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Abstract  

The objective was to evaluate an innovative dispersion method (IM) as the planetary ball milling 

(PBM) to obtain starch modification altogether with in situ β-carotene dispersion. Native (N) and ball 

milled (BM) rice starches were first evaluated as encapsulating matrices of β-carotene, by means of 

traditional dispersion method (TM) using a rotor-stator device. Ball milled starch with gelatin 
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(BM+G) preserved β-carotene structure and produced the highest encapsulated β-carotene content 

(0.154 mg/g), being four times the N starch content (0.035 mg/g). By IM, β-carotene structure was 

partially (69 %) preserved by using the BM+G matrix. Encapsulated β-carotene contents >86% 

(equivalent to 0.50 mg/ g starch) and encapsulated/surface ratio > 6.7 were achieved, obtaining at 

least 3.0 and 16.3 fold increments compared to TM, respectively. Results from IM revealed the 

potential of PBM to reach a high degree of β-carotene dispersion in a physically modified starch 

improving the encapsulation performance with respect to TM. 

1. Introduction 

Encapsulation is a strategy to limit the degradation of bioactive compounds and to deliver poorly 

soluble components into aqueous systems [1, 2]. Maltodextrin and modified starches with protein 

addition are widely used as wall materials, due to their emulsifying power, low cost, high availability 

and good volatile retention [3-5].  

Encapsulation often involves the dispersion of the bioactive compound in the encapsulating matrix 

(emulsification step) followed by freeze or spray drying of the emulsion [3, 6]. One of the most 

important factors in microencapsulation is the physical stability of the emulsion, which depends on 

droplet size, droplet surface charge and viscosity [7]. For emulsification, high-shear homogenizers are 

usually applied [8, 9]. To obtain micro- and nano-sized emulsions, an extra micro-fluidization or 

sonication treatment is required. These methods are usually applied due to their high performance, 

low time-consumption, and good scalability in the industry [10]. However, there are currently no 

publications on homogenization by high-impact milling. The ability of high impact milling to produce 

starch modifications affecting the morphology, crystalline structure and functional properties of starch 

has been probed [11-13]. Therefore, the use of PBM is here proposed as a novel method for starch 

modification and β-carotene dispersion in situ.  

The objectives were: a) to evaluate N and BM starches to identify the best wall material using the TM 

method. Six matrices (N, N+G, BM, BM+G, BM+g, BM+g+G) were formulated to study the effects 

of gelatin addition (G) and hydrothermal gelatinization (g) of BM starch; b) to explore the potential of 

the PBM to produce β-carotene encapsulated powder adopting a traditional method as control. 
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2. Materials and methods 

2.1. Materials 

Rice starch of food grade (Remy B7, Beneo GmbH, Germany) with amylose content of 18.4 g/100 g 

and gelatin Parafarm (150 bloom) were supplied by Saporiti S.A. (Buenos Aires, Argentina). Starch 

composition (dry basis) was provided by the manufacturer: 88.7% carbohydrates, 13.7% moisture, 

1.0% protein, 0.0% lipid, 0.2% ash. β-carotene powder was purchased from Xi´ an Best (Xi´ an Best 

Bio-Tech Co. Ltd, Shaanxi, China). Analytical grade acetone, hexane and bi- distilled water were 

used. 

 

2.2. Starch modification 

Ball milled starch was obtained in a planetary ball mill Retsch PM 100 (Retsch GmbH, Haan, 

Germany) with jug (500 ml) and balls (diameter: 5 mm) of zirconium oxide, at fixed rotation speed 

(400 rpm), with balls:starch and water:starch ratios of 5:1 and 2.2:1 (w:w), respectively. Grinding 

protocol involves 10 min of milling with pauses of 15 min to complete 40 min of milling time [11, 

14]. In order to obtain (BM+g) starch, BM starch aqueous slurry (5 % w/w) was gelatinized by 

hydrothermal treatment at 95°C for 20 min [8].  

  

2.3. Matrices preparation 

β-carotene powder was added to the starch slurry in a ratio of 1:750 (w:w, dry basis) according to 

Spada, Marczak, Tessaro and Noreña [15]. The emulsification by TM involved 10 min 

homogenization of starch slurry (starch-to-water ratio of 1:19 or 5 % w/w) at 15.500 rpm in a rotor-

stator Ultra-Turrax T18B (IKA®-Werke GmbH & Co. KG, Staufen, Germany). Such starch 

concentration favors a good dispersion in the rotor-stator device. For the IM method the starch slurry, 

gelatin and β-carotene were loaded into the PBM jar and the mixture was processed for 5, 10 or 15 
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minutes, at 400 rpm, with balls:starch of 5:1 and starch:water of 1:2.2 (31.2 % w/w) to assures the 

ball-particle collision in the PBM [8, 11, 14]. Homogenized dispersions obtained by TM or IM 

method were then frozen, freeze-dried (48 h,−40°C, 50 µbar) in a Rificor L-A-B3 freeze-dryer 

(RIFICOR de Rímolo N. y Orueta R. S.H., Buenos Aires, Argentina) and stored in sealed vials at 

room temperature. All TM and IM tests were made by triplicate. Six matrices were prepared with and 

without 1 % w/w gelatin (G): N, N+G, BM, BM+G, BM+g and BM+g+G. 

 

2.4. β-carotene content and carotene stability index 

The method of Rodriguez-Amaya [16] with slight modifications was adopted. Surface carotene was 

extracted with hexane (aliquots of 2 mL) from the freeze-dried matrix (80 mg) by shaking 2 min at 

250 rpm in an orbital shaker; the extract was measured at 450 nm with spectrophotometer model V-

630 UV-Vis (JASCO Inc., MD, USA). The remaining matrix was dispersed in water (2 mL) and 

sonicated (10 s, amplitude 100%, cycle 0.5) in an ultrasonic homogenizer UP100H (Hielscher 

Ultrasonics GmbH, Teltow, Germany) to release encapsulated carotene. Encapsulated carotene was 

extracted with 3 mL of hexane:acetone:ethanol (50:25:25) and shook at 150 rpm for 2 min [17]. The 

hexane phase was measured at 450 nm in the spectrophotometer. For surface and encapsulated -

carotene, an average value of triplicates was reported as mg -carotene/g starch using a standard 

absorbance curve of β-carotene in hexane. Encapsulated -carotene (%) is the amount of encapsulated 

respect to the total amount of -carotene (encapsulated and surface).  

Pure -carotene in hexane (adopted as reference) presents characteristic intensities ratio (III/II) based 

on absorption UV-Vis peaks at 450 nm (II) and 477 nm (III), respectively [18]. If isomerization or 

structural modification takes place the III/II index changes respect to the reference value. The 

percentage change (III/II %) was reported as a measure of stability index.  

  



 

 

 
This article is protected by copyright. All rights reserved. 

5 
 

 

2.5. Statistical analysis 

Analysis of variance (ANOVA) was performed with Statgraphics Centurion version XVI 

(Statgraphics Technologies, Inc., Virginia, USA), comparing the means by the least significant 

difference test of Fisher (LSD), with a confidence level of 95%. 

 

3. Results and discussion 

 

3.1. Matrix selection by traditional dispersion method 

The low performance of N matrix and the positive effect of BM starch on -carotene retention can be 

appreciated from the values of encapsulated and surface contents of -carotene for different matrices 

(Figure 1.a). Starch granule structure was modified by ball milling to yield BM starch (100% 

gelatinized), which showed a significant reduction in particle size (80%) and crystallinity (85%) in 

comparison with N starch [14]. Due to its high level of water solubility (200-fold higher than that of N 

starch), BM starch produced homogeneous and viscous liquid suspension favoring the encapsulation 

[14]. -carotene retention increased 48.6% by using BM starch instead of N starch. However, this 

value is lower than the increment (60%) reported for BM amaranth starch [8].  

The effect of hydrothermal treatment on the encapsulating capacity of BM starch was negligible due 

to the high gelatinization degree of BM starch [14]. 

In agreement with literature reports [3, 5, 8], a significant effect of gelatin addition on -carotene 

encapsulation was observed due to the key role of gelatin in the emulsification of -carotene. 

Starch matrices N+G and BM+G showed 3.7 and 3.0 times the encapsulated contents in N and BM 

matrices, respectively. The best performance was 29% of encapsulated -carotene and an 

encapsulated/surface ratio of 0.4, which was obtained by using BM+G starch. 
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As regard β-carotene stability index (Figure 1.b), the use of gelatin and BM starch contributed for 

preservation of β-carotene structure.  

The best result was obtained by using BM+G starch, which presented an excellent stability index but a 

still low encapsulated/surface ratio denoting the limitation of the TM method. Therefore, the potential 

of PBM was explored in the next section. 

 

3.2. Innovative dispersion method: planetary ball milling 

As regard IM method, no significant effect of process time on β-carotene content was observed (Table 

1). The maximum encapsulated β-carotene content was 89% (0.51mg β-carotene /g starch). 

Remarkable encapsulated/surface (E/S) ratios were found by IM (6.7 - 8.1), and the highest values 

were observed for the samples processed 5 or 10 min. The proposed method succeeded to disperse 

and encapsulate β-carotene in the starch matrix regardless the processing time. However, due to the 

thermo-mechanical damage produced  by PBM [8, 11, 14], the isomerization indexes (S and E III/II in 

Table 1) showed at least 30 % of degradation in comparison with the reference, indicating that β-

carotene could not be fully protected by this method (at present processing conditions).  

3.3. Innovative method vs. traditional method 

Table 1 shows encapsulation results for BM+G matrix. A huge increment in the encapsulated β-

carotene content was obtained upon dispersion trough PBM, from 29 ± 1% (0.17 mg β-carotene/ g 

starch) up to as high as 89 ± 1 % (0.51 mg β-carotene/ g starch). Moreover, astonishing increments in 

the encapsulated/surface ratios were obtained, up to 8.1 ± 0.7, with respect to the 0.41 ± 0.04 obtained 

with TM. 

However, it must be noticed that there was a significant reduction in surface and encapsulated III/II% 

values in comparison with TM results, indicating that IM favored the isomerization of β-carotene 

molecules. The differences between both methods lied not only in the great homogenization capacity 

of the PBM but also in the different starch concentration used (TM: 5.0% w/w; IM: 31.2% w/w). The 
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increase of wall material concentration positively affected the matrix drying as well as the retention of 

the bioactive compounds [19].  

 

4. Conclusions 

Through a high impact milling process, it was possible to modify rice starch and increase its 

encapsulation performance with respect to the native starch. For the first time, the potential of the 

planetary ball mill to modify the wall material and to disperse a bioactive compound in situ was 

studied optimizing treatment time and process conditions. Although the proposed method failed to 

fully protect β-carotene, these preliminary results are promising and can be improved by changing the 

process variables and extended to other compounds. 
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Table 1. Surface (S) and encapsulated (E) β-carotene content, E/S ratio and surface and encapsulated 

β-carotene stability index (III/II%), in traditional (TM) and innovative method (IM) for β-carotene in 

ball milled starch matrix added with gelatin (BM+G). 

 TM IM 

  5 min 10 min 15 min 

S β-carotene (%) 71 ± 5
A
 11 ± 1

b,B
 11 ± 1

b,B
 14 ± 1

a,B
 

E β-carotene (%) 29± 1
B
 89 ± 1

a,A
 88 ± 2

a,b,A
 86 ± 1

b,A
 

E/S ratio 0.41 ± 0.04
C
 8.1 ± 0.7

a,A
 8.0 ± 1.1

a,A
 6.7 ± 0.4

b,B
 

S III/II (%) 100 ± 5
A
 84 ± 9

b,B
 91 ± 4

a,b,A,B
 99 ± 5

a,A
 

E III/II (%) 100 ± 3
A
 61 ± 1

b,C
 68 ± 4

a,B
 69 ± 1

a,B
 

Standard deviation values are included. Different letters indicate differences between mean values (p 

< 0.05): a-c among IM results and A-C between TM and IM results.  
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Figure captions 

Figure 1. Encapsulation performance by rotor-stator dispersion method (control) of a) surface and 

encapsulated β-carotene content in different rice starch matrices and b) stability index (III/II%) of β-

carotene in different rice starch matrices. (N: native starch, BM: ball milled starch, G: gelatin, g: 

gelatinized). Standard deviation values are included. Different letters on the bars indicate significant 

differences between mean values (p < 0.05). 
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An innovative method to obtain starch modification and β-carotene dispersion in situ was tested by 

planetary ball milling.  β-carotene structure was partially (69 %) preserved, a 16-fold increase in the 

encapsulated/ surface ratio and a 3-fold increase in the encapsulated β-carotene content were 

obtained compared to traditional rotor-stator homogenizer.  

 


