
e-mail: gibanez@famaf.unc.edu.ar

e-mail: sriveros@famaf.unc.edu.ar

1



M athematical
I nequalities

& A pplications
www.ele-math.com

COMMUTATORS OF CERTAIN FRACTIONAL TYPE
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Abstract. In this paper we study commutators of a certain class of fractional type integral ope-
rators. These operators are given by kernels of the form

K(x,y) = k1(x−A1y)k2(x−A2y) . . .km(x−Amy),

where Ai are invertible matrices and each ki satisfies a fractional size condition and generalized
fractional Hörmander condition. We obtain weighted Coifman estimates and weighted Lp(wp)
- Lq(wq) estimates. We also give a two-weighted strong type estimate for pairs of weights
of the form (u,Su) where u is an arbitrary non-negative function and S is a maximal operator
depending on the smoothness of the kernel K . For the singular case we also give a two-weighted
endpoint estimate.

1. Introduction

In [27], Ricci and Sjögren obtained the Lp(R,dx) boundedness, p > 1, for a fa-
mily of maximal operators on the three dimensional Heisenberg group. Some of these
operators arise in the study of the boundary behavior of Poisson integrals on the sy-
mmetric space SLR3/SO(3) . To get the main result, they studied the boundedness on
L2(R) of the operator

Tα f (x) =
∫
R
|x− y|−α |x+ y|α−1 f (y)dy, (1.1)

for 0 < α < 1. Later, in [14], Godoy and Urciuolo studied a generalization of (1.1) for
Rn .

During the last years, several authors have studied operators that generalize (1.1).
Let 0≤ α < n and m ∈ N . For 1≤ i≤ m , let Ai be matrices such that satisfy

(H) Ai is invertible and Ai−A j is invertible for i 6= j,1≤ i, j ≤ m.
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For any locally integrable bounded function f , f ∈ L∞
loc(Rn) , define

Tα,m f (x) =
∫
Rn

K(x,y) f (y)dy, (1.2)

where
K(x,y) = k1(x−A1y)k2(x−A2y)...km(x−Amy). (1.3)

The operators associated to functions ki , satisfying fractional size and regularity con-
ditions were studied in different settings such as: weighted Lebesgue and Hardy spaces
with constant and variable exponent, endpoint estimates and boundedness in BMO and
weighted BMO . See for example [13, 15, 16, 29, 31, 33].

These operators generalize classical operators as Iα , the fractional integral ope-
rator, and the rough fractional and singular operators. In several cases these type of
operators are not bounded in H p , but instead are bounded from H p into Lq , 0 < p < 1
and some q (see [30]). In the case of α = 0, T0,m behaves like a singular integral
operator. If 0 < α < n , m = 1, A1 = I and k1(x−A1y) = 1

|x−y|n−α then Tα,1 = Iα .

In [28], Urciuolo and the second author considered each ki as a rough fractional
kernel. In those papers each ki satisfied a Lαi,ri -Hörmander’s regularity condition,
ki ∈ Hαi,ri , that is, if there exists constants cri > 1 and Cri > 0 such that for all x and
R > cri |x| ,

∞∑
m=1

(2mR)n−αi‖(ki(·− x)− ki(·))χB(x,2m+1R)\B(x,2mR)‖ri,B(x,2mR) <Cri .

More recently, in [18], we analyzed operators of the form (1.2) with conditions of
regularity generalizing the Lα,r -Hörmander condition and a fractional size condition.
For the definitions of these conditions recall that a function Ψ : [0,∞)→ [0,∞) is said to
be a Young function if Ψ is continuous, convex, no decreasing and satisfies Ψ(0) = 0
and lim

t→∞
Ψ(t) = ∞ .

For each Young function Ψ we can induce an averaged of the Luxemburg norm
for a function f , in the ball B , as follows

‖ f‖Ψ,B := inf
{

λ > 0 :
1
|B|

∫
B

Ψ

(
| f |
λ

)
≤ 1
}
,

where |B| is the Lebesgue measure of B . This function Ψ has an associated comple-
mentary Young function Ψ satisfying the generalized Hölder’s inequality

1
|B|

∫
B
| f g| ≤ 2‖ f‖Ψ,B‖g‖Ψ,B.

The fractional maximal operator Mα,Ψ is defined in the following way. Given
f ∈ L1

loc(Rn) and 0≤ α < n , we define

Mα,Ψ f (x) := sup
B3x
|B|α/n‖ f‖Ψ,B.
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Now, we present the fractional size condition and the generalize fractional Hör-
mander condition. For more details see [4] or [18].

Let Ψ be a Young function and let 0 ≤ α < n . Let us introduce some notation:
|x| ∼ s means s < |x| ≤ 2s and we write

‖ f‖Ψ,|x|∼s = ‖ f χ|x|∼s‖Ψ,B(0,2s).

The function Kα is said to satisfy the fractional size condition, if there exists a
constant C > 0 such that

‖Kα‖Ψ,|x|∼s ≤Csα−n.

In this case we denote Kα ∈ Sα,Ψ . When Ψ(t) = t we write Sα,Ψ = Sα . Observe that
if Kα ∈ Sα , then there exists a constant c > 0 such that∫

|x|∼s
|Kα(x)|dx≤ csα .

The function Kα satisfies the Lα,Ψ,k -Hörmander condition (K ∈ Hα,Ψ,k ), if there
exist constants cΨ > 1 and CΨ > 0 such that for all x and R > cΨ|x| ,

∞∑
m=1

(2mR)n−α mk‖Kα(·− x)−Kα(·)‖Ψ,|y|∼2mR ≤CΨ.

We say that Kα ∈ Hα,∞,k if Kα satisfies the previous condition with ‖ · ‖L∞,|x|∼2mR in
place of ‖ · ‖Ψ,|x|∼2mR . When k = 0, we write Hα,Ψ = Hα,Ψ,0 .

When Ψ(t) = tr , 1≤ r < ∞ , we simply write Hα,r,k instead of Hα,Ψ,k .

In this paper, we study the k -order commutators of the operators of the form (1.2)
where ki ∈ Sn−αi,Ψi ∩Hn−αi,Ψi,k .
Recall that given a locally integrable function b and an operator Tα defined as (1.2),
we define the k -order commutator, k ∈ N∪{0} , by

T k
α,b( f )(x) = [b,T k−1

α,b ] f (x) =
∫
(b(x)−b(y))kK(x,y) f (y)dy

where we assume that T 0
α,b = Tα .

We also consider the following condition for the weights, there exists c > 0 such
that

w(Aix)≤ cw(x), (1.4)

a.e. x ∈ Rn and for all 1≤ i≤ m .
The following is an example of a weight w that satisfies condition (1.4). Observe

that also power weights satisfy this condition.

EXAMPLE. Let w(x) =

{
log
(

1
|x|

)
if |x| ≤ 1

e

1 if |x|> 1
e

. Then w ∈ A1 and satisfies (1.4) .

In 1972, R. Coifman established in [6] that a singular integral operator T with reg-
ular kernel (that is, K ∈ H0,∞ ) is controlled by the Hardy-Littlewood maximal function
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M and for every 0 < p < ∞ and every Muckenhoupt weight w ∈ A∞ ,∫
Rn
|T f (x)|p w(x)dx≤C

∫
Rn

M f (x)p w(x)dx. (1.5)

This inequality (1.5) is called the Coifman type estimate. There have been many at-
tempts of controlling a given singular integral operator by an appropriate maximal func-
tion (see [9], [8] and the references therein). In [19] (see also [32] and [34]) singular
integral operators with less regular kernels are considered. Implicit in their proofs it is
shown that the operators in question are controlled, in the sense of (1.5), by a maximal
operator M0,r f (x) = M(| f |r)(x)1/r for some 1≤ r < ∞ . The value of the exponent r is
determined by the smoothness of the kernel, namely, the kernel K ∈ H0,r . Let us point
out that in [22] it has been proved that this control is sharp in the sense that one cannot
write a pointwise smaller operator M0,s with s < r . This yields, in particular, that (1.5)
do not hold in general with M0,r for any 1≤ r < ∞ for singular integral operators sat-
isfying only the classical Hörmander condition H1 . Several authors studied this same
problem looking for an appropriate maximal operator to control in weighted Lp norms
singular, fractional operators and their commutators considering that the kernel belongs
to the general class Hα,Ψ,k ( see for example [4], [21] and [18]).

The main result in this paper is the following Coifman type estimate:

Theorem 1.1. Let b ∈ BMO, 0 ≤ α < n, k ∈ N∪{0} , m ∈ N and 1 ≤ i ≤ m. Let
Ψi be Young functions and 0 ≤ αi < n such that α1 + · · ·+αm = n−α . Let Tα,m be
the integral operator defined by (1.2) and T k

α,m,b be the k -order commutator of Tα,m .
Suppose that the matrices Ai satisfy the hypothesis (H) and ki ∈ Sn−αi,Ψi ∩Hn−αi,Ψi,k .
If α = 0 , let T0,m be of strong type (p0, p0) for some 1 < p0 < ∞ .
Let ϕk(t) = t log(e+ t)k and let φ be a Young function such that
Ψ
−1
1 (t) · · ·Ψ−1

m (t)ϕk
−1(t)φ−1(t). t for t ≥ t0 , for some t0 > 0 .

Let 0 < p < ∞ . Then there exists C > 0 such that, for f ∈ L∞
c (Rn) and w ∈ A∞ ,∫

Rn
|T k

α,m,b f (x)|pw(x)dx≤C‖b‖kp
BMO

m∑
i=1

∫
Rn
|Mα,φ f (x)|pw(Aix)dx. (1.6)

whenever the left-hand side is finite. The constant C depends on the operator T k
α,m,b ,

n, p and w.
If additionally w satisfies (1.4), then∫

Rn
|T k

α,m,b f (x)|pw(x)dx≤C‖b‖kp
BMO

∫
Rn
|Mα,φ f (x)|pw(x)dx.

To prove this estimate, we need a pointwise estimate that relates the sharp delta
maximal of the commutator with a sum of generalized fractional maximal function of
f .

As a consequence of the Coifman estimate we get strong weighted estimates for
the operator T k

α,m,b ,

‖T k
α,m,b f‖Lq(wq) ≤ c‖b‖k

BMO‖ f‖Lp(wp)
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for suitable weights. See Theorem 3.1.
We also obtain a Fefferman-Stein type estimates.

‖T k
α,m,b f‖Lp(u) ≤ c‖ f‖Lp(Su),

where 1< p< n/α , u is any weight and S is a suitable maximal operator. See Theorem
3.2

For T k
0,m,b we also give an endpoint estimate for pairs of weights (u,Su) , that is,

u{x ∈ Rn : |T k
0,m,b(x)|> λ} ≤ c

∫
Rn

ϕk

(
| f (x)|

λ

)
Su(x)dx. (1.7)

See Theorem 3.3.
The plan of the paper is the following. The next section contains some preliminar-

ies, definitions and previous results that are needed to state the main theorems of the
paper that are presented in Section 3. Section 4 is devoted to the proof of the Coifman
estimate, namely, Theorem 1.1, and to the proof of a fundamental technical pointwise
result. In Section 5 we prove strong one weight norm inequalities and in Section 6 the
two weight norm inequalities.

2. Preliminaries and previous results

In this section we present some notions about Young functions, Luxemburg norms
and weights that will be fundamental throughout the rest of the paper. Also we gather
some previously known results.

2.1. Young functions and Luxemburg norms.

Now, we present some extra definitions and properties for Young functions. Also
we give some examples. For more details of these topics see [23] or [26].

Each Young function Ψ has an associated complementary Young function Ψ sat-
isfying the generalized Hölder’s inequality

1
|B|

∫
B
| f g| ≤ 2‖ f‖Ψ,B‖g‖Ψ,B.

If Ψ1, . . . ,Ψm,φ are Young functions satisfying Ψ
−1
1 (t) · · ·Ψ−1

m (t)φ−1(t)≤ ct , for
all t ≥ t0 , some t0 > 0 then

‖ f1 · · · fmg‖L1,B ≤ c‖ f1‖Ψ1,B · · ·‖ fm‖Ψm,B‖g‖φ ,B, (2.1)

the function φ is called the complementary of the functions Ψ1, . . . ,Ψm .
Here are some examples of maximal operators related to certain Young functions.

• Ψ(t) = t , then ‖ f‖Ψ,Q = fQ := 1
|Q|
∫

Q | f | and Mα,Ψ = Mα , the fractional maxi-
mal operator.
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• Ψ(t) = tr with 1 < r < ∞ . In that case ‖ f‖Ψ,Q = ‖ f‖r,Q :=
(

1
|Q|
∫

Q | f |
r
)1/r

and

Mα,Ψ := Mα,r , where M0,r f = M( f r)1/r .

• Ψ(t) = exp(t)−1, then, Mα,Ψ = Mα,exp(L) .

• If β > 0 and 1≤ r < ∞ , Ψ(t) = tr log(e+ t)β is a Young function then Mα,Ψ =
M

α,Lr(logL)β .

• If α = 0 and k ∈ N , Ψ(t) = t log(e+ t)k it can be proved that MΨ ≈ Mk+1 ,
where Mk+1 is Hardy-Littlewood maximal operator, M , iterated k+1 times.

REMARK 2.1. Observe that if Ψ(t) = tr then a simple computation shows that

Mα,r f = (Mαr,1| f |r)1/r = (Mαr| f |r)1/r .

If B = B(x0,r) , is the ball of center x0 and radius r , for A a matrix, we set AB =
{Ay,y ∈ B} .

Proposition 2.2. Let D be a Young function and A be a invertible matrix. Let
wA(x) = w(Ax) , then

Mα,D (wA)(A−1x)≤ cA,nMα,D (w)(x)

for almost every x ∈ Rn .

Proof. Fix x ∈ Rn and let us consider the ball B = B(A−1x,r) .

1
|B|

∫
B
D

(
w(Ay)

λ

)
dy =

1
|AB|

∫
AB

D

(
w(z)

λ

)
dz.

Then, x ∈ AB and
‖wA‖D ,B = ‖w‖D ,AB

Let ‖A‖= supx:|x|=1 |Ax| . There exist balls B1 = B(x, r
‖A−1‖ ) and B2 = B(x,‖A‖r)

such that B1 ⊂ AB⊂ B2 , then

‖w‖D ,AB ≤ ‖A−1‖n‖A‖n‖w‖D ,B2

Hence,
Mc

α,D (wA)(A−1x)≤ ‖A−1‖n‖A‖nMc
α,Dw(x),

where

Mc
α,D f (y) := sup

r>0
|B(y,r)|α/n‖ f‖D ,B(y,r).
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2.2. Weights.

A weight is a non negative locally integrable function in Rn . Let 0 ≤ α < n ,
1≤ p,q≤ ∞ , we say that a weight w ∈ Ap,q if, and only if

[w]Ap,q = sup
B
‖w‖q,B‖w−1‖p′,B < ∞,

where the supremum is taken over all balls B⊂ Rn .
If 1≤ p < ∞ , Ap denotes the classical Muckenhoupt classes of weights and A∞ =

∪p≥1Ap . It can be prove (see [17]) that w ∈ A∞ if, and only if

[w]∞ = sup
B

1
w(B)

∫
B

M(wχB)dx < ∞.

Observe that w ∈ Ap,p if and only if wp ∈ Ap and w ∈ Ap,∞ if, and only if w−p′ ∈
A1 . Also w ∈ A∞,∞ if, and only if w−1 ∈ A1 .

The fractional Bp condition, Bα
p , was introduced by Cruz-Uribe and Moen in [10]:

Let 1 < p < n/α and 1
q = 1

p −
α

n . A Young function φ ∈ Bα
p if∫

∞

1

φ(t)q/p

tq
dt
t
< ∞.

They proved that if φ ∈ Bα
p then Mα,φ : Lp(dx)→ Lq(dx) and

‖Mα,φ‖Lp→Lq ≤ c

(∫
∞

1

φ(t)q/p

tq
dt
t

)1/q

.

We will consider the following bump conditions: let 1 < q < ∞ and Ψ be a Young
function, then a weight w ∈ Aq,Ψ if

[w]Aq,Ψ = sup
B
‖w‖q,B‖w−1‖Ψ,B < ∞

where the supremum is over all balls B⊂ Rn .
Let f be locally integrable function in Rn . The sharp maximal function is defined

by

M# f (x) = sup
B3x

1
|B|

∫
B

∣∣∣∣ f (y)− 1
|B|

∫
B

f (z)dz
∣∣∣∣dy.

A locally integrable function f has bounded mean oscillation ( f ∈ BMO ) if
M# f ∈ L∞ and the norm ‖ f‖BMO = ‖M# f‖∞ .

Observe that the BMO norm is equivalent to

‖ f‖BMO = ‖M# f‖∞ ' sup
B

inf
a∈C

1
|B|

∫
B
| f (x)−a|dx.

Also we set for δ > 0, M#
δ

f (x) := (M#| f |δ (x))1/δ .
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2.3. Previous results.

Here we enounce some known results for the operator Tα,m . See [18].

Theorem 2.3. [18] Let 0 ≤ α < n, m ∈ N and let Tα,m be the integral operator
defined by (1.2). For 1 ≤ i ≤ m, let Ψi be Young functions, 0 ≤ αi < n such that
α1 + · · ·+αm = n−α . Also suppose ki ∈ Sn−αi,Ψi ∩Hn−αi,Ψi and let the matrices Ai
satisfy the hypothesis (H) .
If α = 0 , suppose T0,m is of strong type (p0, p0) for some 1 < p0 < ∞ .
If φ is the complementary of the functions Ψ1, . . . ,Ψm , then there exists C > 0 such
that, for 0 < δ ≤ 1 and f ∈ L∞

c (Rn)

M]
δ
(|Tα,m f |)(x)≤C

m∑
i=1

Mα,φ f (A−1
i x). (2.2)

Theorem 2.4. [18] Let 0 ≤ α < n and m ∈ N and let Tα,m be the integral operator
defined by (1.2). For 1 ≤ i ≤ m, let Ψi be Young functions, 0 ≤ αi < n such that
α1 + · · ·+αm = n−α . Also suppose ki ∈ Sn−αi,Ψi ∩Hn−αi,Ψi and that matrices Ai
satisfy the hypothesis (H) .
If α = 0 , suppose T0,m is of strong type (p0, p0) for some 1 < p0 < ∞ .
Let 0 < p < ∞ . If φ is the complementary of the functions Ψ1, . . . ,Ψm , then for f ∈
L∞

c (Rn) and w ∈ A∞ , there exists C > 0 , C depending on the operator T k
α,m,b , n, p and

w, such that, ∫
Rn
|Tα,m f (x)|pw(x)dx≤C

m∑
i=1

∫
Rn
|Mα,φ f (x)|pw(Aix)dx,

whenever the left-hand side is finite.

3. Main results

In this section we present the main results of the paper.

3.1. One weight norm inequalities

In this subsection, we state the boundedness of the operator, T k
α,m,b in two different

ways, using the Coifman inequality and using a Cauchy integral formula.

Theorem 3.1. Let b ∈ BMO, 0 ≤ α < n, k ∈ N∪{0} , m ∈ N and 1 ≤ i ≤ m. Let
Ψi be Young functions and 0 ≤ αi < n such that α1 + · · ·+αm = n−α . Let Tα,m be
the integral operator defined by (1.2) and T k

α,m,b be the k -order commutator of Tα,m .
Suppose that the matrices Ai satisfy the hypothesis (H) and ki ∈ Sn−αi,Ψi ∩Hn−αi,Ψi,k .
If α = 0 , let T0,m be of strong type (p0, p0) for some 1 < p0 < ∞ .
Let ϕk(t) = t log(e+ t)k and let φ be a Young function such that
Ψ
−1
1 (t) · · ·Ψ−1

m (t)ϕk
−1(t)φ−1(t). t for t ≥ t0 , for some t0 > 0 . Let 1 < p < n/α and

1
q = 1

p −
α

n .
Suppose that one of the following hypothesis holds,
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(a) Suppose there exists 1 < r < p such that κr < ∞ . Let η be a Young function
such that η−1(t)t

α
n . φ−1(t) for every t > 0 . If φ

1+ sn
n−α ∈ B sn

n−α
for every s >

r(n−α)/(n−αr) and wr ∈ A p
r ,

q
r

,

(b) Suppose there exist B and C be Young functions such that B−1(t)C−1(t)≤ c̃φ−1(t) ,
t > t0 > 0 , C ∈ Bα

p and w ∈ Aq,B ,

(c) Suppose that the operator Tα,m is bounded from Lp(wp) into Lq(wq) for all w ∈
Ap,q .

If w satisfies the condition (1.4) then there exists c > 0 such that, for every f ∈
Lp(wp) ,

‖T k
α,m,b f‖Lq(wq) ≤ c‖b‖k

BMO‖ f‖Lp(wp).

The constant, c depends on the operator T k
α,m,b , n, p and w.

3.2. Two weight norm inequalities

Next, we obtain two weight inequality for operators such that their adjoints satisfy
a Coifman inequality. Here, the weights are no longer in A∞ .

Theorem 3.2. Let φ be a Young function, 0≤ α < n and 1 < p < ∞ . Suppose there
exist Young functions E ,F such that E ∈ Bp′ and E −1(t)F−1(t)≤ φ−1(t) .

Let T be a linear operator such that its adjoint T ∗ satisfies∫
Rn
|T ∗ f (x)|qw(x)dx≤ c

∫
Rn

m∑
i=1

(
Mα,φ f (Aix)

)q w(x)dx, (3.1)

for all 0 < q < ∞ and w ∈ A∞ .
Set D(t) = F (t1/p) . If D is a Young function then for any weight u,∫

Rn
|T f (x)|pu(x)dx≤ c

∫
Rn
| f (x)|p

m∑
i=1

Mα p,Du(Aix)dx. (3.2)

For example, if T = Tα,m is defined by (1.2), then its adjoint T ∗ is

T ∗g(x) =
∫

k̃1(x−A−1
1 y) · · · k̃m(x−A−1

m y)g(y)dy,

where k̃i(x) = ki(−Aix) . If T ∗ satisfies hypothesis of Theorem 1.1 then∫
Rn
|T ∗ f (x)|qw(x)dx≤ c

∫
Rn

m∑
i=1

(
Mα,φ f (Aix)

)q w(x)dx.

for all 0 < q < ∞ and w ∈ A∞. So, we can apply the Theorem 3.1.
In the following table, Table 1, we can see some examples.
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Table 1: Examples
Mα,φ Range of p’s Mα p,D

M
α,L logLk 1 < p < ∞ M

α,L logL(k+1)p−1+ε

M
α,Lr′ logLr′(k+1) 1 < p < r M

α,L(
r
p )
′
logL(

r
p )
′
((k+1)+p−1)+ε

Now we give a endpoint estimate for T k
0,m,b that derives from Theorems 1.1 and

3.2.

Theorem 3.3. Let b ∈ BMO, k ∈ N∪{0} , m ∈ N and 1 ≤ i ≤ m. Let Ψi be Young
functions and 0 ≤ αi < n such that α1 + · · ·+αm = n. Let T0,m be the integral oper-
ator defined by (1.2) and T k

0,m,b be the k -order commutator of T0,m . Suppose that the
matrices Ai satisfy the hypothesis (H) and ki ∈ Sn−αi,Ψi ∩Hn−αi,Ψi,k , and T0,m be of
strong type (p0, p0) for some 1 < p0 < ∞ .
Let ϕk(t) = t log(e+ t)k and let φ be a Young function such that
Ψ
−1
1 (t) · · ·Ψ−1

m (t)ϕk
−1(t)φ−1(t). t for t ≥ t0 , for some t0 > 0 .

(a) If there exists r > 1 such that tr ≤ cφ(t) for t ≥ t0 > 0 , and φ ∈ Bp then

u{x ∈ Rn : |T k
0,m,b(x)|> λ} ≤ c

∫
Rn

ϕk

(
| f (x)|

λ

) m∑
i=1

Mφ u(Ai(x))dx. (3.3)

holds for every weight u.

(b) Suppose there exist Young functions E ,F such that E ∈ Bp′ and E −1(t)F−1(t)≤
φ−1(t) . Set D(t) = F (t1/p) , then

u{x ∈ Rn : |T k
0,m,b(x)|> λ} ≤ c

∫
Rn

ϕk

(
| f (x)|

λ

) m∑
i=1

MDu(Ai(x))dx. (3.4)

holds for for all weight u,

REMARK 3.4. Observe that the pairs of weights given in (a) are better than the
one in (b) . (See Remark 3.3 in [20])

4. Proof of the Coifman inequality

Recall some classical results concern to functions in BMO . For the proof see for
example the John-Niremberg theorem in [12].

Lemma 4.1. Let b ∈ BMO.

1. For any measurable subsets B1 ⊂ B2 ⊂ Rn such that |B1|, |B2|> 0 , we have

|bB1 −bB2 | ≤
|B2|
|B1|
‖b‖BMO.

11



Let 1 ≤ i ≤ m. In particular, if Ai are invertible matices, B̃ is a measurable set
and B̃i = A−1

i B̃ , then

|bB̃−b(∪m
i=1B̃i)∪B̃| ≤ (1+

m∑
i=1

|det(A−1
i )|)‖b‖BMO

2. Let B = B(cB,R) be a ball, centered at cB with radius R, and B j = B(cB,2 jR) .
Then,

|bB−bB j | ≤ c j‖b‖BMO.

The following lemma is part of the proof of Theorem 3.1 in [18],

Lemma 4.2. Let 0 ≤ α < n, m ∈ N and 1 ≤ i ≤ m. Let Ψi be Young functions and
0 ≤ αi < n such that α1 + · · ·+αm = n−α . Suppose that the matrices Ai satisfy hy-
pothesis (H) and ki ∈ Sn−αi,Ψi for 1≤ i≤ m.
Let ϕk(t)= t log(e+t)k and let φ be a Young function such that Ψ

−1
1 (t) · · ·Ψ−1

m (t)ϕk
−1(t)φ−1(t).

t for t ≥ t0 , some t0 > 0 . Let K(x,y) = k1(x−A1y)k2(x−A2y) . . .km(x−Amy) . Let
B = B(cB,R) be a ball centered at cB with radius R. We write B̃ = B(cB,2R) and for
1 ≤ i ≤ 2 , set B̃i = A−1

i B̃ . If z ∈ B̃ j , for some 1 ≤ j ≤ m, then there exists a positive
constant C such that ∫

B
|K(y,z)|dy≤CRα .

To obtain an appropriate maximal operator, which controls in weighted Lp norms
the operator T k

α,m,b , we need the following theorem:

Theorem 4.3. Let b ∈ BMO, 0 ≤ α < n, k ∈ N∪{0} , m ∈ N and 1 ≤ i ≤ m. Let
Ψi be Young functions and 0 ≤ αi < n such that α1 + · · ·+αm = n−α . Let Tα,m be
the integral operator defined by (1.2) and T k

α,m,b be the k -order commutator of Tα,m .
Suppose that the matrices Ai satisfy the hypothesis (H) and ki ∈ Sn−αi,Ψi ∩Hn−αi,Ψi,k .
If α = 0 , let T0,m be of strong type (p0, p0) for some 1 < p0 < ∞ .
Let ϕk(t) = t log(e+ t)k and let φ be a Young function such that
Ψ
−1
1 (t) · · ·Ψ−1

m (t)ϕk
−1(t)φ−1(t). t for t ≥ t0 , some t0 > 0 .

Then, there exists 0 < C = C(n,α,A1, ...,Am) such that, for 0 < δ < ε ≤ 1 and
f ∈ L∞

c (Rn)

M]
δ
(|T k

α,m,b f |)(x)≤C
k−1∑
l=0

‖b‖k−l
BMOMε(T l

α,m,b)(x)+C‖b‖k
BMO

m∑
i=1

Mα,φ f (A−1
i x). (4.1)

This Theorem is a generalization of several known results. The improvement of
having M#

δ
was explored in [1], [25]. The following table illustrates some examples of

this result.

The example (i) with m = 1 is the classical case proved in [4], (ii) with k = 0
is the example of fractional rough kernel proved in [28]. The last example (iii) is the
commutator of the explicit operator given in [18].

12



Table 2: Examples
Ψi 1≤ i≤ m φ Mα,φ

(i) ∞ t log(e+ t)k M
α,L logLk

(ii) tri , 1 < ri < ∞ ts log(e+ t)sk,
m∑

i=1

1
ri
+

1
s
= 1 M

α,Ls logLsk

(iii) Ψ1 = tr, 1 < r < ∞ tr′ log(e+ t)(k+1)r′ M
α,Lr′ logLr′(k+1)

Ψ2(t) = exp(t)−1

In the proof of Theorem 4.3, we follow the original ideas of papers [1] and [25]
and for technical details of set partitions we follow Theorem 2.2 in [28].

Proof of Theorem 4.3. We just consider the case m = 2 and k = 1, i.e. T 1
α,2,b =

[b,Tα,2] , and we will write [b,Tα ] . The general case is proved in an analogous way.
Let f be a bounded function with compact support, b∈ BMO and 0 < δ < ε ≤ 1.

Let x ∈ Rn and let B = B(cB,R) be a ball that contains x , centered at cB with radius
R . We write B̃ = B(cB,2R) and for 1 ≤ i ≤ 2, set B̃i = A−1

i B̃ , |B̃i| = |det(A−1
i )||B̃| .

Let f1 = f χ∪2
i=1B̃i

and f2 = f − f1 .
Suppose that a := Tα((b−bB̃∪B̃1∪B̃2

) f2)(cB)< ∞ .
We write

[b,Tα f ](x) = (b(x)−bB̃∪B̃1∪B̃2
)Tα f (x)−Tα((b−bB̃∪B̃1∪B̃2

) f )(x).

Now, we have(
1
|B|

∫
B
|[b,Tα f ](y)−a|δ dy

)1/δ

≤
(

1
|B|

∫
B
|(b(y)−bB̃∪B̃1∪B̃2

)Tα f (y)|δ dy
)1/δ

+

(
1
|B|

∫
B
|Tα((b−bB̃∪B̃1∪B̃2

) f1)(y)|δ dy
)1/δ

+

(
1
|B|

∫
B
|Tα((b−bB̃∪B̃1∪B̃2

) f2)(y)−Tα((b−bB̃∪B̃1∪B̃2
) f2)(cB)|δ dy

)1/δ

= I + II + III. (4.2)

To estimate I , let q = ε/δ > 1, by Hölder’s inequality and Lemma 4.1,

I ≤
(

1
|B|

∫
B
|(b(y)−bB̃)Tα f (y)|δ dy

)1/δ

+ |bB̃−bB̃∪B̃1∪B̃2
|
(

1
|B|

∫
B
|Tα f (y)|δ dy

)1/δ

≤
(

1
|B|

∫
B
|(b(y)−bB̃)|q

′δ dy
)1/q′δ ( 1

|B|

∫
B
|Tα f (y)|qδ dy

)1/qδ

+C‖b‖BMOMδ (Tα f )(x)
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≤C‖b‖BMOMε(Tα f )(x)+C‖b‖BMOMδ (Tα f )(x)

≤C‖b‖BMOMε(Tα f )(x).

For II , by Jensen inequality

II ≤ 1
|B|

∫
B

∫
B̃1∪B̃2

|K(y,z)||b(z)−bB̃∪B̃1∪B̃2
|| f1(z)|dzdy

≤
2∑

i=1

1
|B|

∫
B̃i

|b(z)−bB̃∪B̃1∪B̃2
|| f1(z)|

∫
B
|K(y,z)|dydz. (4.3)

Then, using Lemma 4.2 we obtain

II ≤CRα

2∑
i=1

1
|B|

∫
B̃i

|b(z)−bB̃∪B̃1∪B̃2
|| f (z)|dz

≤CRα

2∑
i=1

1
|B̃i|

∫
B̃i

(|b(z)−bB̃i
|+ |bB̃i

−bB̃∪B̃1∪B̃2
|)| f (z)|dz

≤C
2∑

i=1

[
Rα‖b−bB̃i

‖expL,B̃i
‖ f‖φ ,B̃i

+‖b‖BMOMα f (A−1
i x)

]

≤C‖b‖BMO

2∑
i=1

Mα,φ f (A−1
i x).

For III , by Jensen inequality we get

III ≤ 1
|B|

∫
B
|Tα,2((b−bB̃∪B̃1∪B̃2

) f2)(y)−Tα,2((b−bB̃∪B̃1∪B̃2
) f2)(cB)|dy

≤ 1
|B|

∫
B

∫
(B̃1∪B̃2)c

|K(y,z)−K(cB,z)||b(z)−bB̃∪B̃1∪B̃2
|| f (z)|dzdy

≤ 1
|B|

∫
B

2∑
l=1

∫
Zl
|K(y,z)−K(cB,z)||b(z)−bB̃∪B̃1∪B̃2

|| f (z)|dzdy,

where
Zl = (B̃1∪ B̃2)

c∩{z : |cB−Alz| ≤ |cB−Arz|,r 6= l,r = 1,2}.
Let us estimate |K(y,z)−K(cB,z)| for y ∈ B and z ∈ Zl ,

|K(y,z)−K(cB,z)| ≤|k1(y−A1z)− k1(cB−A1z)||k2(y−A2z)|
+ |k1(cB−A1z)||k2(y−A2z)− k2(cB−A2z)|. (4.4)

For simplicity we estimate the first summand of (4.4), the other one follows in an
analogous way. For j ∈ N , let

Dl
j = {z ∈ Zl : |cB−Alz| ∼ 2 j+1R}.
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Observe that Dl
j ⊂ {z : |cB−Alz| ∼ 2 j+1R} ⊂ A−1

l B(cB,2 j+2R) =: B̃l, j . Using genera-
lized Hölder’s inequality∫

Zl
|k1(y−A1z)− k1(cB−A1z)||k2(y−A2z)||b(z)−bB̃∪B̃1∪B̃2

|| f (z)|dz

≤
∞∑

j=1

∫
Dl

j

|k1(y−A1z)− k1(cB−A1z)||k2(y−A2z)||b(z)−bB̃∪B̃1∪B̃2
|| f (z)|dz

≤
∞∑

j=1

|B̃l, j|
|B̃l, j|

∫
B̃l, j

[
χDl

j
|k1(y−A1z)− k1(cB−A1z)||k2(y−A2z)|

(
|b(z)−bB̃l, j

|+ |bB̃l, j
−bB̃∪B̃1∪B̃2

|
)
| f (z)|

]
dz

≤
∞∑

j=1

|B̃l, j|‖(k1(y−A1·)− k1(cB−A1·))χDl
j
‖

Ψ1,|cB−Alz|∼2 j+1R

‖k2(y−A2·)χZl‖Ψ2,|cB−Alz|∼2 j+1R

(
‖b−bB̃ j

l
‖expL,B̃l, j

+ c j‖b‖BMO

)
‖ f‖φ ,B̃l, j

≤ c‖b‖BMO

∞∑
j=1

|B̃l, j| j‖(k1(y−A1·)− k1(cB−A1·))χDl
j
‖

Ψ1,|cB−Alz|∼2 j+1R

‖k2(y−A2·)χDl
j
‖

Ψ2,|cB−Alz|∼2 j+1R‖ f‖φ ,B̃l, j
.

Observe that |cB−Alz|/2≤ |y−Alz|< 2|cB−Alz| and if |cB−Alz| ∼ 2 j+1R then
2 jR≤ |y−Alz| ≤ 2 j+2R . Thus, we have

‖kl(y−Al ·)χDl
j
‖

Ψl ,|cB−Alz|∼2 j+1R ≤ ‖kl(·)‖Ψl ,|x|∼2 jR +‖kl(·)‖Ψl ,|x|∼2 j+1R ≤ c(2 jR)−αl ,

where the last inequality holds since kl ∈ Sn−αl ,Ψl . Also, by hypothesis

‖kl(cB−Al ·)χDl
j
‖

Ψl ,|cB−Alz|∼2 j+1R ≤ c(2 j+1R)−αl .

For r 6= l , let us prove that

‖kr(y−Ar·)χDl
j
‖

Ψr ,|cB−Alz|∼2 j+1R ≤ c(2 jR)−αr . (4.5)

If z ∈ Dl
j then |cB−Arz| ≥ |cB−Alz| ≥ 2 j+1R , that is Dl

j ⊂ A−1
r B(cB,2 j+1R)c .

Then Dl
j ⊂ A−1

l B(cB,2 j+2R) ⊂ A−1
r B(cB,2t+ j+2R) for some t > 1 such that 2t ≥

‖ArA−1
l ‖ . We decompose Dl

j =

j+t⋃
k= j

(Dl
j)k,r where

(Dl
j)k,r = {z ∈ Dl

j : |cB−Arz| ∼ 2k+1R}.

Observe that (Dl
j)k,r ⊂ {z : |cB−Arz| ∼ 2 j+1R} . Then, as kr ∈ Sn−αr ,Ψr ,

15



1
|A−1

l B(cB,2 j+2R)|

∫
A−1

l B(cB,2 j+2R)
Ψr

kr(y−Arz)χ∪ j+t
k= j(D

l
j)k,r

(z)

λ

dz

=
1

|A−1
l B(cB,2 j+2R)|

∫
A−1

l B(cB,2 j+2R)∩(∪ j+t
k= j(D

l
j)k,r)

Ψr

(
kr(y−Arz)

λ

)
dz

=

j+t∑
k= j

1
|A−1

l B(cB,2 j+2R)|

∫
A−1

l B(cB,2 j+2R)∩(Dl
j)k,r

Ψr

(
kr(y−Arz)

λ

)
dz

=

j+t∑
k= j

1
|A−1

l B(cB,2 j+2R)|

∫
(Dl

j)k,r

Ψr

(kr(y−Arz)χ(Dl
j)k,r

(z)

λ

)
dz

≤
j+t∑
k= j

|A−1
r B(cB,2k+2R)|
|A−1

l B(cB,2 j+2R)|
1

|A−1
r B(cB,2k+2R)|

∫
A−1

r B(cB,2k+2R)
Ψr

(kr(y−Arz)χ(Dl
j)k,r

(z)

λ

)
dz

≤
j+t∑
k= j

|det(A−1
r )|

|det(A−1
l )|

2(k− j)n 1
|A−1

r B(cB,2k+2R)|

∫
A−1

r B(cB,2k+2R)
Ψr

(kr(y−Arz)χ(Dl
j)k,r

(z)

λ

)
dz

Observe that R > |cB−Arz| ≥ |cB−Alz| , for every R > 0, implies that A−1
l B(cB,R)⊂

A−1
r B(cB,R) . Then |A−1

l B(cB,R)| ≤ |A−1
r B(cB,R)| and |det(A−1

r )| ≥ |det(A−1
l )| . If we

consider λ = |det(A−1
r )|

|det(A−1
l )|

µ , using that Ψr is convex we have

j+t∑
k= j

|det(A−1
r )|

|det(A−1
l )|

2(k− j)n 1
|A−1

r B(cB,2k+2R)|

∫
A−1

r B(cB,2k+2R)
Ψr

(
|det(A−1

l )|
|det(A−1

r )|

kr(y−Arz)χ(Dl
j)k,r

(z)

µ

)
dz

≤
j+t∑
k= j

2(k− j)n 1
|A−1

r B(cB,2k+2R)|

∫
A−1

r B(cB,2k+2R)
Ψr

(kr(y−Arz)χ(Dl
j)k,r

(z)

µ

)
dz

≤ 2tn
j+t∑
k= j

1
|A−1

r B(cB,2k+2R)|

∫
A−1

r B(cB,2k+2R)
Ψr

(kr(y−Arz)χ(Dl
j)k,r

(z)

µ

)
dz≤ 1.

Finally, taking µ = (t + 1)2tn∑ j+t
t ‖kr(y−Ar·)‖Ψr ,|cB−Arz|∼2k+1R ≥ (t + 1)2tn‖kr(y−

Ar·)‖Ψr ,|cB−Arz|∼2k+1R , we obtain

‖kr(y−Ar·)χDl
j
‖

Ψr ,|cB−Alz|∼2 j+1R = ‖kr(y−Ar·)χ∪ j+t
k= j(D

l
j)k,r
‖

Ψr ,|cB−Alz|∼2 j+1R

≤ |det(A−1
r )|

|det(A−1
l )|

(t +1)2tn
t+ j∑
k= j

‖kr(y−Ar·)‖Ψr ,|cB−Arz|∼2k+1R
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.
j+t∑
k= j

‖kr(·)‖Ψr ,|x|∼2kR +‖kr(·)‖Ψr ,|x|∼2k+1R

.
∑
k≥ j

(2kR)−αr = c(2 jR)−αr ,

where the last inequality holds since kr ∈ Sn−αr ,Ψr .
Now for l = 1,

∫
Z1
|k1(y−A1z)− k1(cB−A1z)||k2(y−A2z)||b(z)−bB̃∪B̃1∪B̃2

|| f2(z)|dz

≤ c‖b‖BMO

∞∑
j=1

(2 jR)n−α2 j‖(k1(y−A1·)− k1(cB−A1·))χD1
j
‖

Ψ1,|cB−A1z|∼2 j+1R‖ f‖
φ ,B̃ j

1

≤ c‖b‖BMOMα,φ f (A−1
1 x)

∞∑
j=1

(2 jR)n−α2−α j‖(k1(y−A1·)− k1(cB−A1·))χD1
j
‖

Ψ1,|cB−A1z|∼2 j+1R

≤ c‖b‖BMOMα,φ f (A−1
1 x),

where the last inequality follows since k1 ∈ Hn−α1,Ψ1,1 .
For l = 2, proceeding as (4.5), we obtain

‖(k1(y−A1·)− k1(cB−A1·))χD2
j
‖

Ψ1,|cB−A2z|∼2 j+1R

≤ c
∑
k≥ j

‖(k1(y−A1·)− k1(cB−A1·))χ(D2
j )k,1
‖

Ψ1,|cB−A1z|∼2k+1R.

Then, we obtain

∞∑
j=1

(2 jR)α1 j‖(k1(y−A1·)− k1(cB−A1·))χD1
j
‖

Ψ1,|cB−A1z|∼2 j+1R

≤
∞∑

j=1

(2 jR)α1 j
∑
k≥ j

‖(k1(y−A1·)− k1(cB−A1·))χ(D2
j )k,1
‖

Ψ1,|cB−A1z|∼2k+1R

≤
∞∑

j=1

∑
k≥ j

2α1( j−k)(2kR)α1k‖(k1(y−A1·)− k1(cB−A1·))χ(D2
j )k,1
‖

Ψ1,|cB−A1z|∼2k+1R

≤
∞∑

k=1

 k∑
j=1

(2−α1)k− j

(2kR)α1k‖(k1(y−A1·)− k1(cB−A1·))χ(D2
j )k,1
‖

Ψ1,|cB−A1z|∼2k+1R

≤ c
∞∑

k=1

(2kR)α1k‖(k1(y−A1·)− k1(cB−A1·))χ(D2
j )k,1
‖

Ψ1,|cB−A1z|∼2k+1R ≤ c,

where the last inequality follows since k1 ∈ Hn−α1,Ψ1,1 .
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So, as in the case l = 1, we obtain∫
Z2
|k1(y−A1z)− k1(cB−A1z)||k2(y−A2z)||b(z)−bB̃∪B̃1∪B̃2

|| f (z)|dz

≤ c‖b‖BMOMα,ϕ f (A−1
l x).

Then

III ≤ c‖b‖BMO

2∑
l=1

Mα,ϕ f (A−1
l x).

For the case α = 0, the argument above can be adapted as follows. Estimates for
terms I and III are analogous to the ones in the case 0<α < n . For II , observe that T0
is of weak-type (1,1) with respect to the Lebesgue measure (see Lemma 5.3 in [18]),
as 0 < δ < 1 and using Kolmogorov’s inequality (see Lemma 5.16 in [12]) we get

II ≤ C
|B|

∫
Rn
| f1(y)|dy =

2∑
i=1

C
|B|

∫
B̃i

| f1(y)|dy≤C
2∑

i=1

M f (A−1
i f (x)),

and the theorem follows in this case.
For the case m > 2, the estimates for terms I and II holds as the case m = 2. For

III , we define Zl , l = 1,2, . . . ,m , as

Zl = (∪m
i=1B̃i)

c∩{z : |cB−Alz| ≤ |cB−Arz|,r 6= l,r = 1,2, . . . ,m}.

For y ∈ B and z ∈ Zl , the inequality (4.4) in this case is

|K(y,z)−K(cB,z)| ≤
m∑

i=1

|ki(y−Aiz)− ki(cB−Aiz)|
m∏

j 6=i, j=1

|k j(y−A jz)|

The estimate∫
Zl
|K(y,z)−K(cB,z)||b(z)−bB̃∪B̃1∪B̃2

|| f (z)|dz≤C‖b‖BMOMα,ϕ f (A−1
l x)

is prove in an analogous way as above.
For the case k > 1, suppose that a := Tα((b−bB̃∪B̃1∪B̃2

)k f2)(cB)< ∞ .
We write

T k
α,b f (x) =

k−l∑
l=0

C(b(x)−bB̃∪B̃1∪B̃2
)k−lT l

α,b f (x)+Tα((b−bB̃∪B̃1∪B̃2
)k f )(x).

and the term I , II , III are

I =
k−l∑
l=0

(
1
|B|

∫
B
|b(y)−bB̃∪B̃1∪B̃2

|(k−l)δ |T l
α,b f (y)|δ dy

)1/δ
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II =
(

1
|B|

∫
B
|Tα((b−bB̃∪B̃1∪B̃2

)k f1)(y)|δ dy
)1/δ

III =
(

1
|B|

∫
B
|Tα((b−bB̃∪B̃1∪B̃2

)k f2)(y)−Tα((b−bB̃∪B̃1∪B̃2
)k f2)(cB)|δ dy

)1/δ

The estimate for I is analogous for the case k = 1. To obtain estimates II and III ,
we observe that, by Lemma 4.1, we have |b−bB̃∪B̃1∪B̃2

|k . |b−bX |k + jk‖b‖k
BMO with

X = B or B̃l, j , the rest follows as above.

Proof of Theorem 1.1. By the extrapolation result Theorem 1.1 in [9], estimate (1.6)
holds for all 0 < p < ∞ and all w ∈ A∞ if, and only if, it holds for some 0 < p0 < ∞

and all w ∈ A∞ . Therefore, we will show that (1.6) is true for p0 , which is taken such
that n−α

n < p0 < ∞ . This will make some computations cleaner and avoid some tech-
nicalities. We first consider the case on which w and b ∈ L∞ . By homogeneity, we
assume that ‖b‖BMO = 1. We proceed by induction.

When k = 0, then T 0
α,m,b = Tα,m . As ki ∈ Hn−αi,Ψi,0 = Hn−αi,Ψi , Theorem 3.3 in

[18] implies that∫
Rn
|Tα,m f (x)|pw(x)dx≤C

m∑
i=1

∫
Rn
|Mα,φ f (x)|pw(Aix)dx.

Next, we assume that the result holds for all 0 ≤ j ≤ k− 1 and let us see how to
derive the case k . We fix Ψ1, . . . ,Ψm and φ so that Ψ

−1
1 (t) · · ·Ψ−1

m (t)ϕk
−1(t)φ−1(t).

t for t ≥ t0 , for some t0 > 0, with ϕk(t) = t log(e+ t)k and ki ∈ Sn−αi,Ψi ∩Hn−αi,Ψi,k .
Let f ∈ L∞

c . Without loss of generality, we assume that ‖Mα,φ f‖Lp0 (wAi )
, i =

1, ...,m and ‖T k
α,m,b f‖Lp0 (w) are finite. Let w ∈ A∞ , then there exists r > 1 such that

w ∈ Ar . Let 0 < δ < 1 such that 1 < r < p0/δ , thus w ∈ Ap0/δ . We want to use the
Fefferman-Stein’s inequality. To do so we need to check that ‖Mδ (T k

α,m,b f )‖Lp0 (w) is
finite. Notice that since w ∈ Ap0/δ with p0/δ > 1 we have

‖Mδ (T
k

α,m,b f )‖Lp0 (w) = ‖M(T k
α,m,b f )δ‖

1
δ

L
p0
δ (w)

≤C‖T k
α,m,b f‖Lp0 (w) < ∞,

by assumption. Then, by Fefferman-Stein’s inequality and Lemma 4.3, for all ε with
δ < ε < 1, we have

∫
Rn
|T k

α,m,b f (x)|p0w(x)dx≤
∫
Rn
|M(T k

α,m,b f )δ (x)|p0/δ w(x)dx

≤
∫
Rn
(M]

δ
(T k

α,m,b f )(x))p0w(x)dx
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≤C
k−1∑
l=0

‖(Mε(T l
α,m,b f )‖p0

Lp0 (w)+C
m∑

i=1

∫
Rn
(Mα,φ f (A−1

i x))p0w(x)dx. (4.6)

Since δ < q/r < 1, we can take ε > 0 such that δ < ε < p0/r < 1, and so
w ∈ Ap0/ε . Hence,

‖(Mε(T l
α,m,b f )‖Lp0 (w) = ‖(M(|T l

α,m,b f |ε)‖1/ε

Lp0/ε (w)
≤ c‖T l

α,m,b f‖Lp0 (w).

Notice that for 0≤ l ≤ k−1 and for all t ≥ e , we have

Ψ
−1
1 (t) · · ·Ψ−1

m (t)ϕl
−1(t)φ−1(t)≤Ψ

−1
1 (t) · · ·Ψ−1

m (t)ϕk
−1(t)φ−1(t). t.

Besides, ki ∈ Sn−αi,Ψi ∩Hn−αi,Ψi,k ⊂ Sn−αi,Ψi ∩Hn−αi,Ψi,l . Thus, the induction hypothe-
sis implies that, for any 0≤ l ≤ k−1,

‖(Mε(T l
α,m,b f )‖p0

Lp0 (w) ≤ c‖T l
α,m,b f‖p0

Lp0 (w) ≤ c
m∑

i=1

∫
Rn
(Mα,φ f (A−1

i x))p0w(x)dx,

provided the middle term is finite. Assume for the moment that this is the case. Plug-
ging the last estimate into (4.6) it follows that∫

Rn
|T k

α,m,b f (x)|p0w(x)dx≤C
m∑

i=1

∫
Rn
(Mα,φ f (x))p0w(Aix)dx.

Observe that we have not used that w and b ∈ L∞ , this will be needed in the following
argument to show that some quantities are finite.

We still have to see that ‖T l
α,m,b‖Lp0 (w) < ∞ for all 0≤ l ≤ k−1. As w ∈ L∞ and

Tα,m : Lq(dx)→ Lp0(dx) , with 1
p0

= 1
q −

α

n ,

‖T l
α,m,b f‖Lp0 (w) =

∥∥∥∥∥∥
l∑

j=1

cl, jbl− jTα,m(b j f )

∥∥∥∥∥∥
Lp0 (w)

≤ ‖w‖∞

∥∥∥∥∥∥
l∑

j=1

cl, jbl− jTα,m(b j f )

∥∥∥∥∥∥
Lp0

< ∞,

≤C‖w‖∞‖b‖l
∞‖ f‖Lq < ∞,

since f ∈ L∞
c . Hence, for w and b ∈ L∞ , (1.6) holds, that is∫

Rn
|T k

α,m,b f (x)|p0w(x)dx≤C‖b‖k
BMO

m∑
i=1

∫
Rn
(Mα,φ f (x))p0w(Aix)dx,

where C does no depend on ‖b‖L∞ and ‖w‖L∞ (C only depends on the A∞ constant of
w , p0,k,T ).

For any weight w ∈ A∞ , we define wN = min{w,N} , then wN ∈ A∞ and [wN ]A∞
≤

C[w]A∞
with C independent of N . Since wN ∈ L∞ then (1.6) holds with C not depend-

ing on N . Letting N→ ∞ and using the monotone convergence theorem we conclude
that (1.6) holds for any w ∈ A∞ .
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For the general case, if b ∈ BMO , for any N ∈ N we define bN = bχ[−N,N] +
Nχ(N,∞)−Nχ(−∞,−N) , then ‖bN‖∞ = ‖bN‖BMO ≤ 2‖b‖BMO . Now, using convergence
theorems, for details see [21], we conclude that (1.6) holds for any b ∈ BMO .

Thus, as mentioned, using the extrapolation results obtained in [9], (1.6) holds for
all 0 < p < ∞ , b ∈ BMO and w ∈ A∞ .

If w satisfies (1.4), we have∫
Rn
|T k

α,m,b f (x)|pw(x)dx≤C
m∑

i=1

∫
Rn
(Mα,φ f (x))pw(Aix)dx≤C

m∑
i=1

∫
Rn
(Mα,φ f (x))pw(x)dx.

5. Proof of one weight norm inequalities

For the proof of Theorem 3.1 a) and b) , we need the Coifman inequality (1.6)
and the boundedness of the maximal operator, given in [3] (see Theorem 2.6). In the
case of the classical Lebesgue spaces the theorem is the following

Theorem 5.1. [3] Let 0 ≤ α < n, w be a weight, 1 ≤ β < p < n/α and 1/q =

1/p−α/n. Let η be a Young function such that η
1+ ρα

n−α ∈ B ρn
n−α

for every ρ > β (n−
α)/(n−αβ ) , and let φ be a Young function such that φ−1(t)tα/n . η−1(t) for every
t > 0 . If wβ ∈ A p

β
, q

β

, then Mα,η is bounded form Lp(wp) into Lq(wq) .

The boundedness of the Mα,φ from Lp(wp) into Lq(wq) with bump conditions,
given in [11] (see Theorem 5.37), is the following,

Theorem 5.2. [11] Let 0 ≤ α < n, 1 < p < n/α , let 1
q = 1

p −
α

n . Let φ ,B and C
be Young functions such that B−1(t)C−1(t) ≤ cφ−1(t) , t ≥ t0 > 0 . If C ∈ Bα

p and
w ∈ Aq,B , then for every f ∈ Lp(wp) ,∫

(Mα,φ f )qwq ≤C
∫
| f |pwp.

Now we prove part (a) and (b) of Theorem 3.1,

Proof of Theorem 3.1 a) and b). From the previous Theorems, hypothesis (a) or (b)
implies that Mα,φ is bounded from Lp(wp) into Lq(wq) .
Then, by Theorem 1.1 and w satisfies (1.4),

‖T k
α,m,b f‖Lq(wq) ≤ c‖b‖k

BMO‖Mα,φ f‖Lq(wq) ≤ c‖b‖k
BMO‖ f‖Lp(wp).

For the proof of Theorem 3.1 c) we use a Cauchy integral formula technique, see
[7],[5] and [2]. This technique is as follows, let T be a linear operator, we can write T k

b
as a complex integral operator

T k
b f =

dk

dzk ezbT ( f e−zb)

∣∣∣∣
z=0

=
k!

2πi

∫
|z|=ε

Tz( f )
zk+1 dz,
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where ε > 0 and Tz( f ) = ezbT ( f e−zb) , z ∈ C . This is called the “conjugation” of T
by ezb . Now, if ‖ · ‖ is a norm we can apply Minkowski inequality,

‖T k
b f‖ ≤ 1

2πεk sup
|z|=ε

‖Tz( f )‖ ε > 0.

Observe that using this technique we can obtain the boundedness of the commuta-
tor using the boundedness of the conjugation of the operator.

Lemma 5.3. [2] Fix 1 < r,η < ∞ . If wη ∈ Ar and b ∈ BMO. Then weλb ∈ Ar for
every λ ∈ R verifying

|λ | ≤ min{1, p−1}
η ′‖b‖BMO

.

Proof of Theorem 3.1 (c). Let T = Tα,m . Let w ∈ Ap,q and ν = weRe(z)b , where
Re(z) is the real part of the complex number z . If ν ∈ Ap,q , then

‖Tz f‖Lq(wq) = ‖T ( f e−zb)‖Lq(νq) ≤ c‖ f e−zb‖Lp(ν p) = c‖ f‖Lp(wp),

since T is boundedness from Lp(ν p) into Lq(νq) .
Let us prove that ν ∈ Ap,q . If w ∈ Ap,q then wq ∈ A1+ q

p′
and exists r > 1 such

that wqr ∈ A1+ q
p′

. Let ε0 =
min{1, p′

q }
qr′‖b‖BMO

, if |z|= ε0 then

|qRe(z)| ≤ q|z|=
min{1, p′

q }
r′‖b‖BMO

.

By Lemma 5.3, νq ∈ A1+ q
p′

and ν ∈ Ap,q .

Hence,

‖T k
b f‖Lp(wp) ≤

1
2πεk

0
sup
|z|=ε0

‖Tz( f )‖Lp(wp) ≤
1

2πck
p,q
‖b‖k

BMO‖ f‖Lq(wq).

6. Proof of two weight norm inequalities

For the proof of the two weight norm inequality we need the following auxiliary
results.

Lemma 6.1. (a) [24] Let Φ be a Young function. If Φ ∈ Bp then for every weight ν

we have ∫
|MΦ f (x)|pν(x)dx≤ c

∫
| f (x)|pMν(x)dx.

(b) [20] If r > 1 , then
M(Mr)≈Mr.
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Proof of Theorem 3.2. Let u a weight and ν(x) = Mα p,Du(x) . By duality, (3.2)
turns out to be equivalent to∫

Rn
|T ∗ f (x)|p′ν(x)1−p′dx≤ c

∫
Rn

m∑
i=1

| f (Aix)|p
′
u(x)1−p′dx.

Since ν = Mα p,Dw1−p′ ∈ A∞ , see [4], then by Proposition 2.2 and the fact that
E ∈ Bp′ we get for all x ∈ Rn ,

Mα,F (w1/p
A−1

i
)(Aix)p′

ν(x)1−p′ =Mα p,D (wA−1
i
)(Aix)p′/p

ν(x)1−p′ ≤Mα p,D (w)(x)p′/p
ν(x)1−p′

and using the Coifman inequality settled earlier, Theorem 1.1,∫
Rn
|T ∗ f (x)|p′ν(x)1−p′dx≤ c

∫
Rn

Mα,φ f (Aix)p′
ν(x)1−p′dx

≤ c
∫
Rn

ME ( f w−1/p
A−1

i
)(Aix)p′Mα,F (w1/p

A−1
i
)(Aix)p′

ν(x)1−p′dx

≤ c
∫
Rn

ME ( f w−1/p
A−1

i
)(Aix)p′dx

≤ c
∫
Rn
| f (Aix)w

−1/p
A−1

i
(Aix)|p

′
dx = c

∫
Rn
| f (Aix)|p

′
w(x)1−p′dx.

Proof of Theorem 3.3. We proceed by induction on k . We consider m = 2, T k
b =

T k
0,2,b . The general case is analogous.

We assume that the cases l = 0,1, . . . ,k− 1 are proved and we show the de-
sired estimate for T k

b . Let u be a weight, suppose that u ∈ L∞
c (otherwise consider

uN = min{u,N}χB(0,N) and use monotone converge theorem). Let 0 ≤ f ∈ L∞
c . By

homogeneity we can also assume that ‖b‖BMO = 1.
By the standard Calderón-Zygmund decomposition of f at height λ , there exist

dyadic cubes {Q j} j such that

λ <
1
|Q j|

∫
Q j

f ≤ 2n
λ ,

and we can write f = g+h where

g = f χRn\∪ jQ j +
∑

j

fQ j χQ j , h =
∑

j

h j =
∑

j

( f − fQ j)χQ j ,

where fQ j denotes the average of f over Q j . Let us recall that 0 ≤ g ≤ 2nλ a.e.
and also that each h j has vanishing integral. We set Q̃ j,i , i = 1,2, the cube with
center Aic j with length 2

√
nMl(Q j) , where M = max

1≤i≤2
‖Ai‖ , Ω̃ =

⋃
j

(
Q̃ j,1∪ Q̃ j,2

)
and

ũ = uχRn\Ω̃ . Then

u{x ∈ Rn : |T k
b f (x)|> λ} ≤ u(Ω̃)+u{x ∈ Rn \ Ω̃ : |T k

b h(x)|> λ/2}
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+u{x ∈ Rn \ Ω̃ : |T k
b g(x)|> λ/2}

= I + II + III.

We estimate each term separately. For I , observe that |Q̃ j,i| = (2
√

nM)n|Q j| .
Then, we have

I = u

⋃
j

(
Q̃ j,1∪ Q̃ j,2

)≤∑
j

[
u(Q̃ j,1)+u(Q̃ j,2)

]

= (2
√

nM)n
∑

j

[
u(Q̃ j,1)

|Q̃ j,1|
+

u(Q̃ j,2)

|Q̃ j,2|

]
|Q j|

≤ c
λ

∑
j

[
u(Q̃ j,1)

|Q̃ j,1|
+

u(Q̃ j,2)

|Q̃ j,2|

]∫
Q j

f

≤ c
λ

∑
j

∫
Q j

[
Mu(A1x)+Mu(A2x)

]
f (x)dx,

where the last inequality follows since x ∈ Q j then Aix ∈ Q̃ j,i . Then,

I ≤ c
λ

∑
j

∫
Q j

[
Mu(A1x)+Mu(A2x)

]
f (x)dx

≤ c
∑

j

∫
Q j

ϕk

(
f (x)
λ

)[
Mu(A1x)+Mu(A2x)

]
dx,

and we observe that Mu is pointwise controlled by either Mφ u or MDu . So the desired
estimate follows in all cases.

To estimate II , we write

T k
b h(x) =

∑
j

T k
b h j(x)

=

k−1∑
l=0

ck,lT l
b

∑
j

(b−bQ j∪Q̃ j,1∪Q̃ j,2
)k−lh j

(x)+
∑

j

(b(x)−bQ j∪Q̃ j,1∪Q̃ j,2
)kT h j(x)

= F1(x)+F2(x).

Then,

II = u{x ∈ Rn \ Ω̃ : |T h(x)|> λ/2}
≤ u{x ∈ Rn \ Ω̃ : |F1(x)|> λ/4}+u{x ∈ Rn \ Ω̃ : |F2(x)|> λ/4}.

For F1 , we would like to use the induction hypothesis. We consider the case (a) .
If 0≤ l ≤ k−1 then Hn−αi,Ψi,k ⊂ Hn−αi,Ψi,l and so ki ∈ Sn−αi,Ψi ∩Hn−αi,Ψi,l . Also, as
ϕk(t)≤ ϕ l(t) we have

Ψ
−1
1 (t) · · ·Ψ−1

m (t)ϕ l(t)φ(t). Ψ
−1
1 (t) · · ·Ψ−1

m (t)ϕ−1
k (t)φ−1(t). t,
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for t ≥ t0 , for some t0 > 0. Thus the hypothesis on (a) are satisfied for every 0≤ l ≤
k−1 and therefore

u{x ∈Rn \ Ω̃ : |F1(x)|> λ/4} ≤
k−1∑
l=0

ũ

x :

∣∣∣∣∣∣T l
b

∑
j

(b−bQ j∪Q̃ j,1∪Q̃ j,2
)k−lh j

(x)

∣∣∣∣∣∣> λ/C


.

k−1∑
l=0

∫
Rn

ϕl

(
|
∑

j(b−bQ j∪Q̃ j,1∪Q̃ j,2
)k−lh j|

λ

)
(Mφ ũ(A1(x))+Mφ ũ(A2(x)))dx

.
k−1∑
l=0

∑
j

∫
Q j

ϕl

(
|b−bQ j∪Q̃ j,1∪Q̃ j,2

|k−l |h j|
λ

)
(Mφ ũ(A1(x))+Mφ ũ(A2(x)))dx

.
k−1∑
l=0

∑
j

(
2∑

i=1

ess inf
Q j

Mφ ũ(Ai(x))

)∫
Q j

ϕl

(
|b−bQ j∪Q̃ j,1∪Q̃ j,2

|k−l |h j|
λ

)
dx,

where the last inequality holds by Mφ ũ ' ess inf
Q j

Mφ ũ , see [20]. Let us observe that

C−1
k (t)Ck−l

−1
(t).C−1

l (t) . Then, Young inequality implies

∫
Q j

ϕl

(
|b−bQ j∪Q̃ j,1∪Q̃ j,2

|k−l |h j|
λ

)
dx .

∫
Q j

ϕk

(
|h j|
cλ

)
dx+

∫
Q j

ϕk−l

(
c|b−bQ j∪Q̃ j,1∪Q̃ j,2

|k−l
)

dx

=

∫
Q j

ϕk

(
|h j|
λ

)
dx+

∫
Q j

e
c|b−bQ j∪Q̃ j,1∪Q̃ j,2

|
dx

≤
∫

Q j

ϕk

(
|h j|
λ

)
dx+

∫
Q j

e
c|b−bQ j |+|bQ j−bQ j∪Q̃ j,1∪Q̃ j,2

|
dx

≤
∫

Q j

ϕk

(
|h j|
λ

)
dx+ c

∫
Q j

ec|b−bQ j |dx

.
∫

Q j

ϕk

(
|h j|
λ

)
dx+ |Q j|.

As ‖b‖BMO = 1, using John-Nirenberg theorem, we get that ‖b−bQ j‖expL,Q j ≤ c and
|bQ j − bQ j∪Q̃ j,1∪Q̃ j,2

| ≤ c . Besides, using that ϕδ
k , 0 < δ < 1, is concave, therefore

subadditive, it follows that ϕk is quasi-subadditive, this is ϕk(t1+t2). ϕk(t1)+ϕk(t2) .
Then, by Jensen inequality∫

Q j

ϕk

(
|h j|
λ

)
dx≤

∫
Q j

ϕk

(
f
λ

)
dx+ |Q j|ϕk

(
fQ j

λ

)
≤ 2

∫
Q j

ϕk

(
f
λ

)
dx.

Also, by Calderón-Zygmund descomposition

|Q j| ≤
1
λ

∫
Q j

f dx≤
∫

Q j

ϕk

(
f
λ

)
dx.
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Then, we obtain

u{x ∈Rn \ Ω̃ : |F1(x)|> λ/4}

.
k−1∑
l=0

∑
j

(
2∑

i=1

ess inf
Q j

Mφ ũ(Ai(x))

)∫
Q j

ϕk

(
f
λ

)
dx

.
∫
Rn

ϕk

(
f
λ

)
(Mφ ũ(A1(x))+Mφ ũ(A2(x)))dx.

This gives the desired estimate for F1 in case (a) . Notice that the same computations
hold in case (b) replacing everywhere Mφ by MD . Next, we estimate F2 ,

u{x ∈Rn \ Ω̃ : |F2(x)|> λ/4} ≤ 4
λ

∑
j

∫
Rn\Ω̃
|b(x)−bQ j∪Q̃ j,1∪Q̃ j,2

|k|T h j(x)|u(x)dx

≤ 4
λ

∑
j

∫
Rn\Ω̃
|b(x)−bQ j∪Q̃ j,1∪Q̃ j,2

|k
∣∣∣∣∣
∫

Q j

(K(x,y)−K(x,c j))h j(y)dy

∣∣∣∣∣u(x)dx

≤ 4
λ

∑
j

∫
Q j

|h j(y)|
∫
Rn\Ω̃
|b(x)−bQ j∪Q̃ j,1∪Q̃ j,2

|k|(K(x,y)−K(x,c j))|u(x)dxdy.

We claim that for every Q , with center cQ , and for every y ∈ Q we have∫
Rn\(Q̃ j,1∪Q̃ j,2)

|b(x)−bQ∪Q̃1∪Q̃2
|k|(K(x,y)−K(x,cQ))|u(x)dx≤ c

2∑
i=1

ess inf
x∈Q j

MΦu(Aix),

(6.1)

where Qi , i = 1,2, is the cube with center AicQ with length 2
√

nMl(Q) , and M =
max

1≤i≤2
‖Ai‖ . This estimate applied to each Q j drives us to

u{x ∈ Rn \ Ω̃ : |F2(x)|> λ/4} ≤ c
λ

∑
j

2∑
i=1

ess inf
x∈Q j

MΦu(Aix).
∫

Q j

|h j(y)|dy

≤ c
λ

∑
j

∫
Q j

f (y) [MΦu(A1y)+MΦu(A2y)]dy

.
∫
Rn

ϕk

(
f
λ

)
(Mφ ũ(A1(x))+Mφ ũ(A2(x)))dx.

Observe that this leads to the desired estimate in (a) and also in (b) , since Mφ ≤MD ,
see Remark 3.4. Collecting the obtained inequalities for F1 and F2 we complete the
estimate of II .

Let us proof (6.1). Let Q be a cube with center cQ , and Qi , i = 1,2, be the
cubes with center AicQ with length 2

√
nMl(Q) , where M = max

1≤i≤2
‖Ai‖ . Using (4.4),
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we obtain∫
Rn\(Q̃1∪Q̃2)

|b(x)−bQ∪Q̃1∪Q̃2
|k|(K(x,y)−K(x,cQ))|u(x)dx

≤
∫

Z1∪Z2
|b(x)−bQ∪Q̃1∪Q̃2

|k|k1(x−A1y)− k1(x−A1cQ)||k2(x−A2y)|u(x)dx

+

∫
Z1∪Z2

|b(x)−bQ∪Q̃1∪Q̃2
|k|k1(x−A1cQ)||k2(x−A2y)− k2(x−A2cQ)|u(x)dx,

where Zi = Rn \
(
Q̃1∪ Q̃2

)
∩{x : |x−Aiy| ≤ |x−Ary|,r 6= i} .

We only estimate the first summand, the other follows in an analogous way. Using
generalized Hölder’s inequality and observing that |Q̃i|= (2

√
nM)n|Q| , we have∫

Z1
|b(x)−bQ∪Q̃1∪Q̃2

|k|k1(x−A1y)− k1(x−A1c j)||k2(x−A2y)|u(x)dx

.
∫

Z1

(
|b(x)−bQt+1 |k + |bQt+1 −bQ∪Q̃1∪Q̃2

|k
)
|k1(x−A1y)− k1(x−A1c j)||k2(x−A2y)|u(x)dx

≤ c
∞∑

t=1

|Qt |
(
‖(b−bQt+1)k‖ϕk,Qt+1 + tk

)
‖k1(·−A1y)− k1(·−A1c j)χQt+1\Qt‖Ψ1,Qt+1

‖k2(·−A2y)χQt+1\Qt‖Ψ2,Qt+1‖u‖Φ,Qt+1 ,

the last inequality holds using Lemma 4.1 and the fact that Qt is the cube with center
A1cB and length 2t√nMl(Q) . Observe Q1 = Q̃1 .

Since ‖b‖BMO = 1, then ‖(b− bQt+1)k‖ϕk,Qt+1 ≤ C . Now as k2 ∈ Sn−α2,Φ2 , we
obtain

‖k2(·−A2y)χQt+1\Qt‖Ψ2,Qt+1 ≤ c|Qt |−α2/n.

Also, if x ∈ Q j then for all t ∈ N we get A1x ∈ Q̃ j,1 ⊂ Qt and

|Qt |
α
n ‖u‖

Φ,Qt+1 ≤ c ess inf
Q j

MΦu(A1·).

Then,∫
Z1
|k1(x−A1y)− k1(x−A1c j)||k2(x−A2y)|u(x)dx

≤ c ess inf
Q j

MΦu(A1·)
∞∑

t=1

|Qt |
α1
n tk‖k1(·−A1y)− k1(·−A1c j)χQt+1\Qt‖Ψ1,Qt+1

≤ c ess inf
Q j

MΦu(A1·),

where the last inequality holds since k1 ∈ Hn−α1,Ψ1,k .
In an analogous way, we obtain∫

Z2
|b(x)−bQ∪Q̃1∪Q̃2

|k|k1(x−A1y)− k1(x−A1cQ)||k2(x−A2y)|u(x)dx≤ c ess inf
Q j

MΦu(A2·).
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The estimate III is different in each case. We start with (a) . For p > 1, using
Theorem 1.1, the fact that Mru ∈ A1 and Lemma 6.1, we get

III = u{x ∈ Rn \ Ω̃ : |T g(x)|> λ/2} ≤ 2p

λ p

∫
Rn
|T g(x)|pũ(x)dx

≤ 2p

λ p

∫
Rn
|T g(x)|pMrũ(x)dx≤ c

λ p

2∑
i=1

∫
Rn
|MΦg(A−1

i x)|pMrũ(x)dx

≤ c
λ p

2∑
i=1

∫
Rn
|g(A−1

i x)|pM(Mrũ)(x)dx≤ c
λ p

2∑
i=1

∫
Rn
|g(A−1

i x)|pMrũ(x)dx

≤ c
λ p

∫
Rn
|g(x)|p

2∑
i=1

Mrũ(Aix)dx≤ c
λ p

∫
Rn
|g(x)|p

2∑
i=1

MΦũ(Aix)dx,

where the last inequality holds using that tr ≤Φ(t) for t ≥ t0 > 0. Since g≤ 2nλ ,

III ≤ c
λ p

∫
Rn
|g(x)|p

2∑
i=1

MΦũ(Aix)dx

≤ c
λ

∫
Rn
|g(x)|

2∑
i=1

MΦũ(Aix)dx

≤ c
λ

∫
Rn

f (x)
2∑

i=1

MΦũ(Aix)dx

.
∫
Rn

ϕk

(
f
λ

)
(Mφ ũ(A1(x))+Mφ ũ(A2(x)))dx,

which completes the proof of (a) . To show (b) , we only have to estimate III . We can
apply Theorem 3.2, to the adjoint of T k

b . Observe that (T k
b )
∗
= (T ∗)k

−b , where T ∗ is
the integral operator with kernel

K̃(y,x) = k̃1(y−A−1
1 x)k̃2(y−A−1

2 x),

and k̃i(x)= ki(−Aix) . Since ki ∈ Sn−αi,Ψi∩Hn−αi,Ψi,k , we have k̃i ∈ Sn−αi,Ψi∩Hn−αi,Ψi,k ,
then we can apply Theorem 1.1 to (T k

b )
∗ . Hence, by Theorem 3.2 we obtain

III = u{x ∈ Rn \ Ω̃ : |T k
b g(x)|> λ/2} ≤ 2p

λ p

∫
Rn
|T k

b g(x)|pũ(x)dx

≤ c
λ p

∫
Rn

g(x)p
2∑

i=1

MDu(Aix)dx

≤ c
λ

∫
Rn

f (x)
2∑

i=1

MDu(Aix)dx
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.
∫
Rn

ϕk

(
f
λ

)
(MD ũ(A1(x))+MD ũ(A2(x)))dx,

which completes the Theorem.
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