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Abstract. Let G be an LCA group, I" its dual group, and H a closed subgroup
of G such that its annihilator A is countable. Let M denote a regular positive
semidefinite matrix-valued Borel measure on I' and L? (M) the correspond-
ing Hilbert space of matrix-valued functions square-integrable with respect to
M. For g € G, let Z, be the closure in L2(M) of all matrix-valued trigono-
metric polynomials with frequencies from g+ H. We describe those measures
M for which Z; = L?*(M) as well as those for which ﬂgEG Zy = {0}.
Interpreting M as a spectral measure of a multivariate wide sense stationary
process on GG and denoting by 7 the family of H-cosets, we obtain condi-
tions for Jg-singularity and Jg-regularity.
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1. INTRODUCTION

The celebrated Whittaker—Shannon—Kotel nikov theorem claims that if the non-
stochastic spectral measure n of a mean square continuous wide sense stationary
process X := {X(t): ¢ € R} is concentrated on the interval (—m, ), then X
admits a series representation

sin(7(t — k))

(1.1) X(t) = X(k)——=, teR,
&R

which converges in the quadratic mean. In particular, (I.1)) yields

(1.2) sp{X(k): k€ Z} =sp{X(¢t): t € R},
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where Sp stands for closed span. In a sense, formula (1.2) implies that all information
on the process X can be extracted from observing it on the integers. Although (1.2)
is weaker than (L.T]) (see [[11]]), and is not so useful from the practical point of view,
several authors were concerned with the problem of describing those processes for
which is true. The solution was given in terms of the spectral measure (i, i.e.
the “isomorphic” problem in the spectral domain L?(;1) of X was studied. The main
idea is to replace the measure y by a suitable periodic measure.

Lloyd [11]] introduced a measure v by setting v(B) := > - he— oo M(B +2kT) for
any Borel subset B of R. With its aid he computed the OI'thOpI‘OJeCtIOI’I in L2 () onto
sp{e* : k € Z} and derived from this necessary and sufficient conditions for (T.2).
Lloyd’s approach was generalized to multivariate processes in [[14] and applied
to a problem of multichannel sampling in [8]. Another approach first taken by
Yaglom [21]] in a more or less explicit form consists in restricting the measure p to
each interval 27k, 27(k 4+ 1)), k € Z, shifting these restrictions to [0, 27) and then
adding them to obtain a measure ji. This method has the advantage that the resulting
measure [ is finite, whereas v is only o-finite in general. Yaglom’s approach was
used in [7]] and generalized to multivariate processes in [17] and [6] as well as to
harmonizable symmetric a-stable processes in [9]].

The present paper deals with multivariate processes on LCA groups, i.e. locally
compact abelian groups with Hausdorff topology. On the basis of abstract harmonic
analysis we gain a unified approach to stationary processes on various groups. Note
that in [6] processes on R and Z were discussed separately. Since our results can be
applied, for example, to a homogeneous field on a torus or cylinder, they are also of
practical interest.

The problem reads as follows. Let G be an LCA group and H its closed subgroup.
Describe all multivariate weakly stationary processes X := {X(g): g € G} on G
with

(1.3) sp{X(h): h € H} =sp{X(9): g € G},

where sp stands for closed matrix-linear span. If we introduce the family Jp :=
{g+ H: g € G} of H-cosets, in accordance with [18| Definition 2.10] a process X
satisfying (I.3) can be called Jp-singular.

In Section 2] we discuss Jp-singular processes in terms of their spectral mea-
sure M, i.e. a positive semidefinite matrix-valued measure on the dual group I' of G.
Unfortunately, we have not been able to solve the problem in its full generality since
our method heavily leans on the requirement that the annihilator A of the group
H is countable, i.e. finite or countably infinite. Thus, throughout this paper it is
assumed that A is countable. Then Theorem[2.2] gives a complete characterization
of the spectral measures of Jr-singular processes. The special case G = R and
H = 7 was solved in [6]. However, the formulation of the result as well as the proof
given there were somewhat imprecise or even misleading and Theorem [2.2]removes
this inaccuracy. Moreover, [6] was written ignoring Pourahmadi’s paper [14]. Here
we point out the interrelations between Pourahmadi’s results and ours.
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Section [3is devoted to some consequences of Theorem [2.2]

In Section[d we discuss a problem which arises in multichannel sampling and
was solved in [8] using Lloyd’s approach. It seems to us that from Theorem [2.2] one
can deduce a simpler and more lucid solution of that problem.

In a sense, processes X with

N sp{X(g+h): h € H} = {0}
geG

form the opposite class to the class of Jr-singular processes. In accordance with [[18]
Definition 2.10] they are called Jg-regular. Section [5|deals with the description
of the spectral measure of a Jy-regular process. Among other things, we again
generalize and improve a result of [6].

Already the early papers on stationary time series dealt with the Wold decom-
position of a stationary process into its J-regular and 7 -singular parts: see [20],
[10], [22] for processes on Z or R and the family J := {(—o0, 2] N Z: = < 0} or
J = {(—00,x]: x < 0}; Salehi and Scheidt [18, Theorem 2.13] proved the exis-
tence and uniqueness of a Wold decomposition for processes on an LCA group GG
and a family 7 of subsets of GG invariant under translation. The problem arises to
describe the spectral measures of the 7 -regular and 7 -singular parts. Here we solve
this problem for the family Jz generalizing [6, Theorem 5.2], where the special
case that Jx has only two elements was discussed.

In [9], Jp-regularity and Jp-singularity of a univariate process on G were
described without assuming that A is countable. It would be of theoretical as well
as of practical interest to extend these results to multivariate processes since, for
example, the rather natural case that X is a process on the two-dimensional lattice Z2
and H = Z x {0} is not covered by our results.

2. Ju-SINGULARITY

For p, ¢ € N denote by M, , the linear space of all p X ¢ matrices with complex
entries. Set M, := M, , and denote by /\/lq> the cone of positive semidefinite
q x q matrices. To simplify the notation, dependence on the dimension is occa-
sionally not indicated. For example, we shall write M instead of M, , and M=
instead of M qZ. The adjoint, Moore—Penrose inverse, range, null space, and rank
of a matrix X are denoted by X*, X+, R(X), N(X), and rk X, resp. If X is
quadratic, then tr X denotes its trace. The unit matrix (of arbitrary size) is denoted
by I.If L is a subspace of C%, then L stands for its orthogonal complement and
Pr, for the orthoprojection onto L.

For a topological space €2, let B(€2) be the o-algebra of its Borel subsets. If
i is a non-negative measure and v a complex-valued measure on 5({2) such that
v is absolutely continuous with respect to p, we shall write v < p. A func-
tion ®: Q — Q' from Q into a topological space ' is called measurable if it is
(B(£2), B(£Y))-measurable. According to Azoff’s general result concerning measur-
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ability of processes in linear algebra (cf. [1]]), all functions we shall deal with here
can be assumed to be measurable.

Let G be an LCA group, whose group operation is written additively. De-
note by I' its dual group and by (v, ¢g) the value of v € T"at ¢ € G. Let M
be a regular M?—Valued measure on 5(I"). We recall the definition of the left
Hilbert-M,,-module of M, ,-valued functions on I, which are square-integrable
with respect to M as given by Rosenberg [15]]. We mention that a slightly less
general definition was given about 15 years earlier by Kats [4] (see also Rozanov’s
book [16]) Let . be a o-finite non-negative measure on B(I") such that M < p. De-
note by i M the Radon—-Nikodym derivative. We emphasize that dM is a measurable
function (and not a p-equivalence class of functions). Two measurable My, q-valued
functions ® and V¥ are called M -equivalent it cI)dd]lW \I’dM p-a.e. The set of all

(M -equivalence classes of) functions ¢ such that fr @%ﬂj <I>* dy exists (or, equiva-
lently, [ tr (@%(I)*) du < oo) form a left Hilbert-M,,-module with inner product
I8 tr(é%m*) dp = tr [ cb%{\p* du, which is denoted by L2 (M) or simply
L?(M). A routine application of the chain rule for Radon—Nikodym derivatives re-
veals that the definition of L?( M) does not depend on the choice of . It is common
to choose p = 7 := tr M.

Let H be a closed subgroup of G and A := {A € T": (\,g) = 1forallg € H}

its annihilator. Recall that A is a closed subgroup of I'. For g € G, denote by g its
H-coset g+ H. The set Sp{(-, g+ h)I: h € H},i.e. the closure in L3 (M) of the

M,, g-linear hull of all functions (-, g + h)I, h € H, is denoted by Zép’q)(M) or
often by Zj for short. Set Z := Zj.

Since the operator of multiplication by the function (-, g) is obviously a unitary
operator in L?(M), the equality Z; = L?(M) is satisfied for all g € G if and only
if it is satisfied for some g € G.

LEMMA 2.1. For arbitrary p € N, the space Z\P9 coincides with Lf,’q(M) if
and only if Z(H?) = Liq(M).

Proof. From the Cauchy inequality it follows easily that ® € L;Q(M ) if and
only if all rows of ® belong to L? ,(M). Note that Z(P9) = L2 (M) if and only if
for any ® € L2 (M) the relations

dM .
(21) f@(’y) dr (7)(77 h>X T(dp)/) = 07 h e H7 X € Mp,qv
r
yield <I> = 0 in L2 4(M). Since the condition (2.1)) is satisfied if and only if

fr )7, h> (dy) =0 forall h € H and all rows ¢ of @, it is not hard to
derlve the assertlon L]

Taking into account the preceding lemma we can give the following definition.
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DEFINITION 2.1. A regular M?—Valued measure M on B(I') is called Jx-sin-
gularif Z = L*(M).

Considering M as a spectral measure of a ¢g-variate stationary process X on G,
we can conclude from Kolmogorov’s isomorphism theorem that M is Jp-singular
if the process X is. The goal of the present section is to describe all Jyr-singular
measures. To do this we first introduce some measures related to M.

A subset T of T is called a transversal (with respect to A) if it meets each
A-coset justonce, i.e. TN(A+T)=0,\ € A\ {0}, and [ J(A\ + T) =T, where,
by convention, the index of summation or of a union of sets is A and runs through A
if not indicated. A transversal may be intuitively treated as representing the factor
group I'/A. According to [2, Theorem 1] we can and will assume that 7" € B(T").
For A € A, let M), be the restriction of M to B(A + T), 1) := tr M), M,\(B) =
My(A+ B), B € B(T), 7 == tr My. Set M == Y. My, 7 := tr M = > 7y
and o(B) :=>_ 7((BN(A+T)) — A), B € B(I'). All measures just defined are
regular and the measures designated by a tilde are measures on 5(7"). Note that
T < o, that 7 is the restriction of o to B(T), and that the measure o is periodic, i.e.
o(A+ B)=0(B), B e B(I'), A € A. Setting

dM,
dr

_dM

(2.2) (7) : dU(AJrV)’ yeT, A€ A,

can establish a 1-1 correspondence between the set of Radon-Nikodym derivatives

% and the set of families of Radon—Nikodym derivatives dé\?, AeA.

LEMMA 2.2. For g € G, the set Zz(M) coincides with L*(M).

Proof. 1t & € L*(N) satisfies [, ®(7) 4 (v)(y, ) 7(dy) = 0 forall h € H,
from [12, Lemma 3.1] it follows Cﬁ‘g\f = 0 7-a.e., which implies that ® = 0in
L?(M). Thus Z(M) = L*(M), and hence Zz(M) = L*>(M) forallg € G. =

Let g € G. Since for A € A, the function (), -) is constant on each [-coset, we
can set (\, §) := (), g) and define an operator V; on L?(M) by

(Va®)(v) =\ 9)®(y—A), veEA+T, A€ A, e L*(M).
Let V' := Vj. Despite its simplicity the following lemma is crucial for our consider-

ations.

LEMMA 2.3. For any g € G, the operator V; establishes an isometric iso-
morphism between L12,7q(]\~4 ) and ng ) (M). In particular, V maps L?Lq(M ) onto
ZP:9) (M) isometrically.
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Proof. It is obvious that Vj; is an M,,-linear map. From the periodicity of o,
formula (2.2), and the monotone convergence theorem we obtain

dM dM
[(V30)—(V30)*do = Y. [ (V3@)——(V;®)* do
T do AEA AT d
dM
= 2 JVa@) A+ 7)1 A+ (V) (A +7)" o(dv)
ANAT
- dM - dM -
= Aot d7 = [ b—— P dF
xear 47 T a7

for & € Lg’q(M ), which shows that V is an isometry. To show that the image of

V; is equal to Z(gp’Q)(M) note that the function (-, g + h) X, h € H, X € M, 4, is
the image of its restriction to 7" and apply Lemma[2.2] =

An M -equivalence class is called periodic if it contains a function ¢ such that
O(y+ ) = P(y) forally € I'and A € A. The following description of Z(M) was
obtained by Pourahmadi [14, Lemma 2.4] under the assumption that there exists a
Radon-Nikodym derivativ d1¥
the case of R(L (v 4+ 1)) = R(2(v)), v € T, A € A, the measures 7 and o are
equivalent. To see this note first that 7(B) = 0 yields %—j‘f = 0 o-a.e. on B, hence,

% =0o0-ae.onk + Band 7(k + B) = 0 for all k € A. It follows that

o(B)= S #((BOAA+T) - N = S r((BAXN+T)) —A+k) =0
AEA AEA KEA
for B € B(I').

THEOREM 2.1. The space Z is exactly the space of periodic M -equivalence
classes of L*(M).

Proof. From the definition of V' it is clear that all elements of Z are periodic.
If U € L?(M) is periodic and orthogonal to Z, then, similarly to the proof of

Lemma[2.2]

0= [ ¥() S (), By o) = [ W) S (), B) 7(d)

T

for all h € H. Therefore, ¥ = 0in L?(M) by [12, Lemma 3.1]. =

A finite set {L;} of subspaces of C is called direct if their sum ) ; L; is direct,
i.e. for every v € Zj L; there exist unique u; € L; such that v = Zj u;. We
mention some facts from linear algebra, whose elementary proofs are omitted.
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LEMMA 2.4. The following assertions are equivalent:
(i) the set {L;} is direct,
(i) if Zj u; =0, uj € Lj, then uj = 0 for all j,
(iii) for any index k, the intersection Lj N Zj 2k L; is the null space.
An infinite set {L;: j € J} of subspaces of C? is called direct if there exists a
finite subset J' of J such that {L;: j € J'} is direct, Z]GJ’ = Zje] Lj, and
L; = {0} for j € J\ J'. It is not hard to see that under the addltlonal requirement

that L; # {0} for j € J', the set J’ is unique and contains at most ¢ elements.
Now we are ready to describe the set of J-singular measures.

THEOREM 2.2. Let A be countable. The following assertions are equivalent:

(i) the measure M is Jy-singular,

(i) for all families df X € A, there exists B € B(T) such that

23)  FT\B)=0 and {R(YL(7)): X e A} isdirect forally € B,

(iii) there exist a family d) X € A, and B € B(T) satisfying 2.3),

(iv) there exists a family df A € A, such that {R(dM*( )): A € A} is direct
forally €T,
(v) for each version of o there exists B € B(I") such that

24) o(P\B)=0 and {R($L(y+A): A€ A} isdirect forall y € B,
(vi) there exist 4 and B € B(T') satisfying 2.4,
(vil) there exists % such that {7?,( (v+ )x)) NS A} is directfor ally €T,

(viii) there exist S and B € B(T') such that 7(I'\ B) = 0 and {R (%L (y+X)):
A€ A} is direct for all v € B.

Proof. Lemma[2.T)implies that it is enough to handle the case p = ¢.
(1)=-(i). Letx € Aand 1,7 be ~the indicanr function of /<c—~|—T. IfZ = L? (M),
Lemma gives the existence of & € L?(M) satisfying V@ = 1,71, which

yields A (®) N R(%M“) = {0} 7.-a.e. and R(dM*) C N(®) Hr-ae. X e A\ {k}.
An application of the chain rule gives N (®) N R(%) = {0} and R(42) C
N(®) for A € A\ {k}, 7-a.e., hence
dM, dM
R( >ﬂ ZR( A) ={0} T-ae.
dr A£K
Since A is countable, there exists B € B(T) satisfying 7(T \ B) = 0 and
dM, dMA
R R =40
(o) gr(eo) - o
forally € Band all & € A. Now apply Lemma
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dMA =0on B
for A € A. The equivalences (ii)<(v), (ii)<(vi), and (iv)<(vii) are immediate
consequences of (2.2).

(vii)=>(viii). Choose a function 4 and set B := {y € I': 9Z(y) > 0}. 1f 44
satisfies (vii), define

do T

dM  dM (dr\ 7! dM
dT:da<> on B and d—:OonF\B.

Lety € Band A € A. If v+ X € B, then R( (y + \)) = R((y + ). If
v+ A € T'\ B, then R(‘L—Af (v+A)) = 0. Since a family of subspaces of C? remains
direct if some of them are replaced by the null space, the assertion is proved
(viii)=>(i). Assume that %—]\T/[ and B € B(T) satisfy (viii). Choose 4 9 such that
B={yeTl: £(v) > 0}, set B := Usea((BN(A+T)) — A) and note that

F(T\B)= > 7(A+(T\B))n(A+T))

AEA
<%T(((AJFT)\(Bm(A+T)))m(>\+T))
= 2 (G +D\BAA+T)) = 7T\ B) =0.

Let ® € L?>(M).If v € B, define ® () in such a way that for all A € A, the restric-
tion of the operator ® () to R(dM (v 4+ A)) coincides with the corresponding re-
striction of ®(y+\). If v € T'\ B, set ®(y) = 0. Since ®(7) = >_ &( (YA PA(7),
where P (7y) denotes the orthoprojection onto R(dM (’y + )\)) the function  is
measurable. Moreover,

dM -

fcb T = p U0 g

E: d~2f<1> f<1>

AEAN+T

AeAT

by the monotone convergence theorem and the periodicity of o. Therefore, P e
L2(M) and V® = ®, which yields Z = L2(M) by Lemma[2.3| =

If g =1,1i.e.if M = p is a regular finite non-negative measure, then 7 = p and
the condition of Jp-singularity can be given another form (cf. [11, Theorem 1] for
the special case that H is a closed subgroup of R and [12, Theorem 4.6] for the
general case).

COROLLARY 2.1. The equality Z = L?(u) is true if and only if there exists
B € B(T") such that u(I' \ B) = 0and BN (A + B) =0 forall A\ € A\ {0}.

Proof. If B € B(T') is a set as in the assertion, set %‘ = 1p to obtain Theo-

rem Viii). If Theorem vii) is true, choose B := { € T": S—Z(v) >0} =
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Another consequence of Theorem [2.2]is the following multivariate extension of
Corollary 2.1 which was obtained by Pourahmadi [14, Theorem 4.1] if G = R and
H is a closed subgroup of R.

COROLLARY 2.2. Let the range of % be periodic. Then M is Jr-singular
if and only if there exists B € B(I') such that o(I' \ B) = 0 (or equivalently
7(I'\ B) =0) and BN (A+ B) =0 for A € A\ {0}.

3. FURTHER CONSEQUENCES OF THEOREM [2.2]

To derive further consequences of Theorem [2.2] we recall some elementary facts
from linear algebra.

LEMMA 3.1. Letr,q,n € N.

(i) Let X € M, qand vk X = q. A set {L;} of subspaces of C? is direct if and

only if {XL;j} is direct.

() If X € Myg 1tk X =¢q and Y; € ./\/lq2 for j € J, then the set {R(Y;):
J € J}isdirect if and only if {R(XY;X*): j € J} is direct.

(i) If X €¢ M, Y € /\/1(1> and Z € Mg, are such that R(X*) C R(Z),
then R(XY X*) = R(XY Z).

(v) If Xp € My fork € {1,...,n},Y; € MZ forj € J, and {R(X},Y; X}):
Jj € J} is direct for each k, then {R((X},..., X)) Y;(X{,...,X})):
j € J}is direct.

REMARK. For a brief account of operator (or matrix) matrices see e.g. [3].

Proof of Lemma (i) Since L; = {0} if and only if XL; = {0}, we can
assume that {L;} is a finite set. Note that Zj uj = 0 for u; € Lj if and only if
Zj Xu; = 0, and apply Lemma%

(i) Let Lj := R(Y;) = R(Y;X¥) and apply [D)]

(i) From V(XY X*) = N (Y/2X*) = N (Y X*) it follows that R(XY X*)
=R(XY);nowuse R(XYX") CR(XYZ) CR(XY).

(iv) Set Z := (X7,..., X;) and assume that ) _; Z*Y;Zu; = 0 for a finite set
of vectors u; € C. It follows that } , X}Y;Zu; = 0 for k € {1,...,n}. Since
R(XY; X)) = R(X,Y; Z) byl(ii)] the set {R(X},Y;Z): j € J} is direct if the set
{R(X,Y;X}): j € J} is. Therefore, from Lemma 2.4 we obtain X;Y; Zu; = 0
forall k € {1,...,n} andall j. Thus, {R(Z*Y;Z): j € J} is direct. =

COROLLARY 3.1.

(i) Let F': I' — M, 4 be a measurable function such that tk F' = q 0-a.e. and I’

is constant on v + A for 7-a.a. v € T. The measure FdM F* is Jy-singular
if and only if M is.
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(i) Let Fi,: I' — Mg, k € {1,...,n}, be measurable functions such that F :=
(FY, ..., E})*" has rank q o-a.e. and F is constant on v + A for 7-a.a. v € T.
If Z(F,dM E}) = L*(FydME}) for all k, then Z(M) = L*(M).

Proof. Assertion (i) follows from Theorem [2.2]and Lemma [3.1[ii). To obtain (ii)
note that Theorem [2.2)and Lemma [3.1{iv) imply that Z(FdM F*) = L>(FdMF*)
if Z(F,dMF}) = L?(FdMFy) for all k and then apply [()}

The following result (see [[14, Lemma 2.2], compare also [13]), is a special case
of Corollary [3.1{ii).

COROLLARY 3.2. If Z(my) = L?(myy) for all scalar measures myy, on the
principal diagonal of M, then Z(M) = L*(M).

We recall an assertion obtained by Lloyd. Let G = R, H = Z, and p be a finite
non-negative measure on B(R).

THEOREM 3.1 ([[L1, Theorem 2]). For any n € N the following conditions are
equivalent:

(i) for all m € 7 the function ¢'= " belongs to Z(p),
(ii) for some integer m relatively prime to n, the function el belongs to Z (),
(iii) the measure i is concentrated on a set B € B(R) disjoint from each of the
translates B + 2mm withm € Z \ {kn: k € Z}.

To prove a generalization of Lloyd’s theorem to M?—Valued measures on
LCA groups, for simplicity of presentation we confine ourselves to the quadratic
case p = ¢q. Forg € G,set Ay := {\A € A: (\,g) =1} and Gy := {h € G :
Ay € Ap}. Let R be a set of representatives of the Ag-cosets (with respect to A).
Fory € T'and A € R define Ly () := Z%A R( (7+)\+/€))

THEOREM 3.2. Let A be countable. The following conditions are equivalent:

(i) forall h € G the function (-, h)I belongs to Z,
(ii) there exists h € G such that Ay, = Ay and (-, h)I € Z,
(iii) for T-a.a. v € T the set {L(7y): X\ € R} is direct.

Proof. (1)=(ii) is clear.
(i)=(iii). Let h € G be such that A, = Ay and (-, h)I € Z. By Lemma2.3|
there exists ® € L>(M) with (V®)(-) = (-, >I which yields

B() S (A +R) = (AR S

1o (Y+A+kK)

for 7-a.a.y € T'and all A € R, k € Ay. Thus, if u € R(d—M(7+)\+n)),then
®(7)u = (v, b\ h)u.

We prove by induction that for 7-a.a. v € T, all finite subsets of {L)(7) :
A € R} are direct. Clearly, all singletons are direct. Assume that all subsets
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of {Lx(v): A € R} with exactly n elements are direct. Let \; € R, u; €
Lx;(7), 4 € {1,...,n + 1}, and Z?;l u; = 0. It follows Znirll D(yY)u; =
(v, h) 27.”“1()\- hyuj = 0 as well as (v,h)(\i,h) Z?Jrll uj = 0, hence
Z”+1(<)\],h> (A1, h))u; = 0 and we obtain ((\;,h) — (A1, h))u; = 0 for
Jj €{2,...,n+ 1} from the induction assumption. Since A;, = A, and \; and \;
are from different Ag-cosets if j # 1, we conclude that u; = 0 for j € {1,...,n}.
Now apply Lemma[2.4]

(iii)=(). Let h € G. For~y € T, define a linear operator ®(~y) on CY such that
its restriction to L (7y) coincides with the restriction of the operator of multiplication
by (\Mh). TN € A, N = A+ Kk A€ R K€ A,, we obtain (V& 7—1—)\’) =
®(v) = (\, h)I on Ly(7), hence (V®)(-) = (-,h)I € Z by Lemma "

From Theorems [2.2] and [3.2] one can immediately derive an extension of [11},
Theorem 1] (cf. [14, Theorem 4.1]).

THEOREM 3.3. Let A be countable. If there exists g € G with A, = {0}, the
following conditions are equivalent:
(i) Z=L*(M),
) (-, g)1 € Zfor some g € G such that Ay = {0},
(iii) the set {R( (v+A)): A € A} isdirect for 7-a.a. v € T.
In this theorem the condition that A, = {0} for some g € G cannot be omitted.
EXAMPLE 3.1. If G = Zy X Zo x G1, where Zs is the group of order 2 and GG1
is an arbitrary LCA group, H := {0} x {0} x G, and hence A = Zy x Zs x {0},
it is easy to verify that A, # {0} forall g € G.
If Z # L?(M), it is of interest to compute the orthogonal projection of an
arbitrary ® € L*(M) onto Z. Note first that the series Y, _, ®(y + )\) M~y 4 )\)
converges for 7-a.a. v € T and define a function ®: T'— M such that

dM dM *
= 2 v+ N~ (7+>\)<Z 7 (7+A)>
AEA AeA 40
for 7-a.a. v € T'. We omit the proof of the following theorem since it is quite similar
to the proofs of [6, Lemma 4.1 and Theorem 4.2].
THEOREM 3.4. Let ® € L?(M). Then:
(i) ® € L3(M), )
(i) the orthogonal projection of ® onto Z equals V .

The proof of Theorem [3.4]is based on simple Hilbert space geometry and some
straightforward computations and does not make use of Theorem [2.2] Therefore,
one could start with Theorem [3.4]and try to derive the results of Section 2] from it.
For special classes of measures M such an approach was taken by several authors
(see [IL11, [14], [8]). However, it does not seem to be easy to infer Theorem-from
Theorem 3.4
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4. A PROBLEM OF MULTICHANNEL SAMPLING

Now we discuss a problem arising in multichannel sampling. Let X be a g-variate
stationary process on GG and M its spectral measure. Let m € Nand Y, j €
{1,...,m}, be multivariate processes on G depending on X linearly. The problem
is to find conditions under which observations of all processes Y ; at a subgroup H
of GG give full information on X. In a slightly more general form this problem can be
formulated as follows. Letp; € N,j € {1,...,m},p:= Z;”Zl p;. Fj € ng,q(M),
F := (FY,...,F};,)*. Denote by Z(M;F) the closure of the M,-linear span of
all functions of the form (-, h;) X;Fj, hj € H, X; € My,., j € {1,...,m},
in Lg,q(M ). Give necessary or sufficient conditions for the equality Z(M; F) =
L2 (M) to hold.

Since F is defined only up to M-equivalence, we can and will assume that
N (44 C N(F) o-ae. If there exists a set B € B(T') satisfying o(B) > 0 and
L(v) == N(F®) N R(SL(y)) # {0} forall v € B, then Z(M;F) # L2 (M),
because if ¢ € L;Q(M ) is such that the restriction of the operator ®(~y) to L(vy) is
different from 0 for all v € B, then ® € L2 (M) \ Z(M;F). Let us assume that

“4.1) N(F) = N<M> o-a.e.
do

Let N be an MI? -valued measure defined by dN = FdMF*.

LEMMA 4.1. Under condition @.1)) the map ¥ — UF, ¥ € Lzz)’q(N), estab-
lishes an isometric isomorphism between L;q(N ) and Lqu(M ).

Proof. The only thing requiring proof is the surjectivity of the map. If & €
Lf,’q(M), set U := ®(F*F)*F*. Since VF = ® Py g+ and @) yield R(F*) =
R(%) o-a.e., it follows that WF = & in L2 (M ). Moreover, fr \IJ%\IJ* do =
[ ®42®* do, which shows that & € L2 (N). m

THEOREM 4.1. Assume that F satisfies @.1). Then Z(M,F) = ngq(M)
if and only if there exists B € B(T') such that o(I' \ B) = 0 and the set

{RF(y + N (v + NF (v + N)*): A € A} is direct for all v € B.
Proof. Apply Lemmaf.T|and Theorem[2.2] =

If M = p is a scalar measure, then R(F()) is a one-dimensional subspace
of CP spanned by the vector F(y) and the result can be given a more lucid form.

COROLLARY 4.1. Assume that ¢ = 1 and ([4.1)) is satisfied. Then Z(1; F) =
Lgyl(,u) if and only if for o-a.a. v € T there exists a subset N’ of A such that
F(y+ X) = 0 for A\ € A\ A, and the vectors F(y + \), A € A, are linearly
independent.
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In the case p = ¢ = 1 another description of measures p with Z(u; F) = Lil (1)
was obtained in [8, Theorem 3.5]. To illustrate the usefulness of Corollary .1 we
mention that the assertions of Examples 4.4 and 4.6 as well as of Proposition 4.6
of [8] are its straightforward consequences, whereas some computations were
needed to infer them from [8, Theorem 3.5].

5. Ja-REGULARITY

In accordance with the notion of Jp-regularity of a stationary process mentioned
in the introduction we give the following definition.

DEFINITION 5.1. A regular M7 -valued measure M on B(T') is called Jp-reg-
ularif (), .o Zg = L*(M).

For this definition to be correct it is necessary that the notion of Jp-regularity
does not depend on the dimension p; this independence can be seen from the proof
of Theorem[3.11

To characterize the set of all J-regular measures we first prove an auxiliary
result from abstract harmonic analysis. For brevity we shall say that an LCA group G
has property (P) if for all n € N and pairwise different g; € G there exist y; € I,
j € {1,...,n}, such that the n x n matrix ({7, g;)) is invertible.

geG

LEMMA 5.1. For any n rows of an invertible matrix X € My, there exist n
columns of X such that the corresponding n x n submatrix X is invertible.

Proof. If such columns did not exist, then the associated (:’;) X (7;) matrix,
whose elements are the n x n minors of X (in lexicographical order) would have a
zero row, which would contradict the invertibility of the associated matrix. m

LEMMA 5.2. Any countable LCA group G has property (P).

Proof. Let [g1,. .., gn] be the subgroup of G generated by n pairwise different
elements g; € G. Note that any countable LCA group is discrete, and therefore it
is enough to show that [g1, . . ., g,] has property (P). By the fundamental structure
theorem for finitely generated abelian groups, [g1, . . ., g»] is a finite direct product
of cyclic groups.

Let us first show that any cyclic group has property (P). Let Z,, :=
{0,1,...,m — 1} be the finite cyclic group of order m, whose group operation
is addition modulo m. Its characters can be identified with all maps of the form
J +— exp{2rijk/m}, j € Zp,. Since the m x m matrix (exp{2mijk/m}) is an
invertible Vandermonde matrix, it follows from Lemma[5.1]that Z,, has property (P).
If Z is the infinite cyclic group of integers, its characters can be identified with
all maps of the form j +— eJ®, o € [0,2n). Shifting a set {j1,...,jn} C Z
by —min{ji,...,jn}, We can assume that all elements jj are non-negative. Set
¢ :=max{j1, ..., jn}, choose numbers o, € [0,27), k € {0, ..., £}, such that the
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Vandermonde matrix (e 1JO‘k)f e

that Z has property (P).
To complete the proof let us show that if two LCA groups (G; and (G2 have
property (P), then so does G X Ga. Let {(¢11,951)s - - - (g1, Gb,,) } be @ subset of

o 18 invertible and apply Lemma to conclude

G1x Ga. Let g11, . .., g15 be those elements of (G; which appear at least once as the
first component of these pairs. Define go1, . . . , g2; analogously for the second com-
ponent. By assumption there exist v11,...,71s € I'1 and y21, ..., € I'2 such

that the s x s matrix ({14, ¢1;)) and the ¢ x t matrix ((y2m, g2¢)) are invertible.
Since their tensor product ({1, g1;)(Y2m. g2¢)) is invertible, the fact that G1 x G2
has property (P) again follows from Lemma[5.1] =

Now we give a description of Jy-regular M?—Valued measures (cf. [7, Theo-
rem 2.2] for the case ¢ = 1).

THEOREM 5.1. If A is countable, the following assertions are equivalent:

(i) the measure M is Jy-regular,
(ii) for all families dé\?, X € A, there exists B € B(T') such that

(5.1) FT\B)=0 and R(d(]ff )cﬁ;n(dﬁf ))

forall v € B and \ €A
(iil) there exist a family df A € A, and B € B(T) satisfying (5.1).

Proof. (1):~>(11). Assume that (ii) is not true. Let a family of Radon—-Nikodym
> ( ) be such that 7(C') > 0 and the in-
clusion R(dMA (7)) < ZH#\ ( 12=(v)) is not true for some A € A and
all v € C. Choose a bounded measurable function ®: T — M, 4 satisfying
N(®) = Zn¢/\7€(d]\;{“) onCand ® = 0on T\ C.For g € G, the function
(=X, §)® is not the zero element of L?(M) and its image under the isometry Vj
equals (v — \) fory € A4+ T and (k— ), §)®(y — k) fory € Kk+T, k€ A\{)\}
Therefore, as an element of L?(M), the function V;((—\, §)®) equals ®(y — \)
for v € A+ T, and O outside A\ + 7. In particular, it does not depend on g, which
means by Lemmathat it belongs to ﬂg cq Lg- Thus M is not Jy-regular.

(i1)=-(iii) is trivia

(iii))=-(i). Let (iii) be satisfied. We shall show that ® € ﬂ Z;yields @ =0
in L2(M). By Lemmal[2.3|for any H-coset g, the function & is the image of some
®; € L*(M ) under the isometry V;. Since A is countable, there exists C; € B(T)
such that 7(Cj) = 0 and

- dM dM .
52 (A9)P() = () =2+ )= (), 7 ET\Cp AeA.
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For \g € A and asubset S := {A1,..., A\;} of A\ {Ao} set

§S3:{WET:R(dJ£AO > Zi: <dMA 7))}.

According to Lemma- we can choose §1, ..., J,; € G/H such that the matrix
((=Aks 3j))] j—o 1s invertible. Define Cy = Uj- 0 Cs, and D == |J4(Bs \ Cs),
where S runs through all subsets of A \ {)\0} w1th exactly g elements. Note that
B C USBS and 7(T'\ D) = 0. Let y € D. Choose a subset S = {\1,...,\;}

of A\ {\o} such that v € Bg \ Cs. If uy € R(—F Al

R(d]f%(fy)) satisfying Y 7_,up = 0. Setting § = g; in (5.2), we obtain the

homogeneous linear system

(7)), there exist uy €

~ q q
0=, (gjouk) = X NGO+ AJur € {0 a)

Since its coefficient matrix is invertible, it follows that ®(y + Ag)ug = 0, which
yields R (92 (v + X\g)) € N(®(v + Ao)). Since Ag € A was arbitrary, we obtain
®=0in L?>(M). =

From Theorems |5.1| and [2.2] it follows that an M3 -valued measure on B(R)
defined by

1 11 4 2 2 9 3 3
1 1 1)éo+12 1 1)dor+ |3 1 1| b4,
1 11 2 11 3 1 1

where J,, denotes the Dirac measure at z € R, is Jz-singular and all measures on its
principal diagonal are Jz-regular measures. Therefore, in general Jx-singularity
of M does not tell us anything about the Jp-regularity or Jp-singularity of the
measures on its principal diagonal. The following corollary of Theorem 5.1|shows
that Jpr-regularity of M yields Jp-regularity of the diagonal measures.

COROLLARY 5.1. Let F': I' — M), , be a measurable function which is con-
stant on v + A for T-a.a. v € T. If M is Jg-regular, then FAM F* is Jr-regular
as well. In particular, all measures on the principal diagonal of M are Jr-regular.

Proof. Let R(dMA (1) € Drenrin R(%(y)), or equivalently, for 7-a.a.
yeT,

dM,, dM,
(5.3) N< - >gN( - ) A e A.
HGAQ{A} ¥ () 7 ()
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Since u € N (F(v) % (y)F(y)*) if and only if F(y)*u € N(
(3.3)) it follows that

dé\g” (7)), from

N N(F('v> dﬁ“ (’Y)F(’Y)*> - N<F(7) dé\ZA (’Y)F(’Y)*)

kEA\{\}

for7-a.a.y €T andall A € A. =

Theorem [2.2] contains several assertions equivalent to Jp-singularity, where
perhaps condition (viii) formulated in terms of M and 7 is the most natural one.
Now we give conditions equivalent to Jg-regularity; it turns out that a condition in
terms of M and 7 does not exist in general. We start with the following lemma.

LEMMA 5.3. Let p and v be regular o-finite non-negative measures on B(I")
such that M < p < v. If there exist % and B € B(T") satisfying

(54)  v(\B)=0 and R(%M7+>\>CK§AR( ’y—l—m))

forall v € B and \ € A, then there exists % such that

dM
(5.5) R( ’y—l—)\> ZR( 7—|—/€)> forally € T'and \ € A.
dp R du

Proof. Let 2 and B € B( ) satisfy (5.2). Choose 3—’;, set C:=Bn{yeTl:

) >0}, and define 4 .= Cg‘f(gﬁ) onC,yeT'\C,setC(y):={ e A:

7—1—)\60} L(y Z)\ec R( (v + A)), and %('y) 1= Pr(y). Let A € A.

If v € T is such that v+ N 6 C, then R(%—J‘i(fy + X)) = R(LL(y + X)) for

N € A.Ttis easy to show thatif7+A gé Cor7+n ¢ C for some k € A\ {\}, then
R(%(’y +A)) CL(y) C ZK#/\ ( (v + £)). Thus, & satlsﬁes (3.3). =

THEOREM 5.2. Each of the following assertions is eqmvalent to Theo-

rem [5.1{ii):

(a) for all there exists B € B(T") such that

5.6) o(C\B)=0 and R(%]f ) K%R( 'y—i-/i))

forally € Band \ € A,
(b) there exist %M and B € B(T') satisfying (5.6),

(c) there exists L such that R(%L (v+))) C > rr R( (YL (y+k)) forally € T
and \ € A
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If one of these conditions is satisfied and p is a regular o-finite non-negative
measure such that M < p < o, then there exists % satisfying (0.5). If v is
a regular o-finite non-negative measure such that o < v and (5.4)) is true for
some B € B(I'), then (a)—(c) are satisfied.

Proof (Theorem [5 ln) = (a)). For deﬁne a famlly df A € A, by (2.2).
Choose B € B(I) satisfying (5.1)) and deﬁne B:=J\+ B). Since o is a periodic
continuation of 7, we have o(I' \ B) = 0. For v € B, there exists A\g € A with
vY— Ao € B. By assumption it follows that

R(Marea)) < 3 R (Phin ),

KFEA
hence, (5.06).

((a) = Theorem [5.1{ii)) is an immediate consequence of (2.2), (a)=-(b) is trivial,
and (b)=-(c) follows from Lemma[5.3]

(b)=(c). If % satisfies (c) and A is an arbitrary Radon—Nikodym deriva-
tive of M with respect to o, set C = {y € T %(7) = A}, C =
U@ n\+1)—A),D:=(C +A\),B:=T\D.Since o(T \ B) = 0
by periodicity of 0 and B = A + B, A € A, we get (5.6) with ‘%‘[ replaced by A.

The concluding assertions are simple consequences of Lemma[5.3] m

Theorem [5.2|implies that the existence of 4 and B € B(T") such that
(5.7)

M
7(I'\B) =0 and R(t 7+>\>Cz7€<d 'y+n)>,fy€B,)\EA,
KFEA

is necessary for Jy-regularity of M. However, this condition is not sufficient.

EXAMPLE 5.2. Let G =R, H = Z,hence' = R, A = 2nZ. Let ¢ = 1 and
M = 7 be the restriction of the Lebesgue measure to B([0, 27)). If % =1lonR,
then condition (5.7)) is satisfied, although M is not Jp-regular.

6. WOLD DECOMPOSITION

From [18| Theorem 2.13] and from Kolmogorov’s isomorphism theorem it follows
that any regular M?—Valued measure admits a unique decomposition into a sum of
a Jg-regular and a Jpr-singular measure. We conclude our paper with a description
of these two measures.

Let M be a regular MZ-valued measure on B(I") and CL—JX[ be its Radon—
Nikodym derivative. For v € T, set

dM
L) ::R<(7+)\)>, ANeA, Ky:= > L, L:=/)K),
do REA{A} AeA
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and P := Pr. Note that for simplicity of presentation we do not indicate the
dependence on .

LEMMA 6.1. If L = K, then (), ¢\ ryy PLy = {0}.

Proof. Let (-,-) denote the inner product of C9. If u € [, . A PL, then

u = Pu, for some u,, € L+, hence, (u,v,) = (Puy,vs) = (ug, vx) = 0 for all
vg € Ly, since L, C Ky = Lif k # A. It follows that u is orthogonal to K. Since
u€e L C Ky, weobtainu=0. m

LEMMA 6.2. For A € A, the intersection (), .\ 1y PL- is {0}.

Proof. SetL = LML = LaND e ny L and L= aep D venyny Lo
Clearly, L' C L. Conversely, if u € L, then for all A\ € A,

6.1) u= Y, Un,

REA{N}

where u), € L, and, of course, only finitely many vectors on the right-hand
side are different from 0. Let A\;, A2 € A be distinct. Then (6.1) implies that
Uy = Uy T ZneA\{Al,Ag}(“Aw — Upyk) € Ly, hence uy,y, € L . Since A\
and Ao, A1 # \g, were arbitrary, we find that u € L', which yields L = L’. It follows
that L = ZHGA\{A} L!. by definition of L/, and therefore ﬂneA\{A} PL+ C

Neeavpny PLe = {0} by Lemma -

THEOREM 6.1. Let M = M, + Mg be the Wold decomposition of M into
its Jp-regular part M, and Jy-singular part Ms. Let (i/ii 2) be the block

representation of %('y + ) with respect to the orthogonal decomposition C1 =
L® Lt Then

_ +v %
6.2) dM, = <XA %ZA Y 8> do

_NZTYE Yy
and dMg = ( Y} A Z )da.
Proof. Theorem 4.4 of 5] implies that the theorem is equivalent to the following

two assertions:

(a) The measure M, defined by (6.2)) is Jp-regular.
(b) If N is a Jy-regular measure such that N < M, then N < M,, where “<”
denotes the Loewner semi-ordering.
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Proof of (a). By Theoremwe have to establish the inclusion R(% (v+ )
C > renyny RS (v + ), which will be proved if we show that

(6.3) N N(er (7+m)> ={0}@o L, XeA.

REA{A} do

Note first that if u € L is such that (§) € N (9% (y + &)), then (_z+y=,) €
N (9L (4 + k). It follows that N (4= (v + k)) = PL;: @ L+ and an application
of Lemma(6.2] gives (6.3).

Proof of (b). Letu € R( v+ A )) N L™+ for some \g € A. By Theorem
J-regularity of N yields u € Z%A\{/\O} R(% (v + k)), hence

e T R<‘31N(7+,{))_m S L=1L

AEA KEA\{A} AEA KEA\{A}
for o-a.a. v € T since the inequality N < M implies that dN < %—M o-a.e.
Therefore u = 0, which means that L+ C NV (95 (v + X)) and so —N(’y + A\o) <

dM: (4 + \g) for o-a.a. € T by [19] Corollary, p. 392]. =
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