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Progesterone receptors (PR) play a pivotal role in many female reproductive tissues such as
the uterus, the ovary, and the mammary gland (MG). Moreover, PR play a key role in breast
cancer growth and progression. This has led to the development and study of different
progestins and antiprogestins, many of which are currently being tested in clinical trials
for cancer treatment. Recent reviews have addressed the role of PR in MG development,
carcinogenesis, and breast cancer growth. Thus, in this review, in addition to making an
overview on PR action in normal and tumor breast, the focus has been put on highlighting
the still unresolved topics on hormone treatment involving PR isoforms and breast cancer
prognosis.

Introduction
Progesterone receptors (PR) are members of the nuclear receptor superfamily (reviewed in [1–8]). The
canonical protein structure contains a DNA-binding domain (DBD), a hinge region, and a C-terminal
ligand-binding domain (LBD) that includes binding sites for agonists or antagonists [7].

A single copy gene, located on chromosome 11q22, which contains eight exons and seven in-
trons, encodes human PR [9]. PR act as transcription factors activated by their natural ligands or by
ligand-independent mechanisms [10].

There are mainly two mRNA transcripts controlled by two different promoters, each one encoding a
different protein [11]. The distal promoter of the human gene encodes the full-length PR, named PRB
(116 kDa), and the proximal promoter regulates the truncated version, named PRA (94 kDa) which lacks
the first 164 amino acids [12–17] (Figure 1A).

Upon ligand activation, dimerized PR translocate to the nucleus, largely in response to a constitutive
nuclear localization signal (NLS) located within the hinge region [11]. A mutated NLS leads to cytoplas-
mic accumulation of PR [18]. A second NLS, located within the DBD, can also mediate ligand-induced
nuclear translocation [19]. PRA is preferentially located in the nuclei whereas PRB shuttles from the cy-
toplasm to the nuclei [20]. Similarly to other steroid receptors, activated PR are visualized as nuclear foci
in immunofluorescence assays [21] (reviewed in [22]). Mutations in the DBD usually confer aberrant
nuclear compartmentalization of the ligand-bound PR, and larger foci are observed [23,24]. It has been
hypothesized that PR localized in these nuclear foci or aggregates, corresponds to active PR, and thus,
breast carcinomas showing aggregated PR are probably those sensitive to antiprogestin treatment. A re-
cent clinical trial proposes the detection of these activated PR to predict response to treatment with the
antiprogestin onapristone (ONA; [25]).

PR post-translational modifications include phosphorylation, SUMOylation, acetylation, depicted in
Figure 1B, as well as methylation, and ubiquitination (reviewed in [26,27]). These modifications al-
ter PR hormone sensitivity, transcriptional activities, protein down-regulation, nuclear localization, and
protein–protein interactions [28].
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Figure 1. Schematic representation of PR

(A) PR isoforms, activation sites (AF1-3), domains, exons (1-8; modified from Misrahi et al. [10]), predicted variants according to

alternative splicing (modified from Hirata et al. [32], Samalecos et al. [30], Cork et al. [31] and Patel et al. [190]), and post-trans-

lational modifications (phosphorylations, acetylations and sumoylation; modified from Diep et al. [133]). AF: Activation sites; DBD:

DNA-binding domain; H: Hinge; LBD: Ligand-binding domain. Colored rectangles in dark yellow, red, violet, pink or blue account

for sequences from introns that are transcribed in selected variants. Black rectangle in PR�6 isoform depicts a truncation site. (B)

PR post-translational modifications. Colored circles show phosphorylation (p) sites, in red those phosphorylated by MAPK, in light

green by CycA/CDK2, in yellow by CK2, in orange by GSK-3β, and in violet those phosphorylated by still unidentified kinases. *:

Acetylation (a) and sumoylation (s) sites are shown in light blue rectangles and a black triangle, respectively. S: serine residues; T:

Threonine residues; K: Lysine residues.

There is a third truncated PR isoform, named PRC (60 kDa), resulting from alternative translation at a methionine
at position 595. This form retains the ability to bind the ligand, but not DNA [29]. There are, in addition, several
other predicted isoforms from the analysis of alternative splicing mechanisms [30,31]. PRS and PRT retain the in-
tronic sequences before exon 4 and lack the ability to bind DNA suggesting that they may play a role mediating
progestin-induced non-genomic effects [32]. PRM mRNA contains a 5′ signal sequence of hydrophobic amino acids,
indicating that the protein may be processed for secretion or cell membrane expression [33]. As PRS and PRT, PRM
contains the LBD but not the DBD (Figure 1A).

Other mRNA PR variants with different deleted exons (Figure 1A) were detected in breast cancer tissues and cell
lines [31,34–38]. Among them, mRNA isoforms with deletions in exons, 7 (�7), 6 and 7 (�6-7), 4 and 5 (�4-5) and
3, 4 and 5 (�3-4-5) were found in human breast cancer T47D and MCF-7 cells. �7 and �6-7 were also detected in
PR-negative human MDA-MB-231 breast cancer cells [39].

Only PRM, PRC and PRBdelta4 (PRB�4) were detected as proteins [33,40,41]. Giulianelli et al. demonstrated
that PRB�4, which has an impaired LBD and lacks the NLS, was recruited to MYC regulatory sequences following
ligand-independent stimulation by FGF2. Moreover, PRB�4 expression was associated with worse overall survival in
luminal breast cancer patients [41]. Thus, there is a renewed interest in unraveling the role of these novel PR variants
in endocrine resistance (reviewed in [26]).
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PR and mammary gland development
Many reviews have addressed in detail the different stages of the mammary gland (MG) development [42–44], and
many others have focused in the role of progesterone (Pg) and PR in the normal and neoplastic MG [45–53]. Briefly,
the MG develops after birth to generate a rudimentary duct tree. During puberty, 17-β-estradiol (E2) and Pg are
the main hormones that drive the awakening of the MG. E2 induces duct dilation and elongation and primes the
epithelial cells for the Pg-induced cell proliferation and ductal branching. This process will culminate ultimately in
the amplification of alveolar progenitor cells to form the lobuloalveolar units [54]. As a result, Pg reshapes gene
expression through genomic and epigenomic [55–59] mechanisms (reviewed in [43]).

Only a small fraction of MG cells co-express PR and BrdU [47]. Most of PR+ cells do not proliferate [60–62]
suggesting that in response to Pg, luminal cells produce paracrine factors that induce proliferation in neighbor cells
[63]. Receptor activator of NFκB (RANKL) [64–69], WNT4 [70], calcitonin [71], amphiregulin [72], CXC chemokine
receptor type 4 (CXCR4)/Stromal cell derived factor 1 (CXCL12) [73] , ID4 [74], and ADAMTS18 [75] proved to be
key players mediating Pg-induced paracrine cell proliferation (reviewed in [49,76]). Not all PR+ cells produce all of
these factors [77], suggesting that specialized PR+ subsets of cells may selectively respond to different stimuli or cell
contexts [48]. In addition to the paracrine effect, an autocrine Pg-mediated induction of cell proliferation involves
the activation of CCND1 [78].

Using PR knock out (KO) mice [79], specific PRA- and PRB-KO mice [80] and transgenic mice overexpressing PRA
or PRB [81] it became evident that PRB is the leading PR isoform involved in MG development [66]. PRA may con-
tribute to alveologenesis since this process still occurs in PRB-KO mice [66] and independently of RANKL and WNT4
(reviewed in [48]). MG from transgenic mice overexpressing PRA showed an increase in branching, ductal hyperpla-
sia, and a disorganized basal cell membrane with loss of cell–cell adhesion [81,82]. Contrarily, PRB-overexpressing
mice have reduced branching [83] and an increase in basal stem and luminal progenitor cells [84]. Interestingly,
ovariectomy or antiestrogen treatment did not diminish the luminal compartment. Moreover, antiestrogen treatment
increased the sphere forming capacity of cells [84]. These studies are aligned with previous reports which demonstrate
that (a) Pg increases the number of progenitor cells [85], (b) ovariectomy does not affect the basal compartment [68]
and (c) when Pg levels are high, such as in pregnancy [68] or in diestrous [69], there is an increase in cells with a stem
cell phenotype.

PRA is highly expressed in the luminal epithelium of virgin mouse MG [47,86], whereas PRB is present in luminal
and myoepithelial cells. During pregnancy, the MG achieves its complete development and PRB prevails over PRA.
In Pg-treated mice, when Pg was administered for 3–10 days [87], or for one or two months [86], a decrease in total
PR was observed favoring the expression of PRB over PRA.

In virgin non-ovariectomized mice, it is the combination of E2 and Pg that generates a fully developed MG. Re-
markably, the mouse strain background plays a key role in the degree of hormone responsiveness. While BALB/c mice,
a cancer susceptible strain, showed a high response to hormones, the resistant C57BL/6 strain showed lower PR ex-
pression levels in virgin mice, and a lower response to pregnancy-related hormones [86,87] than BALB/c mice. When
MG cells from both strains were transplanted into cleared mammary fat pads from immunosuppressed mice with
a different genetic background, the differences between strains disappeared. Comparable PR expression levels were
now observed in reconstituted MG, suggesting an important role of the microenvironment regulating PR expression
[86]. Thus, in human populations, the intrinsic genetic differences among women may be responsible for multiple
basal PR levels and hormone responses, which might also impact in the susceptibility to develop breast cancer.

In the human breast, PR is co-expressed with ERα with different intensities, as opposed to the homogeneous
co-expression of ERα with AR [88]. The meaning of this data is still unknown. Very rarely the normal cells co-express
ERα, PR, and AR [88]. Regarding GR, 77% of ERα+/PR+ samples also express GR [89]. Buxant and coworkers also
reported that ERα, PR, and GR are co-expressed in normal breast, however, it is not clear if the same cells express the
three receptors [90].

PR and carcinogenesis
Pg administration has been related to mammary carcinogenesis in rodents (reviewed in [91]). Pg treatment induced
mammary carcinomas in intact BALB/c mice [92]. Medroxyprogesterone acetate (MPA), which has glucocorticoid
and androgenic, in addition to progestagenic effects [93], was more effective inducing mammary carcinomas than
Pg itself [92,94]. The androgenic effects of MPA increasing serum EGF [95] may contribute to increase the MG
susceptibility [96]. Conversely, inhibition of PR signaling reduced mammary carcinogenesis [97–100].
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In women, the impact of progestins administered in oral contraceptives or as hormone replacement therapy has
been recently reviewed [49,51,101]. There is a consensus that the co-administration of progestins together with es-
trogens increases breast cancer risk [102,103]. As suggested by Horwitz and Sartorius, progestins may be inducing
growth of previously undetectable tumors, rather than having a carcinogenic effect per se [104]. Regimens containing
micronized Pg are associated with a significantly lower risk of breast cancer than those containing synthetic progestins
[105].

PR in tumor growth
Mice
In the mouse MXT model (ERα+ and PR+), Pg increased thymidine uptake in tumors growing in ovariectomized
mice [106], and these tumors regressed with antiprogestin treatment. The combination with antiestrogens increased
their therapeutic efficacy [107].

Hormone receptor positive luminal mammary carcinomas developed in BALB/c mice is the most extensively breast
cancer model studied [94,108]. These tumors initially require Pg- or MPA-exogenous administration for their growth
[109]. After several passages, tumors may acquire a hormone-independent (HI) pattern of growth. However, they
still express ERα and PR and may be responsive to antiprogestin therapies using ONA [110], mifepristone (MFP)
[111,112], aglepristone [113], lonaprisan [112] or telapristone acetate (TLP) [113], or to genetic PR expression inhibi-
tion [114]. The observation that primary cultures were more successful when stromal cells were present, suggested that
the stroma could participate regulating HI growth. Differences in gene expression profiles from HD and HI stromas
were confirmed using laser capture micro-dissection and transcriptomics [115]. Activated fibroblasts from HI tumors
produced increased FGF2 levels than those from HD tumors [116]. Moreover, in T47D human breast cancer cells,
STAT5, FGFR2 and PR interactions were detected at the MYC and CCND1 promoters in MPA- or FGF2-stimulated
cells [117]. This may explain why tumors growing in a poor hormonal milieu, as in menopause, may be still using
the hormone receptor machinery to support tumor growth. FGF2 also activates ERα in addition to PR, inducing
PR expression [41,118]. As mentioned above, FGF2 also activated PR-spliced variants, which were forming part of
complexes bound to MYC promoter sequences, suggesting their possible involvement in endocrine resistance.

In terms of relative PR protein levels, tumors of the MPA-induced model which are inhibited by antiprogestins
express higher levels of PRA than PRB [112], and are named PRA high (PRA-H). Possibly, the low PRB levels are due
to their active role and increased degradation as compared with PRA. Constitutive resistant variants have higher PRB
than PRA levels (PRB-H) compared with responsive variants [111]. In these tumors, selective PRA methylation was
observed [119]. Treatment with DNA methyltransferases and/or histone deacetylase inhibitors restored PRA expres-
sion and antiprogestin responsiveness [113,119]. In acquired resistant tumors, which became resistant by continuous
pressure with antiprogestin treatment, estrogens or tamoxifen (TAM) restored PRA expression and antiprogestin re-
sponsiveness [112]. The clinical implications of these findings are challenging, as they suggest that PRA-H tumors
may respond to antiprogestin treatment and, PRB-H tumors may be also treated with antiprogestins combined with
TAM or demethylating agents to restore PRA expression.

Increased levels of nuclear and cytosolic FGF2 were observed in tumor cells of acquired-resistant variants [120]
suggesting that an increase in an autocrine growth factor signaling loop may hyperactivate PR and induce its degra-
dation [121,122]. In the MG, a subgroup of ERα-negative cells as determined by immunohistochemistry (IHC), still
express mRNA ESR1 [123]. A possible explanation is that, in these cells, ERα levels are below the IHC detection
limit probably due to a rapid protein turnover [123]. Thus, a new concept is emerging in which cells with very active
hormone receptor (HR) might be catalogued as HR negative [48]. If it is this the case that explains the disbalance in
PR isoforms in these tumors, remains to be investigated. Figure 2 illustrates the interaction of the FGF2/FGFR and
PR pathways and their role in tumor progression.

Since PRA-H tumors regress almost completely with antiprogestin treatment, lower antiprogestin doses have been
used in combination protocols. The combined treatment with Nab-paclitaxel or pegylated doxorubicin liposomes
(Peg-doxo) exerted a higher tumor growth inhibition than the respective monotherapies. MFP increased the tumor
microvasculature that allowed a greater entry of nanoparticles [124]. In addition, MFP increased the exposure of
DAMPS in tumor cells, which activate the immune system so that combined therapies of MFP and anti-PDL1 anti-
bodies inhibited tumor growth in a higher degree than each treatment alone [125]. Again, this illustrates that targeting
PR in these tumors may be an interesting tool to potentiate the effect of other therapies.

In the Her2/neu transgenic mouse model of breast cancer, although primary tumors are PR-, it has been proposed
that Pg, while increasing MG branching, contributes to the early dissemination of tumor cells [126].
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Figure 2. Model illustrating the crosstalk between PR and FGF/FGFR pathways

(A) Progestin-dependent activation of PR. In progestin-dependent tumor cells, progestins bind PR in the membrane/cytosolic com-

partment inducing rapid activation of MAPK and AKT signaling pathways via ERα/PR/c-Src complexes. Next, phosphorylated PR

isoforms, translocate to the nuclei. Active PRA and PRB bind to progesterone responsive elements (PRE) and recruit coactivators,

including ERα that induce gene transcription, which in turn, triggers cell proliferation. (B) Progestin-independent PR activation in

antiprogestin responsive (PRA-H) tumor cells. In antiprogestin responsive progestin-independent tumor cells, FGF2 mainly secreted

by carcinoma associated fibroblasts, binds FGFR and induces downstream activation of intracellular signaling pathways which,

in turn, phosphorylate ERα and PR. PR variants, such as PRBs�4 which are not activated by progestins can also be activated

by FGF2. As a result, active PR bind PRE-sites forming transcriptional complexes with coactivators such as ERα, STAT5, FGFR2,

PRB�4 that trigger transcription of target genes. (C) Progestin-independent PR activation in antiprogestin resistant (PRB-H) tumor

cells. In this scenario, FGF2 is produced mainly by the tumor cells that may bind both membrane and cytosolic FGFRs which

activates PKCα, MAPK and AKT which, in turn may, phosphorylate ERα and PR. This constitutively phosphorylated state may

contribute to a high PR turnover and may explain receptor down-regulation. The role of hormone receptors and the molecular

mechanisms by which FGF2-mediates antiprogestin resistance are under investigation. Adapted from Figueroa et al. [191].

Rat
The chemical carcinogens 7,12-dimethylbenz[a]anthracene (DMBA) or N-Nitroso-N-methylurea (MNU) induce
hormone-dependent mammary carcinomas in intact rats (reviewed in [52,91]). Interestingly, in the DMBA-induced
model, megestrol acetate (MA), a synthetic progestin, and MFP at similar doses, both exerted inhibitory effects in
tumor load. MFP was more potent than MA [127] and was as effective as TAM [128]. MFP-induced inhibitory effect
was corroborated by others [129,130]. Similarly, ONA plus TAM had a higher efficacy than MA plus TAM [131].
Using micronized Pg (10 mg/kg/day), an increase in tumor growth was observed whereas MFP or TLP, at the same
doses, exerted inhibitory effects. In the MNU-induced model, ONA or MFP inhibited the growth of established tu-
mors [132] which was further improved in combination with TAM [131].

In vivo human experimental models
The role of PR in in vitro studies using human breast cancer cell lines has been extensively reviewed [26,133,134]. The
recent discoveries that ERα interact with PR in transcriptional complexes [135,136], and that Pg treatment induces
the repositioning of ERα as a PR cofactor [137], has changed the paradigm of ERα and PR signaling. Hence, there is
a renewed interest in the use of PR ligands to regulate breast cancer growth.

Table 1 describes the experiments performed in human luminal breast cancer cell lines growing as xenografts,
which use different antiprogestins or Pg as single or combined treatments. Synthetic progestins have been excluded
for clarity, although the results were in line with those using Pg, but with more accentuated effects [138,139]. As a
rule, antiprogestins showed inhibitory effects [113,124,140–142] that were potentiated by TAM. Pg showed inhibitory
[137], stimulatory [143] or no effects [138,144,145], depending on the protocol used. Tumor regression (negative

© 2021 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society 5
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Table 1 Effect of progesterone and antiprogestins on tumor growth of human experimental breast cancer cell lines

Model
Mouse
strain Matrigel

E2 pellet
(mg) Treatment Dose

Tumor
size; Time
(days) at

treatment
initiation Method

%
increase

(↑) or
decrease
(↓) in final
tumor size

versus
control

(days after
treatment) Slope Refs.

MCF-7 Intact Nude No 0.72–1.7 TAM
MFP

MFP+TAM
ONA

ONA+TAM

15 mg pellet
50

mg/kg/day,
sc

Combo
30

mg/kg/day,
sc

Combo

200–330
mm3

22–52

C ↓40% (17 d)
↓55/49% (37

d)
↓41% (17 d)
↓50% (37 d)
↓62% (17 d)
↓70% (37 d)
↓46% (17 d)
↓53% (17 d)

+
+
+
+
+

[141]

Intact NSG Yes 0.72 Pg 10 mg pellet ?
7

B & C ≈↓38% (21
d)

+ [137]

OVX
NSG

Yes 0.72 Pg 10 mg pellet ?
7

B & C
NV

≈0% (21 d)
≈↓36% (45

d)

+

Intact NSG Yes 0.72 TAM
Pg

TAM+Pg

0.5 mg 3
days/1 off, ip
10 mg pellet

Combo

?
7

B
NV

↓59%(35 d)
↓75% (47 d)
↓50% (35 d)
↓53% (47 d)
↓78% (35 d)
↓90% (47 d)

+
+
+

MCF-7 EV Intact Nude No 0.72 Pg 10 mg pellet 100 mm3

12
C ≈0% (16 d)

≈0% (33 d)
+ [141]

OVX Nude No 0.72 Pg 10 mg pellet 100 mm3

10
C ≈0% (28 d)

≈0% (40 d)
+ [140]

T47D
P53*

OVX Nude Yes 2 Pg 10 mg pellet 100 mm3

28
C ≈0% (28 d) + [134]

Intact Nude No 1.7 Pg 10 mg pellet 15 mm3

31
C ≈↑550% (55

d)
+ [135]

Intact NSG Yes 0.72 TAM
Pg

TAM+Pg

0.5 mg 3
days/1 off, ip
10 mg pellet

Combo

?
7

B & C
NV

≈↓59% (49
d)

≈↓23% (49
d)

≈↓84% (49
d)

+
+
+

[133]

OVX Nude Yes 5 TAM
TLP

TAM+TLP

25 mg pellet
25 mg pellet

Combo

120 mm3

?
C

NV
≈↓88% (28
d) ≈↓105%

(49 d)
≈↓140% (28
d) ≈↓56%

(49 d)
≈↓150% (28
d) ≈↓143%

(49 d)

+/+
-/+
-/-

[136]

OVX Nude Yes 5 TAM
CDB4453

TAM+CDB4453
EC313

TAM+EC313

25 mg pellet
25 mg pellets

Combo
10

mg/kg/day, ip
Combo

120 mm3

?
C

NV
≈↓50% (21
d) ≈↓85%

(35 d)
≈0% (21 d)
≈↓80% (35

d)
≈↓100% (21
d) ≈↓142%

(35 d)
≈↓50% (21
d) ≈↓93%

(35 d)
≈↓100% (21
d) ≈↓135%

(35 d)

+
+
-/-
-/+
-/-

[138]

Intact NSG No 0.5 MFP 10
mg/kg/day

30–40 mm2

10–20
C ≈↓50% (12

d)
- [111]

Continued over
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Table 1 Effect of progesterone and antiprogestins on tumor growth of human experimental breast cancer cell lines
(Continued)

Model
Mouse
strain Matrigel

E2 pellet
(mg) Treatment Dose

Tumor
size; Time
(days) at

treatment
initiation Method

%
increase

(↑) or
decrease
(↓) in final
tumor size

versus
control

(days after
treatment) Slope Refs.

T47D
EV

Intact Nude No 0.72 Pg 10 mg pellet 100 mm3

12
C ≈0% (16 d)

≈0% (33 d)
+ [141]

OVX Nude No 0.72 Pg 10 mg pellet 100 mm3

14
C ≈0% (14 d)

≈0% (31 d)
+ [140]

T47D-YA OVX Nude Yes 2 Pg 10 mg pellet 100 mm3

28
C ≈0% (28 d) + [134]

Intact NSG ? 0.5 MFP
DoxPEG

MFP+DoxPEG
NabPax

MFP+NabPAX

10
mg/kg/day

0.9
mg/kg/week

(x3)
Combo

15 mg/kg /4d
(x3)

Combo

20–30 mm2

10–20
C ≈↓45% (20

d) ≈↓50%
(17 d)

≈↓60% (20
d)

≈↓85% (20
d)

≈↓50% (20
d)

≈↓70% (20
d)

0/-
-
-
-
-

[120,111]

T47D-YB OVX Nude Yes 2 Pg 10 mg pellet 100 mm3

28
C ≈0% (28 d) [134]

Intact NSG ? 0.5 MFP
DoxoPEG

MFP+DoxPEG
NabPax

MFP+NabPAX

10
mg/kg/day

0.9
mg/kg/week

(x3)
Combo

15 mg/kg /4
d (x3)

Combo

30–40 mm2

10–20
C ≈0%(20 d)

≈↑13% (17
d)

≈↓30% (20
d)

≈↓30% (20
d)

≈↓100% (20
d)

≈↓65% (20
d)

+/+
+
+
-
-

[120,111]

BT-474
Her2+
P53*

Intact Nude No 1.7 Pg
MFP

Pg+MFP
Pg

10 mg pellet
25 mg pellet

Combo
10 mg pellet

25–40 mm3

8–12
C ≈↑300 (46 d)

≈↑350% (52
d)

≈↓40% (46
d)-

≈↓64% (46
d)-

≈↑400% (52
d)

+
-
-
+

[135]

IBH-6
EV

Intact Nude No No MFP 10
mg/kg/day

8–10 mm2

15–20
C ≈↑200% (20

d)
+ [111]

IBH-6-PRA Intact Nude No No MFP 10
mg/kg/day

8–10 mm2

15–20
C ≈↓50% (15

d)
+ [111]

IBH-6-PRB Intact Nude No No MFP 10
mg/kg/day

8–10 mm2

15–20
C ≈↑140% (20

d)
+ [111]

Abbreviations: B, bioluminescent imaging; C, caliper; CDB4453, PR antagonist; DoxPEG, pegylated doxorubicin; EC313, selective PR modulator; EV,
cell line transfected with an empty vector; ip, intraperitoneal administration; MFP, mifepristone; NabPAX, Nab-paclitaxel; NV, normalized volume; ONA,
onapristone; OVX, ovariectomized; Pg, progesterone; sc, subcutaneous administration; TAM, tamoxifen; TLP,: telapristone; *mutated.

slopes) was only observed with the combined treatment of antiprogestins and TAM. In models uniquely expressing
PRA, TAM [146] and MFP [113,124] inhibited tumor growth whereas those expressing only PRB were TAM- [138]
and MFP- [113] resistant. In addition, the latter grew faster than the former [113,146]. These results support the
concept that PRA-H tumors respond to endocrine treatments.

© 2021 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society 7
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Figure 3. CK5 and Ki-67 expression in breast cancer xenografts of cells expressing only PRA (T47D-YA) or PRB (T47D-YB)

CK5 and Ki-67 expression were evaluated using immunohistochemical techniques using a double staining protocol in a tissue

microarray as described [192]. A CK5+ PR negative tumor sample is shown as CK5+ control (upper panel). Whereas no CK5

staining was observed in PRA expressing cells, clusters of CK5+ cells were observed in PRB expressing tumors (arrow; pink

staining). Brown nuclei represent Ki-67+ cells (CK5 antibody: CME430; Biocare Medical, Concord, CA; Ki-67: ab15580; Abcam;

Cambridge, MA).

Progestins increase cancer stem cells (CSC) not only in the MG but also in human breast cancer cell lines [147–151].
Even when Pg did not increase cell proliferation [138], Pg induced an increase in cytokeratins (CK) 5 and 6 expression,
while decreasing the expression of luminal CK. The increase in CSC markers was independent of the PR isoform
involved [138]. CK5 has been related to a CSC phenotype by regulating the beta-catenin pathway [152]. T47D-YB
xenografts express CK5+ clusters, whereas T47D-YA tumors were CK5- (Figure 3). In vitro, both PR isoforms have
been implicated in stemness and, depending on the experimental conditions, it was PRB or PRA the prevailing isoform
involved [84,153,154]. The data shown in Figure 3 and the fact that CK6, another cytokeratin related to stemness, are
differentially expressed in PRB-H as compared with PRA-H breast carcinomas [155], are in line with the hypothesis
that PRB-expressing cells in the absence of exogenous PR ligands may have more stem-like characteristics in vivo.
However, further investigation is necessary to associate PR isoforms and stemness.

PDX
In the T-61 model, TAM, ONA, and MFP inhibited tumor growth [156,157]. Progestins inhibited the growth of two
E2-treated PDX [158]. Using a different PDX, ulipristal acetate, a progesterone receptor modulator, exerted inhibitory
effects on tumor growth [159]. The low success rate in developing PDX from luminal A tumors suggests that current
models may not be representative of the most common breast type. The mammary intraductal (MIND) model [160],
in which cells are injected through the nipple into the mouse milk duct, may provide in the future more information
regarding the role of PR ligands in PDX tumor growth.

Breast cancer
PR is one of the four markers that defines prognosis and treatment (reviewed in [161]). Breast tumors are classified
as luminal (ERα+; PR+/-; HER2-), HER2 (ERα-; HER2+), or triple negative (TNBC; ERα-; PR-; HER2-). Luminal
tumors may be subclassified as luminal A (low Ki-67 and high PR) or Luminal B (high Ki-67, PR+/- HER2+/-). In
luminal tumors, PR negativity implies worse prognosis either because ERα are impaired or because tumors have
a high growth factor signaling program that induces PR turnover [162]. AR are also frequently expressed in ERα+

8 © 2021 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society



Essays in Biochemistry (2021) EBC20200163
https://doi.org/10.1042/EBC20200163

Table 2 List of recently completed or ongoing clinical trials using antiprogestins

Treatment Trial identifier Phase Drug schedule Patients
Patients

characteristics Start date Status [2021]

Onapristone NCT02052128 I/II 10, 20, 30, 40, 50,
and 100 mg PO
BID for 57 days

60
Randomized

Postmenopausal,
PR+ BC

2014 Unknown [193]

Onapristone NCT04142892
ONAWA

WOO 50 mg PO BID for 3
weeks

10
Single group

Postmenopausal
ER+, PR+,
HER2-BC

2020 Recruiting

Onapristone+
Fulvestrant

NCT04738292
SMILE

II 50 mg PO BID for
up to 3 years

39
Single group

ER+, HER2-,
Metastatic BC:

after progression
on endocrine and
CDK4/6 therapies

2021 Not yet recruiting

Telapristone
acetate

NCT01800422 WOO 12 mg PO QD for
2–10 weeks

50
Randomized

Stage T1-2, N0-1
BC

2013 Active, not recruiting
[194]

Telapristone
acetate

NCT02314156
(Prevention)

II 12 mg breast
transdermal versus
12 mg oral QD for 4

weeks

67
Randomized

BRCA1 and
BRCA2 carriers
Stages 0-2 BC

2015 Active, not recruiting
[195]

Mifepristone NCT02651844
MIPRA

WOO 200 mg PO QD for
2 weeks

20
Single arm

Postmenopausal;
PRA/PRB ≥1.5.

Total PR≥ 50% BC

2016 Completed

Mifepristone*+
Pembrolizumab

NCT03225547 II 300 mg PO QD for
up to 100 months

74; 10 for safety
Non-randomized

Advanced BC. 1:
TNBC; 2: ER+

hormone refractory,
or with ↓ ER/PR

expression

2018 Recruiting

Mifepristone*+
Abraxane

NCT02788981 II 300 mg PO on day
0 and days 1, 7, 8,

14, 15 of each
Abraxane (28-day
cycle). Up to 12

months

64
Randomized

Advanced GR+ BC,
TNBC

2017 Recruiting

Mifepristone*+
Abraxane

NCT01493310 I 300, 600, 900,
1200 mg PO on

days 0, 1, 7, 8, 14,
and 15 combined
with Abraxane. Up
to 28 days (1 cycle)

9
Randomized

Advanced BC 2011 Completed

Mifepristone*+
Gemcitabine+
carboplatin

NCT02046421 I
DE

PO, QD on days 0,
1, 7, 8, up to 12
weeks (21-day

cycle)

31
Single Group

Advanced BC,
HER2-

2013 Completed

Mifepristone*+
Eribulin

NCT02014337 I/II
DE

PO QD for 21–28
days (21-day cycle)

Part 1/2: 20 each
Single arm

Part 1: Advanced
BC

Part2: Advanced
GR+ TNBC

2014 Completed

Mifepristone NCT01898312
(Prevention)

II
P

50 mg PO every
second day for 12

weeks

45
Randomized

Premenopausal
breast tissue;

BRCA 1/2 carriers

2013 Recruiting

Ulipristal
Acetate

NCT02408770
BC-APPS1

II
P

5 mg QD for 3
months

30
Single group

Premenopausal
BRCA1/2 carriers
or increased BC

risk

2016 Active, not recruiting

Ulipristal
Acetate

NCT02922127 I
P

10 mg PO QD up
to 3 months versus

COC pill (28-day
cycle)

29
Randomized

Healthy
premenopausal

women

2016 Completed

Abbreviations: BC, breast cancer; BID, twice a day; COC, Combined Oral Contraceptive; DE, dose escalation; ER, estrogen receptor; GR, glucocorticoid
receptor; HER2, human epidermal growth factor receptor 2; P, Prevention; PO, per os; PR, progesterone receptor; QD, daily; TNBC, triple negative breast
cancer; WOO, Window of opportunity trial; *used as an anti-glucocorticoid; : only antiprogestin dose administration is specified in this table.
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Table 3 List of recently completed or ongoing clinical trials using progestins

Treatment Trial identifier Phase Drug schedule Patients
Patients

characteristics Start date Status [2021]

Pg+Tamoxifen ISRCTN23662758
PEARL

WOO 300 mg micronized
Pg PO QD +
Tamoxifen for
14–18 days

112
Randomized

Premenopausal
ER+, PR+, HER2-

early BC

2019 Completed

Pg+Letrozole/
Tamoxifen

NCT03906669
WinPro

WOO 300 mg micronized
Pg PO QD +
Letrozole or

Tamoxifen for 14
days

200
Randomized

Postmenopausal
ER+, PR, HER2-

early BC

2018 Recruiting

Pg+Vitamin D3 NCT01608451
Neoadjuvancy

III 500 mg IM before
chemotherapy
cycles [4] and

before surgery +/-
Vitamin D3.

Follow-up: 5 years

800
Randomized

Large operable and
locally advanced

non-metastatic BC

2007 Active, not recruiting

Pg+ Estrogens NCT00079248
Supportive Care

NA Oral or transdermal
Estrogen +/- Pg for

at least 2 years

2,800-3,000
Randomized

Previous Stage I or
II BC (no

recurrence)

2002 Unknown

Hydroxy-Pg
depot

NCT00123669 II/III 500 mg, IM, once
5–14 days prior to
surgery. Follow-up

5 years

1000
Randomized

Unilateral operable
palpable BC

1997 Completed

Megestrol
acetate+
Letrozole

NCT03306472
PIONEER

WOO 40 or 160 mg QD
for 15 days +

Letrozole

189
Randomized

Postmenopausal
Untreated ER+,

HER2- BC

2017 Recruiting

Megestrol
acetate

NCT03024580
MEGA

II 160 mg PO QD
until disease

progression or
unacceptable

toxicity. Compared
with treatment with

aromatase
inhibitors,

Tamoxifen and
Fulvestrant

20
Non-Randomized

Advanced ER+ BC
Metastatic site

amenable to biopsy

2017 Recruiting

Megestrol
acetate+
Everolimus

NCT02269670 II PO QID +
Everolimus for up to

2 years

Non-specified [3]
Single group

ER+, PR+/-,
HER2-, metastatic

or recurrent BC
after exemestane +

everolimus

2014 Active, not recruiting

MPA +/- CF and
methotrexate

NCT00577122 II 1000 mg PO QD
+/- CF and

methotrexate

30
Non-Randomized

Postmenopausal
ER-, PR- Advanced

BC

2007 Completed No clinical
benefit

Abbreviations: BC, breast cancer; BID, twice a day; CF, cyclophosphamide; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2;
IM, intramuscular; MPA, medroxyprogesterone acetate; Pg, progesterone; PO, per os; PR, progesterone receptor; QD, daily; QID, 4 times a day; WOO,
Window of opportunity trial; : only progestin dose administration is specified in this table; NA: not applicable

tumors [163,164], mainly in those PR- [165], in a subgroup of TNBC and in most HER2+ tumors (reviewed in [166]).
Nuclear co-localization of ERα and PR has been observed in breast cancer samples [135] and co-expression of ERα,
PR, and AR in the same cells is a frequent event [88]. Only nuclear PR is considered positive. However, cytoplasmic
and/or membrane PR localization has been documented in breast cancer samples [88] and in primary cultures of
murine carcinoma cells, after short FGF2 stimulation [167].

PR isoforms cannot be accurately discriminated by IHC [168] and a standardized method to quantify isoforms in
routine practice is overdue. PRA is the prevailing PR isoform in breast cancer [25,155,169–172]. It has been hypothe-
sized that higher PRA levels than PRB may be observed because of an increased PRB turnover; however, this remains
to be confirmed. Regarding tumor prognosis, PRA-H tumors were associated with TAM-resistance [171] but not to
therapy with aromatase inhibitors [173]. In contrast, Rojas et al. concluded that PRA-H patients were associated with
better prognosis along with lower Ki-67 expression, HER2+ cases and, histological grade than PRB-H samples, and
that their transcriptomic profile matched with luminal A tumors [155]. On the other hand, Singhal et al. [142] and
Rosati et al. [174] support the concept that PRA-H cells are more metastatic than PRB-H cells.
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A confounding factor is the fact that luminal A tumors have a better prognosis than luminal B tumors. Most of the
genes of the PAM50 platform are related to cell proliferation. Thus, considering that PRB-H xenografts grow faster
than the PRA-H tumors [113,146], it seems reasonable that PRB-H tumors match with the luminal B subtype [155].
Both PRA-H and PRB-H tumor types contain cancer cells that are able to invade and metastasize sooner or later.
Which capacity would be of worse prognosis? A tumor that metastasizes earlier but grows very slowly or a tumor
that metastasizes later but grows very fast. Experiments should be designed using metastatic models to evaluate the
metastatic versus the proliferative ability of tumors with different PRA/PRB ratios.

Therapies targeting PR: past and present
Progestins, mainly MA [175,176] and MPA [177,178] and antiprogestins such as MFP [179–181], ONA [182], and
lonaprisan [183] have been tested in the past. In all cases, except for lonaprisan, some benefit was observed in most
clinical trials. MFP was the first antiprogestin developed and was used to induce abortion. Since at high doses it also
exerts anti-glucocorticoid and anti-androgenic effects, it was later approved to treat Cushing disease (reviewed in
[184]). Moreover, in patients with leiomyomas, MFP was used to treat patients prior to hysterectomy and a reduced
proliferation was observed in the MG [185]. ONA is a pure antiprogestin. Initially, the clinical trial using ONA was
terminated earlier due to hepatotoxicity (reviewed in [186]). However, given that the side effects were similar to other
antineoplastic agents, this decision has been reconsidered by the Food and Drug Administration, and ONA is cur-
rently being tested for breast cancer treatment. This highlights the importance of developing new antiprogestins with
high specificity and lower toxicity than those currently available. The fact that progestins have been shown to increase
breast cancer risk [187,188], and that antiprogestins, such as MFP, were shown to act as PR agonists in PRB contexts
[189] may be some of the reasons to explain the hampered interest in PR ligands. Nowadays, the attention has been
focused on exploring new targets that might be used together with standard endocrine therapy. Currently, endocrine
treatment in combination with PI3K/mTor and CDK4/CDK6 inhibitors show an increase in disease-free survival.
However, these agents have strong side effects that prevent them from using for long periods of time (reviewed in
[161]) .

PR ligands are now again in the pipeline of many companies. Ongoing or recently completed clinical trials that are
using PR ligands alone or combined with other treatments are shown in Tables 2 and 3.

Analyzing the experimental models examined above, it is mandatory to design strategies to determine which pa-
tients will respond better to a PR agonist or a PR antagonist and to investigate whether the same patients would
respond to all PR ligands, or conversely, if those inhibited by progestins would be stimulated by antiprogestins or vice
versa. The only study that discriminates patients by the PRA/PRB ratio is the MIPRA study.

Summary
• PR are key receptors mediating MG development and breast cancer.

• PR may be exploited therapeutically.

• PR antagonists in combination with TAM proved to have the best therapeutic performance in
several experimental models.

• The PR isoform ratio dictates different behaviors regarding proliferation, stemness, and prognosis.

• The role of PR isoforms in metastasis deserves further investigation as well as the participation of
novel spliced variants in endocrine resistant breast cancer.
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