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Abstract: In this paper, we describe QUBIC, an experiment that will observe the polarized microwave
sky with a novel approach, which combines the sensitivity of state-of-the-art bolometric detectors with
the systematic effects control typical of interferometers. QUBIC’s unique features are the so-called
“self-calibration”, a technique that allows us to clean the measured data from instrumental effects, and
its spectral imaging power, i.e., the ability to separate the signal into various sub-bands within each
frequency band. QUBIC will observe the sky in two main frequency bands: 150 GHz and 220 GHz.
A technological demonstrator is currently under testing and will be deployed in Argentina during
2019, while the final instrument is expected to be installed during 2020.

Keywords: B-modes; bolometers; Cosmic Microwave Background; inflation; polarimetry

1. Introduction

The Q&U Bolometric Interferometer for Cosmology (QUBIC) is an experiment based on the
concept of bolometric interferometry [1] and designed to measure the B-mode polarization anisotropies
of the Cosmic Microwave Background (CMB). The QUBIC design combines the sensitivity of Transition
Edge Sensors (TES) bolometric detectors with the systematic effects and foreground control provided
by its interferometric design.

The control of astrophysical foregrounds, in particular, is a factor of increasing importance in
CMB polarization experiments, and QUBIC allows us to disentangle sub-bands in each main frequency
band thanks to its spectral imaging capability, which is deeply rooted in the interferometric nature of
the instrument.

QUBIC will operate from the ground observing the sky in two main spectral bands centered at
150 and 220 GHz [2] and will be deployed in Argentina, at the Alto Chorrillos site. The team is currently
finalizing the laboratory tests of the technical demonstrator, a simplified version of the instrument that
will be installed at the site during 2019 and will demonstrate the technical and scientific potential of
our approach. The final instrument will be deployed during 2020.

2. The Instrument

Figure 1 shows a schematics of QUBIC. The signal from the sky enters the cryostat through
a High-Density Polyethylene (HDPE) window. Then, a rotating half-wave plate modulates the

http://www.mdpi.com/2218-1997/5/2/42?type=check_update&version=1
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polarization, and a polarizing grid selects one of the two linear polarization components. An array of
400 back-to-back corrugated horns collects the radiation and re-images it onto a dual-mirror optical
combiner that focuses the signal onto two orthogonal TES detectors focal planes. A dichroic filter
placed between the optical combiner and the focal planes selects the two frequency bands, centered
at 150 GHz and 220 GHz. The right panel of Figure 1 shows a 3D rendering of the inner part of
the cryostat.
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Figure 1. (Left) Schematic of the QUBIC instrument. The window aperture is about 40 cm; the cryostat is
about 1.41 m in diameter and 1.51 m in height; (right) 3D rendering of the inner part of the cryostat. TES,
Transition Edge Sensor.

A key part of the instrument is an array of movable shutters placed between the primary and
secondary feed-horn arrays. Each shutter acts as an RF switch (a blade that can slide into a smooth
circular waveguide), which is used to exclude particular baselines when the instrument operates in
calibrating mode. We call this particular calibration strategy “self-calibration”, which is a key feature
of the QUBIC systematic effects control. The interested reader can find the detailed description of all
instrument parts in [3] and the theory of self-calibration in [4,5].

3. Measurement, Self-Calibration, and Spectral Imaging

3.1. Signal Model and Synthetic Beam

In QUBIC, the optical combiner focuses the radiation emitted by the secondary horns onto the
two focal planes so that the image that forms on the detector arrays is the result of the interference
arising from the sum of the fields radiated from each of the 400 apertures.

Therefore, the signal measured at time t by a detector p on the focal plane is:

R(p, ν, t) = K
[
SI(p, ν) + cos(4 φHWP(t)) SQ(p, ν) + sin(4 φHWP(t)) SU(p, ν)

]
, (1)

where ν is the frequency, φHWP is the angle of the half-wave plate at time t, and K is an overall
calibration constant that takes into account the efficiency of the optical chain. The three terms SI,Q,U
in Equation (1) represent the sky signal in intensity and polarization convolved with the so-called
synthetic beam.

The images in Figure 2 help the reader to understand this concept qualitatively. Imagine that
QUBIC observes a point source in the far field located directly along the line-of-sight with all 400
antennas open to the sky. The image formed on each of the focal planes (see the right panel of Figure 2)
is an interference pattern formed by peaks and lobes. This pattern works like a beam pattern that
convolves the sky signal.
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Therefore, if X is the signal from the sky (either in intensity, I, or polarization, Q, U), then the
measured signal on the pixel p is SX(p) =

∫
X(n)Bp

synth(n)dn. This means that QUBIC data can be
analyzed similarly to the data obtained from a normal imager, provided that we build a window
function of the synthetic pattern for each pixel.
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Figure 2. (Left) QUBIC aperture plane showing all 400 antennas open to the sky; (right) the interference
pattern formed on each of the focal planes when the instrument is observing a point source located
in the far field vertically along the instrument line-of-sight. The u and v coordinates are defined as:
u = sin θ cos φ and v = sin θ sin φ, where θ and φ are the angles on the celestial sphere defining the
synthetic beam.

3.2. Self-Calibration

QUBIC self-calibration is a technique derived from radio-interferometry self-calibration [4].
In QUBIC, self-calibration exploits the redundant interferometric patterns obtained when we selectively
close various combinations of the 400 instrument apertures.

To understand the basic concept, see the four panels of Figure 3. The top-right plot shows the
interference pattern arising from a horn configuration in which only two horns are open and all the
others are closed (top-left). The panels in the bottom row show that if we open any other horn pair
with the same baseline, we should ideally obtain exactly the same interference pattern. Furthermore,
in [5], Bigot-Sazy et al. showed that the configuration in which only two horns are open is equivalent
to the complementary arrangement in which only two horns are closed.

We can now use the fact that, for an ideal instrument, the interferometric pattern depends only
on the baseline. This allows us to characterize the instrumental parameters using an observation
mode called self-calibration. During self-calibration, pairs of horns are successively shut while QUBIC
observes an artificial partially-polarized source (a microwave synthesizer or a Gunn oscillator) in the
far field. Then, we reconstruct the signal measured by each individual pair of horns in the array and
compare them.

The point now is that if the source is stable and carefully monitored, then redundant baselines
correspond to the same mode of the observed field, so that a different signal between them can only
be due to photon noise or instrumental systematic effects. Using a detailed parametric model of the
instrument, we can fully recover the instrument parameters through a non-linear inversion process.
The updated model of the instrument can then be used to reconstruct the synthetic beam and improve
the map-making, thus reducing the leakage from E- to B-modes.

In Figure 4 (adapted from [5]), we show the improvement in the power spectrum estimation
with self-calibration according to three schemes. Even with 1 s per baseline (corresponding to a full
day dedicated to self-calibration), we can reduce significantly the E → B leakage. This leakage can
be further reduced by spending more time in self-calibration. The three B-mode power spectra in
black solid lines are the theoretically-expected spectra for three values of the parameter r, i.e., the ratio
between the amplitudes of the tensor and scalar fluctuations during inflation.
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Figure 3. Schematics of QUBIC self-calibration. The pictures in the two rows show that if we
open any pair of horns with a given baseline, then we should ideally measure exactly the same
interference pattern.

1 s
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100 s

r = 10-3

r = 10-2

r = 10-1

100

10010
10-6

1
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10-2

Figure 4. Improvement in the recovery of the B-mode power spectrum as a function of the time spent
in the self-calibration mode. The three curves drawn with black solid lines represent theoretical B-mode
power spectra calculated for three different values of the tensor-to-scalar ratio, r.

3.3. Spectral Imaging

The interferometric nature of QUBIC provides us with another unique feature: the possibility to
split the data of each main frequency band into sub-bands, thus considerably increasing the leverage
in the control of astrophysical foregrounds.



Universe 2019, 5, 42 7 of 10

This feature is called “spectral imaging”, and its concept is explained schematically in Figure 5.
The left panel of Figure 5 shows the synthetic beams (solid lines) and main feedhorn beams
(dashed lines) at two monochromatic frequencies. The figure clearly shows that the sidelobe peaks are
well separated, and this sensitivity of the synthetic beam to the frequency can be exploited to separate
the various sub-bands in the input data.
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0.2

0.0
10
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Figure 5. (Left) Cut of the synthesized beam for two monochromatic signals. The main central peaks
superimpose each other, but the first lobes are separated so that they can be resolved. The dashed lines
represent the horn beams. (Right) Schematics representing the ability to resolve spectral sub-bands in
each of the main QUBIC bands. The instrument first separates the wide-band sky signal into two main
bands (150 and 220 GHz), then we further separate each band into sub-bands thanks to the spectral
sensitivity of the synthesized beams. The Planck maps shown on the left have the only purpose of
explaining the concept.

The right panel of Figure 5 shows schematically the process of sub-band separation in the data
analysis. The instrument measures the wide-band sky signal and splits the two main frequency bands
of 150 GHz and 220 GHz. Then, the main bands are further separated in the data analysis pipeline
by exploiting the frequency sensitivity of the synthetic beam. The interested reader can find further
details about the QUBIC data analysis in [1].

As spectral imaging opens new possibilities of foreground control, it also requires component
separation codes that have been not been developed yet. We are currently working on a first detailed
assessment of its potential and will soon submit a specific paper on spectral imaging.

4. The QUBIC Site

QUBIC will be deployed in Argentina, at the Alto Chorrillos mountain site (24◦11′11.7′′ S;
66◦28′40.8′′ W, altitude of 4869 m a.s.l.) near San Antonio de los Cobres, in the Salta province [6]
(see the left panel of Figure 6). The zenith optical depth measured at 210 GHz, τ210, is <0.1 for 50% of
the year and <0.2 for 85% of the year. Winds are usually mild (< 6 m/s for 50% of the year), which
suggests limited turbulence.

While the statistics for τ210 in Alto Chorrillos is worse than that of an Antarctic site (either South
Pole or Dome C), the site access and logistics are easier. Our trade off is also justified by the following
two facts: (i) the atmospheric emission is not polarized to first order, and (ii) a bolometric interferometer
intrinsically rejects large-scale atmospheric gradients, which produce most of the atmospheric noise.

The right panel in Figure 6 (adapted from [3]) shows the overall site quality. In the plot, we see
the uncertainty in the tensor-to-scalar ratio, r, as a function of the fraction of usable time for two years
of operations. The circled point shows the estimate for the case in which zero or 12 h are spent each
day in calibration mode. The plot shows that for a 30% usable time (a conservative estimate for our
site), we can reach a sensitivity on r of 10−2 with two years of operations.
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Self-calibration

ACT: Atacama Cosmology Telescope
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LLAMA: Large Latin American Millimiter Array

Figure 6. (Left) Location of the QUBIC site compared to the Atacama plateau; (right) uncertainty in
the tensor-to-scalar ratio, r, as a function of the fraction of usable time for two years of operations.
The parameter r was computed considering noise-only simulations.

5. Scientific Performance

In Table 1, we provide a summary of the expected sensitivity of QUBIC to the tensor-to-scalar
ratio parameter, r, compared with the major ground-based experiments in the same frequency range,
either running or expected to be deployed in the near future.

From the table, we see that all the experiments compete for a detection of r in the range of
10−2–10−3. The expected sensitivity, however, is not the only performance parameter to be considered
in ranking various experiments. Susceptibility to systematic effects and foreground control are as
important as the white noise sensitivity. In this respect, QUBIC is unique in the landscape of CMB
experiments: it is based on a completely different design, is less prone to instrumental systematic
effects, and allows a deeper control of foregrounds thanks to its spectral imaging capability.

Table 1. Summary of the main B-mode ground experiments operating in a frequency range similar to
QUBIC. The label “fg” or “no fg” corresponds to the assumption on the foregrounds; numbers have
been extracted from [7].

Project Frequencies (GHz) ` Range Ref.
σ(r) Goal

no fg. with fg.

QUBIC 150,220 30–200 6.0× 10−3 1.0× 10−2

Bicep3/Keck 95, 150, 220 50–250 [8] 2.5× 10−3 1.3× 10−2

CLASS ? 38, 93, 148, 217 2–100 [9] 1.4× 10−3 3.0× 10−3

SPT-3G † 95, 148, 223 50–3000 [10] 1.7× 10−3 5.0× 10−3

AdvACT ‡ 90, 150, 230 60–3000 [11] 1.3× 10−3 4.0× 10−3

Simons Array 90, 150, 220 30–3000 [12] 1.6× 10−3 5.0× 10−3

? CLASS: Cosmology Large Angular Scale Surveyor; † SPT-3G: South Pole Telescope—3rd generation;
‡ AdvACT: Advanced Atacama Cosmology Telescope.

6. Current Status

QUBIC is currently in the phase of laboratory calibration of the so-called “Technological Demonstrator”
(TD). The TD has a reduced focal plane and horn array with respect to the full instrument. In particular,
the TD has only one-quarter of the 150 GHz TES focal plane, an array of 64 + 64 horns, 64 switches,
and a smaller optical combiner. The TD will not produce science, but it will demonstrate the feasibility
of the bolometric interferometry both in the laboratory and in the field.

In Figure 7, we show various QUBIC components. Panel (a) shows one of the two cryogenic
detection chains. On top of the chain, one can see the TES focal plane. Panel (b) shows the array of the
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64 + 64 back-to-back dual-band corrugated horns interfaced with the switch array. Panels (c) and (d)
show the 1 K box before and during the integration into the QUBIC cryostat.

(a) (b) (c) (d)

Figure 7. Status of the current QUBIC development. (a) The cryogenic section of the QUBIC detection
chain; (b) the TD array of 64 + 64 back-to-back horns interfaced with their switches; (c) the integrated
1 K box; (d) integration of the 1 K box in the cryostat shell.

As of November 2018, QUBIC TD is cold and being calibrated at the Laboratoire AstroParticule &
Cosmologie (APC) in Paris. This testing phase will end at the beginning of Spring 2019, when QUBIC
will be shipped to Argentina and installed at the site for a first-light test foreseen within 2019. In the
meantime, in Europe, we will proceed to the fabrication of the final instrument missing parts: the full
TES focal planes, the array of 400 + 400 horns interfaced with the 400 switches, and the final optical
combiner. The deployment of QUBIC final instrument is foreseen to be completed by 2020.

7. Conclusions

QUBIC is a new way to measure the polarization of the CMB. It combines the sensitivity of TES
bolometric arrays with the control of systematic effects that are typical of interferometers. This is a key
asset in CMB polarization experiments, where high sensitivity must be backed by comparable levels of
systematic effects and foreground control. QUBIC responds to this challenge with the key features of
self-calibration and spectral imaging, which are possible thanks to the interferometric nature of the
instrument. A technological demonstrator is currently being tested in the laboratory and will soon be
deployed in Argentina for a first-light test. We forecast the installation of the final instrument and the
start of scientific operations during 2020, opening the way for a new generation of instruments in the
field of Cosmic Microwave Background polarimetry.
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