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JH -SINGULARITY AND JH -REGULARITY OF MULTIVARIATE
STATIONARY PROCESSES OVER LCA GROUPS∗

BY

LUTZ K L OT Z (LEIPZIG) AND JUAN MIGUEL M E D I N A (BUENOS AIRES)

Abstract. LetG be an LCA group, Γ its dual group, andH a closed subgroup
of G such that its annihilator Λ is countable. Let M denote a regular positive
semidefinite matrix-valued Borel measure on Γ and L2(M) the correspond-
ing Hilbert space of matrix-valued functions square-integrable with respect to
M . For g ∈ G, let Zg be the closure in L2(M) of all matrix-valued trigono-
metric polynomials with frequencies from g+H. We describe those measures
M for which Zg = L2(M) as well as those for which

⋂
g∈G Zg = {0}.

Interpreting M as a spectral measure of a multivariate wide sense stationary
process on G and denoting by JH the family of H-cosets, we obtain condi-
tions for JH -singularity and JH -regularity.
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1. INTRODUCTION

The celebrated Whittaker–Shannon–Kotel’nikov theorem claims that if the non-
stochastic spectral measure µ of a mean square continuous wide sense stationary
process X := {X(t) : t ∈ R} is concentrated on the interval (−π, π), then X
admits a series representation

X(t) =
∑
k∈Z

X(k)
sin(π(t− k))

π(t− k)
, t ∈ R,(1.1)

which converges in the quadratic mean. In particular, (1.1) yields

(1.2) sp{X(k) : k ∈ Z} = sp{X(t) : t ∈ R},
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where sp stands for closed span. In a sense, formula (1.2) implies that all information
on the process X can be extracted from observing it on the integers. Although (1.2)
is weaker than (1.1) (see [11]), and is not so useful from the practical point of view,
several authors were concerned with the problem of describing those processes for
which (1.2) is true. The solution was given in terms of the spectral measure µ, i.e.
the “isomorphic” problem in the spectral domain L2(µ) of X was studied. The main
idea is to replace the measure µ by a suitable periodic measure.

Lloyd [11] introduced a measure ν by setting ν(B) :=
∑∞

k=−∞ µ(B+2kπ) for
any Borel subsetB of R. With its aid he computed the orthoprojection in L2(µ) onto
sp{eik · : k ∈ Z} and derived from this necessary and sufficient conditions for (1.2).
Lloyd’s approach was generalized to multivariate processes in [14] and applied
to a problem of multichannel sampling in [8]. Another approach first taken by
Yaglom [21] in a more or less explicit form consists in restricting the measure µ to
each interval [2πk, 2π(k+ 1)), k ∈ Z, shifting these restrictions to [0, 2π) and then
adding them to obtain a measure µ̃. This method has the advantage that the resulting
measure µ̃ is finite, whereas ν is only σ-finite in general. Yaglom’s approach was
used in [7] and generalized to multivariate processes in [17] and [6] as well as to
harmonizable symmetric α-stable processes in [9].

The present paper deals with multivariate processes on LCA groups, i.e. locally
compact abelian groups with Hausdorff topology. On the basis of abstract harmonic
analysis we gain a unified approach to stationary processes on various groups. Note
that in [6] processes on R and Z were discussed separately. Since our results can be
applied, for example, to a homogeneous field on a torus or cylinder, they are also of
practical interest.

The problem reads as follows. LetG be an LCA group andH its closed subgroup.
Describe all multivariate weakly stationary processes X := {X(g) : g ∈ G} on G
with

(1.3) sp{X(h) : h ∈ H} = sp{X(g) : g ∈ G},

where sp stands for closed matrix-linear span. If we introduce the family JH :=
{g+H : g ∈ G} of H-cosets, in accordance with [18, Definition 2.10] a process X
satisfying (1.3) can be called JH -singular.

In Section 2 we discuss JH -singular processes in terms of their spectral mea-
sure M , i.e. a positive semidefinite matrix-valued measure on the dual group Γ of G.
Unfortunately, we have not been able to solve the problem in its full generality since
our method heavily leans on the requirement that the annihilator Λ of the group
H is countable, i.e. finite or countably infinite. Thus, throughout this paper it is
assumed that Λ is countable. Then Theorem 2.2 gives a complete characterization
of the spectral measures of JH -singular processes. The special case G = R and
H = Z was solved in [6]. However, the formulation of the result as well as the proof
given there were somewhat imprecise or even misleading and Theorem 2.2 removes
this inaccuracy. Moreover, [6] was written ignoring Pourahmadi’s paper [14]. Here
we point out the interrelations between Pourahmadi’s results and ours.
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Section 3 is devoted to some consequences of Theorem 2.2.
In Section 4 we discuss a problem which arises in multichannel sampling and

was solved in [8] using Lloyd’s approach. It seems to us that from Theorem 2.2 one
can deduce a simpler and more lucid solution of that problem.

In a sense, processes X with⋂
g∈G

sp{X(g + h) : h ∈ H} = {0}

form the opposite class to the class ofJH -singular processes. In accordance with [18,
Definition 2.10] they are called JH -regular. Section 5 deals with the description
of the spectral measure of a JH -regular process. Among other things, we again
generalize and improve a result of [6].

Already the early papers on stationary time series dealt with the Wold decom-
position of a stationary process into its J -regular and J -singular parts: see [20],
[10], [22] for processes on Z or R and the family J := {(−∞, x] ∩ Z : x ¬ 0} or
J := {(−∞, x] : x ¬ 0}; Salehi and Scheidt [18, Theorem 2.13] proved the exis-
tence and uniqueness of a Wold decomposition for processes on an LCA group G
and a family J of subsets of G invariant under translation. The problem arises to
describe the spectral measures of the J -regular and J -singular parts. Here we solve
this problem for the family JH generalizing [6, Theorem 5.2], where the special
case that JH has only two elements was discussed.

In [9], JH -regularity and JH -singularity of a univariate process on G were
described without assuming that Λ is countable. It would be of theoretical as well
as of practical interest to extend these results to multivariate processes since, for
example, the rather natural case that X is a process on the two-dimensional lattice Z2

and H = Z× {0} is not covered by our results.

2. JH -SINGULARITY

For p, q ∈ N denote byMp,q the linear space of all p× q matrices with complex
entries. Set Mq := Mq,q and denote by M­q the cone of positive semidefinite
q × q matrices. To simplify the notation, dependence on the dimension is occa-
sionally not indicated. For example, we shall writeM instead ofMp,q andM­
instead ofM­q . The adjoint, Moore–Penrose inverse, range, null space, and rank
of a matrix X are denoted by X∗, X+, R(X), N (X), and rkX , resp. If X is
quadratic, then trX denotes its trace. The unit matrix (of arbitrary size) is denoted
by I . If L is a subspace of Cq, then L⊥ stands for its orthogonal complement and
PL for the orthoprojection onto L.

For a topological space Ω, let B(Ω) be the σ-algebra of its Borel subsets. If
µ is a non-negative measure and ν a complex-valued measure on B(Ω) such that
ν is absolutely continuous with respect to µ, we shall write ν � µ. A func-
tion Φ: Ω → Ω′ from Ω into a topological space Ω′ is called measurable if it is
(B(Ω),B(Ω′))-measurable. According to Azoff’s general result concerning measur-
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ability of processes in linear algebra (cf. [1]), all functions we shall deal with here
can be assumed to be measurable.

Let G be an LCA group, whose group operation is written additively. De-
note by Γ its dual group and by 〈γ, g〉 the value of γ ∈ Γ at g ∈ G. Let M
be a regular M­q -valued measure on B(Γ). We recall the definition of the left
Hilbert-Mp-module ofMp,q-valued functions on Γ, which are square-integrable
with respect to M as given by Rosenberg [15]. We mention that a slightly less
general definition was given about 15 years earlier by Kats [4] (see also Rozanov’s
book [16]). Let µ be a σ-finite non-negative measure on B(Γ) such thatM � µ. De-
note by dM

dµ the Radon–Nikodym derivative. We emphasize that dM
dµ is a measurable

function (and not a µ-equivalence class of functions). Two measurableMp,q-valued
functions Φ and Ψ are called M -equivalent if ΦdM

dµ = ΨdM
dµ µ-a.e. The set of all

(M -equivalence classes of) functions Φ such that
∫

Γ
ΦdM

dµ Φ∗ dµ exists (or, equiva-
lently,

∫
Γ

tr
(
ΦdM

dµ Φ∗
)

dµ <∞) form a left Hilbert-Mp-module with inner product∫
Γ

tr
(
ΦdM

dµ Ψ∗
)

dµ = tr
∫

Γ
ΦdM

dµ Ψ∗ dµ, which is denoted by L2
p,q(M) or simply

L2(M). A routine application of the chain rule for Radon–Nikodym derivatives re-
veals that the definition of L2(M) does not depend on the choice of µ. It is common
to choose µ = τ := trM .

Let H be a closed subgroup of G and Λ := {λ ∈ Γ: 〈λ, g〉 = 1 for all g ∈ H}
its annihilator. Recall that Λ is a closed subgroup of Γ. For g ∈ G, denote by g̃ its
H-coset g+H . The set sp{〈·, g+ h〉I : h ∈ H}, i.e. the closure in L2

p,q(M) of the

Mp,q-linear hull of all functions 〈·, g + h〉I , h ∈ H , is denoted by Z
(p,q)
g̃ (M) or

often by Zg̃ for short. Set Z := Z0̃.
Since the operator of multiplication by the function 〈·, g〉 is obviously a unitary

operator in L2(M), the equality Zg̃ = L2(M) is satisfied for all g ∈ G if and only
if it is satisfied for some g ∈ G.

LEMMA 2.1. For arbitrary p ∈ N, the space Z(p,q) coincides with L2
p,q(M) if

and only if Z(1,q) = L2
1,q(M).

Proof. From the Cauchy inequality it follows easily that Φ ∈ L2
p,q(M) if and

only if all rows of Φ belong to L2
1,q(M). Note that Z(p,q) = L2

p,q(M) if and only if
for any Φ ∈ L2

p,q(M) the relations

∫
Γ

Φ(γ)
dM

dτ
(γ)〈γ, h〉X∗ τ(dγ) = 0, h ∈ H, X ∈Mp,q,(2.1)

yield Φ = 0 in L2
p,q(M). Since the condition (2.1) is satisfied if and only if∫

Γ
φ(γ)dM

dτ (γ)〈γ, h〉τ(dγ) = 0 for all h ∈ H and all rows φ of Φ, it is not hard to
derive the assertion. �

Taking into account the preceding lemma we can give the following definition.
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DEFINITION 2.1. A regularM­q -valued measure M on B(Γ) is called JH -sin-
gular if Z = L2(M).

Considering M as a spectral measure of a q-variate stationary process X on G,
we can conclude from Kolmogorov’s isomorphism theorem that M is JH -singular
if the process X is. The goal of the present section is to describe all JH -singular
measures. To do this we first introduce some measures related to M .

A subset T of Γ is called a transversal (with respect to Λ) if it meets each
Λ-coset just once, i.e. T ∩ (λ+ T ) = ∅, λ ∈ Λ \ {0}, and

⋃
(λ+ T ) = Γ, where,

by convention, the index of summation or of a union of sets is λ and runs through Λ
if not indicated. A transversal may be intuitively treated as representing the factor
group Γ/Λ. According to [2, Theorem 1] we can and will assume that T ∈ B(Γ).
For λ ∈ Λ, let Mλ be the restriction of M to B(λ+ T ), τλ := trMλ, M̃λ(B̃) :=
Mλ(λ + B̃), B̃ ∈ B(T ), τ̃λ := tr M̃λ. Set M̃ :=

∑
M̃λ, τ̃ := tr M̃ =

∑
τ̃λ

and σ(B) :=
∑
τ̃((B ∩ (λ+ T ))− λ), B ∈ B(Γ). All measures just defined are

regular and the measures designated by a tilde are measures on B(T ). Note that
τ � σ, that τ̃ is the restriction of σ to B(T ), and that the measure σ is periodic, i.e.
σ(λ+B) = σ(B), B ∈ B(Γ), λ ∈ Λ. Setting

dM̃λ

dτ̃
(γ) :=

dM

dσ
(λ+ γ), γ ∈ T, λ ∈ Λ,(2.2)

can establish a 1-1 correspondence between the set of Radon–Nikodym derivatives
dM
dσ and the set of families of Radon–Nikodym derivatives dM̃λ

dτ̃ , λ ∈ Λ.

LEMMA 2.2. For g ∈ G, the set Zg̃(M̃) coincides with L2(M̃).

Proof. If Φ̃ ∈ L2(M̃) satisfies
∫
T

Φ̃(γ)dM̃
dτ̃ (γ)〈γ, h〉 τ̃(dγ) = 0 for all h ∈ H ,

from [12, Lemma 3.1] it follows Φ̃dM̃
dτ̃ = 0 τ̃ -a.e., which implies that Φ̃ = 0 in

L2(M̃). Thus Z(M̃) = L2(M̃), and hence Zg̃(M̃) = L2(M̃) for all g ∈ G. �

Let g ∈ G. Since for λ ∈ Λ, the function 〈λ, ·〉 is constant on each H-coset, we
can set 〈λ, g̃〉 := 〈λ, g〉 and define an operator Vg̃ on L2(M̃) by

(Vg̃Φ̃)(γ) := 〈λ, g̃〉Φ̃(γ − λ), γ ∈ λ+ T, λ ∈ Λ, Φ̃ ∈ L2(M̃).

Let V := V0̃. Despite its simplicity the following lemma is crucial for our consider-
ations.

LEMMA 2.3. For any g ∈ G, the operator Vg̃ establishes an isometric iso-
morphism between L2

p,q(M̃) and Z
(p,q)
g̃ (M). In particular, V maps L2

p,q(M̃) onto
Z(p,q)(M) isometrically.
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Proof. It is obvious that Vg̃ is anMp-linear map. From the periodicity of σ,
formula (2.2), and the monotone convergence theorem we obtain∫
Γ

(Vg̃Φ̃)
dM

dσ
(Vg̃Φ̃)∗ dσ =

∑
λ∈Λ

∫
λ+T

(Vg̃Φ̃)
dM

dσ
(Vg̃Φ̃)∗ dσ

=
∑
λ∈Λ

∫
T

(Vg̃Φ̃)(λ+ γ)
dM

dσ
(λ+ γ)(Vg̃Φ̃)(λ+ γ)∗ σ(dγ)

=
∑
λ∈Λ

∫
T

Φ̃
dM̃λ

dτ̃
Φ̃∗ dτ̃ =

∫
T

Φ̃
dM̃

dτ̃
Φ̃∗ dτ̃

for Φ̃ ∈ L2
p,q(M̃), which shows that Vg̃ is an isometry. To show that the image of

Vg̃ is equal to Z
(p,q)
g̃ (M) note that the function 〈·, g + h〉X , h ∈ H , X ∈Mp,q, is

the image of its restriction to T and apply Lemma 2.2. �

An M -equivalence class is called periodic if it contains a function Φ such that
Φ(γ+λ) = Φ(γ) for all γ ∈ Γ and λ ∈ Λ. The following description of Z(M) was
obtained by Pourahmadi [14, Lemma 2.4] under the assumption that there exists a
Radon–Nikodym derivative dM

dσ with periodic range function. We mention that in
the case ofR

(
dM
dσ (γ + λ)

)
= R

(
dM
dσ (γ)

)
, γ ∈ Γ, λ ∈ Λ, the measures τ and σ are

equivalent. To see this note first that τ(B) = 0 yields dM
dσ = 0 σ-a.e. on B, hence,

dM
dσ = 0 σ-a.e. on κ+B and τ(κ+B) = 0 for all κ ∈ Λ. It follows that

σ(B) =
∑
λ∈Λ

τ̃((B ∩ (λ+ T ))− λ) =
∑
λ∈Λ

∑
κ∈Λ

τ((B ∩ (λ+ T ))− λ+ κ) = 0

for B ∈ B(Γ).

THEOREM 2.1. The space Z is exactly the space of periodic M -equivalence
classes of L2(M).

Proof. From the definition of V it is clear that all elements of Z are periodic.
If Ψ ∈ L2(M) is periodic and orthogonal to Z, then, similarly to the proof of
Lemma 2.2,

0 =
∫
Γ

Ψ(γ)
dM

dσ
(γ)〈γ, h〉σ(dγ) =

∫
T

Ψ(γ)
dM̃

dτ̃
(γ)〈γ, h〉 τ̃(dγ)

for all h ∈ H . Therefore, Ψ = 0 in L2(M) by [12, Lemma 3.1]. �

A finite set {Lj} of subspaces of Cq is called direct if their sum
∑

j Lj is direct,
i.e. for every v ∈

∑
j Lj there exist unique uj ∈ Lj such that v =

∑
j uj . We

mention some facts from linear algebra, whose elementary proofs are omitted.
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LEMMA 2.4. The following assertions are equivalent:

(i) the set {Lj} is direct,
(ii) if

∑
j uj = 0, uj ∈ Lj , then uj = 0 for all j,

(iii) for any index k, the intersection Lk ∩
∑

j 6=k Lj is the null space.

An infinite set {Lj : j ∈ J} of subspaces of Cq is called direct if there exists a
finite subset J ′ of J such that {Lj : j ∈ J ′} is direct,

∑
j∈J ′ Lj =

∑
j∈J Lj , and

Lj = {0} for j ∈ J \ J ′. It is not hard to see that under the additional requirement
that Lj 6= {0} for j ∈ J ′, the set J ′ is unique and contains at most q elements.

Now we are ready to describe the set of JH -singular measures.

THEOREM 2.2. Let Λ be countable. The following assertions are equivalent:

(i) the measure M is JH -singular,
(ii) for all families dM̃λ

dτ̃ , λ ∈ Λ, there exists B̃ ∈ B(T ) such that

τ̃(T \ B̃) = 0 and
{
R
(

dM̃λ
dτ̃ (γ)

)
: λ ∈ Λ

}
is direct for all γ ∈ B̃,(2.3)

(iii) there exist a family dM̃λ
dτ̃ , λ ∈ Λ, and B̃ ∈ B(T ) satisfying (2.3),

(iv) there exists a family dM̃λ
dτ̃ , λ ∈ Λ, such that

{
R
(

dM̃λ
dτ̃ (γ)

)
: λ ∈ Λ

}
is direct

for all γ ∈ T ,
(v) for each version of dM

dσ there exists B ∈ B(Γ) such that

(2.4) σ(Γ \B) = 0 and
{
R
(

dM
dσ (γ + λ)

)
: λ ∈ Λ

}
is direct for all γ ∈ B,

(vi) there exist dM
dσ and B ∈ B(Γ) satisfying (2.4),

(vii) there exists dM
dσ such that

{
R
(

dM
dσ (γ + λ)

)
: λ ∈ Λ

}
is direct for all γ ∈ Γ,

(viii) there exist dM
dτ and B ∈ B(Γ) such that τ(Γ\B) = 0 and

{
R
(

dM
dτ (γ+λ)

)
:

λ ∈ Λ
}

is direct for all γ ∈ B.

Proof. Lemma 2.1 implies that it is enough to handle the case p = q.
(i)⇒(ii). Let κ ∈ Λ and 1κ+T be the indicator function of κ+T . If Z = L2(M),

Lemma 2.3 gives the existence of Φ̃ ∈ L2(M̃) satisfying V Φ̃ = 1κ+T I , which
yieldsN (Φ̃)∩R

(
dM̃κ
dτ̃κ

)
= {0} τ̃κ-a.e. andR

(
dM̃λ
dτ̃λ

)
⊆ N (Φ̃) τ̃λ-a.e. λ ∈ Λ \ {κ}.

An application of the chain rule gives N (Φ̃) ∩ R
(

dM̃κ
dτ̃

)
= {0} and R(dM̃λ

dτ̃ ) ⊆
N (Φ̃) for λ ∈ Λ \ {κ}, τ̃ -a.e., hence

R
(

dM̃κ

dτ̃

)
∩
∑
λ6=κ
R
(

dM̃λ

dτ̃

)
= {0} τ̃ -a.e.

Since Λ is countable, there exists B̃ ∈ B(T ) satisfying τ̃(T \ B̃) = 0 and

R
(

dM̃κ

dτ̃
(γ)

)
∩
∑
λ 6=κ
R
(

dM̃λ

dτ̃
(γ)

)
= {0}

for all γ ∈ B̃ and all κ ∈ Λ. Now apply Lemma 2.4.
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(ii)⇒(iii) is clear and (iii)⇒(iv) can be obtained by setting dM̃λ
dτ̃ = 0 on B̃

for λ ∈ Λ. The equivalences (ii)⇔(v), (ii)⇔(vi), and (iv)⇔(vii) are immediate
consequences of (2.2).

(vii)⇒(viii). Choose a function dτ
dσ and set B :=

{
γ ∈ Γ: dτ

dσ (γ) > 0
}

. If dM
dσ

satisfies (vii), define

dM

dτ
:=

dM

dσ

(
dτ

dσ

)−1

on B and
dM

dτ
= 0 on Γ \B.

Let γ ∈ B and λ ∈ Λ. If γ + λ ∈ B, then R
(

dM
dσ (γ + λ)

)
= R

(
dM
dτ (γ + λ)

)
. If

γ+λ ∈ Γ\B, thenR
(

dM
dτ (γ+λ)

)
= 0. Since a family of subspaces of Cq remains

direct if some of them are replaced by the null space, the assertion is proved.
(viii)⇒(i). Assume that dM

dτ and B ∈ B(Γ) satisfy (viii). Choose dτ
dσ such that

B = {γ ∈ Γ: dτ
dσ (γ) > 0}, set B̃ :=

⋃
λ∈Λ((B ∩ (λ+ T ))− λ) and note that

τ̃(T \ B̃) =
∑
λ∈Λ

τ((λ+ (T \ B̃)) ∩ (λ+ T ))

¬
∑
λ∈Λ

τ(((λ+ T ) \ (B ∩ (λ+ T ))) ∩ (λ+ T ))

=
∑
λ∈Λ

τ((λ+ T ) \ (B ∩ (λ+ T ))) = τ(Γ \B) = 0.

Let Φ ∈ L2(M). If γ ∈ B̃, define Φ̃(γ) in such a way that for all λ ∈ Λ, the restric-
tion of the operator Φ̃(γ) toR

(
dM
dτ (γ + λ)

)
coincides with the corresponding re-

striction of Φ(γ+λ). If γ ∈ T \B̃, set Φ̃(γ) = 0. Since Φ̃(γ) =
∑

Φ(γ+λ)Pλ(γ),
where Pλ(γ) denotes the orthoprojection onto R

(
dM
dτ (γ + λ)

)
, the function Φ̃ is

measurable. Moreover,∫
T

Φ̃
dM̃

dτ̃
Φ̃∗ dτ̃ =

∑
λ∈Λ

∫
T

Φ̃
dM̃λ

dτ̃
Φ̃∗ dτ̃ =

∑
λ∈Λ

∫
λ+T

Φ
dM

dσ
Φ∗ dσ =

∫
Γ

Φ
dM

dσ
Φ∗ dσ

by the monotone convergence theorem and the periodicity of σ. Therefore, Φ̃ ∈
L2(M̃) and V Φ̃ = Φ, which yields Z = L2(M) by Lemma 2.3. �

If q = 1, i.e. if M = µ is a regular finite non-negative measure, then τ = µ and
the condition of JH -singularity can be given another form (cf. [11, Theorem 1] for
the special case that H is a closed subgroup of R and [12, Theorem 4.6] for the
general case).

COROLLARY 2.1. The equality Z = L2(µ) is true if and only if there exists
B ∈ B(Γ) such that µ(Γ \B) = 0 and B ∩ (λ+B) = ∅ for all λ ∈ Λ \ {0}.

Proof. If B ∈ B(Γ) is a set as in the assertion, set dµ
dσ = 1B to obtain Theo-

rem 2.2(viii). If Theorem 2.2(vii) is true, choose B := {γ ∈ Γ: dµ
dσ (γ) > 0}. �
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Another consequence of Theorem 2.2 is the following multivariate extension of
Corollary 2.1, which was obtained by Pourahmadi [14, Theorem 4.1] if G = R and
H is a closed subgroup of R.

COROLLARY 2.2. Let the range of dM
dσ be periodic. Then M is JH -singular

if and only if there exists B ∈ B(Γ) such that σ(Γ \ B) = 0 (or equivalently
τ(Γ \B) = 0) and B ∩ (λ+B) = ∅ for λ ∈ Λ \ {0}.

3. FURTHER CONSEQUENCES OF THEOREM 2.2

To derive further consequences of Theorem 2.2 we recall some elementary facts
from linear algebra.

LEMMA 3.1. Let r, q, n ∈ N.

(i) Let X ∈ Mr,q and rkX = q. A set {Lj} of subspaces of Cq is direct if and
only if {XLj} is direct.

(ii) If X ∈ Mr,q, rkX = q, and Yj ∈ M­q for j ∈ J , then the set {R(Yj) :
j ∈ J} is direct if and only if {R(XYjX

∗) : j ∈ J} is direct.
(iii) If X ∈ Mq, Y ∈ M­q and Z ∈ Mq,r are such that R(X∗) ⊆ R(Z),

thenR(XYX∗) = R(XY Z).
(iv) If Xk ∈ Mq for k ∈ {1, . . . , n}, Yj ∈ M­q for j ∈ J , and {R(XkYjX

∗
k) :

j ∈ J} is direct for each k, then {R((X∗1 , . . . , X
∗
n)∗Yj(X

∗
1 , . . . , X

∗
n)) :

j ∈ J} is direct.

REMARK. For a brief account of operator (or matrix) matrices see e.g. [3].

Proof of Lemma 3.1. (i) Since Lj = {0} if and only if XLj = {0}, we can
assume that {Lj} is a finite set. Note that

∑
j uj = 0 for uj ∈ Lj if and only if∑

j Xuj = 0, and apply Lemma 2.4.
(ii) Let Lj := R(Yj) = R(YjX

∗) and apply (i).
(iii) From N (XYX∗) = N (Y 1/2X∗) = N (Y X∗) it follows that R(XYX∗)

= R(XY ); now useR(XYX∗) ⊆ R(XY Z) ⊆ R(XY ).
(iv) Set Z := (X∗1 , . . . , X

∗
n) and assume that

∑
j Z
∗YjZuj = 0 for a finite set

of vectors uj ∈ Cq. It follows that
∑

j XkYjZuj = 0 for k ∈ {1, . . . , n}. Since
R(XkYjX

∗
k) = R(XkYjZ) by (iii), the set {R(XkYjZ) : j ∈ J} is direct if the set

{R(XkYjX
∗
k) : j ∈ J} is. Therefore, from Lemma 2.4 we obtain XkYjZuj = 0

for all k ∈ {1, . . . , n} and all j. Thus, {R(Z∗YjZ) : j ∈ J} is direct. �

COROLLARY 3.1.

(i) Let F : Γ→Mr,q be a measurable function such that rkF = q σ-a.e. and F
is constant on γ + Λ for τ̃ -a.a. γ ∈ T . The measure FdMF ∗ is JH -singular
if and only if M is.
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(ii) Let Fk : Γ →Mq, k ∈ {1, . . . , n}, be measurable functions such that F :=
(F ∗1 , . . . , F

∗
n)∗ has rank q σ-a.e. and F is constant on γ + Λ for τ̃ -a.a. γ ∈ T .

If Z(FkdMF ∗k ) = L2(FkdMF ∗k ) for all k, then Z(M) = L2(M).

Proof. Assertion (i) follows from Theorem 2.2 and Lemma 3.1(ii). To obtain (ii)
note that Theorem 2.2 and Lemma 3.1(iv) imply that Z(FdMF ∗) = L2(FdMF ∗)
if Z(FkdMF ∗k ) = L2(FkdMF ∗k ) for all k and then apply (i). �

The following result (see [14, Lemma 2.2], compare also [13]), is a special case
of Corollary 3.1(ii).

COROLLARY 3.2. If Z(mkk) = L2(mkk) for all scalar measures mkk on the
principal diagonal of M , then Z(M) = L2(M).

We recall an assertion obtained by Lloyd. Let G = R, H = Z, and µ be a finite
non-negative measure on B(R).

THEOREM 3.1 ([11, Theorem 2]). For any n ∈ N the following conditions are
equivalent:

(i) for all m ∈ Z the function eim
n
· belongs to Z(µ),

(ii) for some integer m relatively prime to n, the function eim
n
· belongs to Z(µ),

(iii) the measure µ is concentrated on a set B ∈ B(R) disjoint from each of the
translates B + 2πm with m ∈ Z \ {kn : k ∈ Z}.

To prove a generalization of Lloyd’s theorem to M­q -valued measures on
LCA groups, for simplicity of presentation we confine ourselves to the quadratic
case p = q. For g ∈ G, set Λg := {λ ∈ Λ: 〈λ, g〉 = 1} and Gg := {h ∈ G :
Λg ⊆ Λh}. Let R be a set of representatives of the Λg-cosets (with respect to Λ).
For γ ∈ T and λ ∈ R define Lλ(γ) :=

∑
κ∈Λg

R
(

dM
dσ (γ + λ+ κ)

)
.

THEOREM 3.2. Let Λ be countable. The following conditions are equivalent:

(i) for all h ∈ Gg the function 〈·, h〉I belongs to Z,
(ii) there exists h ∈ G such that Λh = Λg and 〈·, h〉I ∈ Z,

(iii) for τ̃ -a.a. γ ∈ T the set {Lλ(γ) : λ ∈ R} is direct.

Proof. (i)⇒(ii) is clear.
(ii)⇒(iii). Let h ∈ G be such that Λh = Λg and 〈·, h〉I ∈ Z. By Lemma 2.3

there exists Φ̃ ∈ L2(M̃) with (V Φ̃)(·) = 〈·, h〉I , which yields

Φ̃(γ)
dM

dσ
(γ + λ+ κ) = 〈γ + λ, h〉dM

dσ
(γ + λ+ κ)

for τ̃ -a.a. γ ∈ T and all λ ∈ R, κ ∈ Λg. Thus, if u ∈ R
(

dM
dσ (γ + λ + κ)

)
, then

Φ̃(γ)u = 〈γ, h〉〈λ, h〉u.
We prove by induction that for τ̃ -a.a. γ ∈ T , all finite subsets of {Lλ(γ) :

λ ∈ R} are direct. Clearly, all singletons are direct. Assume that all subsets
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of {Lλ(γ) : λ ∈ R} with exactly n elements are direct. Let λj ∈ R, uj ∈
Lλj (γ), j ∈ {1, . . . , n + 1}, and

∑n+1
j=1 uj = 0. It follows

∑n+1
j=1 Φ̃(γ)uj =

〈γ, h〉
∑n+1

j=1 〈λj , h〉uj = 0 as well as 〈γ, h〉〈λ1, h〉
∑n+1

j=1 uj = 0, hence∑n+1
j=2 (〈λj , h〉 − 〈λ1, h〉)uj = 0 and we obtain (〈λj , h〉 − 〈λ1, h〉)uj = 0 for

j ∈ {2, . . . , n+ 1} from the induction assumption. Since Λh = Λg and λj and λ1

are from different Λg-cosets if j 6= 1, we conclude that uj = 0 for j ∈ {1, . . . , n}.
Now apply Lemma 2.4.

(iii)⇒(i). Let h ∈ Gg. For γ ∈ T , define a linear operator Φ̃(γ) on Cq such that
its restriction toLλ(γ) coincides with the restriction of the operator of multiplication
by 〈λ, h〉. If λ′ ∈ Λ, λ′ = λ + κ, λ ∈ R, κ ∈ Λg, we obtain (V Φ̃)(γ + λ′) =
Φ̃(γ) = 〈λ, h〉I on Lλ(γ), hence (V Φ̃)(·) = 〈·, h〉I ∈ Z by Lemma 2.3. �

From Theorems 2.2 and 3.2 one can immediately derive an extension of [11,
Theorem 1] (cf. [14, Theorem 4.1]).

THEOREM 3.3. Let Λ be countable. If there exists g ∈ G with Λg = {0}, the
following conditions are equivalent:

(i) Z = L2(M),
(ii) 〈·, g〉I ∈ Z for some g ∈ G such that Λg = {0},

(iii) the set
{
R
(

dM
dσ (γ + λ)

)
: λ ∈ Λ

}
is direct for τ̃ -a.a. γ ∈ T .

In this theorem the condition that Λg = {0} for some g ∈ G cannot be omitted.

EXAMPLE 3.1. If G = Z2×Z2×G1, where Z2 is the group of order 2 and G1

is an arbitrary LCA group, H := {0} × {0} ×G1, and hence Λ = Z2 × Z2 × {0},
it is easy to verify that Λg 6= {0} for all g ∈ G.

If Z 6= L2(M), it is of interest to compute the orthogonal projection of an
arbitrary Φ ∈ L2(M) onto Z. Note first that the series

∑
λ∈Λ Φ(γ + λ)dM

dσ (γ + λ)

converges for τ̃ -a.a. γ ∈ T and define a function Φ̃ : T →M such that

Φ̃(γ) =
∑
λ∈Λ

Φ(γ + λ)
dM

dσ
(γ + λ)

(∑
λ∈Λ

dM

dσ
(γ + λ)

)+

for τ̃ -a.a. γ ∈ T . We omit the proof of the following theorem since it is quite similar
to the proofs of [6, Lemma 4.1 and Theorem 4.2].

THEOREM 3.4. Let Φ ∈ L2(M). Then:

(i) Φ̃ ∈ L2(M̃),
(ii) the orthogonal projection of Φ onto Z equals V Φ̃.

The proof of Theorem 3.4 is based on simple Hilbert space geometry and some
straightforward computations and does not make use of Theorem 2.2. Therefore,
one could start with Theorem 3.4 and try to derive the results of Section 2 from it.
For special classes of measures M such an approach was taken by several authors
(see [11], [14], [8]). However, it does not seem to be easy to infer Theorem 2.2 from
Theorem 3.4.
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4. A PROBLEM OF MULTICHANNEL SAMPLING

Now we discuss a problem arising in multichannel sampling. Let X be a q-variate
stationary process on G and M its spectral measure. Let m ∈ N and Yj , j ∈
{1, . . . ,m}, be multivariate processes on G depending on X linearly. The problem
is to find conditions under which observations of all processes Yj at a subgroup H
ofG give full information on X. In a slightly more general form this problem can be
formulated as follows. Let pj ∈ N, j ∈ {1, . . . ,m}, p :=

∑m
j=1 pj , Fj ∈ L

2
pj ,q(M),

F := (F ∗1 , . . . , F
∗
m)∗. Denote by Z(M ;F) the closure of theMp-linear span of

all functions of the form 〈·, hj〉XjFj , hj ∈ H , Xj ∈ Mp,pj , j ∈ {1, . . . ,m},
in L2

p,q(M). Give necessary or sufficient conditions for the equality Z(M ;F) =

L2
p,q(M) to hold.

Since F is defined only up to M -equivalence, we can and will assume that
N
(

dM
dσ

)
⊆ N (F) σ-a.e. If there exists a set B ∈ B(Γ) satisfying σ(B) > 0 and

L(γ) := N (F(γ)) ∩R
(

dM
dσ (γ)

)
6= {0} for all γ ∈ B, then Z(M ;F) 6= L2

p,q(M),
because if Φ ∈ L2

p,q(M) is such that the restriction of the operator Φ(γ) to L(γ) is
different from 0 for all γ ∈ B, then Φ ∈ L2

p,q(M) \ Z(M ;F). Let us assume that

N (F) = N
(

dM

dσ

)
σ-a.e.(4.1)

Let N be anM­p -valued measure defined by dN = FdMF∗.

LEMMA 4.1. Under condition (4.1) the map Ψ 7→ ΨF, Ψ ∈ L2
p,q(N), estab-

lishes an isometric isomorphism between L2
p,q(N) and L2

p,q(M).

Proof. The only thing requiring proof is the surjectivity of the map. If Φ ∈
L2
p,q(M), set Ψ := Φ(F∗F)+F∗. Since ΨF = ΦPR(F∗) and (4.1) yieldR(F∗) =

R
(

dM
dσ

)
σ-a.e., it follows that ΨF = Φ in L2

p,q(M). Moreover,
∫

Γ
ΨdN

dσ Ψ∗ dσ =∫
Γ

ΦdM
dσ Φ∗ dσ, which shows that Ψ ∈ L2

p,q(N). �

THEOREM 4.1. Assume that F satisfies (4.1). Then Z(M,F) = L2
p,q(M)

if and only if there exists B ∈ B(Γ) such that σ(Γ \ B) = 0 and the set
{R(F(γ + λ)dM

dσ (γ + λ)F(γ + λ)∗) : λ ∈ Λ} is direct for all γ ∈ B.

Proof. Apply Lemma 4.1 and Theorem 2.2. �

If M = µ is a scalar measure, then R(F(γ)) is a one-dimensional subspace
of Cp spanned by the vector F(γ) and the result can be given a more lucid form.

COROLLARY 4.1. Assume that q = 1 and (4.1) is satisfied. Then Z(µ;F) =
L2
p,1(µ) if and only if for σ-a.a. γ ∈ Γ there exists a subset Λ′ of Λ such that

F(γ + λ) = 0 for λ ∈ Λ \ Λ′, and the vectors F(γ + λ), λ ∈ Λ′, are linearly
independent.
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In the case p = q = 1 another description of measures µwith Z(µ;F) = L2
1,1(µ)

was obtained in [8, Theorem 3.5]. To illustrate the usefulness of Corollary 4.1 we
mention that the assertions of Examples 4.4 and 4.6 as well as of Proposition 4.6
of [8] are its straightforward consequences, whereas some computations were
needed to infer them from [8, Theorem 3.5].

5. JH -REGULARITY

In accordance with the notion of JH -regularity of a stationary process mentioned
in the introduction we give the following definition.

DEFINITION 5.1. A regularM­p -valued measure M on B(Γ) is called JH -reg-
ular if

⋂
g∈G Zg̃ = L2(M).

For this definition to be correct it is necessary that the notion of JH -regularity
does not depend on the dimension p; this independence can be seen from the proof
of Theorem 5.1.

To characterize the set of all JH -regular measures we first prove an auxiliary
result from abstract harmonic analysis. For brevity we shall say that an LCA groupG
has property (P) if for all n ∈ N and pairwise different gj ∈ G there exist γj ∈ Γ,
j ∈ {1, . . . , n}, such that the n× n matrix (〈γk, gj〉) is invertible.

LEMMA 5.1. For any n rows of an invertible matrix X ∈ Mm, there exist n
columns of X such that the corresponding n× n submatrix X is invertible.

Proof. If such columns did not exist, then the associated
(
m
n

)
×
(
m
n

)
matrix,

whose elements are the n× n minors of X (in lexicographical order) would have a
zero row, which would contradict the invertibility of the associated matrix. �

LEMMA 5.2. Any countable LCA group G has property (P).

Proof. Let [g1, . . . , gn] be the subgroup of G generated by n pairwise different
elements gj ∈ G. Note that any countable LCA group is discrete, and therefore it
is enough to show that [g1, . . . , gn] has property (P). By the fundamental structure
theorem for finitely generated abelian groups, [g1, . . . , gn] is a finite direct product
of cyclic groups.

Let us first show that any cyclic group has property (P). Let Zm :=
{0, 1, . . . ,m − 1} be the finite cyclic group of order m, whose group operation
is addition modulo m. Its characters can be identified with all maps of the form
j 7→ exp{2πijk/m}, j ∈ Zm. Since the m×m matrix (exp{2πijk/m}) is an
invertible Vandermonde matrix, it follows from Lemma 5.1 that Zm has property (P).
If Z is the infinite cyclic group of integers, its characters can be identified with
all maps of the form j 7→ eijα, α ∈ [0, 2π). Shifting a set {j1, . . . , jn} ⊆ Z
by −min{j1, . . . , jn}, we can assume that all elements jk are non-negative. Set
` := max{j1, . . . , jn}, choose numbers αk ∈ [0, 2π), k ∈ {0, . . . , `}, such that the
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Vandermonde matrix (eijαk)`j,k=0 is invertible and apply Lemma 5.1 to conclude
that Z has property (P).

To complete the proof let us show that if two LCA groups G1 and G2 have
property (P), then so does G1 ×G2. Let {(g′11, g

′
21), . . . , (g′1n, g

′
2n)} be a subset of

G1×G2. Let g11, . . . , g1s be those elements ofG1 which appear at least once as the
first component of these pairs. Define g21, . . . , g2t analogously for the second com-
ponent. By assumption there exist γ11, . . . , γ1s ∈ Γ1 and γ21, . . . , γ2t ∈ Γ2 such
that the s× s matrix (〈γ1k, g1j〉) and the t× t matrix (〈γ2m, g2`〉) are invertible.
Since their tensor product (〈γ1k, g1j〉〈γ2m, g2`〉) is invertible, the fact that G1 ×G2

has property (P) again follows from Lemma 5.1. �

Now we give a description of JH -regularM­p -valued measures (cf. [7, Theo-
rem 2.2] for the case q = 1).

THEOREM 5.1. If Λ is countable, the following assertions are equivalent:

(i) the measure M is JH -regular,
(ii) for all families dM̃λ

dτ̃ , λ ∈ Λ, there exists B̃ ∈ B(Γ) such that

τ̃(T \ B̃) = 0 and R
(

dM̃λ

dτ̃
(γ)

)
⊆
∑
κ6=λ
R
(

dM̃κ

dτ̃
(γ)

)
(5.1)

for all γ ∈ B̃ and λ ∈ Λ,
(iii) there exist a family dM̃λ

dτ̃ , λ ∈ Λ, and B̃ ∈ B(Γ) satisfying (5.1).

Proof. (i)⇒(ii). Assume that (ii) is not true. Let a family of Radon–Nikodym
derivatives dM̃λ

dτ̃ , λ ∈ Λ, and C̃ ∈ B(T ) be such that τ̃(C̃) > 0 and the in-

clusion R
(

dM̃λ
dτ̃ (γ)

)
⊆
∑

κ6=λR
(

dM̃κ
dτ̃ (γ)

)
is not true for some λ ∈ Λ and

all γ ∈ C̃. Choose a bounded measurable function Φ̃ : T → Mp,q satisfying
N (Φ̃) =

∑
κ6=λR

(
dM̃κ
dτ̃

)
on C̃ and Φ̃ = 0 on T \ C̃. For g ∈ G, the function

〈−λ, g̃〉Φ̃ is not the zero element of L2(M̃) and its image under the isometry Vg̃
equals Φ̃(γ−λ) for γ ∈ λ+T and 〈κ−λ, g̃〉Φ̃(γ−κ) for γ ∈ κ+T , κ ∈ Λ\{λ}.
Therefore, as an element of L2(M), the function Vg̃(〈−λ, g̃〉Φ̃) equals Φ̃(γ − λ)
for γ ∈ λ+ T , and 0 outside λ+ T . In particular, it does not depend on g, which
means by Lemma 2.3 that it belongs to

⋂
g∈G Zg̃. Thus M is not JH -regular.

(ii)⇒(iii) is trivial.
(iii)⇒(i). Let (iii) be satisfied. We shall show that Φ ∈

⋂
g∈G Zg̃ yields Φ = 0

in L2(M). By Lemma 2.3 for any H-coset g̃, the function Φ is the image of some
Φ̃g̃ ∈ L2(M̃) under the isometry Vg̃. Since Λ is countable, there exists C̃g̃ ∈ B(T )
such that τ̃(C̃g̃) = 0 and

〈λ, g̃〉Φ̃g̃(γ)
dM̃λ

dτ̃
(γ) = Φ(γ + λ)

dM̃λ

dτ̃
(γ), γ ∈ T \ C̃g̃, λ ∈ Λ.(5.2)
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For λ0 ∈ Λ and a subset S := {λ1, . . . , λq} of Λ \ {λ0} set

B̃S :=

{
γ ∈ T : R

(
dM̃λ0

dτ̃
(γ)

)
⊆

q∑
j=1

R
(

dM̃λj

dτ̃
(γ)

)}
.

According to Lemma 5.1 we can choose g̃1, . . . , g̃q ∈ G/H such that the matrix
(〈−λk, g̃j〉)qj,k=0 is invertible. Define C̃S :=

⋃q
j=0 C̃g̃j and D̃ :=

⋃
S(B̃S \ C̃S),

where S runs through all subsets of Λ \ {λ0} with exactly q elements. Note that
B̃ ⊆

⋃
S B̃S and τ̃(T \ D̃) = 0. Let γ ∈ D̃. Choose a subset S = {λ1, . . . , λq}

of Λ \ {λ0} such that γ ∈ B̃S \ C̃S . If u0 ∈ R
(dM̃λ0

dτ̃ (γ)
)
, there exist uk ∈

R
(dM̃λk

dτ̃ (γ)
)

satisfying
∑q

k=0 uk = 0. Setting g̃ = g̃j in (5.2), we obtain the
homogeneous linear system

0 = Φ̃j

( q∑
k=0

uk

)
=

q∑
k=0

〈−λk, g̃j〉Φ(γ + λk)uk, j ∈ {0, . . . , q}.

Since its coefficient matrix is invertible, it follows that Φ(γ + λ0)u0 = 0, which
yieldsR

(
dM
dσ (γ + λ0)

)
⊆ N (Φ(γ + λ0)). Since λ0 ∈ Λ was arbitrary, we obtain

Φ = 0 in L2(M). �

From Theorems 5.1 and 2.2 it follows that anM­3 -valued measure on B(R)
defined by 1 1 1

1 1 1
1 1 1

 δ0 +

4 2 2
2 1 1
2 1 1

 δ2π +

9 3 3
3 1 1
3 1 1

 δ4π,

where δx denotes the Dirac measure at x ∈ R, is JZ-singular and all measures on its
principal diagonal are JZ-regular measures. Therefore, in general JH -singularity
of M does not tell us anything about the JH -regularity or JH -singularity of the
measures on its principal diagonal. The following corollary of Theorem 5.1 shows
that JH -regularity of M yields JH -regularity of the diagonal measures.

COROLLARY 5.1. Let F : Γ→Mp,q be a measurable function which is con-
stant on γ + Λ for τ̃ -a.a. γ ∈ T . If M is JH -regular, then FdMF ∗ is JH -regular
as well. In particular, all measures on the principal diagonal of M are JH -regular.

Proof. Let R
(

dM̃λ
dτ̃ (γ)

)
⊆
∑

κ∈Λ\{λ}R(dM̃κ
dτ̃ (γ)), or equivalently, for τ̃ -a.a.

γ ∈ T ,

⋂
κ∈Λ\{λ}

N
(

dM̃κ

dτ̃
(γ)

)
⊆ N

(
dM̃λ

dτ̃
(γ)

)
, λ ∈ Λ.(5.3)
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Since u ∈ N (F (γ)dM̃κ
dτ̃ (γ)F (γ)∗) if and only if F (γ)∗u ∈ N (dM̃κ

dτ̃ (γ)), from
(5.3) it follows that

⋂
κ∈Λ\{λ}

N
(
F (γ)

dM̃κ

dτ̃
(γ)F (γ)∗

)
⊆ N

(
F (γ)

dM̃λ

dτ̃
(γ)F (γ)∗

)
for τ̃ -a.a. γ ∈ T and all λ ∈ Λ. �

Theorem 2.2 contains several assertions equivalent to JH -singularity, where
perhaps condition (viii) formulated in terms of M and τ is the most natural one.
Now we give conditions equivalent to JH -regularity; it turns out that a condition in
terms of M and τ does not exist in general. We start with the following lemma.

LEMMA 5.3. Let µ and ν be regular σ-finite non-negative measures on B(Γ)
such that M � µ� ν. If there exist dM

dν and B ∈ B(Γ) satisfying

ν(Γ \B) = 0 and R
(

dM

dν
(γ + λ)

)
⊆
∑
κ6=λ
R
(

dM

dν
(γ + κ)

)
(5.4)

for all γ ∈ B and λ ∈ Λ, then there exists dM
dµ such that

R
(

dM

dµ
(γ + λ)

)
⊆
∑
κ6=λ
R
(

dM

dµ
(γ + κ)

)
for all γ ∈ Γ and λ ∈ Λ.(5.5)

Proof. Let dM
dν and B ∈ B(Γ) satisfy (5.2). Choose dµ

dν , set C := B ∩
{
γ ∈ Γ :

dµ
dν (γ) > 0

}
, and define dM

dµ
:= dM

dν (dµ
dν )−1 on C, γ ∈ Γ \C, set C(γ) := {λ ∈ Λ :

γ + λ ∈ C}, L(γ) :=
∑

λ∈C(γ)R
(

dM
dν (γ + λ)

)
, and dM

dµ (γ) := PL(γ). Let λ ∈ Λ.
If γ ∈ Γ is such that γ + λ′ ∈ C, then R

(
dM
dµ (γ + λ′)

)
= R

(
dM
dν (γ + λ′)

)
for

λ′ ∈ Λ. It is easy to show that if γ+λ /∈ C or γ+κ /∈ C for some κ ∈ Λ\{λ}, then
R
(

dM
dµ (γ + λ)

)
⊆ L(γ) ⊆

∑
κ6=λR

(
dM
dµ (γ + κ)

)
. Thus, dM

dµ satisfies (5.5). �

THEOREM 5.2. Each of the following assertions is equivalent to Theo-
rem 5.1(ii):

(a) for all dM
dσ there exists B ∈ B(Γ) such that

σ(Γ \B) = 0 and R
(

dM

dσ
(γ + λ)

)
⊆
∑
κ6=λ
R
(

dM

dσ
(γ + κ)

)
(5.6)

for all γ ∈ B and λ ∈ Λ,
(b) there exist dM

dσ and B ∈ B(Γ) satisfying (5.6),
(c) there exists dM

dσ such thatR(dM
dσ (γ+λ)) ⊆

∑
κ6=λR(dM

dσ (γ+κ)) for all γ ∈ Γ
and λ ∈ Λ.
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If one of these conditions is satisfied and µ is a regular σ-finite non-negative
measure such that M � µ � σ, then there exists dM

dµ satisfying (5.5). If ν is
a regular σ-finite non-negative measure such that σ � ν and (5.4) is true for
some B ∈ B(Γ), then (a)–(c) are satisfied.

Proof. (Theorem 5.1(ii)⇒ (a)). For dM
dσ define a family dM̃λ

dτ̃ , λ ∈ Λ, by (2.2).
Choose B̃ ∈ B(Γ) satisfying (5.1) and defineB :=

⋃
(λ+B̃). Since σ is a periodic

continuation of τ̃ , we have σ(Γ \ B) = 0. For γ ∈ B, there exists λ0 ∈ Λ with
γ − λ0 ∈ B̃. By assumption it follows that

R
(

dM̃λ+λ0

dτ̃
(γ − λ0)

)
⊆
∑
κ6=λ
R
(

dM̃κ+λ0

dτ̃
(γ − λ0)

)
,

hence, (5.6).
((a)⇒ Theorem 5.1(ii)) is an immediate consequence of (2.2), (a)⇒(b) is trivial,

and (b)⇒(c) follows from Lemma 5.3.
(b)⇒(c). If dM

dσ satisfies (c) and ∆ is an arbitrary Radon–Nikodym deriva-
tive of M with respect to σ, set C :=

{
γ ∈ Γ: dM

dσ (γ) = ∆(γ)
}

, C̃ :=⋃
((C ∩ (λ + T )) − λ), D :=

⋃
(C̃ + λ), B := Γ \ D. Since σ(Γ \ B) = 0

by periodicity of σ and B = λ+B, λ ∈ Λ, we get (5.6) with dM
dσ replaced by ∆.

The concluding assertions are simple consequences of Lemma 5.3. �

Theorem 5.2 implies that the existence of dM
dτ and B ∈ B(Γ) such that

(5.7)

τ(Γ \B) = 0 and R
(

dM

dτ
(γ + λ)

)
⊆
∑
κ6=λ
R
(

dM

dτ
(γ + κ)

)
, γ ∈ B, λ ∈ Λ,

is necessary for JH -regularity of M . However, this condition is not sufficient.

EXAMPLE 5.2. Let G = R, H = Z, hence Γ = R, Λ = 2πZ. Let q = 1 and
M = τ be the restriction of the Lebesgue measure to B([0, 2π)). If dM

dτ = 1 on R,
then condition (5.7) is satisfied, although M is not JH -regular.

6. WOLD DECOMPOSITION

From [18, Theorem 2.13] and from Kolmogorov’s isomorphism theorem it follows
that any regularM­q -valued measure admits a unique decomposition into a sum of
a JH -regular and a JH -singular measure. We conclude our paper with a description
of these two measures.

Let M be a regular M­q -valued measure on B(Γ) and dM
dσ be its Radon–

Nikodym derivative. For γ ∈ Γ, set

Lλ := R
(

dM

dσ
(γ + λ)

)
, λ ∈ Λ, Kλ :=

∑
κ∈Λ\{λ}

Lκ, L :=
⋂
λ∈Λ

Kλ,
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and P := PL. Note that for simplicity of presentation we do not indicate the
dependence on γ.

LEMMA 6.1. If L = Kλ, then
⋂
κ∈Λ\{λ} PL

⊥
κ = {0}.

Proof. Let (·, ·) denote the inner product of Cq. If u ∈
⋂
κ∈Λ\{λ} PL

⊥
κ , then

u = Puκ for some uκ ∈ L⊥κ , hence, (u, vκ) = (Puκ, vκ) = (uκ, vκ) = 0 for all
vκ ∈ Lκ, since Lκ ⊆ Kλ = L if κ 6= λ. It follows that u is orthogonal to Kλ. Since
u ∈ L ⊆ Kλ, we obtain u = 0. �

LEMMA 6.2. For λ ∈ Λ, the intersection
⋂
κ∈Λ\{λ} PL

⊥
κ is {0}.

Proof. SetL′λ := Lλ∩L = Lλ∩
∑

κ∈Λ\{λ} Lκ andL′ :=
⋂
λ∈Λ

∑
κ∈Λ\{λ} L

′
κ.

Clearly, L′ ⊆ L. Conversely, if u ∈ L, then for all λ ∈ Λ,

(6.1) u =
∑

κ∈Λ\{λ}
uλκ,

where uλκ ∈ Lκ and, of course, only finitely many vectors on the right-hand
side are different from 0. Let λ1, λ2 ∈ Λ be distinct. Then (6.1) implies that
uλ2λ1 = uλ1λ2 +

∑
κ∈Λ\{λ1,λ2}(uλ1κ − uλ2κ) ∈ Lκ, hence uλ2λ1 ∈ L′λ1 . Since λ1

and λ2, λ1 6= λ2, were arbitrary, we find that u ∈ L′, which yieldsL = L′. It follows
that L =

∑
κ∈Λ\{λ} L

′
κ by definition of L′κ, and therefore

⋂
κ∈Λ\{λ} PL

⊥
κ ⊆⋂

κ∈Λ\{λ} PL
′
κ
⊥ = {0} by Lemma 6.1. �

THEOREM 6.1. Let M = Mr + Ms be the Wold decomposition of M into
its JH -regular part Mr and JH -singular part Ms. Let

(Xλ Yλ
Y ∗λ Zλ

)
be the block

representation of dM
dσ (γ + λ) with respect to the orthogonal decomposition Cq =

L⊕ L⊥. Then

dMr =

(
Xλ − YλZ+

λ Y
∗
λ 0

0 0

)
dσ(6.2)

and dMs =
( YλZ+

λ Y
∗
λ Yλ

Y ∗λ Zλ

)
dσ.

Proof. Theorem 4.4 of [5] implies that the theorem is equivalent to the following
two assertions:

(a) The measure Mr defined by (6.2) is JH -regular.
(b) If N is a JH -regular measure such that N ¬ M , then N ¬ Mr, where “¬”

denotes the Loewner semi-ordering.
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Proof of (a). By Theorem 5.1 we have to establish the inclusionR
(

dMr
dσ (γ + λ)

)
⊆
∑

κ∈Λ\{λ}R
(

dMr
dσ (γ + κ)

)
, which will be proved if we show that

⋂
κ∈Λ\{λ}

N
(

dMr

dσ
(γ + κ)

)
= {0} ⊕ L⊥, λ ∈ Λ.(6.3)

Note first that if u ∈ L is such that
(
u
0

)
∈ N

(
dMr
dσ (γ + κ)

)
, then

( u
−Z+

κ Y
∗
κ u

)
∈

N
(

dMr
dσ (γ + κ)

)
. It follows thatN

(
dMr
dσ (γ + κ)

)
= PL⊥κ ⊕L⊥ and an application

of Lemma 6.2 gives (6.3).

Proof of (b). Let u ∈ R
(

dN
dσ (γ + λ0)

)
∩L⊥ for some λ0 ∈ Λ. By Theorem 5.1,

JH -regularity of N yields u ∈
∑

κ∈Λ\{λ0}R
(

dN
dσ (γ + κ)

)
, hence

u ∈
⋂
λ∈Λ

∑
κ∈Λ\{λ}

R
(

dN

dσ
(γ + κ)

)
⊆
⋂
λ∈Λ

∑
κ∈Λ\{λ}

Lλ = L

for σ-a.a. γ ∈ Γ since the inequality N ¬ M implies that dN
dσ ¬

dM
dσ σ-a.e.

Therefore u = 0, which means that L⊥ ⊆ N
(

dN
dσ (γ + λ0)

)
and so dN

dσ (γ + λ0) ¬
dMr
dσ (γ + λ0) for σ-a.a. γ ∈ Γ by [19, Corollary, p. 392]. �
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