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ABSTRACT. In a study of fossil seeds recovered from the La Cantera Formation, Early Cretaceous, San Luis
Basin, we establish a new species, Carpolithus volantus, and describe other specimens attributed to Carpoli-
thus spp. and Ephedra canterata. The botanical affinity of winged seeds assigned to Carpolithus volantus is
discussed in relation to the fossil flora recovered from this formation. Based on the abundance of Gnetales in
the San Luis Basin (pollen grains, reproductive and vegetative structures assigned to Ephedra), we propose
that Carpolithus volantus is affiliated with Gnetales (Weltwitschia). We suggest that Carpolithus spp. seeds
may be angiospermous, because this group, represented by leaves and flowers, dominates the fossil macroflora
of the La Cantera Formation. Micro- and macrofloral analyses of the La Cantera Formation and an assessment
of available dispersal vectors suggests that wind (anemochory) and water (hydrochory) may have been the most
important dispersal strategies for these seeds. The abundance and small size of seeds recovered from the La
Cantera Formation, together with their morphological characters, such as the presence of wings in Carpolithus
volantus, also favour abiotic mechanisms of dispersal such as anemochory or hydrochory.
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INTRODUCTION

Study of reproductive structures is crucial
to an understanding of the life cycle of plants;
moreover, morphological variations commonly
reflect ecological and environmental adaptations
(Harper et al., 1970; Haig and Westoby, 1989;
Westoby et al., 2002; Tiffney, 2004; Sims, 2012).
Seed anatomy contributes to accurate identifi-
cation of whole-plant taxa (e.g., Vaughan, 1970;
Wu et al.,, 2014; Benedict et al., 2015, 2016;
McLoughlin and Pott, 2019), but research on
fossil seeds presents many difficulties related
to intra- and interspecific variability, as well
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as morphologies that might alternatively be
related to phylogeny or environmental condi-
tions (Harper et al., 1970; Archangelsky, 2000).
The great diversity of seed shape and size is
related in part to seed dispersal mechanisms
(Eriksson et al., 2000; Moles et al., 2005a,b;
Eriksson, 2008; McLoughlin and Pott, 2019), so
seeds offer a good starting point for interpreting
plant palaeoecology (Tiffney, 1984; McLoughlin
and Pott, 2019). The most primitive fossil seeds
lack obvious adaptations to specific disper-
sal vectors (e.g., wind, water, animals) (Moles
et al.,, 2005a), but wind and water probably
have been the primary seed dispersal vectors
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since the emergence of terrestrial plants. From
the Middle Jurassic to the Early Cretaceous,
anemochory was a key strategy for seed dis-
persal (McLoughlin and Pott, 2019). Numerous
fossil fruits and seeds have been described from
the Cretaceous, many with excellent anatomi-
cal details preserved (Friis et al., 2011). Dis-
cussions about their dispersal mechanisms are
rare. The most complete Early Cretaceous floras
studied, including flowers, fruits, seeds and pol-
len grains, come from the Potomac Group at the
Kenilworth and Puddledock localities, eastern
North America (Crane et al., 1993; Pedersen
et al., 1994; Friis et al., 2009), the non-marine
Wealden Group of southern England (Austen
and Batten, 2018), various localities in Portu-
gal (Buarcos, Catefica, Torres Vedras: Lugar
d’ Almen, Fonte Granda and Almargem forma-
tions), and Famalicdo (Figueira da Foz Forma-
tion) in the Lusitanian Basin (Friis et al., 1999,
2009). Other well-studied floras of this age come
from the Jehol Group (Sunjiawan, Fuxin, Jiufo-
tang, Yixian, Zhangjiakou and Tuchengzi for-
mations) in Liaoning Province, China (Chang
et al., 2003; Sha, 2007; Wang et al., 2016), and
the Koonwarra Fossil Bed (Eumeralla Forma-
tion), Australia (Drinnan and Chambers, 1986;
McLoughlin and Pott, 2019).

From Argentina there are records of Carpo-
lithus in the Piedra Clavada Formation (Early
Cretaceous), Quebrada Don Nielsen locality,
Santa Cruz Province (Ballent et al., 2011). Seed
compressions of angiosperms were described by
Frenguelli (1953) from the Mata Amarilla For-
mation (Late Cretaceous), Santa Cruz Province.

Most Late Cretaceous records in this region
come from Patagonia. For example, Gandolfo
and Cuneo (2005) described fruit compressions
with seeds similar to Nelumbo Adans (Nelum-
bonaceae) from the La Colonia Formation,
Chubut Province. From the Neuquén Basin,
seeds and angiospermoid reproductive struc-
tures from the Portezuelo Formation, Neuquén
Group, have been assigned to two species of
Carpolithus (Passalia et al., 2008).

Seed cuticles provide other evidence of the
presence of reproductive structures in the fossil
record. Most seed cuticles from the Cretaceous
are assigned to the fossil genera Costatheca
and Spermatites, both of uncertain botanical
affinity. These “mesofossils”, with dimensions
of 0.28-2.50 mm, possibly are related to either
angiosperms or gymnosperms, but the chance
that some of them are insect eggs cannot be

dismissed (Batten and Zavattieri, 1995, 1996).
In Argentina, seed cuticles assigned to Sper-
matites were mentioned from the Plottier For-
mation (Late Cretaceous) Neuquén Group,
(Musacchio and Vallati, 2007), and Costatheca
was recorded from the Loncoche Formation
(Late Cretaceous) at the Calmu-Co section
(Papu, 2002), both from southern Mendoza.
The La Cantera Formation (El Gigante
Group) has provided one of the most diverse
and complete associations of palynomorphs
and plant macrofossils from the late Aptian of
central western Argentina, including primitive
angiosperms (Pramparo, 1990, 1994; Pramp-
aro et al., 2007; Archangelsky et al., 2009;
Puebla, 2009, 2010; Puebla et al., 2012, 2017).
In addition, reproductive structures including
several fossil seeds of different morphological
types were identified. Before the present study,
these fossil seeds were not described in detail,
except for ovulate cones of E. canterata pub-
lished recently by Puebla et al. (2017). Here we
provide new photos and descriptions of more
specimens of this species. We describe and
provide details of the reproductive structures
recovered from the La Cantera Formation, San
Luis Basin. We discuss their botanical affinities
and propose possible forms of dispersal, based
on seed morphology. Finally, considering the
entire group of plants represented in the fossil
record of the basin, we evaluate their possible
dispersal strategies and their implications for
paleoecological and paleoenvironmental inter-
pretation of mid-latitude Cretaceous floras of
central western Argentina, South America.

GEOLOGICAL SETTING

The studied fossils come from the type sec-
tion of the La Cantera Formation (32°59'25"S,
66°52'48"W) of the El Gigante Group (Flores
and Criado Roque, 1972), San Luis Basin,
Argentina (Fig. 1). The El Gigante Group con-
sists of six formations: Los Riscos, El Jume,
La Cantera, El Toscal, La Cruz and Lagarcito
(Flores, 1969; Rivarola and Spalleti, 2006).

The La Cantera Formation is built of lami-
nated greenish grey mudstone, siltstone and
claystone, with reddish brown sandstone and
grey siltstone interbedded at the top of the suc-
cession. It may represent deposition in ephem-
eral lakes related to a fluvial environment with
some periods of a very quiet lacustrine system
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allowing the preservation of delicate fossils (Flo-
res and Criado Roque, 1972; Criado Roque et al.,
1981; Pramparo, 1989). Recently, Castillo-Elias
et al. (2016) described MISS structures related
to a bacterial seal (biofilms), which probably pro-
tected the organisms from degradation, making
the La Cantera Formation an important source
of paleoecological and paleoenvironmental infor-
mation on a Cretaceous siliciclastic lacustrine
system. Pramparo (1999a) interpreted the for-
mation to have been deposited in a shallow fresh-
water eutrophic environment with some evapor-
itic episodes, based on the presence of a diverse
and abundant phytoplankton (Scenedesmus,
Tetrastrum, Tetraedron, Botryococcus, Leiospha-
eridia) (Tab. 1). Aquatic insects, fish, ostracods
and spinicaudatans have been recorded in the
same sections (Petrulevicius et al., 2010; Arcucci
et al., 2015; Giordano, 2017). Based on palyno-
logical studies, the La Cantera Formation is late
Aptian in age (Pramparo, 1990, 1994, 1999a,b;
Pramparo et al., 2007).

MATERIAL AND METHODS

The described specimens were found in finely lam-
inated shales as coalified compressions lacking pre-
served cuticles. A total of 64 reproductive structures

were studied and compared with published Cretaceous
seeds (e.g., Tiffney, 1984; Friis et al., 2014). Modern
comparative material was obtained from the collec-
tions of Herbario de Plantas Vasculares del Museo de
Ciencias Naturales “Bernardino Rivadavia”, Buenos
Aires, Argentina (BA).

The fossils were studied using a Leica Mz 125 ster-
eomicroscope and photographed with a Nikon Coolpix
990 digital camera. Some specimens were observed
using a LEO 1450VP scanning electron microscope
(SEM) of LABMEM (Laboratorio de Microscopia Elec-
trénica y Microanadlisis, Universidad Nacional de San
Luis). Fossil specimens are housed at Museo Interac-
tivo de Ciencias (MIC) of Universidad Nacional de San
Luis (UNSL), San Luis Province, Argentina, under the
acronym MIC-P.

COMPOSITION OF THE FOSSIL FLORA

The fossil record of La Cantera comprises
impressions and compressions of bryophytes,
monilophytes (Equisetidae), gnetophytes (Ephe-
dra), angiosperms, and various reproductive
structures such as seeds, cones and flowers
(Puebla, 2009, 2010; Puebla et al., 2012, 2017)
(Tab. 1). The palynoflora was dominated in
nearly all the studied assemblages by aquatic
forms such as freshwater algae (Pramparo,
1988b, 1990, 1994, 2012). The terrestrial paleo-
flora was dominated by gymnosperms, with
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Fig. 1. 1. Geological map showing the La Cantera Formation type locality at Sierra del Gigante (ridge), with exposures of
Cretaceous and Cenozoic units in the region (modified from Puebla et al., 2017); 2. Location of San Luis Province, Argentina
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subordinate angiosperms and free-sporing
plants (ferns, bryophytes). The gymnosperms
are mainly represented by plicate and rimulate
grains. Various species of Ephedripites/Steeve-
sipollenites of gnetalean affinity frequently co-
occur with monosulcate grains of Cycadopites
and Monosulcites. Classopollis (Pinopsida: Chei-
rolepidiaceae) is also abundant in all the sec-
tions. Recently, Puebla et al. (2017) described
a new fossil species of Ephedra (E. canterata),
based on the presence of ovulate cones associ-
ated with vegetative remains and the female
reproductive unit (Tab. 1).

SYSTEMATIC PALEONTOLOGY

Wang (2011) proposed conserving the fossil
genus Carpolithus as an informal category used
for fossil fruits and seeds that lack sufficient
morphological details to make a more accurate
generic assignment. In this work we use Carpo-
lithus for relatively simple seeds recovered from

the La Cantera Formation. As in previous stud-
ies (Puebla et al., 2017), we follow Yang (2011)
and call the reproductive units of ovulate cones
“female reproductive units”.

Subdivision GYMNOSPERMAE
Lindley, 1830

Order GNETALES Blume, 1835
Family EPHEDRACEAE Dumort, 1829
Genus Ephedra L., 1753

Type species: Ephedra distachya
Linnaeus, 1753

Ephedra canterata Puebla et al., 2017
PL 1

Materials. (Sixteen specimens) MICP-P797,
MIC-P798, MIC-P799, MIC-P801, MIC-P802,

Plate 1. 1-3. Female reproductive units (FRU) of Ephedra canterata. 1. Specimen MIC-P684; 2. Specimen MIC-P852; 3. Spec-
imen MIC-P798; 4. Ephedra chilensis (extant species), a. ovulate cone with bracts, b. FRU (inside cone), ¢. FRU isolated.

Scale bar = 1 mm (1, 2, 3); 2 mm (4)
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MIC-P803, MIC—P804, MIC-P806, MIC—P807,
MIC-P811, MIC-P819, MIC-P826, MIC—P830,
MIC-P834, MIC-P836, MIC—P852.

Dimensions. Width 1.43-3.70, avg. 2.90 mm;
length 2.21-4.75, avg. 3.63 mm.

Description. Two female reproductive units
joined by flat ventral face; dorsal face convex
(Pl. 1, fig. 4a,b). Split of reproductive units
(inside cone) evident only at apex (Pl. 1, figs
1-3, 4a,b). Outer epidermis papillate; among
these papillae is a central large rounded pro-
tuberance interpreted as a trichome base.
Whorls of bracts from ovulate cones not pre-
served.

Remarks. We include these specimens in
Ephedra canterata erected by Puebla et al.
(2017). The new specimens are consistent with
E. canterata in size and shape, and they share
a papillated outer seed envelope. The original
diagnosis includes ovulate cones with fourth
whorls of bracts but they are not preserved in
the new specimens. The split in the apex prob-
ably was due to the arrangement of the ovules
in the cone, as occurs in extant species (Pl. 1,
figs 1-3, 4a,b).

Isolated Female Reproductive Unit
PL 2

Materials. (Fourteen specimens) MIC-P809,
MIC-P814, MIC-P827, MIC-P832, MIC-P833,
MIC-P838, MIC-P848, MIC-P849, MIC-P850,
MIC-P855, MIC-P856, MIC-P858, MIC-P859,
MIC-P860.

Dimensions. Width 1-3.42, avg. 2.64 mm,;
length 2.12-4.92, avg. 3.65 mm.

Description. Seed ovoid-ellipsoid, with
acuminate chalaza and rounded apex. These
isolated structures are not connected to ovu-
late cones, and it is not possible to differen-
tiate the three distinctive layers (outer seed
envelope, integument and nucellus). Outer
epidermis papillated; between the papillae is
a large central rounded protuberance, inter-
preted as a trichome base (Pl. 2, fig. 9).

Remarks. The studied specimens are con-
sidered to be isolated seeds because they are
not attached to ovulated cones. They have the
size, shape and papillae sculpture of the seed
envelope, similar to the isolated female repro-
ductive units described by Puebla et al. (2017).

Family Incertae Sedis

Fossil Genus Carpolithus
Linnaeus emend. Seward, 1917

Type species: Carpolithus thalictroides
Brongniart, 1822

Carpolithus volantus sp. nov.
Pl 3

Holotype. MIC-P810 (Pl1. 3, fig. 4).

Paratype. MIC-P808, MIC-P812, MIC-P813,
MIC-P815, MIC-P816, MIC-P817, MIC-P818,
MIC-P821, MIC-P822, MIC-P823, MIC-P824,
MIC-P825, MIC-P829, MIC-P831, MIC-P844,
MIC-P846, MIC-P847 (PL. 3, figs 1-3, 5-9).

Type locality. Type section of the La Can-
tera Formation (32°59'25"S, 66°52'48"W), San
Luis Province, Argentina.

Derivation nominis. volantus (Latin): the
specific epithet refers to dispersal strategy by
wind.

Diagnosis. Winged and flattened seeds up to
4 mm in width or length, with two symmetric
wings flanking a narrow elliptic central seed
body.

Dimensions. Width of reproductive struc-
ture 1.16-3.96, avg. 2.58 mm, length 1.55—
3.61, avg. 2.13 mm; width of seed body 0.42—
1.23, avg. 0.75 mm, length 1.24-2.79, avg.
1.92 mm. Width of each wing 0.66-1.70, avg.
1.04 mm, length 0.75-3.61, avg. 1.95 mm (see
Fig. 2).

Description. Flattened winged seeds. Cen-
tral seed body flanked by two membranous
wings. Seed body narrow and elliptic, with
smooth surface. Acute apex and rounded cha-
laza. Apex extended into narrow projection
probably corresponding to micropylar tube
(P1. 3, figs 4-9). Wings equal in size and shape
and wider than body of seed. Some specimens
have fine striations at base of wings that
extend to more than mid-length. These stria-
tions also run along edge of seed body (Pl. 3,
figs 1-5). Studied specimens have two wing
morphotypes: (a) wings completely surround-
ing the seed body (Pl. 3, figs 1-3) and (b) wings
reaching around half the length of the seed
body (PL. 3, figs 4-9).
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Plate 2. 1. Extant seed of Ephedra chilensi

s. 2-9. FRU isolated from Ephedra canterata. 2. Specimen MIC-P856; 3. Specimen

MIC-P809; 4. Specimen MIC-P849; 6-9. Specimen MIC-P827; 7-9. SEM images showing impression of outer envelope of seed.
Scale bar = 0.5 mm (4); 1 mm (3, 5, 6, 7); 2 mm (1); 200 pm (8); 100 um (9)

Remarks. Carpolithus volantus is the most
abundant type of fossil seed recovered from
the La Cantera Formation. Unfortunately, all
specimens of this species occur isolated, with
no organic connection to a reproductive axis.

Botanical affinity and comparisons.
Fossil seeds corresponding to Carpolithus vol-
antus have morphological characters similar

to gymnosperm seeds of two families: Cupres-
saceae and Welwitschiaceae. Cupressaceae
has an extensive fossil record from the Middle
Jurassic (Escapa et al., 2008; Spencer et al.,
2015). The Cretaceous was an important time
for diversification of this family (Stockey et al.,
2005). Extant representatives occur in both
hemispheres (Harris, 1979; Rothwell et al.,
2011). Seeds from this family are consistent
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Plate 3. Carpolithus v

within each natural genus and have diagnos-
tic characters for classification in terms of
shape and wing arrangement (Kvacek et al.,
2000). Moreover, seeds of most Cupressaceae
genera have two equal wings (e.g. Athro-
taxis, Chamaecyparis, Cunninghamia, Thuja,
Sequoiadendron, Thujopsis, Cupressus, Fitz-
roya, Tetraclinis, Widdringtonia, Neocallitrop-
sis), like Carpolithus volantus (Pl. 3). However,
only a few genera (Athrotaxis, Chamaecyparis,
Thuja, Cupressus, Fitzroya) have seeds with
dimensions similar to our fossils (<5 mm). Nota-
bly, there are no records of Early Cretaceous

e £ < ) 2

wing the striations (S) emerging from
base of seed; 3. MIC-P822 showing wings (W) covering half of seed body; 4-9. Specimen with wings completely bordering seed
body 4. Specimen MIC-P810 showing narrow projection corresponding to micropylar tube (MT) in apex of seed body (SB); 5.
Line drawing of MIC-P810; 6. Specimen MIC-P821; 7. Specimen MIC-P825; 8. Specimen MIC-P882; 9. Specimen MIC-P817.
Scale bar = 0.5 mm (3, 1); 1 mm (4, 6-9)

seeds of Cupressaceae similar to those from
the La Cantera Formation. Gnetophytes had
their peak diversity during the Cretaceous,
based on palynological data (Krassilov, 1982;
Crane and Upchurch, 1987; Rydin et al., 2003;
Dilcher et al., 2005; Taylor et al., 2009). Cur-
rently, Gnetales is represented by three mono-
generic families: Gnetaceae, Ephedraceae and
Welwitschiaceae, which all share reproductive
characters (Rydin et al., 2006; Kunzman et al.,
2011). Welwitschia mirabilis, the single extant
species of Welwitschiaceae, is geographically
restricted to the arid coastal fringe of Namibia
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Fig. 2. Line drawing (modified of Lele, 1969) showing the
main dimensions considered in descriptions of seed morphol-
ogy: 1. Width of seed body; 2. Total width of seed; 3. Length of
wings; 4. Length of seed body. A. Chalaza; B. Apex; C. Wing;
D. Seed body

and Angola (Bornman et al., 1972). This spe-
cies produces enclosed seeds in a membranous
winged perianth and generally measures more
than 2 cm long (Hooker, 1863; Kubitzki, 1990).
Carpolithus volantus shares some morphologi-
cal characters with Welwitschia, such as mem-
branous wings with a smooth surface that sur-
round the seed body.

The best-studied fossil records of Welwitschia-
like seeds correspond to Bicatia from the Early
Cretaceous of Portugal and North America (Friis
et al., 2014). This fossil taxon has been assigned
to Welwitschia-like plants, based on the combi-
nation of the external morphology of their seeds
and in situ pollen (Friis et al.,, 2014). Bicatia
shares with Carpolithus volantus the flattened
winged seed, but it does not exceed 1 mm width
and 1.3 mm length; Carpolithus volantus is more
than 1 mm wide and 1.5 mm long (Pl. 3). Addi-
tionally, Bicatia has a rough surface that differs
from the smooth surface of Carpolithus volantus.

Krassilov and Schrank (2011) described
Qataniaria with a probable affinity to Gnetales
from the upper Albian of the Hatira Forma-
tion, Makhtesh Qatar, northern Negev, Israel.
The associated fruiting bodies are enclosed in
cataphylls similar to the foliage. The struc-
tures are also considered gnetophytic, with
lobed wings that probably correspond to persis-
tent bracteoles as in Welwitschia. Qataniaria
shares with Carpolithus volantus the presence
of wings and similar measurements. However,
the fossils from Israel lack a detailed descrip-
tion for further comparisons.

Subdivision PANGIOSPERMAE
Lindley, 1830

Family Incertae Sedis

Carpolithus spp.
Pl 4

Referred materials. (sixteen specimens)
MIC-P800, MIC-P820, MIC-P835, MIC-P837,
MIC-P839, MIC-840, MIC-P842, MIC-P851,
MIC-P853, MIC-P864.

Dimensions. Width 0.68-2, avg. 0.99 mm,
length 0.68-2, avg. 1.29 mm.

Description. Isolated seeds small (<2 mm),
rounded or narrow and elliptic. Rounded apex
and chalaza. Some specimens have smooth sur-
face (Pl. 4, figs 1-6) and others have keel-like
structure (Pl. 4, fig.7). Some have micropyle-
like structure at apex (Pl. 4, figs 1-3, 7-8).

Remarks. The specimens included in Carpo-
lithus spp. are less than 2 mm in size; they are
smaller than the other fossil seeds described
from the La Cantera Formation. Although some
differences between the specimens included in
Carpolithus spp. can be observed, they do not
preserve many anatomical characters to assign
them a definite botanical affinity.

Botanical affinity and comparisons.
The diminutive seeds included in Carpolithus
spp. lack any obvious architectural modi-
fications for dispersal (Pl. 4). Angiosperms
dominate the macroflora of the La Cantera
Formation and are represented by a record
including leaves and reproductive structures
(Archanglesky et al., 2009; Puebla, 2009,
2010; Tab. 1). These early fossil flowers are
very small and presumably produced tiny
seeds. Based on their abundance and small
size, Carpolithus spp. could be related to
angiosperms.

DISCUSSION

THE EVOLUTION OF SEED SIZE

Seed size is critical to many aspects of plant
ecology and evolution (Harper et al.,, 1970;
Westoby et al.,, 1996; Leishman et al.; 2000;
Moles et al.; 2005a,b; Eriksson, 2008). Sev-
eral authors have shown a correlation between
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Plate 4. Carpolithus spp. 1. Specimen MIC-P800; 2. Specimen MIC-P820; 3. Specimen MIC-P880; 4. Specimen MIC-P853;

o

5. Specimen MIC-P881; 6. Specimen MIC-P671; 7. Specimen MIC-P839; 8. Specimen MIC-P835; 9. Specimen MIC-P851. Scale

bar = 0.5 mm

habit, habitat, size and seed number. For
example, ephemeral plants of open or unstable
habitats generally produce many small seeds
that can be widely dispersed, often by abiotic
mechanisms (Salisbury, 1942; Harper et al.,
1970; Silvertown, 1981; Tiffney, 1984; Shipley
and Dion, 1992; Eriksson, 2008). Openness
of vegetation explains why seeds remained
small during the Cretaceous and biotic disper-
sal was not promoted (Eriksson et al., 2000).
A comparative study of angiosperm seed size
from the Early Cretaceous to the Neogene

suggests that small seeds prevailed until
the Late Cretaceous, and seed dispersal was
mostly abiotic (Eriksson et al., 2000; Moles
et al., 2005b). From the Late Cretaceous to
the Paleogene there was a marked increase in
the average size of seeds, equivalent to about
2—-3 orders of magnitude (Eriksson, 2008).
Therefore it is probable that the earliest angi-
osperms were herbaceous plants (Doyle, 1996;
Eriksson, 2008). The angiosperm fossil leaves
recovered from the La Cantera are small (0.1-
2.7 cm long, 0.1-1 cm wide), so it is inferred
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that they were probably herbaceous (Puebla,
2009, 2010), and some of the specimens stud-
ied here (Carpolithus spp.) could belong to
this group (PL. 4).

The difference in seed mass between gym-
nosperms and angiosperms is evident both
in the fossil record and in the extant species.
In the Cretaceous, the smallest gymnosperm
seeds are about two orders of magnitude
larger than the smallest angiosperm seeds
(Moles et al., 2005b). Small Cretaceous seeds
probably belonged to angiosperms that were
shrubs, small trees or even herbs (Wing and
Tiffney, 1987; Wing and Boucher, 1998; Eriks-
son, 2008). The European and North Ameri-
can fossil angiosperms from Cretaceous strata
all have small reproductive organs, with the
dimensions of seeds, fruits and flowers vary-
ing between 0.5 and 3 mm (Frumin and F'riis,
1999; Rydin et al., 2006).

ANALYSIS OF DISPERSAL STRATEGIES IN
SPORES, POLLEN GRAINS AND SEEDS

We analyzed the dispersal strategies of
plants from the La Cantera Formation, based
on micro- and macrofossils (Tab. 1).

Bryophyta

The bryophytes sensu lato were important
components of early terrestrial floras (Bate-
man et al., 1998; Renzaglia et al., 2007), with
a wide range of habitats (Mishler, 2001). The
Cretaceous saw an evolutionary radiation and
dispersion of bryophytes. Fossil remains found
from this period are easily assigned to extant
genera because their morphology is conserva-
tive (Frahm, 1994; Taylor et al., 2009). In the
La Cantera Formation, spores together with
diverse macrofossils belonging to Bryophyta
were recovered from the same fossiliferous
strata. Puebla et al. (2012) found predomi-
nance of spores and thalli with hepatic affini-
ties within the assemblage. The record of tri-
lete spores of Bryophytes is sparse, represented
by the hilates such as Couperisporites sp. cf.
C. complexus, Aequitriradites sp. cf. A. verru-
cosus, Foraminisporis symetricus, Zlivisporis
reticulatus and Coptospora spp. (Puebla et al.,
2012) (Tab. 1).

Bryophytes are ecologically sensitive, small
(a few millimeters to decimeters), niche-spe-
cificc and intolerant to seawater. Generally
they need a humid environment for their

development (Bates et al., 2009). The La Can-
tera Formation represents ephemeral lake
deposits of a fluvial floodplain setting (Flores
and Criado Roque, 1972), which allowed pres-
ervation of delicate structures such as bryo-
phyte thalli.

Sexual reproduction of these plants is
strongly related to the availability of water
because male gametes move only short dis-
tances (Longton and Schuster, 1983; Hedder-
son and Longton, 1995; Bell and Hemsley, 2000;
During, 2007; Frahm, 2007; Vanderpoorten
and Goffinet, 2009; Devos et al., 2011). In
asexual reproduction, spores disperse mainly
by wind (anemochory) (Zander, 1979).

Monilophyta

During the Early Cretaceous, ferns grew
and accumulated under warm conditions
in moist environments including wetlands,
mires, riverbanks and the understory of
forests (Collinson, 2002; Van Konijnenburg-
van Cittert, 2002). Two families were par-
ticularly important during the Early Cre-
taceous: Osmundaceae and Schizaeaceae.
Modern Schizaeaceae are distributed in
warm and humid environments (Skog, 2001).
Their spores are dispersed mainly by wind
and water (Traverse, 1988). Most ferns are
homosporous. These ferns have free-living
bisexual gametophytes, so they can establish
new populations in distant places by scat-
tering individual spores. For these reasons,
ferns can respond more readily to environ-
mental changes than flowering plants can
(Kato, 1993). Monilophyta are represented in
the La Cantera paleoflora by diverse but not
abundant spores (Pramparo, 1989). Spores
belonging to the homosporic ferns Lycopo-
diaceae, Cyatheaceae, Dicksoniaceae and
Schizaeaceae, and the heterosporous ferns
Marsileaceae and Selaginellaceae, occur in
the palynoflora (Pramparo, 1989, 1990, 1994)
(Tab. 1). So far, ferns have not been recorded
in the macroflora.

Gymnospermae

During the Mesozoic, gymnosperms includ-
ing cycads, conifers and ginkgos reached their
peak in species richness and ecological impor-
tance (Harris, 1979; Thomas and Spicer, 1986;
Henry, 2005). The Mesozoic is considered the
golden age of conifers, given their expansive
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radiation and floristic dominance (Harper
et al., 1970).

Gnetales are a group of interest to botanists
because their relationships with other seed
plants are still unknown (Crane et al., 2004;
Ickert-Bond and Renner, 2016). Recently the
new species Ephedra canterata was described
from the La Cantera Formation, based on vege-
tative and reproductive remains (Puebla et al.,
2017). Plicate pollen grains are also very abun-
dant and diverse in the palynoflora (Tab. 1).
The Ephedripites complex (= pollen grains of
gnetalean affinity) includes Ephedripites spp.
Gnetaceapollenites spp., Steevesipollenites spp.
and Jugella spp. (Pramparo, 1990; Pramparo
et al., 2018; Puebla et al., 2017). The abun-
dant plicate pollen grains associated with the
macrofossils confirm the strong representation
of this group in the basin (Puebla et al., 2017).

The modern representatives of Ephedra
grow in dry environments; their abundance
during the Cretaceous could be related to the
warmer and drier environments that devel-
oped in tropical and subtropical regions dur-
ing this period (Scotese et al., 1999; Wang and
Zheng, 2010). The cones of Ephedra canterata
have dry membranous bracts and small seeds,
so anemochory is inferred as the mechanism of
dispersal of these seeds (Puebla et al., 2017).
This morphology is evident in seeds of some
extant species of Ephedra (Section Alatae),
which are wind-dispersed (Hollander and
Wall, 2009; Hollander et al., 2010). The abun-
dant record of Ephedra in the La Cantera For-
mation (indicative of dry, even arid conditions)
suggests a marked arid season in the basin
during the late Aptian (Puebla et al., 2017;
Pramparo et al., 2018).

Cheirolepidiaceae is an extinct conifer
group dating to the Late Triassic (Axsmith
and dJacobs, 2005); it disappeared around
the Cretaceous/Paleogene boundary in most
areas, except in southern Argentina, where it
has also been recorded from the Early Paleo-
gene (Barreda et al., 2012). This family was
a characteristic and abundant element of low-
latitude Cretaceous floras, mainly represented
by Classopollis pollen (Alvin, 1982). It is also
a frequent and abundant component of Early
Cretaceous palynofloras of Argentina (Quat-
trocchio et al., 2011; Villar de Seoane and
Archangelsky, 2014; Pramparo et al., 2018)
and other high-latitude parts of Gondwana
(Tosolini et al., 2015). Classopollis, together

with pollen grains of Gnetales (mainly those
with Ephedra and Welwitschia affinity), have
been used as indicators of aridity in paleocli-
matic reconstructions, mainly in low to middle
latitudes (Herngreen, 1996; Mejia-Velasquez
et al., 2012; Pramparo et al., 2018).

The La Cantera Formation yielded abun-
dant pollen grains of Classopollis at some lev-
els (Pramparo, 1989, 1990, 1994). The abun-
dance of these pollen grains, together with
Gnetalean pollen, both inferred to be drought-
resistant, indicate an expanding hot arid cli-
mate during the Aptian—Albian in the mid-
dle and low latitudes of Argentina (Pramparo
et al., 2018). However, there are no records of
conifer macrofossils in the basin. The La Can-
tera Formation palynoflora contains mono-
sulcate grains of the fossil genera Cycadop-
ites and Monosulcites (Pramparo, 1989, 2012)
(Tab. 1). Most of the Cycadopites/Monosul-
cites pollen grains from the Late Jurassic to
Early Cretaceous originated from Ginkgoales,
Cycadales and Bennettitales that grew in low-
land vegetation (Vakhrameev, 1991; Abbink
et al., 2004). In addition, pollen grains related
to Podocarpaceae (Podosporites sp. 1, Rugubi-
vesiculites spp. 1-2 and Trisaccites microsac-
catus), Araucariaceae (Balmeiopsis limbatus)
and other Coniferales (Alisporites similis, Cal-
lialasporites australiensis) have been found in
La Cantera (Pramparo, 1990, 1994) (Tab. 1).
However, there are no records of these taxo-
nomic groups in the macroflora so far.

Most gymnosperms are wind-pollinated,
but beyond this, two main dispersal syn-
dromes are known for the group. One of the
dispersal syndromes consists of woody or cori-
aceous cones that generally contain winged
seeds that are dispersed by wind (anemochory)
or by gravity (barochory). The other consists
of fleshy “fruits”/arils that surround wingless
seeds that are dispersed by animals (zoochory)
(Giddy, 1974; Givnish, 1980; McLoughlin and
Pott, 2019).

The seeds included in Carpolithus volan-
tus of the La Cantera Formation are double-
winged (Pl. 3). The presence of such append-
ages indicates that anemochory was an
important dispersal strategy (McLoughlin
and Pott, 2019). Seed wings, especially double
wings, provide improved aerodynamic proper-
ties, reducing the rates of descent and optimiz-
ing seed dispersal (Souza and Iannuzzi, 2012;
Stevenson et al., 2015). The presence of this



M.A. Goémez et al. | Acta Palaeobotanica 60(1), 181-198, 2020

193

morphological feature in Carpolithus volantus
emphasizes anemochory as the main dispersal
strategy for these seeds.

Angiospermae

The Cretaceous is crucial for understanding
the evolution and radiation of angiosperms,
one of the most important events in the history
of the Earth’s biota (Taylor and Hickey, 1990;
Sun and Dilcher, 2002; Friis et al., 2006). The
oldest unequivocal angiosperm remains come
from Cretaceous strata and are represented
by remains of leaves (Hickey and Doyle, 1977),
flowers and floral organs (Friis et al. 2011).

Mesofossil assemblages from Cretaceous
(Barremian—Aptian) strata contain an enor-
mous diversity of isolated fruits and seeds
(Friis et al., 1999, 2009, 2011). The study of
these fossils has great potential for elucidating
early angiosperm evolution (Friis et al., 2011).
During most of the Cretaceous, angiosperm
seeds were small and unspecialized (Tiffney,
1984; Friis and Crepet, 1987; Friis et al., 1995,
1997; Erikson et al., 2000), so their dispersal
was probably abiotic (hydrochory or anemo-
chory) (Tiffney, 1984; Eriksson et al., 2000;
Eriksson and Kainulainen, 2011; McLoughlin
and Pott, 2019). In the La Cantera Formation
palynoflora, angiosperms are represented by
Afropollis (A. operculatus, A. zonatus, A. aff.
Jjardinus), Retimonocolpites sp., Stellatopollis
sp., Clavatipollenites sp., Tucanopollis, Pen-
nipollis (ex Brenneripollis) reticulatus and the
Asteropollis complex (Stephanocolpites mastan-
dreai/Huitrinipollenites transitorius (Pram-
paro, 1999b; Pramparo et al., 2007). In addition,
early angiosperm remains have been found as
leaves, some of which are assigned to the eudi-
cots (LC-Microphyll trifoliate) (Archangelsky
et al., 2009; Puebla, 2009), and small flowers
(Puebla, 2010) (Tab. 1). These remains are all
small (0.1-2.7 cm; Puebla, 2009, 2010).

The seeds included in Carpolithus spp.
from the La Cantera Formation are very small
(<2 mm) and unspecialized morphologically
(Pl. 4). Seeds of Archaefructus liaoningensis
Sun et al. 1998 and Sinocarpus decussatus
Leng et Friis 2003 also have no distinctive
characters and are generally smooth, ellipsoi-
dal and 1-2 mm long (McLoughlin and Pott,
2019). Therefore, based on the characters of
Carpolithus spp., it is inferred that this type of
seed could have been produced by small angio-
sperms and may be related to the small fossil

flowers recovered from the basin. Owing to its
proximity to a lacustrine environment, Carpo-
lithus spp. (<2 mm) could have been dispersed
by wind or water.

CONCLUSIONS

Fossil seeds from the late Aptian of the La
Cantera Formation, San Luis Basin, central
western Argentina, are described and illus-
trated here for the first time. We described
a new species of Carpolithus, plus additional
specimens attributed to Carpolithus and
E. canterata. These new fossils expand the flo-
ristic diversity of the San Luis Basin during
the Early Cretaceous.

We discussed the botanical affinity of
winged seeds assigned to Carpolithus volantus
in the context of the entire plant association
recovered from the formation. Thus, two alter-
native affinities are possible for the winged
seed types: Cupressaceae or Welwitschiaceae.
Their preservation as impressions or thin com-
pressions precludes a detailed anatomical com-
parison (Pl. 3). Nevertheless, it is noteworthy
that there is currently no evidence (within the
macro- or microflora) of the presence of Cupres-
saceae in the La Cantera Formation. On the
other hand, the discovery of E. canterata and
abundant and diverse polyplicate pollen grains
confirms the strong representation of Gnetales
in the San Luis Basin (Tab. 1). Furthermore,
among polyplicate grains, those that have
a longitudinal aperture and probable affinity
to Welwitschia were recognized in the micro-
flora (Puebla et al., 2017). Thus, we deduced
a more probable relationship of Carpolithus
volantus to Gnetales.

Angiosperms are the dominant group in
the macroflora of the La Cantera Formation
(Puebla, 2010), being represented by small
leaves (0.1-2.7 c¢m long, 0.1-1 cm wide) and
flowers (<6 mm) (Puebla, 2009, 2010), so it is
inferred that they were herbaceous plants. We
suggest that some of the seeds studied here
(Carpolithus spp.) could belong to this group.

Our analysis of the total floristic associa-
tion (micro- and macroflora) of the La Cantera
Formation and their morphological adapta-
tions indicates that their dispersal strategy
was mainly anemochory. However, we cannot
exclude hydrochory as a dispersal strategy for
small seeds.
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