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Abstract The problem of finding global minima of nonlinear discrete func-
tions arises in many fields of practical matters. In recent years, methods based
on discrete filled functions become popular as ways of solving these sort of
problems. However, they rely on the steepest descent method for local searches.
Here we present an approach that does not depend on a particular local opti-
mization method, and a new discrete filled function with the useful property
that a good continuous global optimization algorithm applied to it leads to an
approximation of the solution of the nonlinear discrete problem (Theorem 4).
Numerical results are given showing the efficiency of the new approach.
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1 Introduction

This paper is concerned with the analysis and performance of an algorithm
designed to ”try to” solve model (1) efficiently.

min
x∈X

f(x) (1)

f : X → R;X = {x ∈ Zn : ai ≤ x ≤ bi, i = 1, . . . , n}

where ai , bi are, respectively, the lower and the upper bound of the variable xi
, for i = 1, . . . , n. We warn the reader that in general, no algorithm ensures con-
vergence to a global minimum. Nonetheless, we obtained global convergence
on 77.5% of the preliminary numerical experiments reported in the appendix,
on small problems.

It is well known that discrete models are NP. Solving model (1) in particular
has shown to be a difficult task, even for polynomial functions with a few
number of variables [4]. Moreover, the existence of multiple local minima may
cause that an optimization algorithm stops at one of such minima, eventually
giving minimizers of poor quality.

Ways to overcome the last issue include metaheuristics methods such as
tabu search or simulated annealing and also exact methods as branch and
bound, cutting planes or Lagrangian relaxation.

In recent years, a technique that makes use of an auxiliary function to
escape from local minima, known as the filled functions approach, has gained
attention.

Ge [2], [3] originally introduced the filled function method for continuous
optimization. Later, Zhu [11] carried that technique into the field of discrete
optimization. Several discrete filled functions have been proposed with one
or more parameters and with additional features. However, in all cases, the
discrete steepest descent algorithm is employed in the search for a local min-
imizer. The use of that algorithm poses somewell known limitations in the
effectiveness of the optimization procedure. Even more, that choice conditions
the definition of a filled function. For example, regarding a basin as a set of
points that converges to a local minimum with the steepest descent algorithm.

Besides that, much of the efforts made over the years to have powerful
continuous or discrete optimizations algorithms suggest that to constrain the
definitions of a general method to a specific algorithm can be hardly considered
as a reasonable approach. As will be shown, much can be gained preserving
only the essential features of the process, while leaving other aspects unspeci-
fied, such as the local search procedure.

However, some conditions must be imposed on the searching procedure to
better the performance of the filled functions approach

As a consequence, new definitions are needed, maintaining some level of
accordance with the old ones.

Moreover, a new filled function with some additional useful properties is
desiderable. For instance, a useful result is that a good continuous global opti-
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mization algorithm applied to the new filled function gives an approximation
to the discrete solution of the problem (see Theorem 4).

The main contribution of this paper is to present a new filled function which
is independent of the chosen nonlinear optimization algorithm, and allows the
use of the best suitable method, avoiding that the evaluation of a filled function
be based merely on its performance with elementary descent algorithms.

The paper is organized as follows: section 2 gives preliminary notions and
notation as well as the new concepts. Also, key results relating the new defini-
tions with the previous ones are provided. Section 3 introduces the concept of
a filled function related to a general optimization algorithm. Section 4 shows
one filled function verifying these definitions. Finally, section 5 shows compu-
tational experiments with test functions and compares the results with others
in the literature.

2 Notation and Definitions

The set Zn = Z× Z× . . .× Z (n times) is the set of the n-tuples (x1, . . . , xn)
with xi ∈ Z, i = 1, . . . , n. The vector ei ∈ Rn is the elementary vector i, such
that the i-th component is 1 and all other entries are zero.

If x ∈ Rn, then [x] is the point x with rounded entries, that is

[x]i =

{
bxi + xi/(2|xi|)c if xi /∈ Z

xi if xi ∈ Z i = 1, . . . , n (2)

If x is in Zn, N (x) is the discrete vicinity of x,

N (x) = {x± ei, i = 1, . . . , n} ∪ {x}.

The set of directions in Zn is

D = {±ei, i = 1, . . . , n}

Definition 1 A discrete local minimizer of f is a point x∗ ∈ X such that
f(x∗) ≤ f(x) for all x ∈ N (x∗). A discrete global minimizer of f is a point
x∗ ∈ X such that f(x∗) ≤ f(x) for all x ∈ X.

Let X = {x ∈ Zn : ai ≤ x ≤ bi, i = 1, . . . , n}
Definition 2 A discrete path in X between the points x∗, x∗∗ ∈ X is a se-
quence {x(i)}ni=0 with

1. x(0) = x∗, x(n) = x∗∗

2. x(i) ∈ X for all i
3. x(i) 6= x(j) for j 6= i
4. ‖x(1) − x∗‖ = ‖x(i+1) − x(i)‖ = ‖x∗∗ − x(n−1)‖ = 1

The points x∗ and x∗∗, are said to be pathwise connected in X if a discrete
path in X between them exists. If every two different points of a domain X are
pathwise connected in X then X is a pathwise connected domain or simply a
connected domain.
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Definition 3 Let x ∈ X. A discrete descent direction of f at x over X is
d ∈ D such that x + d ∈ X and f(x + d) < f(x). Let D∗ be the set of all
descent directions of f at x over X. A discrete steepest descent direction of f
at x is a descent direction d∗ such that f(x+ d∗) ≤ f(x+ d) for all d ∈ D∗

We recall the discrete steepest descent algorithm to find a local minimizer
for f over X starting at x

Step 1. Choose an initial point x ∈ X.
Step 2. If x is a discrete local minimizer of f over X then stop. Else, let d∗ be the

discrete steepest descent direction of f at x over X.
Step 3. Set x← x+ d∗ and go to Step 2.

Definition 4 A discrete usual basin B∗ ⊂ X of f at x∗ is a connected domain
which contains x∗ and all those x ∈ X for which the discrete steepest descent
algorithm for f starting at x converges to x∗

The notation a ← b means, as usual, that a takes the value of b, and
x← C(f, x0) means that x ∈ Rn is the value returned by algorithm C applied
to a function f : Rn → R bounded from below, starting at x0 ∈ Rn . We must
impose certain assumptions to C:

A1 C is deterministic
A2 If x← C(f, x0) then f(x) ≤ f(x0)
A3 If x0 is in Zn and x← C(f, x0), then there is d ∈ {±ei : i = 1, . . . , n} such

that x← C(f, x0 + d) and ‖x0 + d− x‖ < ‖x0 − x‖ or x0 = x.

Definition 5 A basin B∗ of f at x∗, a local minimizer of f (not necessarily
a discrete local minimum) is the set of all points which converge to x∗ with C,
that is:

B∗ = {x : x∗ ← C(f, x)}.

Definition 6 A discrete basin B∗e of f at x∗, a discrete local minimizer of f
(but not necessarily a local minimum) is the set

B∗e = {x ∈ Zn : x′ ← C(f, x) and [x′] = x∗}.

From hereafter the concepts of basin or u-basin will be understood as the dis-
crete versions of them.

The hypothesis A3 guarantees an essential property of the basins:

Theorem 1 A discrete basin is a connected discrete domain.

Proof Let B∗ be a basin of f at x∗ and x′, x′′ ∈ B∗. By A3 there are discrete
paths {x′ = x′1, . . . , x

′
m = x∗} and {x′′ = x′′1 , . . . , x

′′
m−1, x

′′
m = x∗} with all

points in B∗. The path {x′ = x′1, . . . , x
∗, x′′m−1, . . . , x

′′
1 = x′′} is a discrete path

and has all its points in B∗.
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It is important to point out that if C is a good algorithm then any point
that converges to x∗ using the steepest descent, converges with C to a point
at least as good as x∗. That justifies the last hypothesis over C.

A4 If U∗ is an u-basin of f at x∗, and x is in U∗, then x is in B∗, a basin of
f at x∗b with f(x∗b) ≤ f(x∗).

The order relation for the basins is the same as in the case of u-basins.
Namely, if B∗ and B∗∗ are two basins of f at x∗ and x∗∗ respectively, then B∗∗

is lower than B∗ if f(x∗) ≤ f(x∗∗) (and higher if f(x∗) > f(x∗∗)) Moreover
since C is deterministic, if B∗ and B∗∗ are different then B∗ ∩B∗∗ = ∅.

Definition 7 Given x∗, a discrete local minimizer of f : X → R, X ⊂ Zn and
B∗ a discrete basin of f at x∗, F : X → R is a discrete filled function of f at
x∗ if it satisfies the following:

D1 x∗ is a strict (discrete) local maximizer of F over X.
D2 F has discrete local minimizers neither in B∗ nor in any basin of f higher

than B∗.
D3 If f has a basin B∗∗ in x∗∗ lower than B∗, then there is a point x′ ∈ B∗∗

that minimizes F in the discrete path {x∗, . . . , x′, . . . , x∗∗} in X.

The following theorem shows that Definition 6 preserves the properties of
the discrete filled functions.

Theorem 2 A discrete filled function with u-basins, satisfies the conditions
D1, D2 and D3 with the Definition 6 of a basin.

Proof The first condition does not depend upon the definition of a basin, so
there is no need to prove anything for D1.

For the condition D2, assume that B∗∗ and B∗ are two distinct basins of
f at x∗∗ and x∗ respectively and, by contradiction, B∗∗ is higher than B∗ and
x′ ∈ B∗∗ is a local minimizer of F .

Let U1 be a u-basin of f at x1 and x′ ∈ U1. Considering the u-basin U∗ of
f at the discrete local minimizer x∗, by D2 the discrete local minimizer x′ of
F cannot be in an u-basin higher than U∗, therefore f(x1) ≤ f(x∗).

But then, by A4 x′ ∈ B1, and B1 is a basin of f at x′1 with

f(x′1) ≤ f(x1) ≤ f(x∗) < f(x∗∗).

So x′ ∈ B1∩B∗∗ but B1∩B∗∗ = ∅ because the basins B1 and B∗ are different.
It remains to show that F cannot have a local minimizer in B∗. But, if x′ is

a local minimizer of F in B∗, then x′ belongs to an u-basin U1, which, by A4
is higher than U∗ or is U∗ contradicting D2 due to the definition of an u-basin.

For the last condition, suppose that x∗ is not a global minimizer of f and let
{x∗, . . . , x′, . . . , x∗∗u } be the discrete path in D3 according to u-basins. Now we
have to prove that there is a discrete path {x∗, . . . , x′′, . . . , x∗∗} with x′′ ∈ B∗∗
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the minimizer of F in that path and B∗∗ a basin of f in x∗∗ lower than B∗,
the basin o f at x∗.

The proof goes by cases:

i. x′ is a discrete local minimizer of F :
Then x′ is in B∗∗, a basin of f in x∗∗ lower than B∗, by the previous
condition, D2. It is enough to extend the path σ1 = {x∗, . . . , x′} with
σ2 = {x1, . . . , x∗∗} a discrete path in B∗∗ with x1 ∈ N (x′), and take
the element that minimizes F in the set {x′, x1, . . . , x∗∗} as the minimizer
of F in the path σ1σ2 = {x∗, . . . , x′, x1, . . . , x∗∗}. The existence of σ2 is
guaranteed since a basin is a connected set.

ii. The path σ = {x∗, . . . , x′, . . . , x∗∗u } is in the same basin B∗, and x′ is not
a local minimizer of F :
It is enough to take x′ and a descent path σ1 = {x′, x1, . . . , xn} of F
with xn a discrete local minimizer of F . By the previous condition, xn
is in a basin B∗∗ of f in x∗∗, lower than B∗. It suffices to concatenate
the path σ1 with some path σ2 = {xn+1, . . . , x

∗∗} in B∗∗ and choose the
minimizer of F in the set {xn, xn+1, . . . , x

∗∗} as the minimizer of F in the
path {x∗, . . . , x′, . . . , xn, . . . , x∗}.

iii. The path has points in at least two basins and x′ is not a local minimizer
of F :
If {x∗, . . . , x′, . . . , x∗∗u } is

{x∗, x1, . . . , xn, xn+1 . . . , xm, . . . , x
∗∗
u }

with σ1 = {x∗, x1, . . . , xn} a path in B∗, σ2 = {xn+1, . . . , xm} a path in
B∗∗, B∗∗ a basin of f lower than B∗ and x′ ∈ {xn+1, . . . , xm}, then it
suffices to extend the path σ2 with σ′ = {x′m+1, . . . , x

∗∗} ∈ B∗∗ a path in
B∗∗ and take the minimizer of F in the set {xn+1, . . . , xm, x

′
m+1, . . . , x

∗∗}
as the minimizer of F in the path

{x∗, x1, . . . , xn, xn+1 . . . , xm, x
′
m+1, . . . , x

∗∗} ∈ B∗∗.

Otherwise, if x′ ∈ σ1, as σ1 has all its elements in the same basin, case ii.
holds.

For instance, it is proved in [10] that (3) is a filled function for any target
function f and adequate value of the parameter r > 0 provided that the
problem is only box-constrained

Fr,x∗(x) =
( 1

‖x− x∗‖2 + 1
+ 1
)
h
(
hr(f(x)− f(x∗)) +

m∑
i=1

hr(gi(x)− r)
)

(3)

where

hr(t) =

{ 0, t ≤ −r
r−2
r3 t

3 + 2r−3
r2 t2 + t+ 1, −r < t ≤ 0
t+ 1, t > 0
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h(t) =

{
0, t ≤ 1

2
−16t3 + 36t2 − 24t+ 5, 1

2 < t ≤ 1
1, t > 1

In a region
S = {x ∈ X | gi(x) ≤ 0, i = 1, . . . ,m}

(and when S = X the sum involving gi is eliminated).
From x∗ a local minimizer of f , it is expected that the minimization of the

filled function give a new point x′ which is not necessarily a local minimizer of
f but can be used as initial point for a minimization algorithm of f and as a
result of that, a local minimizer x∗∗ 6= x∗ with f(x∗∗) ≤ f(x∗) will be found.

2.1 Generic Algorithm for Discrete Filled Functions

The generic algorithm used in the optimization process with filled functions
is the following:

Step 1. Initialization.
Choose a starting point x0 ∈ X. Let q = 2n. Set the bounds of each
parameter of the filled function F . Initialize the parameters.

Step 2. Local minimization of f .
i. Do x′ ← C(f, x0),

ii. x∗ ← argminx∈N ([x′])(f(x)).
Step 3. Neighborhood search.

i. Let N (x∗) \ {x∗} = {x1, . . . , xq}, `← 1
ii. Define xc ← x`

Step 4. Local minimization of F .
i. Do x′c ← C(F, xc),

ii. x′ ← argminx∈N ([x′
c])

(f(x)).
Step 5. Checking the status of x′..

If f(x′) < f(x∗), set x0 ← x′ and go to Step 2..
Step 6. Checking other search directions.

Adjust the parameters of the filled function F . If x′ is not a vertex in X
go to Step 4.. Else, set `← `+1. If ` ≤ q, go to Step 3.ii. If the parameters
of F exceed their bounds, take x∗ as the global minimizer.

3 Filled function with respect to an algorithm

The usual definition of a discrete filled function assumes that the local search
is made using the steepest descent method. It will be advantageous that the
definition does not rely upon a particular algorithm because in such a way
more powerful local search methods can be employed.

Definition 8 Let x∗ be a local minimizer of f : X → R, B∗ the basin of f at
x∗ and C a deterministic optimization algorithm that satisfies the hypothesis
A2-A4. Then F is said to be a filled function of f at x∗ with respect to C
if:
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DC1 : x∗ is a strict local maximizer of F .
DC2 : For any x if x′ ← C(F, x) and [x′] is a discrete local minimizer of F then

either x′ = x, or x′′ ← C(f, [x′]) implies f([x′′]) ≤ f(x∗)

The second condition prevents that the optimization procedure ends at points
where the value of f increases.

4 A filled function with respect to C

Let F (x∗, .) : Rn → R be a discrete filled function of f at x∗ (in the usual
sense). Define F̂ (x∗, .) : Rn → R as

F̂ (x∗, x) = F (x∗, x) + |F (x∗, x)|
n∑
i=1

sin2(xiπ) (4)

. Note that F (x∗, x) = F̂ (x∗, x) for all x ∈ Zn.
The function defined by the previous expression can be seen, informally

as a wrapper for an existent filled function that made it suitable to be used
with an arbitrary local search algorithm C (for example a continuous one) and
additionally keeps the discrete nature of the problem.

The goal now is to prove that if F is a discrete filled function of f , it can
be translated into a filled function of f with respect to C.

Theorem 3 If F is a discrete filled function of f at x∗ and B∗ is the basin
of f at x∗, then F̂ defined as above is a filled function of f with respect to C
at x∗.

Proof If F satisfies D1 then F̂ trivially satisfies DC1 by the previous remark
in the definition of F̂ .

If [x′] is a discrete local minimizer of F , then it is also one of F̂ . By D2,
[x′] cannot be in a basin of f higher than B∗, so if x′′ ← C(f, [x′]) then
f([x′′]) ≤ f(x∗).

4.1 An Additional Property of F̂

As the algorithm C may be a continuous algorithm, the computation of C(F̂ , x)
solves the problem of minimizing F̂ without the integrality constraints. So is
worthy to know the amount of error that the continuous relaxation of the
problem introduces. The following proposition establishes an upper bound of
that error.

Theorem 4 Let x′c be the point obtained in the Step 4.i. of the algorithm 2.1
(before rounding), with the filled function F̂ . Let δi = b(x′c)ic − (x′c)i then

n∑
i=1

δ2i <
F (x∗)− F (x′)

4 | F (x′) |
.

In particular, if F̂ (x∗) = 0 then
∑n
i=1 δ

2
i <

1
4 .
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Proof Since x∗ is a strict local maximizer of F̂ then F̂ (x∗ + ei) < F̂ (x∗) for
all i. More over, by the assumption A2 over C, F̂ (x′) < F̂ (x∗). Because x∗ is
in Zn, F̂ (x∗) = F (x∗) and by the definition of F̂

n∑
i=1

sin2(xiπ) <
F (x∗)− F (x′)

| F (x′) |
(5)

It is well known that 2
π <

sin(y)
y for −π2 < y < π

2 . From | δi |< 1
2 , it follows

that 4δ2i <
∑n
i=1 sin

2(δiπ). Finally, being sin(xiπ) = sin(δiπ), the inequality
(5) gives

n∑
i=1

4δ2i <
F (x∗)− F (x′)

| F (x′) |

and the result follows.
In particular, if F̂ (x∗) = F (x∗) = 0 then F (x′) < 0 so

n∑
i=1

4δ2i <
−F (x′)

| F (x′) |
= 1.

5 Implementation and Numerical Results

In the following we present a complete algorithm for the optimization of a
discrete function using a filled function. It allows the restart of algorithm 2.1
from the best obtained point. Also, if there is no improvement between suc-
cessive iterations, an element in the discrete vicinity is chosen as the starting
point for the next iteration. The algorithm ends after the maximum number
of iterations m is reached.

Usually, a very small m (between 1 and 3) will be enough because every
iteration is a restart of the optimization procedure from a different starting
point. For that reason, the cycles that can appear in Step 3 by choosing points
x′, x′′, x′, . . . are of small length. Moreover, a check can be added to stop the
process if a point x′ is reached more than m′ times (a user defined parameter).

Step 1 Let x0 be an initial point, and m the maximum number of iterations. Set
to zero the counters nfu, nfill for the evaluations of the original and the
filled functions. Set i ← 0. Set x ← x0 as the current point and xg ← x0,
fg ← f(xg) as the best point and best value of f .

Step 2 Use the algorithm of Section 2 with x as the starting point to obtain a min-
imizer x′ of f . Add the number of original and filled functions evaluations
to the counters nfu and nfill.

Step 3 If f(x′) < fg, update xg ← x′, fg ← f(x′) and make the current point
x ← xg. Else, choose a point x′′ 6= x′ in the discrete vicinity of x′ and
make x← x′′.

Step 4 Increment i← i+ 1.
Step 5 If i < m go to Step 2. Else, the point xg is taken as the global minimizer.
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5.1 Implementation

The test code was written in FORTRAN 90 using software for continuous
global optimization based on curvilinear searches (see [1]) as the algorithm C
to perform the local search.

5.2 Results

The algorithm was tested on several small and moderate problems with a
number of variables between 2 and 100 (functions of few variables were tested
for comparison with the literature), using different starting points. Four filled
functions were used and are those that have already been used in [8]. In all
cases, each filled function was modified according to section 4. They are:

– The filled function 1, proposed in [5].
– The filled function 2, proposed in [6].
– The filled function 3, proposed in [9].
– The filled function 4, proposed in [10].

5.2.1 Problem 1: Rosenbrock Function

The Rosenbrock function is convex, multimodal and n-dimensional. The do-
main is usually taken to be [−5, 5], so the feasible region contains 11n points.
The unique global minimizer is x̄ = (1, . . . , 1) with f(x̄) = 0. The expression
is

f(x) =

n∑
i=1

[100(xi+1 − x2i )2 + (1− xi)2]

The results for n = 50, 100 are shown in Table 1.

Table 1 Results for the Rosenbrock function. FF is the number of the filled function em-
ployed. fg is the minimum reached, nfu and nfill are the number of function evaluations
and the number of filled function evaluations

n Initial point FF fg nfu nfill

50 (3, 3, . . . , 3) 1 0 138085 8093482
2 0 178486 161600
3 0 77186 1928195
4 0 26686 225563

100 (3, 3, . . . , 3) 1 0 540817 56664532
2 0 701617 643200
3 0 299017 13639579
4 0 98017 1508952
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Table 2 Comparison between the minimum number of function evaluations in [5] and our
results using the same filled function.

Our results Best results in [5]
n nfu nfu

50 138085 1707270
100 540817 13466632

5.2.2 Problem 2: Rastrigin Function

This function is convex, multimodal and has n variables. It was evaluate in
the region [−5, 5] and has 11n feasible points. The unique global minimizer is
x̄ = (0, . . . , 0) with f(x̄) = 0. The expression is

f(x̄) = 10n+

n∑
i=1

(x2i − 10cos(2πxi))

The results for n = 50, 100 are shown in Table 3.

Table 3 Results for the Rastrigin function with filled function 2. fg is the minimum reached,
nfu and nfill are the number of function evaluations and the number of filled function
evaluations. Rf is the ratio between the number of function evaluations (the objective plus
the filled) and the size of the feasible set.

n Initial point fg nfu nfill

50 (−1,−1, . . . ,−1) 0 456714 414100
(−5, 5, . . .) 0 645398 434704

100 (−1,−1, . . . ,−1) 0 2945914 2653200
(−5, 5, . . .) 0 4181432 2734002

5.2.3 Other Functions

The other test functions and the results are shown in the appendix. Their
expressions, and their global minima are detailed in Tables 4 and 5. The com-
parison with other results is given in Tables 6 and 7. Table 8 shows the results
for all the additional functions.

6 Conclusions

To solve discrete nonlinear optimization problems is always a challenging task.
In this field, filled function methods have been proved to be useful. Here, a more
general approach to the filled functions methods has been introduced making
them more suitable for being used with modern optimization algorithms. We
also presented a way to move from standard definitions of the filled functions
to the new one and introduced a new discrete filled function with the useful
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property that a good continuous global optimization algorithm applied to it
leads to an approximation of the solution of the nonlinear discrete problem.
The numerical results show the improvements over the usual approaches.

7 Appendix

Table 4: Additional test functions: names and expressions

1 Colville

min f(x) = 100(x2 − x21)2 + (1− x1)2 + 90(x4 − x23)2 + (1− x3)2

+ 10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

s.t. − 10 ≤ xi ≤ 10, xi ∈ Z i = 1, 2, 3, 4

2 Goldstein and Price

min f(x, y) = [1 + (x+ y + 1)2(19− 14x+ 3x2 − 14y + 6xy + 3y2)]

[30 + (2x− 3y)2(18− 32x+ 12x2 + 4y − 36xy + 27y2)]

s.t. x =
z1

1000

y =
z2

1000
− 2000 ≤ zi ≤ 2000, zi ∈ Z i = 1, 2

3 Beale

min f(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2

s.t. x =
z1

1000

y =
z2

1000
− 10000 ≤ zi ≤ 10000

zi ∈ Z, i = 1, 2,

4 Powell singular

min f(x) = f = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4

s.t. xi =
zi

1000
− 10000 ≤ zi ≤ 10000

zi ∈ Z, i = 1, 2, 3, 4

5 Booth

min f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

s.t. − 10 ≤ xi ≤ 10, xi ∈ Z, i = 1, 2
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Table 4: Additional test functions: names and expressions

6 Problem 10 in [5]

min f(x) = (x1 − 1)2 + (x2 − 1)2 + n

n−1∑
i=1

(n− i)(x2i − xi+1)2

s.t. − 5 ≤ xi ≤ 5, xi ∈ Z, i = 1, . . . , n

n = 25

7 Three-Hump Camel

min f(x) = 2x21 − 1.05x41 +
x61
6

+ x1x2 + x22

s.t. − 5 ≤ xi ≤ 5, xi ∈ Z, i = 1, 2

8 Schaffer N. 1

min f(x) = 0.5 +
sin2(x21 + x22)2 − 0.5

(1 + 0.001(x21 + x22))2

s.t. − 100 ≤ xi ≤ 100, xi ∈ Z, i = 1, 2

9 Leon

min f(x) = 100(x2 − x31)2 + (1− x1)2

s.t. 0 ≤ xi ≤ 10, xi ∈ Z, i = 1, 2

10 Salomon

min f(x) = 1− cos

(
2π

√√√√ n∑
i=1

x2i

)
+ 0.1

√√√√ n∑
i=1

x2i

s.t. − 100 ≤ xi ≤ 100, xi ∈ Z, i = 1,
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Table 5 Test functions, global minima

Function x∗
g f(x∗

g)

1 (1, 1, 1, 1) 0
2 (0,−1) 3
3 (3, 0.5) 0
4 (0, 0, 0, 0) 0
5 (1, 3) 0
6 (1, 1, . . . , 1) 0
7 (0, 0) 0
8 (0, 0) 0
9 (1, 1) 0
10 (0, 0) 0

Table 6 Comparison with the average
number of original function evaluations
in [8]

Function FF Our results Avg. results in [8]
1 1 3131 2440.17

2 6085 1679.5
3 685 3430.5
4 353 2189.5

2 1 983 49533.17
2 1754 22249
3 238 48327.17
4 207 46329.83

3 1 1021 366914.3
2 4237 119368.8
3 281 1000001.5
4 191 365956.2

4 1 7156 1818
2 12455 1123
3 1655 2574.33
4 963 1811.83

Table 7 Comparison between the minimum number of function evaluations in [8] and our
results.

Function Number Our results Best results in [8]
nfu nfill nfu nfill

1 353 711 1431 5099
2 200 644 21978 151356
3 191 1620 100002 206268
4 963 8436 1179 5349
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Table 8 Results. FF is the number of the filled function employed. fg is the minimum
reached, nfu and nfill are the number of function evaluations and the number of filled
function evaluations

Function number Initial point FF fg nfu nfill

1 (0, 0, 0, 0) 1 0 3131 26317
(0, 0, 0, 0) 2 0 6085 5760
(0, 0, 0, 0) 3 0 685 1032
(0, 0, 0, 0) 4 0 353 711

2 (1,−1) 1 3 983 8895
(1,−1) 2 3 1747 3538
(1,−1) 3 3 231 831
(1,−1) 4 3 200 644

3 (0, 0) 1 0 1021 1652
(0, 0) 2 0.211400 · 10−4 4237 4050
(0, 0) 3 0 281 1819
(0, 0) 4 0 191 1620

4 (10,−10, 10,−10) 1 0 7156 42924
(10,−10, 10,−10) 2 0 12455 91212
(10,−10, 10,−10) 3 0 1655 7842
(10,−10, 10,−10) 4 0 963 8436

5 (0, 0) 1 0 912 3283
(0, 0) 2 0 1688 1600
(0, 0) 3 0 172 264
(0, 0) 4 0 88 180

6 (2, . . . , 2) 1 0 331076 3553422
(2, . . . , 2) 2 0 622376 612000
(2, . . . , 2) 3 0 58793 1661261
(2, . . . , 2) 4 0 22372 179670

7 (2, 2) 1 0 6719 95301
(2, 2) 2 0.866667 13671 698488
(2, 2) 3 0.866667 3047 20343
(2, 2) 4 0.866667 4903 8963

8 (−50, 50) 1 0.370922 4549 169851
(−50, 50) 2 0.487382 6483 318875
(−50, 50) 3 0.489069 1823 26688
(−50, 50) 4 0.487382 2039 5528

9 (10, 10) 1 0 1183 152490
(10, 10) 2 0 1267 600
(10, 10) 3 0 781 348
(10, 10) 4 0 673 302

10 (−100, 100,−100, . . .) 1 0 11818 208250
(−100, 100,−100, . . .) 2 0 20767 186923
(−100, 100,−100, . . .) 3 1.5 4580 19432
(−100, 100,−100, . . .) 4 0 2275 2709
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