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ABSTRACT
In this article, we analyze, in terms of a simple example, the incompatibility of parabolic evolution and general covariance. For this, we
introduce a unit time-like four-vector and study the simplest heat flux equation with respect to it. In cases where this vector field is surface
forming, then the local high wave number limit shows well posedness, but as soon as that property is lost, the Cauchy problem becomes
ill-posed. We also discuss how the Maxwell–Cattaneo type modification of the system renders it well posed and link the amplitude of the
modification, which is related to the so-called second wave speed of the system, to the size of the failure of surface orthogonality.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5123393

I. INTRODUCTION
In Galilean space-times, we have systems of equations describing dissipative fluids, which lead to a mixture of wave propagation and

dissipative damping. They constitute hyperbolic-parabolic systems and are built, in general, following the basic example of the Navier–Stokes
system. In these theories, there is a field representing the velocity of the fluid and some other quantities representing densities of energy and
particle number, and then constitutive relations linking several dissipative fluxes to derivatives of some of the above fields. Together with
energy, momentum, and particle number conservation, they constitute a closed evolution system.

It is well-known that the heat, or diffusion, equation which is of parabolic nature is not adequate, in general, since it allows for arbitrarily
large propagation speeds. In a relativistic scenario, it is usually replaced by a Cattaneo1 type equation, a procedure that renders the system
hyperbolic by introducing, without a formal derivation, a time derivative term in Fourier’s law. This promotes the heat flux to a dynamical state
variable and the corresponding constitutive equation to a hydrodynamic equation instead of the constraint relation status that it possesses
in the conventional theory. Moreover, the Cattaneo equation can be thought of as the precursor of the widely used extended thermody-
namics2 and second order theories3 which have thoroughly been analyzed in a formal mathematical fashion.4,5 This topic has widely been
addressed theoretically, experimentally, and numerically. However, the illposedness and stability of both parabolic and hyperbolic versions
of the heat equation are still obscure. Moreover, the relevant role of the space-time representation in the nature of the system has practically
been overlooked.

Other models have been proposed in order to attain the desired consistency between special relativity and non-equilibrium thermody-
namics (see, for example, Ref. 6 and references cited therein). However, such works focus primarily on the causal nature of the heat conduction
law and do not analyze the system in the more complete, covariant nature.

In this article, we analyze the dispersion relation that one is led to in the case of a Fourier heat conduction law, as well as including a heat
relaxation term following Cattaneo’s idea, in a covariant fashion by considering two cases. In the case where the assumed four-velocity vector is
surface forming, one can establish a 3 + 1 decomposition where the normal to the surfaces is precisely that four-velocity for all members of the
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foliation. In this case, the corresponding Cauchy problem is well posed, that is, solutions to the future of a given surface depend continuously
on the initial data. In the generic case, where the four-velocity is not surface forming, no such foliation exists. Thus, a Cauchy problem has
to be defined using an arbitrary foliation, starting from an arbitrary initial surface. The parabolic nature of the equations imply the existence
of arbitrarily large propagation speeds as the wave number goes to infinity, but the surfaces under consideration cannot be aligned to these
surfaces, and so perturbations influence the past of near-by points. This inconsistency is reflected in arbitrary blowups of perturbations as
wave numbers increase. Thus, apart from very particular, highly symmetric, irrotational situations, the equations are ill-posed.

In order to address the point described above in a clear and brief fashion, we have organized the rest of this note as follows: In Sec. II,
we state the problem by writing the heat equation as a system of partial differential equations both in a Galilean and covariant fashion and
study the corresponding dispersion relations for plane waves solutions in a linear approximation first in a co-moving frame, assuming one
can define such a frame (i.e., the hydrodynamic velocity forms surfaces), and second by following Hiscock et al.,7 considering a boost to an
arbitrary frame. The procedure is repeated in Sec. III but for a system where the Fourier law is replaced by a Cattaneo-type dynamic equation
for the heat flux. The conclusions of the analysis and final remarks are included in Sec. IV.

II. THE PARABOLIC HEAT EQUATION
To illustrate the problem at hand, it suffices to consider the following simple Galilean system (for a discussion on Galilean space-times,

see, for example, Ref. 8):
DT
Dt
= −

1
ncn

hab
∇aqb, (1)

qa = −κη̃a
b
∇bT, (2)

where D
Dt = (

∂
∂t + ua ∂

∂xa ) is the total (material) derivative, cn = (
∂e
∂T )n

is the specific heat at constant particle number density, κ is the thermal
conductivity coefficient, and η̃ab the Euclidean flat three-metric. The covariant, relativistic, version of the system in Eq. (1) is given by

ua
∇aT = −

1
ncn

hab
∇aqb, (3)

qa = −κhb
a∇bT, (4)

where ua denotes the fluid’s four velocity, and hab
= ηab + uaub, where ηab is the flat four-metric with a (−1, 1, 1, 1) signature and a normaliza-

tion, uaua = −1. Since ua would, in general, be a space-time field, the equations above would have their coefficients be space-time dependent.
However, it can be shown that a necessary condition for a system to be stable is that all constant coefficient systems obtained by freezing their
coefficients at the values of an arbitrary space-time point must be also stable.9 Intuitively as we look for higher and higher frequency modes,
we can restrict consideration to smaller and smaller patches of space-time, and so what becomes relevant in the limit are just the values of the
coefficients at every limiting point. Thus, for the purposes of the analysis here performed, it suffices to pretend that the equation coefficients
are constants and so amenable for Fourier transform techniques.

A. Stability in the surface forming case
If the four-vector ua is surface forming, that is, we can choose global surfaces whose tangent space is everywhere normal to ua, then we can

use one of them to pose a Cauchy problem, namely, to give the value of T at it and obtain a unique solution to the future of such surface. If we
were in such a case, we would see that perturbations propagate with arbitrary high speeds and so given any perturbation initially of compact
support its solution would spread to all space-time for any arbitrarily short time to the future of our initial slice. This is in contradiction
with the axiom of maximal propagation speed (the speed of light) assumed in general relativity, but actually is mathematically consistent and
results in a causal propagation where causal now is in the pre general-relativity sense. Specifically, instead of maximal propagation cones, we
have maximal propagation hypersurfaces. In the limit of infinite frequency, perturbations propagate along them.

Indeed, to see this look at the principal symbol of the system and analyze high frequency solutions, this suffices to assert whether the
system is well posed or not. Substituting time derivatives (ua

∇a) by s and space derivatives by ika, with uaka = 0, we get

sT = −
i

ncn
kbqb, (5)

qa = −iκkaT, κ > 0, (6)

out of which we obtain the associated matrix

M =
⎛
⎜
⎝

s
i

ncn
κik2 1

⎞
⎟
⎠

, (7)
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and from its determinant, the dispersion relation (where we have defined α = κ
ncn

)

s + αk2
= 0. (8)

Thus, the system is stable, and fluctuations decay to the future with a characteristic time (αk2
)
−1

.

B. The general, not-surface forming case
What happens when the four-velocity ua is not surface forming? To see this imagine in the previous case we take any space-like surface

as the Cauchy surface to start our evolution. We are in trouble: the perturbations are still traveling with arbitrarily large speeds, but since our
initial surface is different than that of the maximal propagation surface, signals would propagate to the future or the past of it, thus spoiling
the unique solution we are seeking to construct.

To see this in formulas, consider now the construction with a different vector, that is, we choose a four-vector na as being surface forming
and seek to pose the Cauchy problem along these hypersurfaces. Writing

gab
= eab

− nanb, nana = −1, eabna = 0, (9)

and
ua
= γ(na + βa

), βana = 0, (10)

where γ is the corresponding Lorentz factor for a boost with relative velocity βa. In such a frame, the differential operator for plane-wave
solutions is given by

∇̃a = −sna + ika, with kana = 0, (11)

with the following space, time, and hydrodynamic velocity projections,

na
∇̃a = s, ka

∇̃a = ik2, ua
∇̃a = γ(s + ikβ), (12)

where we have defined kβ = kaβa. In order to obtain hab
∇̃b, we write

hab
= eab

− nanb + uaub, (13)

and thus,
hab
∇̃a = ikb

− snb + γ(s + ikβ)u
b, (14)

Finally, the system in Eq. (1) within this representation (∇→ ∇̃) is given by

γ(s + ikβ)T = −
1

ncn
(ikb
− snb + γ(s + ikβ)u

b
)qb, (15)

qa = −κ(ika − sna + γ(s + ikβ)ua)T, (16)

which, considering T and the scalar (ika
− sna

)qa as independent variables, results in the following associated matrix:

M =
⎛
⎜
⎝

γ(s + ikβ)
1

ncn
−κ(s2 + k2

− γ2
(s + ikβ)

2
) 1

⎞
⎟
⎠

, (17)

and dispersion relation,
(αβ2γ2

)s2 + (2ikβγα − 1)γs − (γ2αk2
β + γikβ + αk2

) = 0. (18)

Taking β→ 0, one gets γs + αk2
= 0, which leads to the decay obtained in Sec. II A. For any non-zero boost, Eq. (18) has at least one root in

the right half of the complex plane (using a generalization of RH criterion). In order to see this, one can normalize the equation as

s2 + (p1 + iq1)s + (p2 + iq2) = 0, (19)
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with

p1 = −(αβ2γ)
−1

, q1 =
2kβ

β2 ,

p2 = −
1
β2 (k2

β +
k2

γ2 ), q2 = −
kβ

αβ2γ
.

The criterion for all roots to have negative real parts is given by p1 > 0 and q2
2 < p1(p1p2 + q1q2), which are clearly not satisfied. Thus, there is

at least one root with a positive real part. Indeed, the real part of the roots is given by

Re(s1,2) =
1

2β2γα
{1 ± Re(

√
ζ)}, (20)

where

ζ = 1 + 4α2
(k2β2

− k2
β) − 4αi(

kβ

γ
). (21)

Defining, kβ = kβχ (−1 ≤ χ ≤ 1), one can write

Re(
√

ζ) =
1
√

2
{1 + (2αkβ)2

(1 − χ2
) +
√

[1 + (2αkβ)2
(1 − χ2)]

2
+ (4αkβγχ)2

}

1/2
, (22)

which, for large values of k and χ ≠ 0, leads to

Re(s1,2) =
1

2β2γα
{1 ± 2αkβ

√
(1 − χ2)}. (23)

Note that considering k2β2
= k2

β (the boost is in the direction k), the expression simplifies to

Re(s1,2) =
1

2αβ2γ

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 ±
1
√

2

¿
Á
Á
ÁÀ1 +

¿
Á
ÁÀ1 + (

4αkβ
γ
)

2
⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

, (24)

which clearly shows that one mode decays and the other one grows for any value of k. In this case and for large values of k, the growth rate of
the instability increases as

√
k,

Re(s1,2) ∼ ±
√

k
2αγ3β3 . (25)

For general boosts, not necessarily in the direction of βa, the decay is even more prominent as it grows linearly with the wave frequency.
Thus, we conclude that these systems are not only unstable, but actually ill-posed: by taking a sequence of initial data of bounded norm,

but of higher and higher frequency, one can get solutions which grow arbitrarily fast no matter how small the time interval is taken. Thus, the
map from initial data to solutions is not continuous. Arbitrarily close to analytic solutions, there are perfectly nice initial data points which
diverge arbitrarily fast from the analytic one. Outside the very particular cases of irrotational fluids, these types of theories are thus useless.

III. HYPERBOLIZING FLUIDS
A simple way of rendering the system above well posed is to introduce a flow derivative in the Fourier law. In its simplest version, the

modified system reads

ua
∇aT = −

1
ncn

hab
∇aqb, (26)

εub
∇bqa + qa = −κhb

a∇bT κ > 0, (27)

where Eq. (27) is the Maxwell–Cattaneo1 equation, with ε being supposedly a small parameter.
As mentioned above, these ideas have been generalized and improved in order to construct causal theories for relativistic gases.2,4,5,10

Equation (27) is here considered only as a simple example in order to explore the mechanism through which the inclusion of the additional
relaxation term modifies the stability and ill-posedness of the system. In Subsections III A and III B, a procedure analogous to the one shown
above is carried out in order to analyze the system given by Eqs. (26) and (27).
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A. Stability in the surface forming case
Equation (27) in the fluid’s frame can be written as

(sε + 1)qa + κikaT = 0, (28)

which, upon contraction with ka, yields
(sε + 1)kaqa + iκk2T = 0. (29)

In this case, the associated matrix for the longitudinal modes (the transverse components lead to trivial, stable, solutions) is given by

M =
⎛
⎜
⎝

s
i

ncn
κik2 1 + sε,

⎞
⎟
⎠

(30)

and the corresponding dispersion relation
εs2 + s + αk2

= 0. (31)

Since all coefficients in Eq. (31) are positive, both roots of the dispersion relation lay on the left half of the complex plane. More precisely,

s± =
1
2ε
(−1 ±

√
1 − 2αεk2), (32)

and fluctuations decay with a characteristic time (2ε)−1. In the limit ε≪ 1, s+ = −
1
ε and s− = −αk2. We have two modes, the usual one and

another which decays very quickly. Indeed in the limit ε→ 0, we lose a root, and it goes to infinity. For small ε, it is arbitrarily big. The extra
mode that this modification introduces is very short lived and does not affect substantially the evolution. Its initial imprint is quickly washed
away, and normal diffusion follows.

B. The general, not-surface forming case
For the non-surface forming case, we shall need a minimum modification of the equations, and this should be proportional to the

magnitude of the failure of the velocity vector to be surface orthogonal. Defining λ = ε − αβ2, the dispersion relation in this case can be written
as in Eq. (19), where now

p1 = (γλ)−1, q1 =
2kβ(ε − α)

λ
,

p2 =
(γk2

β(α − ε) + αk2
)

γλ
, q2 =

kβ

γλ
,

which reduces to Eq. (18) for ε = 0. The criteria for stability, p1 > 0 and q2
2 < p1(p1p2 + q1q2), is then

λ > 0, and k2
β < k2.

Note that the second condition is satisfied as long as k ≠ 0 and χ ≠ 1, and thus in such cases stability is guaranteed taking ε large enough such
that ε > αβ2.

The case of homogeneous perturbations (k = 0) leads to one pure imaginary root. The real part of the other (complex) root is (−γλ)−1,
which coincides with the stability criteria stated above. On the other hand, for k ≠ 0, the real part of the roots can be written as

Re(s1,2) = −
1

2λγ
[1 ± Re(

√
η + iν)], (33)

where, for kβ = kβ, one has

η = 1 − 4
αε
γ2 k2, ν = −

4αβk
γ

. (34)

For large values of k, Eq. (33) leads to

Re(s1,2) ∼ −
1

2λγ
(1 ± β

√α
ε
). (35)

J. Math. Phys. 61, 051506 (2020); doi: 10.1063/1.5123393 61, 051506-5

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

For the stable modes (λ > 0), one obtains Re(s1,2) < 0, while in the unstable case, one has (λ < 0)

Re(s1,2) = −
1

2λγ
(1 ± β

√α
ε
) ≷ 0. (36)

Note that the unstable mode is bounded and approaches a constant value for large k. This implies that the problem in this case is unstable but
still well posed. In the general case, considering once again kβ = kβχ, one has ν = −4αkβχ/γ and

η = 1 + 4αk2
[αβ2
(1 − χ2

) + ε(β2χ2
− 1)].

In this case, one obtains for large values of k,

Re(s1,2) ∼ −
1

2λγ

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 ±
βχ
γ

¿
Á
ÁÀ

α

λ + β2χ2( α
γ2 − λ)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

< 0, (37)

for λ > 0, and

Re(s1,2) ∼ −
1

2λγ

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 ± k

¿
Á
ÁÀ4α[β2χ2(λ −

α
γ2 ) − λ]

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

≷ 0, (38)

for λ < 0.Thus, the unstable mode grows linearly with k for large values of k, implying that the system is ill-posed.
Note that in the stable case, the modes features a very rapid decay. Indeed, for small values of λ, from Eq. (37), one has that Re(s1) is

proportional to λ−1, while Re(s2) is independent of ε. Thus, the solution decays to a sort of diffusion regime, but there is not such regime, for
things cannot diffuse to arbitrary speeds. This has been studied in some cases.11,12

C. How large does Catteno’s term need to be?
Cattaneo’s term has to be larger than β2α, so the question is, given some vector field ua in some space-time, can we find a space-like

foliation such that the difference between ua and its normal na is the smallest (presumably in pointwise norm) and how big is this difference?
In principle, since β < 1, we could take just this upper limit, which would give the speed of light as propagation speed of this new mode.

In many cases this might not be necessary, and we could choose smaller speeds.
The measure of the local failure of surface forming for a given one-form field is given by the twist form,

wabc ∶= u[a∇buc].

Note that this is independent of any metric or torsion free connection. If wabc is different from zero, it means that there is no pair of functions
( f , τ) such that fua = ∇aτ. In principle, one should be able to estimate the norm of βa =

1
γ ua − na in terms of some norm in wabc. This is a very

difficult task since the problem is of a global nature. Consider, for instance, the case where we take ua = γ(1, 0, β0, 0) in Minkowski space-time

in polar coordinates, (t, r, ϕ, z)with β0 being a constant smaller than unity. Here, γ = (1 − β2
0/r

2
)
− 1

2 . This form is clearly non-surface-forming:
if we follow the normal planes along ϕ, we do not arrive at the same place after a turn around the z axis. Nevertheless, locally, it is possible and
the only place were wabc in non-vanishing is at the origin. The bound on β in terms of w cannot be local. If one relaxes β0 to be a function of r
and writes for simplicity ua = γ(1, 0, β0(r)r, 0), then one can have it vanish near the origin (and so w). In this case, the bound is given by

∣β0∣ ≤
1 − e−r max ∣w∣

1 + e−r max ∣w∣ .

This follows from the fact that the only non-vanishing component of w is wtrϕ = γ2∂r(β0r).
As another illustrative example, one can allow a modulation on ϕ such that one can turn around the circle and correctly paste the planes.

In this case, the lack of surface forming comes from a lack of suitability in the r component. Indeed, taking for simplicity the limit of small
speeds, with ua = (1, 0, β0(r)r cos(ϕ), 0), it can be seen that surfaces which glue well in the ϕ direction are possible, namely, those given by
τ = t + β0(r)r sin(ϕ). However, they generate an r component, ∂rτ = ∂r(β0r)sin(ϕ), which leads to the same bound as above (in the limit of
small velocities). Thus, one can see that is an intriguing problem where local partial differential equations theory has to be analyzed in a global
context.

IV. FINAL REMARKS
In this article, we have specifically addressed the question of whether a covariant heat equation, derived from either a Fourier or Cattaneo

type relation with the help of an external four-vector field, leads to a physically sound theory. In particular, both schemes were thoroughly
inspected for stability and well-posedness, using a method analogous to the one applied in Ref. 7, in two relevant scenarios: when the fluid’s
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TABLE I. Summary of the results on stability and well-posedness of the relativistic
heat equation.

Comoving frame Boosted frame

Fourier Stable well-posed Unstable, ill-posed
Stable for large ε unstable for small ε

Cattaneo Stable well-posed
⎧⎪⎪
⎨
⎪⎪⎩

well − posed if ∣χ∣ = 1

ill − posed if ∣χ∣ ≠ 1

velocity forms surfaces and when phenomena such as rotation do not allow for a particle frame to be utilized as a base for space-time 3 + 1
decomposition. The results are summarized in Table I.

Note that stability in the general case depends on the magnitude of the unspecified parameter ε. Moreover, one could argue that under a
close to equilibrium assumption, such a parameter shall remain small when compared to the parameters of the system. However, the behavior
of the perturbations depend strongly on the ratio ε

αβ2 and, in particular, are only well behaved when such a quantity exceeds unity. In this sense,
it is worthwhile to note that the kinetic theory of gases presents, at least within the standard Chapman–Enskog program, some inconsistencies
in the derivation of such term13 and thus, even though phenomenologically, one can fix the value of ε arbitrarily, the soundness of such theory
intuitively relies on considering only small values for it. Moreover, one can show that in the Knudsen parameter expansion, the relaxation
term included in the Cattaneo equation is of higher order in such a parameter and, thus, belongs in the Burnett regime equations. On the
other hand, implementing a moment expansion, one can justify the structure of Eq. (27) from microscopic grounds; however, as argued in
Ref. 14, the resulting transport equations feature terms of different orders and require the introduction of an ordering scheme, in which the
inconsistency exhibited in Ref. 13 will once again emerge.
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