycling 

pathway [10, 11], and critical for differential recycling of membrane proteins, receptors 

and lipids of plasma membrane [7, 12]. 

Neurons represent one of the most polarized cells in nature, displaying several short and 

thick conical dendrites and one functional thin axon [13, 14]. Accordingly, diverse 

membrane proteins are segregated to dendrites and/or the axon through different 

mechanisms [15-17]; therefore, defects in either protein localization or trafficking are 

associated with a wide variety of neuronal diseases, like autism spectrum disorders, 

Alzheimer’s and Huntington's disease, linking REs dynamics with neurological 

disorders [18, 19]. 
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During neuronal development, Rab11 participates in the initiation, maintenance, and 

regulation of different processes [20]. Specifically, Rab11 is involved in the regulation 

of AMPA receptor recycling in dendrites [21, 22] as well as in axonal trafficking of Trk 

receptors [23]. Furthermore, Rab11 participates in axonal growth; overexpression of 

Rab11 increases axonal growth, whereas reduction of Rab11 decreases axonal length of 

cortical neurons [24]. Similar results were obtained in dorsal root ganglia and PC12 

cells [25]. Accordingly, the expression of constitutively active forms of Rab11 increases 

dendritic branching in hippocampal neurons; however, no effects on branching were 

observed after Rab11 loss of function either by dominant negative mutants or shRNA 

expression [26]. Moreover, Rab11 is needed for the intrinsic regenerative capacity of 

the axons (after axotomy) of mouse cortical neurons [27]. Recently, the Cdk5–LMTK1–

TBC1D9B–Rab11A cascade was proposed as a novel signaling axis controlling the 

physiology of dendritic spines [28]. Finally, in vivo experiments have proposed that 

Rab11 is key for neuronal migration and maturation during mouse corticogenesis; 

accordingly, trafficking of N-Cadherin to the plasma membrane occurs through Rab11-

dependent recycling pathways [29]. 

Previous studies have reported the role of Rab11 in axon elongation, neuronal migration 

and spines remodeling. Nevertheless, its contribution to dendritic growth and branching 

required for proper synaptic transmission has remained unexplored. Therefore, in this 

work we analyze sub-cellular distribution of REs Rab11 throughout neuronal 

development and somatodendritic protein localization, describing the consequences of 

suppressing Rab11 on dendritic growth, arborization and synaptic transmission.  

Our results suggest a dynamic distribution of REs Rab11 according to the different 

stage of neuronal development. Rab11 suppression missdistributed the transferrin 

receptor (TfR) and the metabotropic glutamate receptor (mGluR1), two dendritic 
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membrane proteins, modifying dendritic branching. Furthermore, in vivo suppression of 

Rab11 altered the long-term potentiation (LTP) response, an experimental paradigm to 

evaluate synaptic transmission and memory acquisition. Collectively, our work suggests 

a functional link between dendritic growth, branching and neural activity mediated by 

Rab11. 

 

2. Materials and Methods 

2.1 Antibodies 

Primary antibodies: Anti-Tau (clone Tau-1) and anti-MAP2 (clone AP-18) proteins 

were used as axonal and dendritic markers, respectively (a generous gift of Dr. L. I. 

Binder, Northwestern University, Chicago, USA) and were diluted 1:1,500 and 1:400, 

respectively. Anti-tyrosinated α-tubulin (Tyr-Tubulin; Sigma Ch. Co. USA) was diluted 

1:10,000; anti-Rab11 (sc- 9135, Santa Cruz Biotechnology, Inc. CA, USA) was diluted 

1:50 for IF or 1:200 for WB; anti-Myc (sc-789, Santa Cruz Biotechnology, Inc. CA, 

USA) was diluted 1:400; anti-Flag (Sigma Aldrich) was diluted 1:500; Rhodamine-

Phalloidin (Molecular Probes, Eugene, OR, USA) was diluted 1:1,000. Secondary 

antibodies conjugated with: Alexa 488 (Molecular Probes, Thermo Fisher Scientific Cat 

#: A11029 and A11006, dilution 1:1000), and/or Alexa 568 (Molecular Probes, Thermo 

Fisher Scientific; Cat #: A11077 and A11004, dilution 1:1000) and/or Rhodamine 

Phalloidin (Molecular Probes Invitrogen, Lot: 355-45A, dilution 1:500). 

2.2 DNA constructs 

TfR-GFP and VAMP2-GFP were provided by Dr. A. Gonzalez (Universidad Catolica 

Chile, Santiago, Chile) and Dr. Thierry Galli (Inserm, Institut Jacob Monod, Paris, 

France) and mGluR1-Myc was a contribution from Dr. G. Banker. The mCherry 
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constructions were obtained by replacing the EGFP with mCherry using AgeI/BsrGI 

restriction enzymes. The short hairpin RNA forRab11a-untagged (shRab11-1) was 

kindly provided by Dr. Kawauchi (Department of Anatomy, Keio University School of 

Medicine, Tokyo 160-8582, Japan;) and shRab11-2 by Dr. Esteves da Silva (Cell 

Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands). As 

targeting sequences were: 5’-GCATCCAGGTTGATGGGAA-3’ (for shRab11-1; [29]), 

and 5′‐GTACGACTACCTCTTTAAA‐3′ (for shRab11-2; [22]). These sequences were 

subcloned into pBS/U6 vector following the procedures described by [17]. Scrambled 

control shRNA plasmid (shSc) was purchased from Ambion Co.  

2.3 Primary culture of hippocampal neurons 

Pregnant Wistar rats were sacrificed and both female and male embryos (embryo day 

18, E18) were removed to isolate hippocampal neurons for culture as previously 

described [30]. All experiments were approved by the Bioethical Research Committee 

of INIMEC-CONICET-UNC and conducted following the guidelines of by the animal 

care and use committee of Instituto Ferreyra (INIMEC-National Research Council and 

Universidad Nacional de Córdoba, Argentina), the National Department of Animal Care 

and Health (SENASA-Argentina). 

2.4 Transient electroporation 

Neurons were electroporated before plating with the plasmids encoding cDNAs using 

the Amaxa Nucleofector II device (Lonza, Cat Number: AAD-1001N), following 

manufacturer’s instructions and program O-003 for Primary Rat Hippocampal Neurons. 

Three days after electroporation the neurons were fixed. 

2.5 Lentivirus particles production 
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HEK-293T cells were plated into a 10 cm culture dish up to a density of 25%. Cells at 

80-90% of confluence were transfected with plasmids encoding both envelope and 

capsid proteins (pVSVg (4, 5μg); pREV (4, 5μg); p8.74 (9μg)) and the pLentiLox 3.7 

vector (10μg) [31] carrying the shRab11 sequence using Lipofectamine. Medium was 

replaced after 3h (DMEM-10% Fetal Bovine Serum-1% Glutamax and 1% Pen/Strep). 

After 48-72h, the supernatants were collected and centrifuged at 12,000 rpm for 10 min. 

Then were filtered at a 0.45 μm pore size, centrifuged at 13,000 rpm for 2h at 4°C; then, 

pellet was resuspended in saline solution.  

2.6 Immunofluorescence 

Cells were fixed (20 min) with 4% (w/v) paraformaldehyde (Sigma, Aldrich; Cat 

Number: 441244) containing 4% (w/v) sucrose (Anedra; Cat Number: AN00711809) 

and permeabilized for 5 min with 0.2% (v/v) Triton X-100 (Bio-Rad Laboratories, 

Hercules, CA, USA; Cat Number: 1610407). After fixation, cells were incubated (1h) in 

blocking buffer (5% bovine serum albumin in PBS). Primary and secondary antibody 

incubations were carried out in buffer containing 1% bovine serum albumin in PBS 

during 1h and mounted using Mowiol (Sigma Aldrich). Imaging quantification were 

performed using Fiji-ImageJ software [32, 33], pixel by pixel and data were used to 

calculate the average fluorescence intensity expressed in pixels (0= black /255= white). 

Cells were visualized using either a spectral (Olympus Fluoview1000) or LSM 800 

(Zeiss) (Lasers: 488, 533 and 633; resolution X=1024; Y=1024 and Z=0.3-0.5 μm; 

Objectives: 63X: Plan-Apochromat 63X/1.40 Oil DICM27 and 20X: Objective 20X LD 

Apochromat 20X/0.40, both inverted confocal microscopes. 

2.7 Morphometric analysis 
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Confocal images of neurons were processed using a Fiji-ImageJ software macro. Macro 

commands were applied to the selection area to remove the background outside that 

area. After image processing, Sholl analysis was performed to quantify dendritic 

arborization (Sholl analysis v3.4.10 plugin for ImageJ [34]). For measurements, a 

straight line was traced from the center of the cell body to the end of the neurites; 

intersections were analyzed from an initial radius of 10 µm to the maximum radius in 

steps of 5 µm. The order of the branches was quantified manually, considering the 

primary order to the first branch, and emerging branches that come from it, as 

secondary. Tertiary and quaternary order branches were defined following same criteria. 

Neurons with more than 4 neurites were included in this analysis. Neurites with a strong 

Tau-1 signal at their proximal end were counted as axons. 

Morphological quantification of dendritic spines was performed manually as previously 

described [35]. Extensions of more than 4 microns were classified as filopodia. The 

spines were counted only if they were continuous with the original dendrite. Column 

density was calculated by quantifying the number of spines (labeled with GFP) per 

dendritic segment and normalized to 20 µm dendrite length. 

The duration and number of processes were quantified as previously described [36]. The 

quantification of the polarity index to analyze the somatodendritic or axonal distribution 

of the receptors was performed as described [17]. 

2.8 Stereotaxic injections 

Two-month-old male rats (250-280 kg) were anesthetized with ketamine/xylazine 

mixture (100 mg/kg and 10 mg/kg respectively) and were injected stereotaxically by 

Kopf stereotaxic apparatus (Tujunga, California, USA) with equal amounts of lentiviral 

particles as expressing Scramble-GFP or shRab11-GFP (3 μl in continuous flow of 6 ml 
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/ min) in the CA1 region of the dorsal hippocampus (from Bregma: AP: 3.3; L: 2.0; and 

V: 2.9). The injections were performed unilaterally and after 7 min the cannula was 

removed. Later the animal was placed in a box on a thermal blanket for recovery. 

2.9 Slice electrophysiology 

Rats were sacrificed by guillotine decapitation 7 days after the stereotaxis between 

10:00 and 11:00 am, to prevent variations caused by circadian rhythms or nonspecific 

stressors [37]. Electrophysiological experiments were performing using the in vitro HP 

slice preparation [38]. Briefly, the hippocampus was removed and 400 µm cross slices 

were made and kept in a storage chamber containing Krebs standard solution (NaCl, 

124.3 mM; KCl, 4.9 mM; MgSO4 • 7H2O, 1.3mM; H2KPO4, 1.25 mM; HNaCO3, 25.6 

mM; glucose, 10.4 mM; CaCl2 • 2H2O, 2.3 mM; Sigma) saturated with 95% O2 and 5% 

CO2. For analysis, the slices were placed in a recording chamber (Harvard BSC-BU 

Apparatus) perfused with the Krebs standard solution (1.6 ml/min, at 28° C). The 

postsynaptic field excitatory potentials (EPSP) were evoked by an A310 acupulsor pulse 

generator (World Precision Instruments Inc.) with a stimulating electrode consisting of 

two wires, which were isolated except for the cut ends (diameter 50 μm) of the 

perforated path (PP). Then, a recording microelectrode was inserted into the body layer 

of toothed granular cells. Only the slices that showed a stable response were included in 

the study. EPSP was evoked by a basal square pulse train (40 V, 0.5 ms each) at 0.2 Hz 

and samples were taken every 5 min, for 40 min until EPSP stabilization (baseline). 

Once the EPSP amplitude stabilized, one of the two stimulation protocols was 

performed. In the first protocol (high-frequency pacing, HFS), LTP was generated using 

the classic tetanization paradigm consisting of three 100-Hz high-frequency pacing 

trains (1 s each) administered at 20 s intervals. In the second protocol applied, the 
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stimulation allowed us to assay different stimulating frequency values in order to 

determine the minimum value to generate LTP (we call this "threshold" value). The 

stimulus consisted of a train of square pulses 2 s in length, with 0.5 ms being the 

duration of each square pulse. We used different stimulus frequencies in each segment 

at 20 Hz intervals, starting at 20 Hz to 200 Hz. For both protocols, LTP was considered 

to occur when the amplitude of EPSP recorded after the stimulus had increased by at 

least 30% from the start and persisted for 60 minutes. Once LTP was generated, EPSP 

amplitude was recorded every 20 minutes to record the LTP time profile (maintenance 

and magnitude after the stimulation protocol). The results were expressed as a 

percentage of the change in EPSP amplitude related to the baseline ± SEM and were 

analyzed by prior calculation of repeated measures bidirectional ANOVA from Fisher's 

exact test (F). For the analysis of both protocols, the level of significance was 

established at α = 0.05 and the post-Holm-Sidak multiple comparisons test were used. 

2.10 Behavioral analysis 

Six days after the stereotaxic procedure, the animals were subjected to several 

behavioral tests: locomotor activity was analyzed in an open field (OF), and a standard 

contextual fear conditioning test (sCFC) was carried out for the rearing and freezing 

activity [39]. This sCFC test consists of placing the animal in a fear-conditioned 

plexiglass camera (40 x 36 x 31 cm, W, L, H) with a base grid, containing different 

visual signals (black and white stripes on the wall) and with vanilla essence as olfactory 

key (conditioned stimulus, CS). On the training day, the animal is placed inside the 

chamber and recorded in this context for 5 minutes. After 4 minutes, the animal receives 

a 0.50 mA shock for 2 seconds and the remaining minute is left in the chamber. 

Subsequently, the animal is removed and left in its starting box until the next day. On 
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the day of the test, the animal is placed back into the chamber and the animals' behavior 

was video recorded under the same contextual cues. Using a time sampling procedure 

every 2 s, each animal was blindly classified as freezing or active at the time the sample 

was taken. Freezing was defined as behavioral immobility except the movement 

necessary for breathing. All experiments were performed between 8:30 a.m. and at 

15:00 p.m. 

2.11 Statistics 

All data are shown as mean ± SEM. Statistical analyses were performed by Student's t 

test or one-way ANOVA or repeated measures one-way ANOVA for comparisons 

among three or more conditions. The significance was reported as p <0.05 *, p <0.01 ** 

and p <0.001 ***. Normality of the variables was tested by the Shapiro-Wilks test. 

Statistical significance was set at *p < 0.05. Analyses were performed using the free 

programming language R (https://www.rstudio.com/; R Development Core Team, 

2008).  

For behavior experiments, two-way repeated-measures ANOVA were used with Post-

Hoc Hold Sidak correction to test significance. 
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3.Results 

3.1 Distribution and sub-cellular localization of REs Rab11 during neuronal 

development 

The expression of REs Rab11in polarized cells has been mainly described in cell lines 

(PC12, MDCK and epithelial cells) [6, 7, 12]. Previous reports in neurons show that the 

location of the REs Rab11 has been analyzed at fixed culture time, and particularly 

focused on the study of axonal or dendritic receptors trafficking associated with these 

REs [21-23]. However, detailed analysis of REs localization throughout neural 

development is missing. Therefore, we analyzed the endogenous distribution of REs 

Rab11 in neurons cultured for1, 3, 7, 14 and 21 days in vitro (DIV) by 

immunofluorescence (IF) using a specific antibody against Rab11 (Fig. 1). We found 

that REs Rab11 distribute throughout the entire soma (clustered closely from the 

nucleus, neighbouring the trans-Golgi network) and neurites in all culture times 

analyzed in this study (Fig. 1A-J). Furthermore, at 1 DIV, REs Rab11 were not 

uniformly distributed across neurites, being mainly enriched at neurite tips (Fig. 1A-A’) 

and central domains of growth cones (Fig. 1B). In contrast, after 3 DIV, endosomal 

distribution was uniform throughout the neuritic processes (Fig. 1C, C’, D), while REs 

Rab11 were enriched towards the proximal region of neurites after 7 and 14 DIV (Fig. 

1E, E’, F and G, G’, H, respectively). Finally, at 21 DIV (when dendritic tree is fully 

developed and neurons already mature for synaptic transmission), REs Rab11 were 

uniformly distributed throughout the processes (Fig. 1I, I’, J). Quantification of Rab11-

positive puncta in neuritic processes revealed an increase in the number of REs Rab11 

in the proximal region at 7 and 14 DIV neurons (Fig. 1K); in contrast, 1 DIV neurons 

showed that these endosomes are mainly located in neuritic tips (distal region in Fig. 

1L). Together, these results suggest a segregated distribution of REs Rab11 in neuritic 
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processes of cultured neurons, which seems to be a requirement at different stages of 

development to achieve the demands of the neuron, associated to growing and 

maturation. 

 

3.2 Rab11 suppression changes the morphology of the dendritic tree 

Previous reports have shown the contribution of other members of Rab-GTPases, to 

dendritic and axonal morphology; Rab10 promotes axon elongation and dendritic 

branching in C. elegans sensory neurons [40, 41], whereas Rab5 and Rab4 regulate 

axon elongation in retinal ganglion cells of X. laevis [42]. Therefore, we evaluated the 

consequences of Rab11 suppression during neuritic morphogenesis to unveil REs 

Rab11 contribution to dendritic arborization and neuronal activity. Accordingly, 

cultured hippocampal neurons were electroporated before plating (t=0) with two 

specific shRNAs to suppress endogenous Rab11 (shRab11-1 and -2); shScramble (shSc) 

was used as control. Knock-down efficiencies of shRab11-1 and shRab11-2 were 

measured by Western Blot, reaching 57% and 51% of Rab11 reduction for shRab11-1 

and shRab11-2, respectively (Supplementary Fig. S1A-B). Morphologically, we found 

that Rab11-suppressed neurons of 3 and 7 DIV showed more complex dendritic trees 

than controls (Fig. 2A-B). Of note, and based on the fact that both shRNAs used in this 

study reported similar knock-down efficiencies and same phenotype, the following data 

represents experiments assayed with shRab11-1 (called "shRab11"from this point 

forward). Using a Sholl analysis, we quantified dendritic branching in electroporated 

neurons; accordingly, Rab11-suppressed neurons showed a higher number of 

intersections between dendrites compared to control neurons at 3 and 7 DIV (Fig. 2C, 

E), suggesting a more complex dendritic arborization after Rab11 suppression. In 

addition, the average branching order in both experimental and control groups was 
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quantified, being consistent with the increase in the number of branching points 

observed in Rab11-suppressed neurons in primary, secondary, tertiary and quaternary 

dendrites at 3 and 7 DIV (Fig. 2D, F). In addition, we observed an increase in the 

number of primary processes (directly emerged from the soma) in Rab11-suppressed 

neurons at 3 DIV, which was not observed at 7 DIV (Fig. 2G). We also observed a 

decrease in the total neurite length in Rab11-suppressed neurons at 3 DIV, but this was 

not observed at 7 DIV (Fig 2H). However, at 3 DIV the average of total length of 

dendritic tree in electroporated cells was ∼425 μm for both conditions (430±25 μm and 

420±21.5 μm, shSc and shRab11 respectively; p= 0.08). Of note, the same tendency was 

observed in cells after 7 DIV (831±40.77μm and 845±32.63μm, shSc and shRab11 

respectively; p= 0.786). Together, our results suggest that REs Rab11 participate not 

only in dendritic spines morphogenesis, but also in the proper development and 

branching of the dendritic tree of developing neurons. 

 

3.3 Rab11 suppression modifies the intracellular distribution of dendritic proteins 

It is widely accepted that neuritic growth and complexity depends on protein and lipids 

supply, a phenomenon mostly mediated by Rabs-dependent membrane trafficking [20, 

43-47]. Therefore, we evaluated the intracellular distribution of receptors transported by 

REsRab11 in neuronal compartments, since this could explain the increase on dendritic 

branching observed in Rab11-suppressed neurons. Accordingly, we analyzed the 

distribution of membrane proteins, such as transferrin receptor (TfR) and metabotropic 

glutamate receptor 1 (mGluR1), in Rab11-suppressed neurons at 3 and 7 DIV [48, 49]. 

Consistently with previous reports, confocal images of control neurons (co-transfected 

with shSc-GFP and TfR-mCherry) showed an enrichment of TfR in the somatodendritic 

domain (defined by MAP2 staining) in discrete vesicles or tubulo-vesicular organelles, 
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some of which were neighbouring the plasma membrane (Fig. 3A) [50]. In contrast, co-

transfected neurons with shRab11-GFP and TfR-mCherry revealed that TfR was found 

not only in dendrites (MAP2-positive) but also in axons (MAP2-negative) (Fig. 3B). 

Similar results were obtained in neurons co-transfected with either shRab11-GFP or 

shSc-GFP and mGluR1-myc. Control neurons showed a vesicle-pattern localization for 

mGluR1, mostly distributed throughout the cell body as well as in Tau1-negative 

processes (Fig. 3C). However, in Rab11-suppressed neurons, the expression of mGluR1 

showed an enrichment in the axonal domain (Tau1-positive) (Fig. 3D). As a negative 

control we analyzed the distribution of the vesicle-associated membrane protein 2 

(VAMP2), which is transported through a Rab11-independent mechanism [51]. 

Accordingly, confocal images of co-transfected neurons with shRab11-GFPor shSc-

GFP and VAMP2-mCherry showed that VAMP2 is localized in the axonal and 

somatodendritic domain in both Rab11 suppressed and control neurons (Fig. 3E-F). 

Changes in the localization of TfR, mGluR1 or VAMP2 were quantified using a 

"polarity index" (PI) described in previous studies [17, 52, 53]. Briefly, the average of 

the fluorescence intensity in dendrites was divided by the axonal intensity of proteins 

analyzed; this ratio was defined as PI. Of note, PI values close to 1 report uniform 

distribution between axonal and dendritic domains, whereas PI values above and below 

1 suggest dendritic and axonal enrichment, respectively. Control neurons showed higher 

PI for TfR in relation to those transfected with shRab11-GFP (PI 1.46 vs 1.09 to 3 DIV 

and 1.45 vs 0.8 to 7 DIV neurons; Fig. 3G-H, respectively). Similar results were 

detected for mGluR1, since control neurons showed a significantly higher PI than 

Rab11-suppressed neurons (PI 1.65 vs 1.10, to 3 DIV and 1.42 vs 1.04 to 7 DIV 

neurons; Fig. 3G-H respectively). Thus, PI estimation revealed that suppressingRab11 

induces TfR and mGluR1 missorting. Finally, as expected, VAMP2 showed an 
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unpolarized distribution at 3 and 7 DIV, since it was found in both axonal and 

somatodendritic domains (Fig. 3G-H). Collectively, these results suggest that increased 

dendritic branching after Rab11 suppression also changes the specific delivery of 

membrane proteins (as TfR and mGluR1) to the somatodendritic domain. 

 

3.4 The loss of function of Rab11 reduced the sensitivity to induce long-term 

potentiation (LTP) in the hippocampal dentate gyrus 

To analyze the effect of Rab11 suppression in vivo, we performed stereotaxic surgery, 

injecting animals with lentiviral particles carrying shRab11or shSc in the CA1 brain 

region of adult rats. Histological sections (40 μm) were used; in which infection 

efficiency was mainly observed in the dentate gyrus (Fig. 4A-C). Consistently with our 

in vitro analyses, suppression of Rab11 modified dendritic morphology similar to 

cultured neurons of 3 or 7 DIV (Fig. 4D-E), showing an increase on dendritic branching 

(Fig. 4F). In addition, we also quantified the number of dendritic spines in each 

condition. We found a significant reduction in the number of spines in Rab11-

suppressed neurons compared to the control condition (Fig. 4G-H). Notably, this 

observation was consistent with our in vitro results obtained in 21 DIV Rab11-

suppressed neurons (Fig. S2A-H), as well as with previous reports [22].  

The contribution of Rab11 to dendritic growth described in this work prompted us to 

explore whether the loss of function of Rab11 could affect dendritic physiology. 

Therefore, we wondered whether local suppression of Rab11 in the hippocampus of 

adult rats would affect the long-term potentiation response (LTP) in this area. Figure 5 

shows the experimental LTP paradigm used in this work, including stimulating/ 

recording electrodes position in hippocampal slices and setting for EPSP amplitude 
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recording at baseline, before and after LTP stimulus (Fig. 5A-B). When LTP was 

induced, by applying a strong stimulation paradigm such as the high frequency 

stimulation (HFS) protocol, LTP was achieved in both the shSc and shRab11 groups 

(Fig. 5C). The two-way repeated measures (RM) ANOVA showed a significant effect 

of time [F (5, 30) = 17.81; p = 0.0001], without treatment effect [F (1, 6) = 0.88; p = 

0.3826] and interaction [F (5, 30) = 0.4728; p = 0.7935]. The Holm-Sidak multiple 

comparison test showed significant differences in the% of EPSP before (between -40 

and -20 min) and after (0, 20, 40 and 60 min, p <0.05) of HFS stimulation in both 

groups. No differences were observed between groups in the subsequent times of the 

HFS stimulation (p> 0.05; Fig. 5C). However, when we evaluated LTP-induction 

sensitivity, the one-way ANOVA of RM showed that the TF protocol used could not 

induce LTP in shRab11 animal brain sections at any frequency assayed (40–100 HZ) [F 

(1,094, 3,283) = 1,180; p = 0.3592] (Fig. 5D). Accordingly, when we compared the 

shSc and shRab11 groups using this protocol, we found a significant effect on time [F 

(5, 30) = 7.08; p = 0.0002], treatment (shRab11 vs. shSc) [F (1, 6) = 27.24; p = 0.0020] 

and interaction [F (5, 30) = 13.88; p = 0.0001]. The Holm-Sidak multiple comparison 

test showed a significant increase in % of EPSP in the control group (shSc, 96.4 ± 

32.8%) compared to their baseline EPSP after 40 Hz TF, and compared to each point of 

time of the shRab11 group, and this significant increase persisted for up to 60 minutes 

(Fig. 5D). The same frequency stimulation in the shRab11 group could not induce 

increases in EPSP% (-11.4 ± 8.2%; p <0.05) (Fig. 5E). 

Together, these results suggest that Rab11 suppression reduces the number of spines in 

the dendrites and also the sensitivity to induce LTP in the hippocampal dentate gyrus in 

vivo. 
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3.5 The loss of function of Rab11 reduced hippocampal-dependent memory 

acquisition in adult rats 

Currently, learning and memory processes are focus on different regions of the brain, 

including the hippocampus. This is an area highly specialized in storing new declarative 

and episodic memories [54, 55]. This notion is based on the fact that the loss of this area 

leads to irreversible amnesia, without the possibility of forming new memories; 

although pre-existing memories remain unaltered. Furthermore, the hippocampus is key 

in modulating sensorimotor processes [56, 57]. 

Collectively, our results show that REs Rab11 control sub-cellular destination of 

somatodendritic proteins and the morphology of dendritic tree in hippocampal neurons 

in vitro. Furthermore, Rab11-suppressed neurons showed a significant decrease in the 

number of dendritic spines, impacting on the sensitivity to induce LTP in vivo. Based on 

these findings, we hypothesize that Rab11 is able to link structural changes of dendrites 

with their physiology. Therefore, we proposed to analyze whether REs Rab11 also 

modulates memory formation. Accordingly, associative learning and memory have been 

studied through standard Contextual Fear Conditioning (sCFC), a useful paradigm for 

studying learning and memory in both developing and adult brains [39, 58-60]. Thus, 

we conducted freezing (fear conditioning) and locomotion (OF) tests in adult rats 

expressing shRab11, by stereotaxic injections of lentiviral particles in the hippocampus, 

and then we measured both fear response and motor activity (Fig. 6A). We found that 

Rab11-suppressed animals (7 days after stereotaxic injection) showed a decrease in 

freezing time 24 h after receiving an aversive stimulus (footshock) in a visual and odor 

cues (conditioned stimulus; CS) compared to controls (for shRab11 after shock; p= 

0.014, ANOVA, Fig. 6B). In contrast, no differences were observed on freezing time 
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before shock between shSc and shRab11 animals (p=0.13, ANOVA; Fig. 6B). These 

results suggest the participation of dorsal hippocampus in memory acquisition.  

We also measured the number of rearing episodes (vertical movements), another 

characteristic of the exploratory behavior of rodents. This behavior was used as a 

recognition variable, where rats stand on hind legs and explore the context. 

Accordingly, a significant increase in the number of rearing episodes in Rab11-

suppressed animals was observed compared to control animals. This behavior was 

observed only in Rab11-suppressed animals, both before and after the footshock 

(shRab11 before shock, p= 0.019; shRab11 after shock, p=0.036, ANOVA; Fig. 6C). 

The locomotor activity was also measured, using an open field (OF) test 7 days after 

stereotaxis; these results suggest a significant increase in the time spent in horizontal 

activity in of the open field (seconds) and total distance traveled (meters) in Rab11-

suppressed animals, compared to controls (shRab11 animals, p=0.01, ANOVA; Fig. 

6D-E, respectively). Finally, we measured the time spent by animals in the center area; 

although Rab11-suppressed animals tended to spend more time, no significant 

differences with control animals were detected (Fig. 6F). Together, these results suggest 

that the increase on the exploratory behavior observed in Rab11-suppressed animals 

could rely on habituation failures to the environment [61]. 
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4. Discussion 

In this study we show a novel and fundamental roles of REs Rab11 not only in 

remodeling the morphology of the dendritic tree in vitro, but also in the regulation of 

neuronal activity in vivo. Accordingly, we characterized the sub-cellular distribution of 

REs Rab11 during the development of hippocampal neurons in culture from 1 to 21 

DIV. In this regard, we observed a slight enrichment of REs Rab11 in the neuritic tip as 

well as in the central region of growth cones of 1 DIV neurons. These results are 

consistent with previous studies showing that, during the growth cone formation REs 

are require for the extension of the plasma membrane and replacement of membrane 

proteins [18, 62]. Moreover, in neurons cultured for 7 and 14 DIV, REs Rab11 

segregated to dendrites, being mainly enriched in the proximal region. Finally, when 

neurons complete maturation (by 21 DIV), REs Rab11 were relocated showing a 

uniform distribution throughout dendrites. Together, these results suggest a dynamic 

distribution required to achieve the spatial demands of the neuron; by instance, to allow 

a proper delivery of proteins needed for membrane expansion during neuronal 

development. 

Rab11 is able to control both axonal growth and postsynaptic architecture. In this 

regard, its overexpression promotes axon elongation of cortical neurons of the mouse 

brain, mediated by the lemur kinase 1 (LMTK1) and Cdk5 [24]. Also, Rab11 plays a 

role on the trafficking of integrins to axons and growth cones of peripheral neurons and 

PC12 cells [25]. Moreover, recent reports showed that Rab11 is critical to control the 

synapse architecture; in fact, Rab11 suppression decreases the distribution of AMPA 

receptor at cell surface and PSD-95 clusters at synapses [22].  

Branching and density of dendrites are key to satisfy the physiological requirements of 

the neuronal activity; both are critical to process inputs received by the dendritic tree 
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[58, 59]. In fact, dendritic anomalies in neurological disorders have been often 

associated with cognitive impairments [60]. In this regard, neurons of transgenic 

Drosophila melanogaster larvae expressing human amyloid-β (Aβ42) showed an 

enhancement in neurite outgrowth and arborization before neurodegenerative symptom 

[63]. In addition, Soltani et al. [64] analyzed the effect of Engrailed (En1 and En2 

proteins encoded by an autism susceptibility gene) in dendritogenesis or 

synaptogenesis; both En1 and En2 over-expression increased the complexity of the 

dendritic tree. However, En1 increased the density of dendritic spines; although En2 

had less effect on spines density. In Down syndrome infants (younger than 6 months 

old), dendritic branching and length was enhanced compared to controls. These 

measures were reversed in subjects older than 2 years, and these dendritic parameters 

were lower than in controls [65]. Our results show that reducing Rab11 expression in 

neurons leads to an increase of primary neurites at early stages (3 DIV) paralleled by an 

increase of dendritic branching; nevertheless, total length of dendrites remained 

unaltered. Furthermore, we also observed a reduction in the number of dendritic spines, 

reproducing the phenotype reported in Esteves da Silva et al [22]. 

Considering these results, we hypothesize that, in hippocampal neurons, a well-balanced 

expression and distribution of REs Rab11 is instrumental for a proper dendritic tree 

arborization during development, in addition to its previously characterized role on 

spines formation. 

It is widely accepted that a segregated flow of proteins to axons and dendrites is critical 

to maintain their identities, highlighting the relevance of the endosomal trafficking able 

to regulate the differentiation of neuronal domains [15, 21, 24, 66, 67]. The alterations 

that we reported in Rab11-suppressed neurons also affect hippocampal protein 

dynamics of cultured neurons and, consequently, their proper development. 
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Specifically, the proper localization of TfR and mGluR1, was disrupted under Rab11 

suppression, since they were incorrectly located in the axonal compartment. These data 

support the idea that Rab11 suppression produces dendritic abnormalities, not only in 

the dendritic tree morphology but also in dendritic protein localization. In this regard, 

changes in the morphology of dendritic spines could be altered by manipulations 

affecting intracellular calcium and correlated with alterations in synaptic plasticity [68, 

69]. Selective stimulation of mGluR1 increased the length of dendritic spines of 

dendrites in both organotypic and isolated cell culture of hippocampal neurons [70]. In 

vivo studies have shown the involvement of mGluR1 in spatial and associative learning, 

whereas in vitro studies described its participation in cLTP (chemical LTP) [71-73]. 

Moreover, we show that the functionality of hippocampal neurons is affected once 

Rab11is suppressed in vivo. We based this affirmation on the following evidence. We 

found an increased dendritic branching and decreased spines number both in vitro and 

in vivo after Rab11-suppression. These dendritic alterations have a significant impact on 

hippocampal synaptic transmission (that could be extended to dentate gyrus because the 

infection was also evident in this area). When adult rats were infected with shRab11 

within the CA1, the sensitivity to induce LTP in the dentate gyrus was reduced, since 

they were unable to induce LTP (using TF protocol up to 100 Hz). In contrast, in 

control animals LTP was achieved at 40 Hz. It is important to highlight that Rab11 

suppression did not completely abolish the capacity to generate LTP because the HFS 

protocol was able to induce LTP in both shRab11 and shSc groups. Dentate gyrus, a 

hippocampal subregion, is the first synaptic contact of input information arising the 

hippocampus from the entorrinal cortex, through the perforant pathway [74, 75] which 

in turn connects to the CA3–CA1 circuitry forming the intrahippocampal ‘‘trisynaptic 

loop’’[76]. It has been shown that activity of the dentate gyrus can by modified by the 
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synchronous population events of both the entorhinal input (feed-forward path) and the 

CA3-CA1 recurrent system (feed-back path) [77]. Also, infusion of different 

modulators into the CA1 modifies dentate gyrus synaptic plasticity [78-80]. Our results 

may indicate that the whole hippocampal three-synaptic loop was affected by Rab11 

suppression in CA1, making the post-synapses in the dentate gyrus less sensitive to 

priming stimulation of the perforant pathway. 

The hippocampal LTP was identified as a potential neural substrate for the acquisition 

and storage of hippocampal-dependent memories [81-85]. Interestingly, we observed 

changes in the behavior of those animals infected with shRab11, showing a reduced 

performance in spatial memory-related behaviors and hyperactivity compared to 

animals under physiological conditions. The combination of odor and visual cues used 

in contextual fear conditioning test strengthen the participation of hippocampus in 

contextual memory. Although we suggest that the hippocampus may be involved in 

contextual learning under these circumstances, we cannot discard the participation of 

other brain areas [86-88]. We also observed that Rab11-suppressed animals increase 

locomotor activity, suggesting that these animals have some degree of hyperactivity or 

motor circuit alterations. In this regard, there is evidence arguing that the increased in 

locomotion after lesions of the dorsal hippocampus may result from damage of the 

fibers that extend from the subiculum to the nucleus accumbens (nucleus that regulate 

the exploration necessary for the acquisition of information about the features of the 

context) and then additional hippocampal areas would receive poor information [89, 

90]. Although a close relationship has been described between Rabs and cognitive 

functions [19], there are exceptions. In mice Rab3A mutants, hippocampal CA3 mossy 

fibers LTD and LTP were removed, however the hippocampal-dependent learning test 

was normal [91]. 
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The contribution of the endocytic machinery in the polarization of neuronal cell 

domains has been well characterized [47, 92]. Accordingly, our results propose that 

changes in the expression of REs Rab11 during neuronal development affect both the 

maturation of the somatodendritic domain of hippocampal neurons in vitro and the 

maintenance of synaptic transmission, as well as memory formation and behavior in 

adult animals (Fig. 7). 

Finally, several studies link the participation of Rab11 in neurodegenerative disorders, 

such as Alzheimer's, Huntington's and Parkinson's diseases [93-97], in which the loss of 

neurons and the reduction of synapses correlates with cognitive deficits. Our findings 

contribute to unveil the physiological relevance of REs Rab11 in higher organisms, as 

well as their associated in vivo functions. Therefore, REs Rab11 are crucial not only for 

the correct development of neuronal compartments, but also to allow functional 

maturation of neurons, neural activity and acquisition of spatial memory.
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Figure legends 

Figure 1. Sub-cellular distribution of Rab11 recycling endosomes in hippocampal 

neurons during development. (A-J) Representative images of hippocampal neurons 

immunostained with anti-Rab11 (green; A’, C’, E’, G’, I’) or plus anti-Tyr Tubulin 

(red; A, C. E, G, I) at 1, 3, 7 and 21 DIV. Pseudocolor (Fire-LUT) view (B, D, F, H, J) 

of the boxes in images A, C, E, G, and I. Arrows point to Rab11 while the arrowheads 

indicate regions without Rab11 endosomes. Magnifications show the presence of REs 

Rab11 in the process at each experimental time. (K) The number of proximal Rab11-

positive puncta (10 μm from soma) at 1, 3, 7, 14 and 21 DIV was quantified. (L) 

Quantification of the number of Rab11-positive puncta (10 μm from neurite tip) at 3 and 

7DIV. The data are presented as the mean ± SEM; ***p <0.001; ****p <0.0001 One-

way ANOVA and Tukey's multiple comparisons test; n=53 (K) and n=76 (L) from 3 

independent experiments. Scale bar: 20µm. Fire-LUT scale bar: 10µm. 

Figure 2. Suppression of Rab11 produces changes in both the number and length 

of the dendritic branching of hippocampal neurons. (A-B) Hippocampal neurons 

were electroporated with shSc, shRab11 and observed with confocal microscopy at 3 

DIV (A) and 7 DIV (B). Acquired Z-stacks were integrated and inverted for 

morphometric analysis. Higher-magnification views of the somatodendritic domain. 
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Scale Bar: 10 μm (box bottom). (C, E) Scatter plot obtained from Sholl analysis of the 

number of interactions from soma until 300 μm to MAP2+ neurites in the 

somatodendritic domain at 3 DIV (C) and 7 DIV (E). (D, F) Quantification of 

branching order for 3 DIV (D) and 7 DIV (F) hippocampal neurons. The data are 

presented as the mean ± SEM. *p> 0.05** p <0.01*** p <0.001, Student's t-test, n=31 

for each condition. (G) Quantification of the number of primary processes. (H) 

Quantification of total neurite length in Rab11-suppressed neurons at 3 and 7 DIV. The 

data are presented as the mean ± SEM. *p> 0.05** p <0.01*** p <0.001, Student's t-

test, n=29 for each condition from 3 independent experiments.  

Figure 3. Suppression of Rab11 alters the intracellular distribution of 

somatodendritic proteins. Confocal images of hippocampal neurons (3 DIV) 

transfected with shSc or shRab11 and immunostained with anti-transferrin receptor 

(TfR) (red) and anti-MAP2 (blue) (A-B); anti-c-Myc (red) and anti-Tau (blue) (C-D); 

and anti-VAMP2 (red) and anti-MAP2 (blue) (E-F). The arrows point to the axons. 

Scale bar: 20µm. (G-H) Quantification of polarity index of somatodendritic receptors in 

neurons shSc and Rab11 suppressed at 3 DIV (G) and 7 DIV (H). The data are 

presented as the mean ± SEM. p> 0.05* p <0.01, Student's t-test. mGluR1, n=39 and 

n=34; TfR, n=33 and n=40; VAMP2, n=26 and n=24, for shSc and shRab11 

respectively, from 3 independent experiments. 

Figure 4. In vivo suppression of Rab11 produces changes in the number of the 

spines and dendritic complexity. (A-C) Representative images of histological section 

of the rat brain after stereotaxic showing the location site of the cannula immunostained 

with DAPI to show the nuclei (blue) (B) and the infection efficiency of the viral 

particles in the hippocampus (green) (C). (D) Representative images of infected neurons 
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(with shSc or shRab11) and the magnification to show the dendritic tree in each 

experimental condition. Neurons Rab11-suppressed present a more complex dendritic 

tree (red arrows) compared to control neurons (white arrows). (E) Representative 

images of the 3D reconstruction of the dendritic complexity of Rab11- suppressed and 

control neurons, and the quantification of the branching points for each condition (F). 

(G) Representative images of dendritic spines of neurons infected with shSc-GFP or 

shRab11-GFP, and the quantification of the spines number for each condition (H). The 

data are presented as the mean ± SEM. *** p <0.001, Student's t-test, n=20 for each 

condition from at least 3 animals. 

Figure 5. In vivo suppression of Rab11 reduced sensitivity to induce LTP in 

hippocampal neurons. (A) Hippocampal slice cartoon indicating the position of 

stimulation and recording electrodes. (B) Field excitatory postsynaptic potential (EPSP) 

sample traces showing how EPSP were measured. (C) Time course graph showing 

increments in EPSP amplitude expressed as % of basal EPSP after high-frequency 

stimulation protocol (HFS), in shSc (n=4) and shRab11 (n=4) groups, *p < 0.05 

compared to basal (-40 and -20 min) in both groups. (D) Time course graph showing 

increments in EPSP amplitude expressed as % of basal EPSP after threshold frequency 

(TF) protocol, in shSc (n=4) and shRab11 (n=4) groups, *p < 0.05 compared to basal (-

40 and -20 min) and to all time points from the shRab11 group. In C and D graphs the 

values represent mean ± SEM. (E) Input-output curve for shRab11 group, showing that 

the EPSP amplitude after each stimulation frequency was comparable to basal, 

indicating that LTP was not induced at any frequency tested (n=4). Scale bar: 10µm. 

Figure 6. Hippocampal suppression of Rab11 reduced hippocampal-dependent 

memory acquisition in adult rats. (A) Schematic image of the experimental design for 
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behavior analysis of the animals infected with lentivirus carrying shSc or shRab11. The 

animals are placed in conditional chambers 6 days after infection. Quantification of 

freezing (%) (B), Number of rearing (C), indicating the values pre (before) and post-

shock (after). Time spent in horizontal activity (sec) (D), Total distance traveled (m) (E) 

and Time in the center area (%) (F) were measured. Time spent in horizontal activity is 

the time used by the animal horizontal movements or locomotion on the OF to each 

recording time. The data are presented as the mean ± SEM. * p <0.05, Student's t-test, 

n=10 animals for each condition.  

Figure 7. Rab11 endosomes regulate neuronal activity, behavior, and memory in 

adult rats. Schematic representation highlighting how REs Rab11 modulate dendritic 

morphology and become a key event to regulate neuronal activity and higher brain 

functions, such as memory and behavior. 

Supplementary Figure 1: Measurement of the shRab11efficiency. (A) Western blots 

images representative of neurons transfected with shSc or shRab11-1 and shRab11-2 

and revealed against anti-Rab11 and anti-tubulin. (B) Quantification of the suppression 

efficiency of shRab11. The data are presented as the mean ± SEM; ***p: 0.001; One-

way ANOVA and Tukey´s multiple comparisons test from 3 independent experiments. 

Supplementary Figure 2: The suppression of Rab11 decreases the number of 

dendritic spines in mature neurons. (A-H) Representative images of dendritic spines 

of neurons electroporated with shSc-GFP (A-D) or with shRab11-GFP (E-H) and 

immunostained for PSD95 (red). Arrows show dendritic spines positive for PSD95 (B-

D, F-H) while asterisks show dendritic spines negative for PSD95 (F-H). Scale bar: 

5µm. 
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Highlights 

-Differential and dynamic distribution of recycling endosomes Rab11 in neurons  

-Rab11 participates in the proper branching of the dendritic tree  

-Rab11 is necessary for specific delivery of proteins to the somatodendritic domain 

-LTP and spatial memory are abolished after Rab11 knockdown in vivo. 
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