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Abstract
Pacu (Piaractus mesopotamicus) is one of the most important Neotropical fresh-
water fish species produced by aquaculture in South America. This study is the
first attempt to inquire about aquaculture stocks in Argentina regarding genetic
diversity and structure. Neither genetic characterization nor pedigree records are
available for pacu stocks in farms in Argentina. The presence of hybrids in both
natural environment (Lower Paraná River) and farms has not been evaluated yet
at the southern region of pacu distribution. Genetic characterization of pacu
broodstocks, corresponding to 8 farms, and wild individuals from four areas at
Lower Paraná River was performed. Pacu hybrids were not detected neither in
wild nor in farm stocks analyzed. In general, similar levels of genetic diversity
were observed between cultured and wild fish populations. Global genetic differ-
entiation (Fst = 0.055) indicated a low level of structure and AMOVA showed that
genetic variation was mostly within populations. Reduced contemporary effective
population size (Ne) was observed, and probably reflects the bottleneck by
founder effect in farmed fish populations. Moreover, kinship analysis showed
that in fish farms, on average, 43.00% of the individuals were genetically related,
whereas in wild population it was 36.40%. We recommend that broodstock
management practices, such as using large Ne, single pair mating, precise records,
and tagging of brood fish, should be implemented to avoid unintentional
mismanagement.
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Introduction

According to the Food and Agriculture Organization of the United Nations (FAO) data,
aquatic food production has transitioned from being primarily based on capture of wild fish
to culture, increasing numbers of farmed species. In Latin America, the contribution of
aquaculture to the regional economy has grown substantially in the last 10 years. Until now,
most of South American aquaculture production have been based on non-native species such
as salmon, trout, turbot, abalones, tilapia, white shrimp, carps, and catfishes. However, in the
last decade, expansion and diversification efforts were focused on the development of new
technologies to farm native species (FAO 2017, 2018, Valladão et al. 2018). Among them,
pacu (Piaractus mesopotamicus (Holmberg, 1887)) is one of the most important cultivated
species in South America. It is farmed mainly in Argentina, Brazil, and Paraguay (Valladão
et al. 2018) with a total production of 17,252 tons in 2017 (data obtained from FIGiS/FAO).
Recently, pacu production has been extended to Asian countries such as China, Myanmar,
Thailand, and Vietnam (Flores Nava 2007; FAO 2010; Honglang 2007). In addition, hybrids
between species of the Serrasalmidae family, i.e., Colossoma macropomum (commonly
known as tambaqui, cachama blanca, or black pacu), pacu, and Piaractus brachypomus
(commonly known as pirapitinga, cachama, or red pacu), are very popular in Brazilian
aquaculture (IBGE 2017). However, hybrid fish constitute a potential biological and environ-
mental risk, whose impact could affect the aquaculture industry and threaten native species, as
previously observed for other species, such as tilapia, catfish, and trout (Bradbeer et al. 2019;
McKelvey et al. 2016; Silva et al. 2009). It has been reported that fertile pacu hybrids are sold
as pure species due to misidentification, (Hashimoto et al. 2014). Moreover, hybrid fish have
been detected in the natural environment at the Upper Paraná River basin, probably as a
consequence of aquaculture activities (do Prado et al. 2017; Hashimoto et al. 2014).

Pacu is a migratory species found throughout the Paraná-Paraguay River basin in South
America. Pacu wild stocks have been reduced in the last decades, possibly due to overfishing
(Agostinho et al. 2003; Resende 2003) and large-scale habitat alterations (Smith et al. 2003)
that prevent its migration.

In Argentina, pacu production has shown a sustained growth since it was first farmed in the
1990s, nowadays being Argentina’s main aquaculture crop (Panné Huidobro 2016). It has
been consolidated in the country as a product of aquaculture of excellent flavor and texture
(Wicki and Wiltchiensky 2017). Pacu aquaculture is carried out in semi-intensive systems
within land-based excavated ponds, and it is restricted to the warm-subtropical region of the
country. Currently, farming in suspended cages is being attempted as well as the pacu-rice
rotation culture system (Corvalán Romero et al. 2014; Luchini 2017). Pacu aquaculture is
based on unimproved strains and relies on wild fish for broodstock. According to anecdotal
evidence, fish stocks used for culture in Argentina have been introduced from wild populations
from the Lower Paraná and Lower Paraguay basins, as well as from Brazilian farms.

From an aquaculture perspective, genetic diversity studies and the implementation of
genotyping in early stages of domestication have a significant impact to prevent or slow down
inbreeding, and to improve broodstock management (Zhang et al. 2017). The genetic conse-
quences of inbreeding, domestication, genotype-environment interactions, and selection are
well known in many species, so preliminary studies are needed for setting up suitable
guidelines for creating and maintaining cultured stocks.

No description is available about the genetic diversity and structure of wild pacu popula-
tions at the Lower Paraná River basin, the Southern region pacu distribution. This basin

290



Aquaculture International (2021) 29:289–305

comprises the region downstream from the Itaipú Dam, which was naturally isolated from the
Upper Paraná River basin by the Guayra Falls until 1983. Until now, genetic population
studies were restricted to the Upper-Paraguay and Upper Paraná River basins (Calcagnotto and
DeSalle 2009; Iervolino et al. 2010), as well as to stocking programs implemented in Brazil
(Povh et al. 2011). In those, wild populations of pacu were characterized as a panmictic stock
with high gene flow among rivers at Upper-Paraguay and Upper Paraná River basins
(Calcagnotto and DeSalle 2009; Iervolino et al. 2010).

Microsatellite markers have demonstrated to be suitable for genetic structure and parentage
assignment of important species for aquaculture (Vandeputte and Haffray 2014; Gonçalves
et al. 2019). A parentage assignment tool based on microsatellites has been standardized and
validated previously using pacu families (Posner 2016), as well as used to estimate genetic
diversity in Brazilian fish farms (Mastrochirico-Filho et al. 2019).

Thus, the main objective of the present study was to determine the genetic diversity of
cultivated stocks of pacu in Argentina, and the possible presence of hybrids in farmed and wild
fish stocks. Moreover, we aimed to compare the genetic diversity between cultivated and wild
stocks from the same region. All this information will be essential to evaluate the genetic status
of existing pacu broodstocks and the genetic consequences of using brood fish without
pedigree records. In addition, based on present results, we aim to establish recommendations
on good genetic management practices in order to create and maintain cultured stocks for
future breeding programs.

Material and methods

Ethic statement

The authors confirm that the ethical policies of the journal, as noted on the journal’s author
guidelines page, have been adhered to and the Animal Ethics Committee at Facultad de
Ciencias Bioquímicas y Farmacéuticas-Universidad Nacional de Rosario approval has been
received (protocol no. 302/2013). The US National Research Council’s guidelines for the Care
and Use of Laboratory Animals were followed. Fin fragments were collected from each fish
under benzocaine anesthesia and all efforts were made to minimize suffering.

Experimental population, DNA extraction, and microsatellite analysis

Genetic analysis was performed through fin sampling of 302 individuals (adults) identified
morphologically as P. mesopotamicus from eight different farms (H1–H8) in Argentina, and
four sampling cities/areas (W1–W4) of wild fish population at Lower Paraná River (Table 1;
Fig. 1). For wild fish population sampling, the presence of hydroelectric dams was considered.
W1 was in Puerto Rico, which is placed upstream Yacyretá Dam and downstream Itaipú Dam,
which separates the Upper and Lower Paraná River. W2 was in the confluence of Paraná and
Paraguay Rivers. Paraguay River does not present dams and drains water from the Pantanal,
the world’s largest tropical wetland. W3 and W4 were at the southern area of current pacu
natural distribution. In W1 and W4, a lower sampling size was obtained despite the high
fishing efforts employed. Broodstocks from hatcheries were individually tagged and kept alive
at the fish farm stations for subsequent management. Farm stations are placed in the North-
Eastern Region of Argentina (NEA region) covering different states (Table 1, Fig. 1) where
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pacu is currently being cultured. One of the farms, H5, started its activities in the 1990s; H2,
H3, and H4 started in the 2000s; and H1, H6, H7, and H8 started during the last 8 years. Farm
fish stocks were generated from wild fish populations from the rivers Pilcomayo, Paraná, and
Paraguay as well as other farms, including farms from Brazil. Identity and exact location of
fish farm stations were kept confidential. Fin samples from all individuals were stored in
ethanol 96% at − 20 °C.

DNA was extracted from fin fragments following Villanova et al. (2015) and quantified
using Nanodrop 2000 (Thermo Scientific). Genotyping was performed using eight

Table 1 Collection details of pacu samples

Code Sampling place Sampling area (province/river) Sample size Stock source

H1 Farm 1 Santa Fe 88 Cultured
H2 Farm 2 Misiones 20 Cultured
H3 Farm 3 Formosa 16 Cultured
H4 Farm 4 Corrientes 21 Cultured
H5 Farm 5 Formosa 21 Cultured
H6 Farm 6 Chaco 16 Cultured
H7 Farm 7 Corrientes 13 Cultured
H8 Farm 8 Misiones 12 Cultured
W1 Puerto Rico Paraná River 9 Wild
W2 Paso de la Patria Paraná River 39 Wild
W3 Bella Vista Paraná River 34 Wild
W4 Esquina Paraná River 13 Wild

Fig. 1 Sampling sites of pacu from farms (H1–H8) and localities at Lower Paraná River for wild population
(W1–W4). Aquaculture farm exact localization is not shown. However, the states where farms are placed are
shown in pink. Sampling locations of the wild populations are shown as black dots (W1–W4). Dams at Paraná
River are shown with bars and named D1, Yacyretá Dam, and D2, Itaipú Dam. Map created using QGIS (QGIS
2.8 Las Palmas)
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microsatellite markers (Pm1, Pm3, Pm5, Pm11, Pm4, Pm6, Pm9, and Pm13) in two multiplex
PCR reactions previously standardized (Posner 2016) using fluorescent-labeled primers by
CONICET Service (Stan CONICET No. 2353, CCT Rosario, Argentina; http://vinculacion.
conicet.gov.ar/buscador-de-oferta-tecnologica/?id_ot=2353tipo=3) and a 3730XL DNA
analyzer (Macrogen Korea). Fragment analysis was completed using Peak Scanner software
(Applied Biosystems) and GeneScan 500LIZ Size Standard.

Hybrid determination

Samples were analyzed by a multiplex PCR based on nuclear a-Tropomyosin (tpm1)
(Hashimoto et al. 2011). This method provides different electrophoretic fragment lengths for
each parental species: 269 bp for P. mesopotamicus, 172 bp for C. macropomum, and 131 for
P. brachypomus. The interspecific hybrids present a combination of two bands depending on
parental species. Primer sequences and reaction conditions were used as previously described
(Hashimoto et al. 2011). DNA samples from pure parental species as well as DNA samples
from hybrids were used as controls for reaction specificity. Control samples were previously
identified through morphological and molecular analyses. PCR products were analyzed by
electrophoresis on a 2.5% agarose gel stained with GelGreen (Biotium, USA) using a 50-bp
size standard (PB-L, Argentina).

Genetic diversity and structure analysis

The presence of null alleles (Fnull) and allelic dropout in microsatellite loci were tested using
MICRO-CHECKER 2.2.3Van Oosterhout et al. 2004). The number of alleles per locus (Na)
and observed (Hobs) and expected (Hexp) heterozygosity were estimated using CERVUS 3.0
(Kalinowski et al. 2007). The exact tests for deviation from the Hardy-Weinberg equilibrium
(HWE) (Markov Chains of 100,000 steps), inbreeding coefficient (Fis), and linkage disequi-
librium (LD) (p < 0.05) were performed using GENEPOP 4.0.11 (Raymond and Rousset
1995; Rousset 2008). Allele richness (AR) and number of private alleles (Np) were estimated
through FSTAT 2.9.3.2 (Goudet 2001). Significant difference hypotheses between AR, Hobs,
and Hexp means of each population with the reference population (W1, W2, W3, and W4)
were tested through the non-parametric Wilcoxon test (p value < 0.050). The effective
population size (Ne) was estimated by the linkage disequilibrium method implemented in
NeESTIMATOR V2.01 (Do et al. 2014) with confidence intervals estimated with the para-
metric method (which were highly similar to those estimated by the jackknife method).
Populations with sample size below 20 individuals were not analyzed for Ne. Low-
frequency alleles (≤ 0.02) were excluded from the analysis to minimize potential bias caused
by rare alleles.

Genetic evidence for a recent reduction in local population size was tested by heterozy-
gosity excess (Cornuet and Luikart 1996) andM-ratio (Garza and Williamson 2001) methods.
Heterozygosity excess tests were performed with the program BOTTLENECK 1.2.02
(Cornuet and Luikart 1996) by the two-phased mutation model (TPM), using conditions
suggested by authors that correspond to sensible parameter values for most microsatellites: a
proportion of SMM in the TPM= 0.00 and a variance of the geometric distribution for TPM=
0.36. Statistical significance was evaluated by Wilcoxon signed-rank test from 10,000 simu-
lation replicates. Arlequin v. 3.5.2.2 (Excoffier and Lischer 2010) was used to trace bottleneck
signatures by the modified M-ratio method. The total number of alleles (k) divided by overall
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range in allele size (r) produces the ratio (M), which is expected to be smaller in recently
reduced populations than in populations under mutation-drift equilibrium (Garza and
Williamson 2001). Based on simulations and experimental data, populations that have expe-
rienced recent bottlenecks presented the mean value ofM < 0.68 (Garza and Williamson 2001;
Reid et al. 2008).

To estimate genetic differentiation between stocks, global and pairwise FST values were
calculated with the Weir and Clark Cockerham (1984) method using Arlequin v. 3.5.2.2
(Excoffier and Lischer 2010). The significance of these values was estimated with 10,000
permutations. In addition, hierarchical analysis of molecular variance (AMOVA), based on
allele frequency information, was carried out using Arlequin v. 3.5.2.2 (Excoffier and Lischer
2010). For AMOVA, two-group hypotheses were tested, in which populations were grouped
according to their origin, wild or cultured stocks. In addition, the presence of three groups was
tested, considering cultured stock as one group and wild fish population as two groups (it was
separated in two groups taking into account the Yacyretá Dam between W1, and the other
three areas (W2, W3, andW4)). Levels of admixture among stocks were inferred by estimating
the optimum number of population clusters (K) using STRUCTURE version 2.3.4 (Pritchard
et al. 2000). Cluster number estimation (K) was completed using 10 independent runs with
K = 1 to 12 at 500,000 MCMC repetitions combined with a 100,000 burn-in period. Admix-
ture ancestry model with LOCPRIOR was used in order to enable maximum resolution, as
recommended to identify a subtle population structure (Pritchard et al. 2000). Results from
STRUCTURE were processed with the online program STRUCTURE HARVESTER 0.3
(Earl and vonHoldt 2012) to estimate the ideal number of K based on the ΔK method
described by Evanno et al. (2005). The results of independent STRUCTURE runs were
summarized and corrected for the best K using CLUMPP software version 1.1.2 (Jakobsson
and Rosenberg 2007). Individual genotypes were also clustered by discriminant analysis of
principal components (DAPC) implemented in R (www.r-project.org). Data was first
transformed using principal component analysis (PCA) and retained an appropriate number
of PCs and discriminant functions. DAPC was loaded using the ADEGENET package
(Jombart 2008) for the R software. Kinship coefficients (rxy) were estimated by
COANCESTRY v. 1.0.1.8 (Wang 2011). TrioML (rML) (Wang 2007) and QuellerGt (rQG)
(Queller and Goodnight 1989) pairwise relatedness estimators were selected among the
options given by COANCESTRY v. 1.0.1.8 based on a previous work in which all estimators
available through this program were tested in pacu individuals with known genealogical
relationships (Posner 2016). Threshold values of rxy coefficient were adopted as lower values
(rxy < 0.125) corresponding to unrelated individuals; intermediate values (0.126 ≤ rxy ≤ 0.375)
were considered as half siblings; and rxy ˃ 0.376 were considered full siblings.

Results

Hybrid determination

In order to discard the presence of hybrid fish samples before genetic diversity analyses, DNA
samples of 302 individuals from 8 farms and 4 wild fish populations were analyzed by tpm1
PCR. An amplicon of 269 bp (Sup. Figure 1) was observed in all samples analyzed on agarose
gels indicating that all evaluated individuals were pure P. mesopotamicus.
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Genetic diversity

All individuals (302) were successfully genotyped at eight microsatellite loci. Micro-Checker
analysis suggested consistent genotyping at all loci. The genetic variability parameters for pacu
populations (over all loci) are shown in Table S1. The mean values of the population
parameters, Fis values, and overall locus p values of HWE are shown in Table 2. A total of
44 alleles were detected in the analyzed populations, and the number of alleles per locus
ranged between 2 and 9. Average population values ranged between 3.125 ± 1.126 (H7) and
4.000 ± 1.309 (H1), with a mean value of 3.563 ± 0.298 in cultured fish population, whereas in
wild fish populations, average population values ranged between 3.175 ± 1.282 (W2) and
4.125 ± 1.125 (W3), and mean value was 3.718 ± 0.295. Allelic richness ranged from 1.000 to
5.034, with average population values ranging between 2.948 ± 0.956 (H7) and 3.364 ± 1.356
(H4), and mean value of 3.131 ± 0.129 in cultured fish population, while in wild fish
population, average population values ranged between 3.085 ± 0.960 (W2) and 3.500 ±
1.069 (W1) and mean value was 3.247 ± 0.178. Private alleles were detected in individuals
belonging to cultured (H2, H4, H5) and wild (W1, W3, W4) fish populations. Cultured fish
population analyses revealed that mean Hobs per population ranged from 0.453 ± 0.236 (H3
and H6) to 0.543 ± 0.276 (H8), with a mean value of 0.481 ± 0.036. Meanwhile, wild
population analyses showed that mean Hobs per sampling locality ranged from 0.389 ±
0.243 (W4) to 0.507 ± 0.212 (W2), and mean value was 0.450 ± 0.051. Mean Hexp in cultured
fish population ranged from 0.446 ± 0.221 (H6) to 0.540 ± 0.229 (H4), with a mean value of
0.496 ± 0.034, while in wild fish populations, Hexp ranged from 0.460 ± 0.238 (W4) to 0.564
± 0.174 (W1), with a mean value of 0.522 ± 0.044. In general, genetic diversity parameters
were similar between cultured and wild fish populations. There was no significant difference in
mean Hobs between wild and cultured fish populations, after Wilcoxon test (p = 0.401). Only
two cultured fish populations (H5 and H6) presented lower Hexp values than wild fish
sampling points after comparison by Wilcoxon test (p < 0.050). Mean Hexp in H5 (0.463 ±
0.193) was lower than mean Hexp in W1 (0.564 ± 0.174), and mean Hexp in H6 (0.446 ±
0.221) was lower than mean Hexp in W1 (0.564 ± 0.174) and W3 (0.529 ± 0.199).

Four fish farms (H1, H2, H4, and H5) and one wild fish population (W3) departed from
HWE (p < 0.050) when applying global test (Table 2). Some loci departed from HWE
(Table S1), such as locus Pm1 in H5; Pm3 in H1 and H4; Pm4 in H1, H2, H4, W2, W3,
and W4; Pm6 in H1; Pm9 in H2; and Pm13 in H1. Null alleles were detected in the locus Pm3
in H1, Pm4 in H1, H2, W2, W3 and W4, and Pm6 in H1. Neither scoring errors nor allele
dropout was detected.

Overall population Fis values varied between − 0.051 (H8) and 0.247 (W1). Significant
deviations from 0 (p < 0.050) of Fis values were found in the fish farms H1 (Fis = 0.116; p =
0.015) and H2 (Fis = 0.120; p = 0.002), as well as in the wild fish populations W1 (Fis = 0.247;
p = 0.000), W3 (Fis = 0.104; p = 0.019), and W4 (Fis = 0.160; p = 0.010) (Table 2). Probably,
the observed deviations from HWE in H1, H2, and W3 could be caused by heterozygote
deficiency.

Genetic structure

Global FST value suggested low genetic differentiation among populations (FST = 0.0557,
p < 0.050). When the parameter was estimated only including samples from wild population,
the obtained value was lower (FST = 0.04452, p = 0.000). Pairwise FST values were also
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calculated and most of them were significant (p < 0.050) ranging between − 0.0015 (H5–W3)
and 0.1320 (H7–W4) (Table 3). In general, low to moderate genetic differentiation was
observed among the population pairs. In cultured fish populations, significant pairwise FST

values ranged between 0.0210 (H2–H4) and 0.1300 (H7–H8) suggesting low to moderate
genetic differentiation. In wild fish populations, W2–W3 (pairwise Fst = 0.0400; p < 0.050)
and W2–W4 (pairwise Fst = 0.0890; p < 0.050) presented pairwise Fst values that were signif-
icant but low, suggesting low differentiation between populations.

To assess the level of admixture among samples, Bayesian model-based clustering analyses
were performed based on the ΔK distribution. Analysis conducted in the program STRUC-
TURE identified three genetic groups (K = 3) (Supplementary Figure 2). STRUCTURE results
suggested an admixed population in which two of the three genetic groups were mainly
represented (clusters 1 and 2; green and red colors respectively) in all farmed populations,
except for H7, which displayed a third genetic group (cluster 3; blue color) in a higher
proportion. Regarding wild fish population, the three genetic groups were represented in each
sample. W2 presented a slightly different distribution of each genetic group. This pattern was
also evident in the DAPC analysis (Fig. 2), in which H7 and W2 were the most distant groups,
and cultured stocks were very close to wild fish samples. AMOVA did not support differen-
tiation due to the origin of the samples (wild and farm stocks) in any of the two evaluated
hypotheses (two-group test: FCT: 0.00645, p = 0.21069; three-group test: FCT: 0.00525, p =
0.28822). The genetic variance was explained by variation within groups and sampling points
(two-group test: FSC: 0.04938, p = 0.00000; FST: 0.05551, p = 0.00000; three-group test: FSC:
0.04986, p = 0.00000; FST: 0.05484, p = 0.00000).

Effective population size (Ne), bottleneck estimation, and kinship estimation

The Ne of pacu fish farms ranged from 9.9 in H1 to 130.4 in H5 where the upper confidence
limit reached infinity in most cases (Table 4). Potential genetic bottleneck analysis performed
by Wilcoxon sign-rank test showed that H1, H4, and H8 presented deviations from mutation-
drift balance under TPM (p < 0.050). Almost all the stocks had normal L-shaped distribution,
but H7 and H8 presented shift distribution mode. In addition, modifiedM-ratio index revealed
that most of the stocks had recently experienced reduction in effective size since it can be
assumed that a population suffers a recent size reduction whenM < 0.68, indicating bottleneck

Table 3 Pairwise Fst values

H1 H2 H3 H4 H5 H6 H7 H8 W1 W2 W3

H1
H2 0.0494
H3 0.0582 0.0117
H4 0.0232 0.0210 0.0320
H5 0.0439 0.0311 0.0122 0.0132
H6 0.0550 0.0298 0.0139 0.0428 0.0343
H7 0.1294 0.0547 0.0793 0.1017 0.0883 0.1147
H8 0.0445 0.0433 0.0707 0.0113 0.0479 0.0371 0.1303
W1 0.0169 0.0426 0.0513 0.0112 0.0194 0.0391 0.0890 − 0.0024
W2 0.0861 0.0641 0.0952 0.0908 0.1133 0.1020 0.1233 0.1251 0.0821
W3 0.0205 0.0178 0.0245 0.0103 0.0155 0.0226 0.0773 0.0389 − 0.0033 0.0404
W4 0.0145 0.0317 0.0393 0.0132 0.0225 0.0039 0.1318 0.0139 0.0217 0.0892 0.0107

In italics, p < 0.050
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events (Garza and Williamson 2001). Only the H1 and wild fish population presented M-ratio
indexes > 0.68. However, M-ratio in stock H1 was just slightly higher than 0.68 (0.6921 ±
0.1886) (Table 4). Regarding wild fish population, Ne, bottleneck and relatedness coefficients
were estimated by clustering wild fish samples as one population (W), based on the results of
genetic structure analyses (W =W1 +W2 +W3 +W4), and taking into account the low
sampling size in two sampling points (W1 and W4). Ne value for W was 278.4, and wild

Fig. 2 Scatterplots of the discriminant analysis of principal components (DAPC) for pacu individuals from
cultured (N = 207) and wild (N = 95) populations. Plots represent individual genotypes and colors represent
populations. The sample origin is labeled within their 95% inertia ellipses and individuals are connected to the
corresponding group centroids. The first two principal components are represented by X and Y axes, respectively

Table 4 Bottleneck results of one-tailed Wilcoxon test for heterozygote excess under TPM and observed values
of theM-ratio averaged over the number of polymorphic microsatellite loci. Estimates of effective population size
(Ne) with 95% confidence intervals (CI) for farm and wild fish stocks (N ≥ 20)

Stock
(number of
individuals)

M-ratio
(mean ± sd)

p value for Wilcoxon
sign-rank test TPM

Graphical representation
of the mode-shift indicator

Ne (95% CI)

H1 (88) 0.6921 ± 0.1886 0.0273 L-shaped 9.9 (5.1–15.7)
H2 (20) 0.6160 ± 0.2229 0.1250 L-shaped 31.9 (3.2–inf)
H3 (16) 0.6244 ± 0.2299 0.2304 L-shaped ND
H4 (21) 0.6462 ± 0.2393 0.0136 L-shaped 25.1 (6.2–inf)
H5 (21) 0.6608 ± 0.1981 0.5273 L-shaped 130.4 (14–inf)
H6 (16) 0.5994 ± 0.2187 0.5273 L-shaped ND
H7 (13) 0.5483 ± 0.2069 0.2734 Shift mode ND
H8 (12) 0.5744 ± 0.2298 0.0371 Shift mode ND
W (95) 0.8279 ± 0.1193 0.1250 L-shaped 278.4 (61.2–inf)

In italics, p < 0.050. ND, not determined due to N < 20
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population (W) did not show signs of bottleneck events (Table 4). In addition, Ne was
estimated for W2 and W3, which presented sampling size higher than 20 individuals. Ne =
113 in W2, and Ne = 50.7 in W3. These values were lower than the obtained for W (W1 +
W2+W3 +W4), but they were higher than the observed for most farmed populations.

Kinship evaluation showed that most of the fish farms had related individuals (full sibling
and half siblings) in a mean proportion of 43.25% or 51.88%, using rML or rQG respectively
(Table 5 and Fig. 3). The highest percentage of related individuals was observed in H7 (63%
rML/70% rQG), with a high proportion of full sibling individuals (25.64% rML/29.49% rQG). In
contrast, H2 farm showed the highest percentage of unrelated individuals (66.84% rML,
60.53% rQG) (Fig. 3). Related individuals were found in wild fish populations as well, although
at a lower level than in most farm stocks (36.40% rML/43.48% rQG). In five of the eight fish
farms under study, mean rxy (rML and rQG) were significantly different fromW’s mean rxy after
the Mann-Whitney test (p < 0.050) (Table 5).

Discussion

Molecular genetic tools and genetic diversity studies have been developed through the years
for aquaculture species contributing to aquaculture expansion for new emerging species.
Several practices associated with Neotropical fish production in emerging species, especially
those related to the management of broodstock, may reduce the effective population size
Alarcón et al. 2004). These practices are generally linked to the lack of registration and control
of broodstock, such as information on its origin, kinship, and mating record, which could result
in increased susceptibility to inbreeding depression over generations (Duncan et al. 2013;
Naish et al. 2013). This study can be considered the first diagnosis of pacu genetic diversity in
aquaculture farms in Argentina and the state of natural populations in the Lower Paraná River
pacu.

As previously mentioned, hybrid fish of pacu, pirapitinga, and cachama are very popular in
Brazilian aquaculture and have been detected in the natural environment at the Upper Paraná
River basin, probably as a consequence of aquaculture activities (Hashimoto et al. 2014). Our
results did not evidence hybrid’s presence neither on Argentinian fish farms under study nor in

Table 5 Kinship analysis in farmed (H) and wild (W) fish populations of pacu according to TrioML and Queller
and Goodnight rxy coefficients

rxy TrioML rxy Queller and Goodnight

% Unrelated % Half-sib % Full-sib Mean rxy % Unrelated % Half-sib % Full-sib Mean rxy

H1 59.64 24.63 15.73 0.1514* 56.58 25.94 17.48 0.0731
H2 66.84 17.89 15.26 0.1349 60.53 22.11 17.37 0.0843
H3 62.50 18.33 19.17 0.1670* 44.17 35.83 20.00 0.1699
H4 61.90 24.76 13.33 0.1368 60.00 26.19 13.81 0.0517
H5 48.57 24.76 26.67 0.2124* 42.38 27.62 30.00 0.2083
H6 54.17 21.67 24.17 0.1851* 37.50 34.17 28.33 0.2140
H7 39.74 33.33 26.92 0.2353* 30.77 38.46 30.77 0.2359
H8 60.61 22.73 16.67 0.1621 53.03 30.30 16.67 0.1030
W 63.60 22.61 13.79 0.1334 56.52 27.54 15.94 0.0772

* Indicates that mean rxy value was significantly different fromW’s mean rxy after MannWhitney test (p < 0.050)
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wild populations from the Lower Paraná River. It was important to discard the hypothesis that
hybrids could be present among brood fish in Argentine farms because hybrids could have
been informally introduced as brood fish by mistake, due to misidentification as pure individ-
uals (Hashimoto et al. 2014).

The analysis of genetic diversity parameters estimated for pacu broodstocks showed low
values for AR (ranging around 3) and Hexp (ranging around 0.500) in all the cultured
populations analyzed. Low genetic diversity values were expected for cultivated stocks, as
was observed for pacu farms (Mastrochirico-Filho et al. 2019) and for P. brachypomus farms
(Jorge et al. 2018), in Brazil. Low genetic diversity values characterize populations with
genetic drift events due to low effective population sizes and, consequently, recent bottleneck
effects or founder events. However, the low levels of genetic diversity found in pacu farmed
stocks were also shared by wild fish populations from the Lower Paraná River. Only three
farm fish stocks (H4, H5, and H6) presented lower mean AR or mean Hexp values than wild
fish populations. Moreover, Hexp values for wild populations (W1, W2, W3, and W4) were
slightly lower than those observed in previous studies of wild pacu populations in the Pantanal
and Upper Paraná River (Calcagnotto and DeSalle 2009), which reported higher heterozygos-
ity values (mean He between 0.558 and 0.638). Probably, pacu wild fish population from the
Lower Paraná River may be negatively affected by overfishing, as well as by habitat
modification, such as deforestation, urbanization, and industrialization near rivers, causing
water pollution, among others. Historically, pacu distribution was extended up to higher
latitudes (34.677° S, Río de la Plata estuary, Argentina; Ringuelet et al. 1967), but over the
last 60 year, its distribution has been reduced to the northern region of the Lower Paraná River
(30.413° S). Probably the low diversity observed in farmed stocks was not only the result of
populations with low effective population sizes and founder events but also the result of the
use of brood fish from an impacted wild fish population. The low levels of genetic diversity in
farmed and wild fish populations in Argentina should be warned for fisheries management.

Fig. 3 Relatedness estimates for cultured and wild fish populations as determined by the TrioML rML (Wang
2011) (a) and Queller and Goodnight (1989) rQG (b) estimators. Average values are shown for the wild
population. Plots represent the percentage of individuals at each category of relatedness: unrelated, half sib,
and full sib
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Generally, domesticated stocks show evidence of inbreeding, and selection, as well as
genetic differentiation between wild and cultured stocks if sufficient time for domestication has
elapsed (Kohlmann et al. 2005). Moderate differentiation was observed for farm H7, supported
by pairwise Fst, STRUCTURE, and DAPC analysis. This fish farm population showed the
highest percentage of related individuals too, suggesting inbreeding and lack of broodstock
management. In addition, most farms showed moderate genetic differentiation with W2
sampling point, supported by pairwise Fst, STRUCTURE, and DAPC analysis. In contrast,
considerable gene flow was observed among farm and wild individuals in most other cases.
The lack of significant genetic differentiation among farm and wild stocks supported by
AMOVA, STRUCTURE, and DAPC analyses suggested a relatively short domestication
history and could be associated with the practice of introducing individuals from the river as
brood fish into aquaculture stocks.

Departure from HWE was observed in four fish farms (H1, H2, H4, and H5) and one of the
wild fish sampling points (W3). The Hardy-Weinberg disequilibrium is common in many
fishes, and deviations from the equilibrium generally prevail over heterozygote deficits
resulting from factors involving reproductive systems, presence of null alleles, and a Wahlund
effect (reduction of heterozygosity in a population caused by subpopulation structure)
(Allendorf and Luikart 2009). In the case of wild fish population, at W3 sampling point,
heterozygote deficiency was detected. Heterozygote deficiency, when compared to Hardy-
Weinberg expectations, is common in fish populations and these deficiencies could arise either
by population subdivision (Wahlund effect) (Wilson et al. 2004), by inbreeding (O’Connell
and Wright 1997), or by bottleneck caused by founder effect. Probably the heterozygote
deficiency observed at W3 was the combination of more than one factor, since W3 is placed at
the southern area of current pacu distribution at Lower Paraná River and it is one of the favorite
areas for pacu fishing. In addition, W1 and W4 showed heterozygote deficiency. However, a
low sample number could be the reason for this observation in these two sampling points.

Regarding farm fish populations, probably bottleneck by founder effect could be the cause
of Hardy-Weinberg disequilibrium. In these four farm stocks, population size reduction was
supported by bottleneck analysis, and three of them showed low Ne values. Indeed, most
estimated Ne values were low for cultured stocks. It has been proposed that the minimum
effective population size to avoid severe short-term inbreeding depression is in the order of
Ne ≈ 70 for a wide range of specie’s reproductive rates (Caballero et al. 2016). In this study,
most Ne values obtained were smaller than the ideal values proposed. Moreover, significant
recent bottlenecks were detected for all farm stocks. It is likely that most farm stocks were
founded with a small number of individuals, due to the high fecundity of pacu females
(300,000 eggs/female; Criscuolo-Urbinati et al. 2012); thus, a sufficient number of fingerlings
could be obtained from few females. Regarding kinship analysis, our results showed that all
fish farms showed a substantial number of related individuals (half sibling + full sibling). On
average, 51% (rQG)/43% (rML) of individuals were relatives in farm populations analyzed. This
outcome results in a higher probability of mating between relatives, which means a higher
inbreeding risk, that can affect morphological and viability traits (Kincaid 1983).

Considering the increasing importance of pacu to South American aquaculture, our results
are aimed to provide initial knowledge about the genetic profile of pacu stocks in different fish
farms and highlight the necessity of improving broodstock management and mating design in
order to reduce the potential negative effects of inbreeding. Molecular identification of
individuals is necessary to monitor the genetic variability of the stocks and to assess how this
variation could be maintained through selective mating (Beaumont and Hoare 2003; Gjedrem
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and Baranski 2009). Moreover, we recommend serious consideration of selection methods and
hatchery practices for pacu brood fish to reduce inbreeding levels. Broodstock management
practices, such as using large Ne, single pair mating, and precise records and tagging of brood
fish, should be promoted to avoid unintentional mismanagement.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s10499-020-00626-w.
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