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ABSTRACT 29 

 30 

The Pampean region is a crucial area to obtain sensitive paleoclimatic lacustrine 31 

archives due to the presence of shallow environments in a territory non impacted by 32 

humans until the last centuries. In this study, we provide a paleoecological 33 

reconstruction for the last ca. 700 years based on a multiproxy lacustrine record from 34 

Laguna Blanca Grande, in Olavarría (Buenos Aires, Argentina). Our inferences, which 35 

were based on sedimentary properties, diatom, cladoceran and ostracod assemblages, 36 

offered interesting information about hydroclimatic variability and nutrient increase. 37 

Changes in relative abundances on diatoms, specifically on Aulacoseira granulata and 38 

Aulacoseira granulata var. angustissima and fragilariods, were used to infer shifts in 39 

nutrient conditions. The remainder proxies together indicated small lake level changes. 40 

Reconstructed hydroclimatic conditions in Laguna Blanca Grande are consistent with 41 

previous paleoecological inferences indicating a humid phase around ca. AD 1450 and 42 

progressive drier conditions ca. AD 1530-1900. A flood gate construction and an 43 

increase of nutrients in the lake revealed a higher human pressure due to population 44 

increase and land-use changes during the last century. Further studies on taxonomy and 45 

autecology of microcrustaceans are needed to effectively unlock the information 46 

contained in biological proxies from Sudamerican records.  47 

 48 

Keywords: nutrient enrichment, hydroclimatic reconstruction, lake level changes,  49 

diatoms, cladocerans, ostracods. 50 

 51 

1. Introduction 52 

The Pampean plains are fertile and vast lowlands that cover more than 750,000 53 

km2, which include some regions in Argentina, Uruguay, and the southernmost states of 54 

Brazil (Politis, 2008; Viglizzo et al., 2001; Zarate, 2003). The interannual rainfall 55 

variability in this region is related to the sea surface temperature over the western South 56 

Atlantic, the intensity and position of the South Atlantic Convergence Zone (SACZ) and 57 

the South American summer monsoon (SASM) (Barros et al., 2000; Garreaud et al., 58 

2009), which explains the migration of moisture and precipitation patterns in 59 
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subtropical plains producing rainy conditions during the austral summer. In addition to 60 

the intrannual variability, the region is strongly influenced by interannual phenomena 61 

such as the El Niño Southern Oscillation (ENSO). As a result of these different modes 62 

of climatic variability, the Pampean lakes have shown important lakes level changes 63 

during the Holocene, as demonstrated in Laguna Mar Chiquita (Cuña-Rodriguez, 2018; 64 

Coianiz et al., 2014; Piovano et al., 2014; 2009; 2004; 2002), Lagunas Encadenadas del 65 

Oeste de Buenos Aires (Córdoba, 2012; 2014), Lake Nahuel Rucá (Stutz et al., 2010), 66 

Lake Lonkoy (Stutz et al., 2012), Lake La Barrancosa (Plastani et al., 2019), Lake 67 

Adela (Dangavs and Mormeneo, 2012), Laguna del Monte (Dangavs and Pierrard, 68 

2013), Lake La Brava (Irurzun et al., 2014; Laprida et al., 2014) and Lake Melincué 69 

(Guerra et al., 2015; 2017) (Fig. 1). Despite the existence of some paleohydrological 70 

reconstructions, multiproxy inferences in the southern Pampas (classification according 71 

to Iriondo, 1994) are still needed to provide additional information on the timing and 72 

relationship of local hydrovariability with large-scale climatic events (Guerra et al., 73 

2017; Lüning et al., 2019). Moreover, understanding the interaction of past climatic 74 

changes with limnological features is also crucial to face future challenges such as the 75 

synergic effect of climate warming and eutrophication on local/endemic biodiversity 76 

(Kopprio et al., 2010). This is particularly meaningful when taking into account the 77 

socioeconomical implications and ecosystem services of these lakes, considering that 78 

they play an important role as reservoirs of endemic biodiversity, flood control, 79 

recreation, tourism and climate change mitigation (Iwan et al., 2017).  80 

In this study we used a lacustrine record based on diatoms, cladocerans and 81 

ostracods from Laguna Blanca Grande (Buenos Aires, Argentina) to provide new 82 

paleoecological information from southern Pampas (Fig. 1) and also to help to 83 

understand the temporal-spatial features of hydrological changes and the role of human 84 

activities in the last centuries. We hyphotesize that this sequence may contain a 85 

relatively good signal of past natural conditions and climate variability since this region 86 

was not highly impacted by humans for a longtime. Documentary and historical sources 87 

(e.g., Djenderedjian, 2012; Mayo, 2000; Pedrotta et al., 2012) indicated that only sparse 88 

native populations inhabit La Pampa until the end of the 19th century. Migration and 89 

farming conversion did not take place until the beginning of the 20th century. 90 

Hydroclimatic variability as well as the recent human impact might have been recorded 91 

in our sediment record. 92 
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  93 

2. Site Description  94 

 95 

The Argentinian Pampean region comprises an extensive plain (~500,000 km2) covering 96 

the center-east of the country. The geological setting is characterized by loess-like 97 

deposits covered by Quaternary aeolian sediments, composed of massive to poorly 98 

stratified sandy silt, partially reworked by fluvial action and with common carbonate 99 

accumulations of unknown origin ( Muhs, 2013; Rubio et al., 2019; Zarate, 2003; Zarate 100 

and Tripaldi, 2012). The climate of southern Pampas is subtropical semiarid, 101 

characterized by mean annual temperature of 14.4ºC, with mean values of 2ºC in the 102 

coldest months (June-July) and 29ºC in the warmest (August).  Mean annual rainfall is 103 

about 901 mm (mean values 1988-2010, National Meteorological Service from the 104 

Olavarría meteorological station). The geomorphology of this region -low slope and 105 

absence of geographical features- allows the development of wetlands and shallow lakes 106 

in the most depressed areas of the plain. Most of the lakes are small (< 500 ha), shallow 107 

(~ 4 m), eutrophic and polymictic (i.e., without thermal stratification) (Geraldi et al., 108 

2011; Laprida, 2008; Quirós and Drago, 1999). 109 

 Laguna Blanca Grande (Fig. 1; 36°29'12, 99''S, 60°53'45,91''W) is located 110 

between Olavarría and San Carlos de Bolívar, Buenos Aires Province, Argentina. It is 111 

an almost round lake with a 450 ha basin, an average depth of 80 cm and a maximum of 112 

180 cm. It receives water from the Brandsen Creek, in a permanent regime, and from 113 

three temporary watercourses. Water flows from the lake into the Arroyo Las Flores, 114 

where there is a sluicegate to regulate the level. This gate was probably built around the 115 

1950s in a context of water management actions around Lagunas Encadenadas del Oeste 116 

to prevent the impacts of floods and droughts in the region (Monachesi and Albaladejo, 117 

1997). 118 

Lake shows alkaline waters (pH= 8.7) and total nitrogen values ca. 81.3 mg/l 119 

(Hassan, 2011). Conductivity is ca. 0.6 mS/cm and hardness is ca. 227 mg/l (Hassan et 120 

al., 2011). The order of major ion concentration is HCO3- >> SO4
2- > Cl- and Na+ >> 121 

Mg++ > K+ >  Ca++ (Colautti and Remes-Lenicov, 2003). Modern diatom assemblage is 122 

composed of Aulacoseira granulata, Staurosira longirostris, Cyclotella menenghiniana, 123 

Hippodonta hungarica, Pseudostaurosira brevistriata (Hassan et al., 2011; Hassan and 124 
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De Francesco, 2018). Zooplankton is composed of the rotifers Keratella tropica, 125 

Notholca sp., Asplanchna girodi and Polyarthra vulgaris, the cladocerans Bosmina sp. 126 

and Macrotix laticornis and the copepod Notodiaptumus incompositus. This is the main 127 

source of food of the Argentinian silverside (Odontesthes bonariensis), which also 128 

inhabits this lake (Colautti and Remes-Lenicov, 2003). Today, recreational fishing and 129 

tourism are some of the main activities around the lake. However, at regional scale, 130 

Olavarría has a diversified economy with important contribution of agriculture, 131 

stockbreeding and industry related to mining activities (Olavarría, 2010).  132 

 133 

3. Materials and methods 134 

 135 

3.1. Coring, sampling and chronology  136 

 Sediment cores were recovered with a Livingston piston corer from the deepest 137 

part of the lake (0.6 m) in December 2013. Two parallel and overlapping cores (LBG-A 138 

and LBG-B) were taken from the lake at a distance of 3 m from one another. Core LBG-139 

A was 77 cm in length while core LBG-B was 102.5 cm in length. Core LBG-A 140 

extended from the mud-water interface to a depth of 77 cm. After the correlation of the 141 

cores,  it was decided not to analyze the upper part of the core LBG-B,  from the mud-142 

water interface to 37.5cm,  and perform the analysis only from 37.5 cm to the bottom of 143 

the core (65 cm length). This strategy ensured an overlap of ca. 40 cm between the two 144 

cores. Sediment cores were wrapped in plastic film, placed in PVC tubes and stored in a 145 

cool room at 4ºC until further processing. Core description was carried out following 146 

the methodology described in Schnurrenberger et al. (2003) and the Munsell color chart 147 

(Munsell Colour Company, 1975). The stratigraphic column was build using the 148 

lithological patterns suggested by the US Geological Survey (2006). Color and main 149 

physical properties such as composition, structure, or degree of humification were the 150 

initial basis to establish a correlation between both cores. Then, the correlation was 151 

confirmed by analytical measurements and biological proxies. Based on this correlation, 152 

four bulk sediment samples along the whole length of the composite record were 153 

selected for AMS 14C analysis at the CHRONO Center laboratory at Queen's University 154 

Belfast, UK. Radiocarbon dates were calibrated using the ShCal13 database (Hogg et 155 
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al., 2013) and the 95.4% distribution (2s probability interval) was considered to build 156 

the age-depth model. 157 

As one of the samples did not accomplish the principle of superposition, an age-158 

depth Bayesian statistic model was built using only three samples. The age-depth model 159 

was built using the package Bacon (Blaauw and Christen, 2011) in R 3.4.2 software (R 160 

Development Core Team, 2019). The curve was adjusted with a Gaussian model and 161 

included the starting condition that the surface was -63 as a ± 0 cal. years BP. Using 162 

these settings, over 7,000 iterations were run using a Markov chain Monte Carlo 163 

(MCMC) method to estimate the unknown parameters in the age-depth model. 164 

Although carbonate accumulations of variable morphology and genesis are common in 165 

the loess sequences (Muhs, 2007), Fontana (2007) showed that reservoir effect was 166 

negligible in a Pampean shallow lake in the same geological setting. Therefore, no 167 

correction for reservoir effect was applied in the model.  168 

 169 

3.2. Analytical and biological methods 170 

Volumetric subsamples of 1 cm3 were taken at 5 cm intervals for organic matter, 171 

granulometry and biological analysis (diatoms, cladocerans and ostracods). For 172 

granulometric analysis, samples were dispersed in distilled water after organic matter 173 

and carbonates were dissolved with H2O2 and HCl, respectively, and analyzed by laser 174 

diffraction  (Mastersizer Malvern, 2000). The samples with granulometry > 250 µm 175 

were sieved. Results were integrated into the GRADISTAT V 4.0 program (Blott and 176 

Pye, 2001). The granulometric analysis was performed at the Marine Geology 177 

Laboratory at the Instituto Argentino de Oceanografía, Argentina. Organic matter was 178 

determined by weight loss on ignition (LOI) at 550 °C for four hours. Subsequently, the 179 

CO2 mass evolved from carbonate was determined by LOI at 950°C for two hours, and 180 

the carbonate content was calculated by multiplying the weight loss by 1.36 (Heiri and 181 

Lotter, 2001). LOI analysis was carried out at the Centro de Investigaciones en Ciencias 182 

de la Tierra (CICTERRA - CONICET - UNC). 183 

For diatom and chrysophyte cyst analysis, samples were treated with sodium 184 

pyrophosphate (Na2P2O7) to deflocculate the sediment and to remove the clays. Then, 185 

15 mL of HCl (35%) were added to wet samples to remove carbonates. Finally, samples 186 

were heated to a water bath for 2 hours with H2O2 to remove organic matter (Metzeltin 187 
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and García-Rodríguez, 2003). They were washed with distilled water successively until 188 

reaching a neutral pH in between the three treatments mentioned above. Once cleaned, 189 

permanent slides were made using an Entellan® (refractive Index: 1.54) mounting 190 

medium. At least 400 diatoms valves per sample were identified in an optical 191 

microscope at 1250× magnifications with oil immersion. Relative abundances of taxa 192 

(included chrysophyte cysts) were calculated by dividing the number of valves and 193 

cysts from each species by the total count on each slide/sample. These analyses were 194 

carried out at the Geoscience laboratory from CURE-Rocha, Uruguay. Diatom species 195 

were identified using the appropriate keys (Frenguelli, 1941; Gómez and Bauer, 2000; 196 

Hasle and Syvertsen, 1997; Krammer and Lange-Bertalot, 1991a, 1991b, 1988, 1986; 197 

Metzeltin et al., 2005; Metzeltin and García-Rodríguez, 2003; Theriot et al., 1992). 198 

Ecological information on diatom taxa preferences was extracted from Denys (1991); 199 

Theriot et al. (1992), Van Dam et al. (1994), Gómez and Bauer (2000a), Kociolek and 200 

Spaulding (2003), Rühland et al. (2003). Hassan et al. (2009) and Solak et al. (2012).  201 

For cladoceran analysis, 1 cm3 of sample was heated and stirred in 10% 202 

potassium hydroxide (KOH) for 30 min. Then, the sediment samples were sieved 203 

through a 40 μm mesh, following the procedure described by Szeroczyńska and 204 

Sarmaja-Korjonen (2007). The sieve residue was carefully transferred to a beaker. One 205 

tablet of Lycopodium spores was placed on a watch glass and a few drops of 10% HCl 206 

were added to dissolve the tablet. Afterward, the solution was poured off into the beaker 207 

and mixed well. Then, the sample was transferred into a test tube and centrifuged for 10 208 

min at 3500 rpm. After centrifugation, the water was discarded, and a small quantity of 209 

ethanol was added and mixed. A slide was placed on a hot plate and liquefied glycerol 210 

jelly with some safranine drops were added. Then, a few drops of sample with ethanol 211 

was added and spread over the coverslip area. Finally, a coverslip was placed on the 212 

slide and pressed gently. Samples were identified under a LOMO/LUMAN fluorescence 213 

microscope at 20-100× magnification. Cladoceran identifications and ecological 214 

characteristics were obtained from the literature on south American cladocerans and 215 

from López-Blanco and Sinev, (2016),  Paggi (1998a), (1995) and Smirnov (1971). This 216 

analysis was performed at the Escuela Politécnica Nacional, Ecuador.  217 

Sample preparation for ostracod analysis was carried out using the methodology 218 

proposed by Holmes (2001) and Danielopol et al. (2002). Samples were washed and 219 

sieved through a 63 μm mesh. The freeze-cooling technique was used for sample 220 
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disintegration in fine-grained sediment, by adding sodium hexametaphosphate before 221 

freezing. Then, samples were dried at room temperature for 12 hours, and the valves 222 

were picked out with a fine brush on a Nikon stereoscope (SMZ645) at 50× 223 

magnification. Identifications were based on taxonomic keys and specialized diagnosis 224 

(D’Ambrosio et al., 2015; Laprida, 2006; Ramón-Mercau et al., 2014). Absolute 225 

abundances were calculated from the number of adult valves of each species in 10 mL 226 

of sample. Additionally, charophyte oogonia, fish remains, gastropods and testate 227 

amoebae were also identified. Ostracod analysis was carried out at the GIBPC 228 

laboratory from Universidad Pedagógica y Tecnológica de Colombia. 229 

Stratigraphic diagrams showing the relative abundances of each proxy were 230 

performed using the Psimpoll 4.27 software (Bennett, 2009). The broken stick model 231 

was applied to determine the number of significant stratigraphic zones (Bennett, 1996). 232 

Major zones were identified using the optimal division information content for 233 

ostracods and the binary splitting by sums-of-squares for cladocerans and diatoms. 234 

Before performing the zonation analyses, ostracod data were transformed using square 235 

root to stabilize the variances and increase the importance of rare species. Diatom data 236 

were log (x+1) transformed to give less weight to dominant and/or abundant taxa. Only 237 

the most abundant species were used for diatom analysis; those whose abundance was 238 

greater than 2% in at least 3 samples and considering that the percentage removed was 239 

less than 10% of the total abundance of each sample (Karst and Smol, 2000).  240 

Detrended correspondence analysis (DCA) were applied to diatom data to 241 

estimate the degree of species turnover (Hill and Gauch, 1980). DCA has yielded good 242 

results for diatom analysis, allowing interpretation of records with different temporal 243 

scales and environmental gradients (e.g., Correa-Metrio et al., 2014; Hassan et al., 244 

2012). The meaning of DCA axis 1 was inferred in terms of a priori knowledge of their 245 

distribution in modern environmental gradients (Bicudo et al., 2016; Hassan et al., 246 

2009). Then, the axis scores DCA1 was plotted stratigraphically to provide a simplified 247 

picture of changes through time. DCA analysis was performed using “vegan” package 248 

(Oksanen et al., 2019) in software R 3.6.3 (R Development Core Team, 2020).  249 

 250 

4. Results  251 

 252 

Jo
urn

al 
Pre-

pro
of



9 

 

4.1. Sedimentology and physical characteristics 253 

Physical properties and sedimentology analysis in cores LBG-A and LBG-B 254 

resulted in an overlap of ca. 40 cm. 66.5 cm in core LBG-A overlapped with 27.5 cm in 255 

core LBG-B, producing a composite sequence of 104 cm. This composite record was 256 

composed of dark-brownish sandy silt sediments with an increasing proportion of sand 257 

from top to the bottom part of the core. Eleven facies and six sedimentary units were 258 

distinguished, their colors varied from brown (10 YR 4/3) to dark brown (10 YR 4/29) 259 

(Table 1; Fig. 2). The mean values of organic matter throughout the first 75 cm of the 260 

sediment core were ca. 7% with a decreasing trend toward the top. A sharp shifting was 261 

observed ca. 75 cm (contact zone of Facies 8 and 9), where the organic matter content 262 

decreased towards the bottom of the core. Carbonate content was low, with mean values 263 

around 0.05% and increasing values in Unit 1.  264 

 265 

4.2. Age-depth model  266 

The chronological model based on three 14C radiocarbon dates (Fig. 3) yields an 267 

average sedimentation rate (SR) of 1.47 mm/yr for Laguna Blanca Grande sediment 268 

core. However, the model showed distinct sedimentation rates depending on the age 269 

(Fig. 3). From 99.5 to 40 cm, the SR was relatively higher but it slowed down from 40 270 

cm to the top of the sediment core.  271 

 272 

4.3. Diatoms  273 

A total of 55 diatom taxa representing 34 genera were identified in the Laguna 274 

Blanca Grande sediment core. The most representative taxa belonged to seven genera 275 

(Aulacoseira, Cyclotella, Thalassiosira, Nitzschia, Amphora, Staurosira, and Surirella). 276 

Aulacoseira granulata (Ehrenberg) Simonsen and Aulacoseira granulata var. 277 

angustissima (O.Müller) Simonsen dominated the sediment record (Fig. 4). Other 278 

abundant species were also Aulacoseira ambigua (Grunow) Simonsen, Aulacoseira 279 

muzzanensis (Meister) Krammer and Cyclotella meneghiniana (Kützing). Zonation 280 

analysis indicated the presence of four zones (DT-1, DT-2, DT-3 and DT-4). DT-1 zone 281 

(99.5-72 cm) was characterized by higher relative abundances of A. granulata and C. 282 

meneghiniana. In DT-2 (72-25 cm), the percentages of A. granulata decreased although 283 
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they were still high. The two upper zones (DT-3 and DT-4; 24-10 cm and 9-0 cm, 284 

respectively) were associated with a relative increase of A. granulata var. angustissima 285 

in detriment of A. granulata. Besides, in the uppermost zone (DT-4), Staurosira 286 

longirostris (Frenguelli) Metzeltin, Lange-Bertalot & García-Rodríguez, Staurosira 287 

construens Ehrenberg and Surirella rorata Frenguelli increased their relative 288 

abundances.  289 

DCA axes 1 and 2 of diatom samples were 1.52 and 1.16 standard deviations 290 

(SD) of species turnover in length. A. granulata var. angustissima, S. longirostris and S. 291 

construens had the highest scores on DCA Axis 1, while A. granulata and A. 292 

muzzanensis and chrysophytes, were associated with the lowest scores (Fig. 4). 293 

 294 

4.4. Cladocera 295 

A total of six Cladocera taxa were identified in Laguna Blanca Grande (Fig. 5); 296 

Bosmina Baird, 1846, which usually prefers pelagic environments and five littoral taxa 297 

Chydorus sphaericus-group, Leydigia sp. Kurz, 1875, small Alona sp., Alona cf. affinis 298 

(Leydig, 1860) and Pleuroxus Baird, 1843 (Fig. 5). Bosmina was the dominant taxa 299 

throughout the sediment core with relative values ca. 70 - 90%. In the CL-1 zone (99.5 - 300 

75 cm), Bosmina showed its maximum relative abundances. CL-2 (75-10 cm) zone was 301 

marked by higher relative abundances of Chydorus sphaericus-group, which together 302 

with the benthic Leydigia had a more continuous presence throughout the zone. 303 

However, both groups of cladocerans showed several changes along the whole zone, 304 

especially around 32 cm, where Chydorus increased at the expense of Bosmina. CL-3 305 

(10 - 0 cm) was characterized by higher values of Bosmina and decreasing values of the 306 

benthic species. 307 

4.5. Ostracods 308 

Four species of ostracods were recorded in the Laguna Blanca Grande sediment 309 

record (Fig. 6): Limnocythere cusminskyae Ramón-Mercau, 2014, Cyprideis salebrosa 310 

Bold, 1963, Heterocypris incongruens Ramdohr, 1808 and Ilyocypris ramirezi 311 

Cusminsky and Whatley, 1996. The number of individuals per sample never exceeds 312 

400 and the maximum abundance was 40 ind /mL (Fig. 6). Limnocythere cusminskyae 313 

and H. incongruens were the main taxa of the assemblage. L. cusminskyae dominated 314 
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over 90% of the assemblages and represented 85% of individuals throughout the core. 315 

In fact, six out of the 23 samples contained monospecific populations of L. 316 

cusminskyae, which were dominated by females. Ilyocypris ramirezi was only found in 317 

two samples, while only juvenile valves from C. salebrosa were found in five depths. 318 

The preservation of the valves throughout the composite sequence was heterogeneous, 319 

with both well preserved and broken specimens.  320 

OST-1 (104 -75 cm) was characterized by the presence of gastropods, fish 321 

scales, charophytes, L. cusminskyae (< 25 ind/mL), H. incongruens and juveniles from 322 

C. salebrosa ). In OST-2 (75 - 63 cm) and OST-4 (51 - 39 cm), ostracods were absent. 323 

The top of OST-3 (63-51cm) was mainly composed of articulated shells of L. 324 

cusminskyae (< 40 ind/mL) with some valves of H. incongruens. In OST-5 (39 - 7 cm), 325 

gastropod remains, fish scales and testate amoebae were recorded, while ostracods were 326 

again abundant (< 30 ind/mL). Limnocythere cusminskyae was the dominant species, 327 

representing 85% of the assemblage, followed by H. incongruens (13%), while I. 328 

ramirezi and C. salebrosa represented the remaining 2%. In OST-6 (7 - 0 cm), ostracods 329 

were less abundant than in the previous zone. Only specimens of L. cusminskyae with 330 

ruptured and disarticulated valves together with testate amoebae and fish remains were 331 

recovered (Fig. 6).  332 

 333 

5. Discussion 334 

The biological assemblage in Laguna Blanca Grande is typical of shallow, eutrophic 335 

and alkaline freshwater systems from the Pampean region (Hassan, 2011; Laprida, 336 

2006; Paggi, 1998b; Plastani et al., 2019; Smol, 1985). Biological proxies coupled with 337 

sediment properties' changes suggested a shift in nutrients and hydroclimatic conditions 338 

during the last centuries. Diatom assemblage was marked by high relative abundances 339 

of A. granulata, which is replaced by the variety angustissima in the upper part of the 340 

record. Given the different ecological preferences of these varieties for nutrient 341 

conditions (Bicudo et al., 2016; Kilham and Kilham, 1975; Stoermer et al., 1985; 342 

Turkia, 1999), this is interpreted as changes in trophic state. Bicudo et al. (2016) and 343 

Turkia and Lepisto (1999) found that A. granulata has a lower weighted average 344 

optimum for nitrogen and phosphorous than the variety angustissima. Moreover, the 345 

increase of A. granulata var. angustissima in our sequence also occurs together with an 346 
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increase of C. meneghiniana, which is favored by high organic and turbid waters with 347 

limited light penetration (Hassan, 2013). These inferred changes in nutrient conditions 348 

are further evidenced by the DCA axis 1, which reflected the turnover of A. granulata 349 

by the variety angustissima in the upper part of the record and showed negative scores 350 

dominating before 1750 AD (Fig. 6). This inferred change in nutrient availability was 351 

not followed by an increase in organic matter, as shown in Figure 2. In many lakes, a 352 

large fraction of organic matter is decomposed under conditions high concentrations of 353 

oxygen and resuspension of sediments generated by wind (Meyers and Ishiwatari, 354 

1995). These conditions are more frequent in polymictic lakes, like Pampean lakes, 355 

where the entire water column is mixed over the year or even daily. Mixing would 356 

produce an oxic environment at the bottom, increasing the rates of decomposition of 357 

organic matter by microorganisms in the upper part of the record. Furthermore, the 358 

nutrient increase might have triggered the observed shift in species composition but not 359 

a biovolume increase, as also noted in other paleoecological studies (e.g. López-Blanco 360 

et al., 2011).  361 

However, the remaining biological and sedimentological proxies did not register 362 

a distinct change in the nutrient state, but they may indicate small oscillations in lake 363 

levels. The interpretation of cladoceran assemblages has limitations derived from the 364 

restricted knowledge of taxonomical and autecological characteristics in this part of the 365 

world. The assemblages showed the dominance of Bosmina sp., which generally has 366 

pelagic preferences. Regarding nutrient availability, Bosmina has eurioic preferences 367 

since it has been recorded both in oligotrophic (López-Blanco et al., 2020, 2011) and 368 

eutrophic environments (George, 1974; Lotter et al., 1998; Solis et al., 2018). The main 369 

components of the cladoceran littoral-benthic community might have been favored 370 

either under lower lake levels and/or under an increase in the trophic conditions. C. 371 

sphaericus and Alona are ubiquitous taxa with a great capacity for colonization, they 372 

can benefit from both nutrient enrichment and shallower conditions (Alonso, 1996; 373 

Smirnov, 1971). However, when plotting planktonic/benthonic ratio from cladoceran 374 

assemblages and comparing with ostracods, sedimentological data and other regional 375 

reconstructions, all together were concordant with small changes in hydrovariability 376 

(Fig. 7). Ostracods show a response to conductivity changes and thus, to small lake 377 

level changes. Four zones (OST-1, 3, 5 and 6) were characterized by the dominance of 378 

L. cusminskyae, which is highly tolerant to alkaline conditions and oligohaline waters 379 
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(Laprida, 2006; Marquez et al., 2016) and suggest a higher solute concentration at 380 

shallower levels. These biozones were intercalated by OST-2 and OST-4, where the 381 

absence of ostracods may indicate unstable conditions for ostracod colonization.  382 

At the bottom of the sediment core (99.5 - 72 cm; ca. AD 1335-1472) (DT-1; 383 

CL-1; OST-1), less eutrophic conditions are inferred by higher values of A.granulata. 384 

The sediment here was composed of dark brown sandy coarse silt (Unit 1), poor in 385 

organic matter. The highest proportion of sand fraction in this unit, as well as the 386 

highest sedimentation rate, suggest important fluvial input that might have increased the 387 

lake level. The dark brown color associated with low organic matter content indicates 388 

relatively strong reducing conditions and a deposition in a perennial lacustrine 389 

environment (Wu and Li, 2004). The highest sedimentation rate calculated from the 390 

age-depth model in this section (Fig. 3) and the higher values of Bosmina and A. 391 

granulata, which was also related to high river flow conditions (Hötzel and Croome, 392 

1996; Nogueira, 2000; Wang et al., 2009), are also compatible with considerable 393 

sediment input due to the high water inflow in Laguna Blanca Grande. Higher lake level 394 

reconstructed in the lower LIA (ca. AD 1270-1340) in Laguna Blanca Grande agrees 395 

well with the idea of a more humid phase inferred from Botuverá Cave (Bernal et al., 396 

2016; Fig. 7) and with more humid conditions during the preceding period, the 397 

Medieval Climatic Anomaly (ca. AD 900-1300) (Cioccale, 1999; Iriondo and Kröhling, 398 

1995). At the regional scale, this inference is concordant with the high-level stands 399 

described in Lagunas Encadenadas del Oeste (Laprida et al., 2009), Laguna Mar 400 

Chiquita (Coianiz et al., 2014; Piovano et al., 2002) and Lake Melincué (Guerra et al., 401 

2015) (Fig. 7). 402 

From ca. 72 – 9 cm (ca. AD 1472-1930) (DT-2) decreasing proportions of A. 403 

granulata in favor of A.granulata var. angustissima indicated variable conditions in 404 

terms of nutrient enrichment. Documentary sources show that indigenous societies were 405 

already present in the Pampean region 1000 years ago (Mazzanti, 2003). However, most 406 

of the native inhabitants were small and nomadic groups of hunter-gatherers and the 407 

population situated southern to Rio Salado was very scarce until the eighteenth century 408 

(Aldazabal, 2002). In AD 1828, historical documents situated the military fort of Blanca 409 

Grande during the “Previous Seasons to the Desert Conquest” very close to the lake for 410 

a very short time (Crivelli, 2013). Before Laguna Blanca is already mentioned in some 411 

historical documents from AD 1770-1790 (Floury-Dagorn, 2013), but there is historical 412 
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and documentary evidence of the presence of sparse native population whose main 413 

activity was stockbreeding (Pedrotta et al., 2012). This period of variable nutrient 414 

enrichment was probably combined with small lake level oscillations with a tendency 415 

towards shallower conditions at the end of this period. Laminated dark brown silty fine 416 

sand (Unit 2) that changes to black sandy silt highly bioturbated with higher organic 417 

matter content (Unit 3) suggests a deposition by suspension in a low energy 418 

environment, which is concordant with the absence of ostracods (OST-4, OST-2) and 419 

with higher Bosmina abundances at relatively higher levels. The decrease in sand 420 

content indicates limited fluvial input in comparison with the previous period, which is 421 

supported by a lower SD in the chronological model (Fig. 3). The fine clastic lamination 422 

could respond to variations in the water and sediment inputs into the lake. In Unit 5, the 423 

sediment was composed of dark brown sandy coarse silt with iron mottles indicating 424 

intermittent oxidized conditions, which suggests that they were mainly deposited on a 425 

very shallow lake with high mixed conditions or temporary subaerial exposure. 426 

Ostracods also showed the highest total values and a more continuous presence, 427 

supporting the idea of decreasing lake levels. In particular, L. cusminskyae dominated 428 

the assemblage, which, together with H. incrongruens, might also indicate oscillations 429 

in lake levels and subsequent conductivity variations (Kihn et al., 2017; Laprida and 430 

Valero-Garcés, 2009; Marquez et al., 2016). Lake level fluctuations with a progressive 431 

reduction of level from 1340 AD to 1900 AD are ascribed to drier conditions and 432 

frequent extreme events registered in the Pampean region during the LIA (Córdoba, 433 

2012; Córdoba et al., 2014; Guerra et al., 2017; Laprida et al., 2009; Piovano et al., 434 

2009). 435 

Nutrient enrichment is inferred in the upper part of the sediment record (from 9 436 

cm; AD 1925) by higher relative abundances of the diatoms A.granulata var. 437 

angustissima and by the establishment of S. longirostris and S. construens (Dixit et al., 438 

1992). Hassan et al. (2014) also interpreted a shift from Aulacoseira spp. by fragilariod 439 

taxa as a nutrient increase caused by the development of intensive farming activities. 440 

The Pampean Region experienced large scale deforestation since the end of the 19th 441 

century due to agriculture and railroad construction, which favored soil degradation 442 

(Dussart et al., 2011; Melo, 2004). Locally, colonists from Russia and Germany were 443 

established in Olavarría from AD 1878 within a national strategy to inhabit the 444 
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Pampean region. Intensification of the farming activities to obtain wheat, potatoes, corn 445 

and vegetables transformed the original landscape (Pedrotta et al., 2012).  446 

In the uppermost part of the sequence (7.5cm; from ca. 1940), higher and 447 

relatively steady values of lake level with episodes of high energy are inferred. The 448 

sedimentary properties of Unit 6 and by the presence of disarticulated ostracod valves 449 

indicated events of higher mechanical disturbance. However, this inference in our 450 

record did not agree with regional reconstructions, which .recognized changes in 451 

hydrovariability. A regional increase of precipitation in AD 1940 was detected in 452 

instrumental records (Garreaud, 2009; Guerra et al., 2017; Pasquini et al., 2006). 453 

Similar hydroclimatic tendencies were also recognized in different paleolimnological 454 

records from the Pampean plain (Córdoba et al., 2014; Fontana, 2005; Laprida and 455 

Valero-Garcés, 2009; Piovano et al., 2009; Stutz et al., 2014). However, at a local scale, 456 

intensive periods of flooding and droughts in the western part of the Buenos Aires 457 

province led to agriculture losses and hydrological works (Monachesi and Albaladejo, 458 

1997). The sluice gate construction in the 1950s might have effectively controlled lake 459 

levels in Laguna Blanca Grande and might be the origin of Unit 6 and the disarticulated 460 

valves of ostracods.  461 

Although our paleoecological reconstruction agrees well with previous 462 

inferences, historical documents and instrumental records, the timing of the 463 

reconstruction in the upper part of the record (from the last 14C date to the top of the 464 

core) should be considered with caution because the age control points here are sparse. 465 

A higher number of independent 14C tie points or a 210Pb-137Cs chronology in the upper 466 

part of the sediment would provide a more accurate chronology for the recent human 467 

impact.  468 

 469 

6. Conclusions 470 

Overall and despite the low resolution of this sedimentary record, our paper 471 

contributes to increasing the spatial resolution in the Pampean plain in terms of both 472 

humidity and nutrient enrichment, as well as to understand the role and trends of natural 473 

variability versus anthropogenic impact in the last centuries. Human activities started in 474 

this region around ca. AD 1800 with the official foundation of the first towns (Pedrotta 475 

et al., 2012) but anthropogenic impacts were not evident until the twentieth century, 476 
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when agricultural expansion (Monachesi and Albaladejo, 1997) led to nutrient 477 

enrichment and the establishment of a new diatom assemblage dominated by A. 478 

granulata var. angustissima and by fragilariod taxa. The main periods of hydrological 479 

variability, notably the humid phase (ca. AD 1450) and progressive drier conditions  480 

mirror previous reconstructions in the region. Recent alterations of the hydrological 481 

cycle (ca. AD 1950) are consistent with further anthropogenic impacts in Laguna 482 

Blanca Grande, already shown by the nutrient enrichment. High-resolution studies 483 

would improve our understanding of complex climatic patterns operating in this zone. 484 

However, further studies on taxonomy and autecology are needed to refine the 485 

paleoecological interpretations based on biological proxies and to effectively unlock the 486 

information contained in its sediment records. 487 

 488 
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Tables 845 

Table 1. Lithological description and facies characterization of the composite core LBG 846 
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 848 

 849 

 850 

 851 

 852 

 853 

Facies DEPTH (cm) DESCRIPTION 
SEDIMENTARY 

UNITS 

Facies 1 0-7 
Massive, very fine sandy coarse silt, dark brown color, saturated in 

water, rich in organic matter, abundant plant macro remains. 

Unit 6 

Facies 2 7-11 
Very fine sandy very coarse silt, brown color, with massive 

structure. It has diffuse planar contact with the underlying unit.. 

Facies 3 11-25.5 
Massive, very fine sandy coarse silt, dark brown, with iron mottles,  

It has indistinct contact with the underlying unit 
Unit 5 

Facies 4 25.5-26 
Very fine sandy very coarse silt, dark grayish brown color, with 

massive structure. It has indistinct contact with the underlying unit   

Unit 4 Facies 5 26-31.5 
very fine sandy coarse silt, dark brown color, with massive 

structure. It has indistinct contact with the underlying unit 

Facies 6 31.5-52 
Very fine sandy very coarse silt, brown color, with massive 

structure. It has indistinct contact with the underlying unit 

Facies 7 52-67.5 

Very fine sandy very coarse silt, black color, with high 

bioturbation. It has a diffuse planar contact with the overlaying 

unit. 

Unit 3 

Facies 8 67.5-75.0 

Very coarse-silty fine sand, lightly laminated,  with thin light 

brown sandy (1-2 mm) laminae interbeed in dark-organic bed, very 

dark brown color. It has a planar sharp contact with the overlaying 

unit.   

Unit 2 

Facies 9 75.0-81.5 

Very fine sandy very coarse silt. Presence of root remains, and 

light bioturbation, very dark brown color.  It has a planar sharp 

contact with the overlaying unit. 

Unit 1 Facies  

10 
81.5-93 

Very fine sandy very coarse silt with a higher proportion of silt 

than the overlying unit, brown-black color. It has a planar sharp 

contact with the overlaying unit. 

Facies 11 93-104 
Very fine sandy very coarse silt, black color. It has a diffuse planar 

contact with the overlaying unit 
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Figure captions 854 

 855 

 Figure 1. Location map of the study site. A) Location of the study site in South 856 

America, showing the location of the main paleolimnological studies in the region: 1) 857 

La Brava (Irurzun et al. 2014); 2) Lakes Nahuel Rucá and 3) Lonkoy (Stutz et al., 2010, 858 

2012); 4) Lake La Barrancosa (Plastani et al. 2018); 5) Lagunas Encadenadas del Oeste 859 

(Córdoba et al. 2012); 6) Lake Adela (Dangavs & Mormeneo, 2012); 7) Laguna del 860 

Monte (Dangavs & Pierrad (2013); 8) Lake Melincué (Guerra et al. 2015) and 9) 861 

Laguna Mar Chiquita B) Photograph of the lake and C) Satellite image of the lake 862 

showing the inlets and outlets. 863 

Figure 2. Correlation and physical properties of the Laguna Blanca Grande sediment 864 

cores. From left to right: cross-correlation between LBG-A and LBG-B, dark red 865 

rectangles show the depth of radiocarbon samples; sedimentary facies; lithology; 866 

lithological description; granulometry; organic matter (LOI), carbonate content and 867 

sedimentary units of the resulting composite core LBG.  868 

Figure 3. Chronological model for Laguna Blanca Grande sequence based on three 869 

AMS 14C dates. The upper panel shows a table with the radiocarbon dates on Laguna 870 

Blanca Grande analyzed at 14CHRONO Centre for Climate, the Environment, and 871 

Chronology School of Geography, Archaeology, and Palaeoecology at the Queen’s 872 

University Belfast (UBA code). Calibrated dates showed in the table were obtained in 873 

OxCal applying the ShCal13 calibration curve. Material dated: bulk sediment. The 874 

sample not used in the model is indicated in red. In the bottom panel, the Bayesian age 875 

model showing the calibrated 14C dates (transparent blue) and the age-depth model 876 

(darker greys indicate more likely calendar ages; grey stippled lines show 95% 877 

confidence intervals; red curve shows single ‘best’ model based on the weighted mean 878 

age for each depth) (Blaauw and Christen, 2011).  879 

Figure 4. In the upper panel, the relative abundance of diatom species and Crysophyte 880 

cysts in LBG sediment core. Diatom zones (DT1-4) are based on the indicated cluster 881 

constrained analysis. In the bottom panel, a DCA ordination of (black circles), showing 882 

presenting the ecological space occupied by samples (red diamonds). 883 
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Figure 5. Relative abundance of the cladocerans in Laguna Blanca Grande sediment 884 

core. Cladocera zones (CL1-3) are based on the indicated cluster constrained analysis 885 

Figure 6. Absolute abundance of ostracods in Laguna Blanca Grande sediment core. 886 

*Only juveniles were recorded. Zonation was defined using optimal division 887 

information content after applying a square-root transformation on the data set. 888 

Figure 7. Comparison of proxies from the Laguna Blanca Grande sequence and selected 889 

local and regional palaeoclimate reconstructions in South America and the Pampean 890 

region. In the upper panel regional and Pampean reconstructions. In the lower panel 891 

compilation of the biological and sedimentological proxies together with 892 

historical/documentary data of anthropogenic activities in Laguna Blanca Grande. From 893 

upper to lower part of this panel:  Bosmina sp. (%), ostracod biozones, sedimentary 894 

units, sedimentation rate, loadings from diatom DCA axis 1, paleoecological inferences 895 

about hydroclimatic variability/nutrient enrichment and historical data of land 896 

occupation and uses.  897 
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HIGHLIGHTS 

• Lakes in the Pampean region contain important archives of past environments. 

• Sediment properties and biological proxies were analysed in a 700-years record. 

• Lakes level changes mirror past hydroclimatic variability. 

• Anthropogenic activities induced a nutrient increase in the last century. 

 

Jo
urn

al 
Pre-

pro
of



Declaration of interests 

 

☒ The authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

 

☐The authors declare the following financial interests/personal relationships which may be considered 

as potential competing interests:  

 

 
 
 

 

 

Jo
urn

al 
Pre-

pro
of


