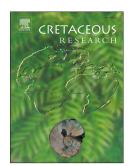
Cricosaurus (Thalattosuchia, Metriorhynchidae) survival across the J/K boundary in the High Andes (Mendoza Province, Argentina)

Yanina Herrera, Marta S. Fernández, Verónica V. Vennari

PII: S0195-6671(20)30360-8

DOI: https://doi.org/10.1016/j.cretres.2020.104673

Reference: YCRES 104673


To appear in: Cretaceous Research

Received Date: 27 May 2020
Revised Date: 25 August 2020
Accepted Date: 5 October 2020

Please cite this article as: Herrera, Y., Fernández, M.S., Vennari, V.V., *Cricosaurus* (Thalattosuchia, Metriorhynchidae) survival across the J/K boundary in the High Andes (Mendoza Province, Argentina), *Cretaceous Research*, https://doi.org/10.1016/j.cretres.2020.104673.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Ltd. All rights reserved.

Author statement

Yanina Herrera conceived, designed, and performed the experiments, analyzed the data, contributed materials/analysis tools, prepared figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.

Marta S. Fernández conceived and designed the experiments, contributed analysis tools, reviewed drafts of the paper, approved the final draft.

Verónica V. Vennari conceived and designed the experiments, contributed materials/analysis tools, prepared figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.

1	Cricosaurus (Thalattosuchia, Metriorhynchidae) survival across the J/K boundary in the
2	High Andes (Mendoza Province, Argentina)
3	
4	Yanina Herrera ^{a,*} , Marta S. Fernández ^a , Verónica V. Vennari ^b
5	
6	^a CONICET. División Paleontología Vertebrados, Museo de La Plata, Facultad de
7	Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina.
8	yaninah@fcnym.unlp.edu.ar; martafer@fcnym.unlp.edu.ar
9	^b CONICET. Instituto de Evolución, Ecología Histórica y Ambiente (IDEVEA), Universidad
10	Tecnológica Nacional, San Rafael, Mendoza, Argentina.
11	vvennari@mendoza-conicet.gov.ar
12	
13	*Corresponding author. División Paleontología Vertebrados, Museo de La Plata, Facultad
14	de Ciencias Naturales y Museo, UNLP, Av. 60 y 122, B1900AVW La Plata, Argentina.
15	CONICET. yaninah@fcnym.unlp.edu.ar
16	
17	
18	
19	
20	
21	
22	
23	
24	Abstract

25	Metriorhynchidae is an extinct group of Jurassic-Cretaceous crocodylomorphs that
26	developed a fully pelagic lifestyle. Its Jurassic record is outstanding (it includes around 40
27	nominal species), while the records that can be restricted to the Cretaceous are particularly
28	sparse. Here we describe a partial skull of a new species of Cricosaurus, Cricosaurus
29	puelchorum sp. nov., from the lower Berriasian of the Vaca Muerta Formation (Neuquén
30	Basin, Argentina). The description of the specimen reveals a series of autapomorphies and
31	a unique combination of characters that justify the creation of a new species. Phylogenetic
32	analysis places Cricosaurus puelchorum sp. nov. closer to three upper Kimmeridgian-
33	lower Tithonian species of southern Germany. The new taxon was recovered in connection
34	with an accurate ammonoid-based biostratigraphic control and allows confirming the
35	survival of Cricosaurus across the J/K boundary at the southeastern Pacific.
36	Keywords: Crocodylomorpha, Ammonoidea, Lower Cretaceous, Vaca Muerta Formation,
37	Neuquén Basin.
38	
39	1. Introduction
40	Metriorhynchidae, a clade of Mesozoic marine crocodylomorphs, are the only
41	Archosauria group adapted to a pelagic lifestyle as it is documented by several
42	morphological and physiological modifications such as laterally directed orbits, reduced
43	and paddle-like forelimbs, loss of osteoderms, regionalized caudal vertebral column with a
44	hypocercal tail, and hypertrophied nasal glands for salt excretion, among others (e.g. Fraas,
45	1902; Andrews, 1913; Fernández and Gasparini, 2008; Young et al., 2010; Herrera et al.,
46	2013a; Sachs et al., 2019). Also, they were probably bearing live young (Herrera et al.,
47	2017, and references therein).

48	worldwide Jurassic records depict metriornynchids as a diverse lineage, gathering
49	approximately 40 nominal species distributed in more than ten genera, being Cricosaurus
50	Wagner, 1858 one of the most speciose genera (e.g. Wagner, 1852, 1858; Fraas, 1902;
51	Gasparini and Dellapé, 1976; Young and Andrade, 2009; Herrera et al., 2013b; Sachs et al.
52	2019). On the contrary, Cretaceous fossils are particularly sparse. Laurasian records are
53	mostly restricted to Germany and France. Two specimens were recovered from the
54	Valanginian of Germany: Cricosaurus schroederi (Kuhn, 1936), and the holotype of
55	Enaliosuchus macrospondylus Koken, 1883 (now referred as Metriorhynchidae indet., see
56	Sachs et al., 2020). French records include Cricosaurus macrospondylus (now referred as
57	cf. 'Cricosaurus' macrospondylus see Sachs et al., 2020 and Young et al., 2020) from the
58	lower Valanginian (Hua et al., 2000), Geosaurus lapparenti (Debelmas and
59	Strannoloubsky, 1957) from the upper Valanginian to lower Hauterivian (Debelmas, 1952,
50	1958; Debelmas and Strannoloubsky, 1957), and the holotype of the nomen dubium
61	Neustosaurus gigondarum Raspail, 1842 from the lower Valanginian. Additionally, an
62	indeterminate Plesiosuchina specimen from the upper Valanginian (Young et al., 2014),
53	and an indeterminate metriorhynchid from the upper Valanginian-lower Hauterivian
54	(Debelmas and Demians D'Archimbaud, 1956) are also known from France (see Sachs et
65	al., 2020 for further information). To these finding, it must be added an isolated tooth from
56	the lowermost Aptian of Italy referred to cf. Plesiosuchina (Chiarenza et al., 2015).
67	The Gondwanan Cretaceous records are even more scarce and restricted to a single
58	metriorhynchid from Colombia (Rosa Blanco Formation, lower upper Valanginian)
59	(Larsson et al., 2011).
70	In the Vaca Muerta Formation (Neuquén Basin), metriorhynchids are known from
71	the upper part of the lower Tithonian (Aulacosphinetes proximus Zone) to the upper

72	Tithonian-lower Berriasian (Substeueroceras koeneni Zone) (see e.g. Gasparini and
73	Dellapé, 1976; Vignaud and Gasparini, 1996; Pol and Gasparini, 2009; Herrera et al.,
74	2013b, 2015; Herrera, 2015; Fernández et al., 2019). The youngest specimens from this
75	basin (Dakosaurus andiniensis Vignaud and Gasparini, 1996, and Purranisaurus potens
76	Rusconi, 1948a) were recovered from upper Tithonian-lower Berriasian levels
77	(Substeueroceras koeneni ammonite Zone). Thus, up to date, no definitive Cretaceous
78	metriorhynchids have been found in the Neuquén Basin.
79	
80	1.1. Metriorhynchids from southern Mendoza Province
81	The specimens of metriorhynchids discovered in Mendoza Province during the first
82	half of the XX Century were first described as an ichthyosaur and a plesiosaur (Rusconi,
83	1948a, b). Rusconi (1948b) nominated an "ichthyosaur" species as Ichthyosaurus
84	inexpectatus (from Cajón del Río Grande), however, this material likely corresponds to
85	Dakosaurus Quenstedt, 1856 (Vignaud and Gasparini, 1996). Also from Cajón del Río
86	Grande, Rusconi (1948a) described the metriorhynchid Purranisaurus potens as a
87	"plesiosaur" (see Gasparini, 1973; Herrera et al., 2015, Fernández et al., 2019 for detailed
88	information). Additionally, in two sites located near to the Mendoza-Neuquén provincial
89	boundary have been recovered three specimens of metriorhynchids. In Tithonian levels of
90	Sierra de Reyes two natural endocasts of the skull cavities referred to Cricosaurus
91	araucanensis (Gasparini and Dellapé, 1976) were found, and also from Tithonian levels but
92	from Cari-Lauquen comes the holotype of Dakosaurus andiniensis (Vignaud and
93	Gasparini, 1996). Except for the holotype (and the only specimen know) of <i>Purranisaurus</i>
94	potens for which an upper Tithonian-lower Berriasian age was determined based on an

associated ammonite shell (Herrera et al., 2015), the age of the other metriorhynchids specimens from Mendoza Province is not accurately constrained.

Here we describe a new species which represents the first definitively Cretaceous metriorhynchid from the Vaca Muerta Formation (Neuquén Basin, Argentina), and showing the survival of *Cricosaurus* across the J/K boundary in the High Andes (Mendoza Province). The specimen here described (MCNAM-PV 5096) is the only metriorhynchid from Mendoza Province recovered in connection with an accurate ammonoid-based biostratigraphic control.

2. Geological context and biostratigraphic framework

The Neuquén Basin, extending between 33° to 39° Southern Latitude over central-west Argentina and Chile, holds a thick marine and continental Meso-Cenozoic succession. Sedimentation within this retro-arc basin has a complex history, mainly controlled by successive tectonic regimes and the activity of the western arc, represented by the volcanogenic rocks that interbed the dominantly siliciclastic and carbonate column (Ramos and Folguera, 2005; Charrier et al., 2015).

Upper Jurassic–Lower Cretaceous marine boundary beds are encompassed by the Vaca Muerta Formation, Mendoza Group (Weaver, 1931; Groeber, 1946). The Vaca Muerta Formation was deposited after a sudden transgression from the Pacific Ocean, and it is composed of a rhythmic succession of organic-rich shales, marls and limestones deposited within a carbonate ramp to platform setting (Mitchum and Uliana, 1985; Legarreta and Uliana, 1991; Spalletti et al., 2000; Kietzmann et al., 2014). The remarkably fossiliferous character of this lithostratigraphic unit has long enabled its relative dating through age-diagnostic fossils, among which ammonites, calcareous nannofossils, and

119	calpionellids stand out (López-Martínez et al., 2017). In the last few years, the combination
120	of the ammonite biozonation scheme and nano- and microfossils bioevents, together with
121	the absolute age data obtained from the radio-isotopic geochronological analysis of detrital
122	and igneous zircons, resulted in interesting advances in the chrono-biostratigraphic
123	framework of the Andean Tithonian-Berriasian interval (Riccardi, 2015; Aguirre-Urreta et
124	al., 2019 and references therein).
125	The material here studied comes from the Arroyo Paulino section (34° 58' S; 69° 49'
126	W), which is around 220 m thick and encompass upper Tithonian to lower Berriasian strata
127	of the Vaca Muerta Formation cropping out on the right margin of the Paulino Creek,
128	Malargüe, Mendoza. Arroyo Paulino can be reached following upstream a country-road
129	that departs to the west from the 40 National Road and that parallels the course of the Atuel
130	River and its tributaries (Fig. 1A). General geological features of the area have been
131	published by Ugarte (1955), Dessanti (1978), Nullo et al. (2005), and Sruoga et al. (2005),
132	and a detailed complete log of the section is available in Fernández et al. (2019).
133	Age assignation of the Arroyo Paulino section relies on bed-by-bed ammonite
134	sampling and the identification of all the Andean Assemblage Ammonoid Zones between
135	the Windhauseniceras internispinosum to the base of the Argentiniceras noduliferum Zones
136	-Microcanthum to Occitanica Standard Zones- (Vennari et al., 2014; Riccardi, 2015;
137	Aguirre-Urreta et al., 2019 and references therein). The specimen MCNAM-PV 5096 was
138	found in-situ in bed Py 38, a 0.65 m dark, massive, fine to medium calcareous sandstone
139	bounded by dark-grey laminated marls (Fig. 1B). That bed also retrieved some bivalve
140	fragments and an ammonite shell identified as Groebericeras bifrons Leanza, 1945
141	(MCNAM-PI 24878). Another representative of that species was collected from the
142	overlying Py 39 bed (MCNAM-PI 24858), and two additional specimens were found loose

closely around (MCNAM-PI 24879 and 24880). Presence of G. bifrons allows to
confidently constraint the bed bearing the metriorhynchid specimen (MCNAM-PV 5096)
to the base of the A. noduliferum Zone (i.e. to the lower Berriasian). Ammonite specific
assignation is supported by the compressed open-coiled shells, with rounded flanks and
rather acute venters (Fig. 2, Tab. 1). All specimens lack tubercles and bear narrow
prorsiradiate constrictions, and ribs that are more evident over the upper third of the flank.
Even though ornamentation-smoothing age tendency could not be properly evaluated given
the reduced diameter of the material (maximum diameter of c . 78 mm), the other characters
described are diagnostic of G. bifrons (Leanza, 1945; Aguirre-Urreta and Álvarez, 1999).
Groebericeras bifrons is interpreted as a lower Berriasian marker in the Neuquén
Basin and it is usually recorded at the very base of the Argentiniceras noduliferum Zone
(Leanza, 1945; Aguirre-Urreta and Álvarez, 1999; Vennari et al., 2012; Parent et al., 2015;
Vennari and Aguirre-Urreta, 2017). The A. noduliferum Zone has in turn been tied up with
the Tethyan Calpionella alpina Subzone, the primary marker of the lower Berriasian
(López-Martínez et al., 2017; Wimbledon, 2017; Lena et al., 2019). In the Arroyo Paulino
section, G. bifrons has been recorded from two consecutive beds, located around 10 meters
below the first occurrence of A. noduliferum, and near 40 meters above the last beds with
ammonites typical of the Substeuroceras koeneni Zone. That 40 meters poorly fossiliferous
interval only yielded some dubious representatives of Substeueroceras disputabile and
"Thurmanniceras" duraznensis. This drop in abundance and diversity could be related to
the development of a lowstand period in the basin coupled with a higher siliciclastic input
(Riccardi, 1991, 2008, 2015). Hence, it is feasible that A. noduliferum first occurrence in
Arroyo Paulino is lower in the section than Py 38 metriorhynchid-bearing bed.

166	The genus Groebericeras is recorded in the upper Berriasian of the Mediterranean
167	region (Hoedemaeker, 1982, 1987; Howarth, 1992; Aguado et al., 2000) and in the Lo
168	Valdez Formation in Chile according to Salazar Soto (2012). Notwithstanding, we agree
169	with Aguirre-Urreta and Álvarez (1999) that those records are not conspecific with G .
170	bifrons and that current lines of evidence suggest a younger early Berriasian age for that
171	species in Argentina and Chilean sections.
172	
173	3. Material
174	Materials of thalattosuchians used for comparisons were listed in Table 2, which include
175	the collection number of the most informative specimen material. Unless noted otherwise,
176	comparisons for the taxa mentioned in the description were based on these specimens.
177	
178	4. Institutional abbreviations
179	MCNAM, Museo de Ciencias Naturales y Antropológicas J.C. Moyano, Mendoza,
180	Argentina; MGHF, Museo Geológico H. Fuenzalida, Universidad Católica del Norte,
181	Antofagasta, Chile; MHNSR, Museo de Historia Natural de San Rafael, San Rafael,
182	Argentina; MLP, Museo de La Plata, La Plata, Argentina; MOZ, Museo Provincial de
183	Ciencias Naturales "Prof. Dr. Juan A. Olsacher", Zapala, Argentina; MPZ, Museo
184	Paleontológico de la Universidad de Zaragoza, Zaragoza, Spain; NHMUK R, Natural
185	History Museum, London, United Kingdom; SMNS, Staatliches Museum für Naturkunde
186	Stuttgart, Stuttgart, Germany; SNSB-BSPG, Staatliche Naturwissenschaftliche
187	Sammlungen Bayerns- Bayerische Staatssammlung für Paläontologie und Geologie,
188	München, Germany.

189

190	5. Systematic paleontology
191	Crocodylomorpha Hay, 1930 (sensu Nesbitt, 2011)
192	Thalattosuchia Fraas, 1901 (sensu Young and Andrade, 2009)
193	Metriorhynchidea Fitzinger, 1843 (sensu Young and Andrade, 2009)
194	Metriorhynchinae Fitzinger, 1843 (sensu Young and Andrade, 2009)
195	Rhacheosaurini Young et al., 2011
196	Cricosaurus Wagner, 1858
197	Type species. Stenosaurus elegans Wagner, 1852. Daiting, Mörnsheim Formation,
198	Germany. Hybonoticeras hybonotum Standard Ammonite Zone, lower Tithonian, Upper
199	Jurassic. Now referred to as Cricosaurus elegans (Wagner, 1852) Wagner, 1858 [following
200	recommendation 67B of the International Commission on Zoological Nomenclature
201	(ICZN) code].
202	Emended diagnosis. Metriorhynchid crocodylomorph with the following unique
203	combination of characters: ornamentation of the external surface of the dermatocranium is
204	variable, with some species having a conspicuous to faint grooved, ridged or pitted patterns,
205	and others being largely smooth; external nares separated by a bony premaxillary septum,
206	with the nares terminating posterior to the second maxillary alveoli; acute angle formed by
207	the posterolateral and posteromedial processes of the frontal; orbits as large as the
208	supratemporal fenestrae (at least in morphologically mature individuals); lateral margin of
209	the prefrontal rounded; surangular and angular well-developed, anterolaterally exceeding
210	beyond the anterior margin of the orbits; symphysial part of the mandible low; dentition has
211	variable labiolingual compression, with some species having teeth with a sub-circular
212	cross-section and others with a sub-rectangular one; dentition is bicarinate, but the carinae
213	are faint (i.e. a low carinal keel); deltopectoral crest reduced or absent; calcaneum tuber

214	absent or vestigial; proximal end of metatarsal I greatly enlarged (modified from Young
215	and Andrade, 2009; Herrera et al., 2013b; Sachs et al., 2019).
216	
217	Cricosaurus puelchorum sp. nov.
218	Figures 3–6
219	LSID. urn:lsid:zoobank.org:act:
220	Derivation of name. From Puelches (pwelches in Mapudungun, which means "people of the
221	East"), a name given by the Spanish to the native people who inhabited the southeast of
222	Mendoza. The name with which they defined themselves is unknown.
223	Holotype. MCNAM-PV 5096, incomplete cranium from the nasals to the posterior-most
224	region of the right supratemporal fenestra, with part of the mandible and teeth.
225	Type locality. Arroyo Paulino (34° 58' S; 69° 49' W), cropping out on the right margin of
226	the Paulino Creek, Mendoza Province, Argentina.
227	Stratigraphic horizon. Vaca Muerta Formation, lower part of the Argentiniceras
228	noduliferum Andean Assemblage Zone, lower Berriasian, Lower Cretaceous (Leanza,
229	1945; López-Martínez et al., 2017).
230	Diagnosis. A member of Cricosaurus characterized by the following combination of
231	characters (autapomorphic characters are indicated by an asterisk*): ornamentation of the
232	external surface of the dermatocranium consisting of small pits and shallow to deep
233	grooves; palatal surface of the maxilla ornamented with ridges*; lacrimal visible in dorsal
234	and lateral views*; anteroposteriorly oriented ridge in the posteromedial process of the
235	nasal*; frontal anteromedial process noticeably posterior to the prefrontals; triangle-shaped
236	supratemporal fossae; teeth with three apicobasal facets on the labial surface*; tooth crowns

with well-defined apicobasal a	aligned ridges; apicobasal	parallel troughs on th	e middle face
of the labial surface*.			

6. Description

6.1. General preservation

The skull of the holotype (MCNAM-PV 5096) and the only known specimen was diagenetically broken into six pieces that fit together (Figs. 3–6). There are four main pieces, three of them are transversally broken; the anterior one is a fragment of the snout, the middle piece is from the posterior-most region of the snout to the posterior-most region of the orbit, the posterior piece is from the supraorbital notch to the posterior margin of the right supratemporal fossa (Figs. 3–4). The extra piece is a bone region detached from the right lateral and ventral aspect of the cranium and includes part of the maxilla, lacrimal, and prefrontal. The small pieces include part of the maxilla and the mandible, and the other is a mandibular fragment. Most of the mandible is not preserved.

Maxilla, nasal, lacrimal, prefrontal, frontal, palatine, pterygoid, vomer, dentary, splenial, surangular, and angular can be confidently identified. A fragment of the postorbital was identified but not described. Several teeth are preserved, most of them still in life position in the left maxilla and right dentary. The infillings of the nasal cavity proper, antorbital sinus, salt gland duct, nasopharyngeal ducts, and brain can be observed.

The external surface of most of the dermal bones is ornamented with irregular, shallow ridges, grooves, and small pits. The sculpturing is pronounced on the maxilla, the posterior portion of the nasals, prefrontal, and anterior portion of the frontal.

6.2. Cranial openings

6.2.1.	Supratempo	oral fossa	and	fenestra
0.2.1.	Supractific	i di jobba	cirici	CITCHIC

The right supratemporal fossa is completely preserved, however, most of the bone's surface that forms it was eroded by recent weathering, thus the contribution of the bones cannot be determined. The supratemporal fossa is large, longer than wider, and triangle-shaped, as in *Cricosaurus araucanensis*, *Cricosaurus vignaudi* (Frey et al., 2002), and *Cricosaurus* sp. (SNSB-BSPG 1973 I 195); and the supratemporal fenestra is rounded (Fig. 3A).

6.2.2. Suborbital fenestra

The right suborbital fenestra is partially preserved. Its anterior margin is acute and extended anteriorly beyond the anterior margin of the orbit. The lateral margin is formed by the maxilla and the medial by the palatine, the posterior limit is not preserved (Fig. 3B).

6.2.3. Secondary choana

The secondary choana is partially preserved. The anterior margin is formed by the palatines, and the posterior by the pterygoids. Unfortunately, the lateral margins are not preserved. The region where the pterygoids are sutured is raised, and laterally there are two anteroposteriorly directed concavities, the presence of a septum could not be identified (Fig. 3B).

6.2.4. Preorbital fossa

Both preorbital fossae are partially preserved and crushed. The anterior-most portion is not preserved. The preorbital fossa is very elongate, with the major axis orientated obliquely (Fig. 4), as in all known metriorhynchids (e.g. *Cricosaurus araucanensis*, MLP 72-IV-7-1; *D. andiniensis*, MOZ-PV 6146; *Maledictosuchus riclaensis*; *Pu. potens*). The preorbital fossa excavates the maxilla and forms a sulcus that vanishes anterodorsally, as in *C. araucanensis* (MLP 72-IV-7-1), but in MCNAM-PV 5096 this

285	sulcus is more prominent and high, and likely ends at the level of the anterior-most portion		
286	of the nasals (Fig. 4). The dorsal margin of the preorbital fossa is formed by the nasal, and		
287	the ventral one by the maxilla (we cannot rule out the participation of the jugal in the		
288	ventral margin). The lacrimal contributes to the posterior margin (Fig. 4), as in all		
289	metriorhynchids (Fernández and Herrera, 2009).		
290			
291	6.3. Cranium		
292	6.3.1. Maxilla		
293	Both maxillae are incomplete; the lateral, alveolar, and ventral regions are partially		
294	preserved (Figs. 3-4). Ornamentation of the external surface is composed of		
295	anteroposteriorly oriented ridges, as in most metriorhynchines and geosaurines (e.g.		
296	Rhacheosaurus gracilis, Cricosaurus elegans, 'Cricosaurus' medius, Cricosaurus suevicus,		
297	Ma. riclaensis, Pu. potens, Plesiosuchus manselli).		
298	A portion of the maxilla is exposed in ventral view. It contacts the palatine through		
299	a serrated suture (see palatine description). The palatal region of the maxilla is ornamented		
300	with deep grooves (Fig. 3B), a feature only shared with the Swiss rhacheosaurin (see		
301	Young et al., 2020), and Pu. potens within Thalattosuchia. The left maxilla, in its middle		
302	region, preserves six teeth included in a deep groove (Fig. 4A). In the right maxilla,		
303	maxillary tooth row extends, at least, to the level of the anterior margin of the orbit, as in		
304	other metriorhynchids (e.g. C. lithographicus, C. araucanensis, Metriorhynchus		
305	superciliosus). The interalveolar spaces are shorter than the anteroposterior diameter of the		
306	alveoli, as is common in metriorhynchids (e.g. Cricosaurus spp., Maledictosuchus		
307	riclaensis).		

308

6.3.2. Nasal

The nasals are elongate and have the typical triangular outline in dorsal view of thalattosuchians (e.g. Andrews, 1913). Both nasals miss the anterior-most portion leaving exposed the infilling of the nasal cavity proper. Laterally the nasals are sutured to the maxilla. Along the midline, the dorsal surface has a steep longitudinal depression, as in most thalattosuchians (e.g. Cricosaurus araucanensis, MLP 72-IV-7-1; cf. Dakosaurus, MCNAM-PV 5091; Opisuchus meieri; 'Steneosaurus' bollensis). Laterally to this depression, the nasals bear an anteroposteriorly oriented ridge, which is developed on the posteromedial process (Fig. 3A). These ridges have not been observed before in any other thalattosuchian. The long posteromedial processes of the nasal contact the frontal medially and posteriorly, and the prefrontal laterally. The posterolateral process contributes to the anterodorsal margin of the preorbital fossa. This process is located between the prefrontal and the anterior process of the lacrimal (see lacrimal description), this feature is better preserved on the left side of the skull. The nasals are ornamented, faint grooves and ridges cover the anterior region of the nasal, as in Ma. riclaensis, C. elegans, and Plesiosuchus manselii (Young et al., 2013), among other metriorhynchids. The grooves become deeper and the ridges raiser in the posteromedial processes and in the anterior (=nasal) process of the frontal (Fig. 3A). 6.3.3. Lacrimal

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

Both lacrimals are incompletely preserved and due to postmortem deformation are partially exposed. As in all metriorhynchids, they are oriented vertically, and face laterally (e.g., Fraas, 1902; Andrews, 1913; Pol and Gasparini, 2009; Young et al., 2010) (Fig. 4A, B). The lacrimal dorsally contacts the prefrontal, anteriorly the nasal, and forms the posterior margin of the preorbital fossa (Fig. 4B). The lacrimal has a process that anteriorly extends beyond the anterior margin of the prefrontal (Fig. 4A, B), which can be seen in

dorsal view (Fig. 3A). In *C. araucanensis* this process does not extend beyond the anterior margin of the prefrontal.

6.3.4. Prefrontal

Only the left prefrontal is completely preserved, but there is a transverse fracture in the dorsal surface of the bone, whereas the right element misses the posterior portion, the external surface is damaged, and also a fracture extends across its dorsal surface. The prefrontal is enlarged, teardrop-shaped in dorsal view and projects laterally, as in all metriorhynchids (e.g. Andrews, 1913; Pol and Gasparini, 2009; Young and Andrade, 2009). The prefrontal has a rounded 'V'-shaped anterior margin with its apex directed anteriorly. Its medial margin extensively contacts the posteromedial process of the nasal through a straight suture. The lateral margin is sutured to the posterolateral process of the nasal. The suture with the frontal is not clear (Fig. 3A). In dorsal view, the prefrontal is about twice as long as broad and the posterolateral margin is rounded, as in e.g. *C. araucanensis*, and *C. lithographicus*.

The dorsal surface of the prefrontal is more exposed in lateral view (Fig. 4A), similar to *D. andiniensis* (MOZ-PV 6146), and unlike other metriorhynchids (e.g. *Cricosaurus* spp.; *Pu. potens*; *Torvoneustes coryphaeus* Young et al., 2013). Even if this feature in MCNAM-PV 5096 is exaggerated due to preservational effects, it seems that the prefrontals are less horizontally orientated than in most metriorhynchids. Some shallow pits and deep grooves ornament the dorsal surface of the prefrontal.

6.3.5. Frontal

The frontal is partially preserved with the interorbital region severely damaged. In the sagittal plane, there seems to be a suture that might resemble the interfrontal suture. The dorsal surface of the anterior process has a steep longitudinal depression almost continuous

357	with the one presents in the nasals. In dorsal view, the anterior process of the frontal
358	extends anteriorly between the posteromedial processes of the nasal, with a 'V'-shaped
359	suture pointing anteriorly. At the apex, the suture is strongly serrated (Fig. 3A). The
360	anterior process is short as it does not reach the level of the anterior margin of the
361	prefrontal, as in C. lithographicus, Rhacheosaurus gracilis, Dakosaurus maximus, among
362	others and unlike C. araucanensis (MLP 72-IV-7-1), D. andiniensis (MOZ-PV 6146), Pu.
363	potens, and Torvoneustes coryphaeus (Young et al., 2013).
364	The lateral processes of the frontal are poorly preserved, however, the angle formed
365	by those processes and the midline of the skull can be estimated around 40-50° (Fig. 4A,
366	B), as in Cricosaurus and Dakosaurus. The frontal enters the supratemporal fossae taking
367	part in the frontoparietal fossa (sensu Holliday et al., 2019). The dorsal surface of the
368	intertemporal bar is eroded and the contact with the parietal cannot be identified. The
369	external surface of the frontal is mostly ornamented by shallow to deep grooves, as in C .
370	elegans, and C. suevicus, and contrasting with the unornamented frontal of cf. 'C.'
371	macrospondylus, C. schroederi, C. araucanensis, and C. lithographicus.
372	6.3.6. Palatine
373	Both palatines are incomplete and badly preserved. They sutured each other in the
374	midline of the skull. They form the ventral boundary of the nasopharyngeal ducts. The
375	palatine has a "V"-shaped midline anterior process (Fig. 3B), as in Ma. riclaensis (Parrilla-
376	Bel et al., 2013), <i>Maledictosuchus nuyivijanan</i> (Barrientos-Lara et al., 2018), and <i>D</i> .
377	andiniensis (MHNSR PV 344; Vignaud and Gasparini, 1996: photos 2). Based on
378	preservation we cannot identify if the palatine has two non-midline anterior processes as in
379	other metriorhynchids (e.g. Cricosaurus araucanensis, MLP 72-IV-7-1; D. andiniensis,

380	MHNSR PV 344; Maledictosuchus spp.). The paired depressions described in the palatines
381	of Cricosaurus bambergensis Sachs et al., 2019, are not present in this specimen.
382	6.3.7. Pterygoid
383	The pterygoids are partially preserved. Anteriorly, they contact the palatine and
384	participate, at least, in the posterior margin of the secondary choana. Inside the secondary
385	choana, the pterygoid-pterygoid suture is raised, but it does not form a septum (Fig. 3B).
386	6.3.8. Vomer
387	As the snout is transversally broken, the vomer is exposed. It is ventrally covered by
388	the maxilla anteriorly and by the palatines posteriorly. As in <i>C. araucanensis</i> , the vomer is
389	"U"-shaped with its base very thickened (Herrera, 2012) separating the nasal airway
390	ventromedially.
391	
392	6.4. Mandible
393	The mandible is incomplete and badly preserved and the boundaries of the bones
394	that form it are not clear (Figs. 3B, 4A, C).
395	6.4.1. Dentary
396	On the left side, a portion of the mandible is articulated with the maxilla (Fig. 4A).
397	A small portion of the anterior-middle section of the right dentary with seven teeth is
398	preserved (Fig. 4C). Posteriorly, the suture with the surangular is anteroventral to
399	posterodorsal oriented. The dentary contacts the angular posteroventrally through a wedge-
400	shaped suture (Fig. 4A). The contact with the splenial could not be identified.
401	6.4.2. Splenial, surangular, and angular
402	Fragments of the three left elements were identified. However, based on
403	preservation a detailed description is not possible. The angular and surangular extend

anteriorly beyond the anterior margin of the orbit (Fig. 4A), a feature present in all *Cricosaurus* spp., *Rhacheosaurus gracilis*, and '*Metriorhynchus*' casamiquelai.

6.5. Dentition

Maxillary and dentary teeth are preserved. Six teeth are emerging from the middle section of the left maxilla and seven from the anterior-middle section of the right dentary (Fig. 4A, C). The interalveolar spaces between them are variable, being some similar in length to the alveoli, while others are approximately half the anteroposterior length of the adjacent alveoli, as in most Metriorhynchidae (e.g. *C. araucanensis, Maledictosuchus* spp., *Metriorhynchus superciliosus*).

As in most Metriorhynchinae, teeth are small (1.5–2 cm), single cusped, slightly curved, and bicarinated with a macroscopic keeled and unserrated carina (Fig. 5A–G). All tooth crowns are laminar, labiolingually compressed, with the labial surface almost flat and the lingual one convex, as in Geosaurina (Andrade et al., 2010; Foffa et al., 2018). The labial surface is divided into three apicobasal facets, with the posterior facet better defined than the anterior one (Fig. 5). Tooth with three apicobasal facets on the labial surface is a feature that has only been reported in the geosaurins *Geosaurus* Cuvier, 1824, and *Ieldraan melkshamensis* Foffa et al., 2018 (Young and Andrade, 2009; Andrade et al., 2010; Foffa et al., 2018). In *Cricosaurus puelchorum*, these facets are not strongly defined as in the geosaurins mentioned above but can be easily identified. The medial facet is wider than the lateral ones along the entire crown, and it diminishes towards the apex whereas the lateral facets have a constant width along the crown, as was described for *Geosaurus* (Andrade et al., 2010).

In *Cricosaurus puelchorum* teeth are bicarinated, as in most Metriorhynchidae. The distal carina extends from the base to the apex of the crown, whereas the mesial carina is more prominent in the apical-half of the tooth crown, and in some teeth, it is completely absent in the basal-most region of the crown.

The enamel ornamentation of the labial and lingual surface is composed of scattered apicobasal parallel ridges of low relief, that are restricted to the 3/4 basal region of the crown (Fig. 5A–F). Tooth crowns with well-defined apicobasal aligned ridges also occur in *Cricosaurus schroederi* (S. Sachs pers. com). In *C. puelchorum* the longitudinal ridges are better defined and are more densely packed on the lingual surface (Fig. 5E, F), as in *Cricosaurus lithographicus* (Herrera et al., 2013b). Additionally, in the labial surface, the middle facet is sculpted by two well-developed troughs separated by broad continuous, parallel, and well-developed ridges (Fig. 5), features present in all preserved teeth. A fluted surface in the middle plane of the tooth crown was previously described in the geosaurins *I. melkshamensis*, '*Metriorhynchus*' brachyrhynchus (NHMUK PV R 3804) and an undescribed geosaurin (see Foffa et al., 2018). In *I. melkshamensis* the five well-defined troughs are more conspicuous than in MCNAM-PV 5096. In '*Me.*' brachyrhynchus the troughs are poorly defined, more than five, and are not present in all crowns (Foffa et al., 2018).

6.6. Natural cast of Cricosaurus puelchorum (MCNAM-PV 5096)

Based on preservation, the natural casts of some soft structures are partially exposed, mainly those from the preorbital region. We identified the infilling of the nasal cavity proper, nasopharyngeal ducts, antorbital sinus, and the exocrine gland duct (Fig. 6A). The topographic relationships of the structures of the preorbital region fit well with the

pattern previously described in other metriorhynchids (e.g. Fernández and Gasparini, 2008; Fernández and Herrera, 2009; Herrera et al., 2013a).

The snout is broken exposing a cross-section of the nasal cavity proper. It is roughly quadrate, with vertical lateral margins. The nasal airway is divided at the midline by the vomer (Fig. 6A). In ventral view, the nasopharyngeal ducts are partially exposed. They are long and arise anteriorly defining the primary choana, which is anterior to the internal antorbital fenestra and the preorbital opening (Fig. 6B). As in other described natural casts from the Vaca Muerta Formation, the infilling of blood vessels has been preserved on the external surface of the ducts suggesting an intensive blood supply (e.g. Fernández and Herrera, 2009; Herrera et al., 2013a).

In right lateral view, two subcircular structures can be observed, the dorsal one corresponds to the infilling of the salt gland duct whereas the ventral one is the infilling of the antorbital sinus, completely included within the maxilla. Both infillings are oval but the major axis of the infilling of the gland's duct is lateromedially oriented whereas for the antorbital sinus is dorsoventrally oriented (Fig. 6A). The same morphology was previously described in *Cricosaurus araucanensis* (Herrera et al., 2013a: fig. 2B–C).

In dorsal and lateral views a long subcircular structure is preserved from the posterior region to the preserved tip of the snout, positioned between the nasal cavity (medially), and the maxilla (laterally), and dorsal to the alveolar region (Figs. 3A, 4B). Based on CT scans of several metriorhynchoids, the same structure was identified and interpreted such as the dorsal alveolar canal (Bowman et al., submitted abstract), and also identified in *Pelagosaurus typus* Bronn, 1841 by Pierce et al. (2017).

7. Phylogenetic analysis

To evaluate the affinities of Cricosaurus puelchorum, we conducted a phylogenetic

7.1. Taxon and character sampling

475

476

477	analysis using a dataset that is a combination of the slightly modified versions of the
478	matrices of Aiglstorfer et al. (2020) and Young et al. (2020). Character descriptions are
479	presented in Supplementary Information 1. Modifications consisted of the inclusion of
480	MCNAM-PV 5096 and SNSB-BSPG 1973 I 195 as Operational Taxonomic Units (OTUs),
481	and revision of scorings for other OTUs that were analyzed first-hand by one of the authors
482	(YH) of this study (see Supplementary Information 2 for more information). As in previous
483	analyses based on this dataset (e.g. Aiglstorfer et al., 2020; Young et al., 2020),
484	'Cricosaurus' medius, 'Dakosaurus' lissocephalus Seeley, 1869, and Geosaurinae indet.
485	Argentina (MOZ-PV 6913) were consistently recovered as unstable taxa, thus they were
486	excluded from the analysis. The new dataset consists of 176 taxa and 519 characters.
487	6.2. Method
488	The resulting dataset was analyzed using TNT v 1.5 (Goloboff et al., 2008;
489	Goloboff and Catalano, 2016). A heuristic tree search strategy with 650,000 Max trees set
490	in memory, and 1000 replications of Wagner trees (using random addition sequences) was
491	conducted, followed by tree-bisection-reconnection (TBR) branch swapping (holding 10
492	trees per replicate). The most parsimonious trees recovered in this first search were
493	subjected to a second round of TBR. To identify unstable taxa and generate a reduced
494	consensus tree we used the prunnelsen command of TNT (Goloboff and Szumik, 2015).
495	Nodal support was evaluated using Bremer support (Bremer, 1994). The time-calibrated
496	reduced strict consensus tree of Metriorhynchidae was produced using the R packages APE
497	(Paradis et al., 2004) and strap (Bell and Lloyd, 2015) in R (R Core Team, 2013).

7.3. Phylogenetic results

499

500	The Most Parsimonious Trees (MPTs) recovered by our analysis are of 1798 steps
501	(CI =0.401, RI= 0.861, HI=0.599, RCI= 0.345261). The total number of MPTs is unknown
502	because the trees recovered in the second round of TBR exceeded the maximum space for
503	trees in memory. The strict consensus tree presented herein (Fig. S1 in Supplementary
504	Information 3) is consistent with the unweighted parsimony analysis performed by Young
505	et al. (2020, fig. 4A), except for the relationships among Rhacheosaurini. Within
506	Rhacheosaurini Young et al. (2020) recovered some minor clades, whereas our analysis
507	recovered most Rhacheosaurini forming a large polytomy except for C. lithographicus, C.
508	araucanensis, C. vignaudi, C. schroederi, and Cricosaurus sp. (SNSB-BSPG 1973 I 195)
509	which are clustered although their internal relationships are unresolved (Fig. S1 in
510	Supplementary Information 3). Focused on Metriorhynchinae, and to improve the
511	resolution of MPTs, a posteriori of the tree searches, we pruned unstable taxa (see
512	Supplementary Information 3) to build a reduced consensus tree (Fig. S2 in Supplementary
513	Information 3). After this procedure, the resolution of the internal relationships of the
514	Rhacheosaurini improved (Fig. 7). So, this tree will be used to describe the phylogenetic
515	relations of the new species. As in the most recent phylogenetic analyses of
516	Metriorhynchidae, 'Cricosaurus' saltillensis (Buchy et al., 2006), and cf. 'Cricosaurus'
517	macrospondylus are no longer being recovered in the same clade as other Cricosaurus (see
518	e.g. Ősi et al., 2018; Sachs et al., 2019; Young et al., 2020). Cricosaurus sensu stricto is
519	recovered as a clade supported by three synapomorphies: posterior margin of narial fossa
520	terminates approximately level to the M3 to the anterior margin of the M5 alveoli (Ch. 56,
521	5), convex supratemporal arch (Ch. 125, 1), and bifurcation of the parietal in dorsal view
522	(Ch. 159, 1) (see Supplementary Information 3). Within Cricosaurus, the OTUs are

clustered in two subclades although internal relationships among them are not resolved.
The first clade includes C. araucanensis, C. lithographicus, C. vignaudi, C. schroederi, and
Cricosaurus sp. (SNSB-BSPG 1973 I 195) supported by one synapomorphy: no
conspicuous ornamentation of the maxilla (Ch. 13, 0). The second subclade includes the
new taxon and three Late Jurassic (late Kimmeridgian-early Tithonian) taxa from southern
Germany: C. puelchorum, C. suevicus, C. elegans, and Cricosaurus bambergensis, and is
supported by three synapomorphies: frontal ornamented with shallow to deep elliptical pits
and shallow to deep grooves (Ch. 14, 0), maxillary teeth laterally compressed (Ch. 357, 0),
and dentary teeth laterally compressed (Ch. 358, 0). Cricosaurus puelchorum presents six
autapomorphies: lacrimal visible in dorsal and lateral views (Ch. 94, 0), supratemporal
fossae triangle-shaped (Ch. 118, 4), the anteromedial process of the frontal is noticeably
posterior to the prefrontals (Ch. 139, 1), presence of apicobasal facets on the labial surface
of the teeth (Ch. 359, 1), presence of laminar teeth (Ch. 360, 1), and tooth crowns with
well-defined apicobasal aligned ridges (Ch. 379, 2). Support measures are all low,
exhibiting Bremer values of one in most cases (Fig. S3 in Supplementary Information 3).

8. Discussion

8.1. Comparative anatomy

The unique combination of features present in MCNAM-PV 5096 including several autapomorphies (see Diagnosis) differentiates it from any other taxon and justifies the erection of a new species. *Cricosaurus puelchorum* is referred to as the genus *Cricosaurus* based on the description and phylogenetic analysis. The new taxon shares the following features with other *Cricosaurus*: acute angle formed by the posterolateral and posteromedial processes of the frontal; convex supratemporal arch in dorsal view; lateral

margin of the prefrontal rounded; orbits as large as the supratemporal fossae; surangular and angular well-developed, anterolaterally exceeding beyond the anterior margin of the orbits; bicarinate dentition with a faint carina.

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

From the set of features that characterized *Cricosaurus puelchorum*, two of them particularly stand out: the dermal bone ornamentation and the dental morphology. In Cricosaurus puelchorum the ornamentation of the dermatocranium is more evident than in all known Cricosaurus, having even the palatal surface of the maxilla ornamented (Fig. 3). Among Cricosaurus spp., upper Kimmeridgian and lower Tithonian species have ornamented premaxillae, maxillae, nasals, and frontal with grooves and pits, whereas lower and lower upper Tithonian (C. araucanensis, and C. lithographicus respectively) and upper Valanginian (C. schroederi) species have unornamented and quite smooth dermal bones. In C. puelchorum the ornamentation is comparable to that present in C. suevicus, and C. elegans from southern Germany, but it is also more evident than in those species. A common trend among all Metriorhynchidae clades is the reduction of dermal bone ornamentation. Late Jurassic and Late Jurassic-Early Cretaceous forms are generally specimens that have less ornamented dermatocranium than Middle Jurassic specimens (Young et al., 2013). This condition (not ornamented or weakly ornamented skull roof) has been linked with a pelagic lifestyle (Clarac et al., 2017). The other Late Jurassic-Early Cretaceous metriorhynchids from the Vaca Muerta Formation: C. araucanensis, and C. lithographicus, and the Geosaurini D. andiniensis also, shared the dermal bones unornamented whereas Cricosaurus puelchorum disrupts the trend observed in Rhacheosaurini, being Early Cretaceous in age and having an ornamented dermatocranium.

The teeth are highly elliptical in cross-section and three-faceted on the labial surface with a

Also, the dental morphology of MCNAM-PV 5096 is unusual for a Rhacheosaurini.

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

fluted middle facet features that contrast with all Cricosaurus species in which the teeth vary from bearing sub-circular to elliptical cross-section with crowns largely unornamented on the labial surface. In Cricosaurus puelchorum the crows are labiolingually compressed, with the mesial-distal axis approximately twice longer than the labial-lingual one, as in Geosaurina (Foffa et al., 2018). Interestingly, three apicobasal faceted teeth are also characteristic of Geosaurina (Andrade et al., 2010; Foffa et al., 2018). In Cricosaurus puelchorum the middle facet is sculpted by two well-developed troughs separated by welldeveloped ridges (Fig. 5). The presence of a fluted middle facet has only been reported in the geosaurins Ieldraan melkshamensis, 'Metriorhynchus' brachyrhynchus (NHMUK PV R 3804), and an undescribed specimen (see Foffa et al., 2018). The number, pattern, and distribution of the troughs vary among these taxa. As such, in *Cricosaurus puelchorum* the shape of the crown and the ornamentation of the enamel surface are convergent with Geosaurina. Herrera et al. (2013b) discussed the morphological diversity of metriorhynchids from the Neuquén Basin and highlighted the tooth disparity between the dental morphology present in C. araucanensis and C. lithographicus. The description of this new taxon and its

from the Neuquén Basin and highlighted the tooth disparity between the dental morphology present in *C. araucanensis* and *C. lithographicus*. The description of this new taxon and its unusual dental morphology adds a new component to the diversity among the Neuquén Basin *Cricosaurus*. *Cricosaurus araucanensis* (early late Tithonian) has smooth tooth crowns, in *Cricosaurus lithographicus* (late early to early late Tithonian) the crowns have fine apicobasal aligned ridges that vanish towards the smooth apex, and in *Cricosaurus puelchorum* (early Berriasian), the crows have apicobasal parallel ridges, restricted to the 3/4 basal region of the crown, and the labial surface is sculpted by troughs separated by broad continuous, parallel and well-developed ridges (Fig. 5).

594	Based on their tooth morphologies, all Cricosaurus spp. found in the southeastern
595	Pacific fall into the pierce guild. However, differences as the one mentioned above indicate
596	that probably, within the general pierce guild, their prey preferences were different.
597	However, as they were collected from different beds (and ages) the differences cannot be
598	strictly linked with the co-occurrence of these species.
599	
600	8.2. Phylogenetic position of Cricosaurus puelchorum and its implication on the
601	metriorhynchid distribution across the J/K boundary
602	One of the main unresolved issues of Metriorhynchoid phylogeny is the
603	phylogenetic relationships within the species referred to Cricosaurus. The species-richness
604	of this genus is one of the highest among Metriorhynchoidea and, despite that their fossils
605	are particularly abundant in Jurassic deposits of the Solnhofen Archipelago (the northern
606	rim of the Tethys Ocean, see e.g. Rauhut et al., 2017) and the southeastern Pacific, the
607	relationships among its species are still controversial (e.g. Young and Andrade, 2009;
608	Herrera et al., 2013b; Parrilla-Bel et al., 2013; Foffa et al., 2018; Ösi et al., 2018). Sachs et
609	al. (2019) described the new species Cricosaurus bambergensis and analyzed its
610	phylogenetic position. As result, they recovered a Cricosaurus clade divided into two
611	unresolved subclades, one formed by all of the upper Kimmeridgian-lower Tithonian
612	Cricosaurus species from Germany (i.e. C. suevicus, C. elegans, and C. bambergensis), and
613	the other containing C. araucanensis, C. lithographicus, C. vignaudi, and C. schroederi.
614	Noteworthy, despite the low branch supports of the phylogenetic tree of Sachs et al. (2019),
615	the increase of the taxon sampling (i.e. the inclusion of MCNAM-PV 5096 and SNSB-

BSPG 1973 I 195 to the data set) did not affect the results nor produced the collapse of

Cricosaurus clade. Thus, after pruning the unstable taxa we recovered two unresolved

616

617

618	Cricosaurus sub-clades. Just for the discussion, we call sub-clade A to the group
619	containing: C. puelchorum, C. suevicus, C. elegans, and C. bambergensis, and sub-clade B
620	to the clade formed by C. araucanensis, C. lithographicus, C. vignaudi, C. schroederi, and
621	Cricosaurus sp. SNSB-BSPG 1973 I 195.
622	Interestingly, Cricosaurus puelchorum is recovered nested within the species from
623	the sub-clade A –formed by the upper Kimmeridgian–lower Tithonian <i>Cricosaurus</i> species
624	from southern Germany–, whereas Cricosaurus sp. (SNSB-BSPG 1973 I 195), a taxon
625	from the lower Tithonian also from southern Germany, is nested within the sub-clade B that
626	mainly contains American forms. However, the topology of sub-clade B should be treated
627	with caution, as it is supported by a single synapomorphy, and the incorporation of new
628	material or more characters might alter the topology.
629	Cricosaurus sensu stricto has a broad paleobiogeographical distribution (Germany,
630	Mexico, and Argentina) with a long stratigraphic range (~ 27 ma) comprised between the
631	late Kimmeridgian (Cricosaurus bambergensis) and the lower Valanginian (Cricosaurus
632	schroederi), and it is one of the few taxa of Metriorhynchidae that certainly crossed the J/K
633	boundary.
634	This Metriorhynchinae phylogeny (Fig. 7) is interesting for two main reasons. First,
635	it depicts a Cricosaurus cluster split into two clades indicating close affinities between
636	species of two disparate paleobiogeographical units, as western Tethys Ocean and eastern
637	Pacific. The hypothesis of connection and interchange of herpetofauna and marine
638	invertebrates between these two biogeographic units, favored by the opening of seaways
639	like the Caribbean Corridor (or Hispanic Corridor), has been extensively cited (e.g.
640	Damborenea, 2000; Gasparini and Iturralde-Vinent, 2006 and references therein). Second,

time-calibrated phylogeny indicates the survival of both subclades of *Cricosaurus* but with an evident diminishing of metriorhynchidae's diversity from the Tithonian onwards.

Previous work in two localities from southern Mendoza (Vaca Muerta Fm., Neuquén Basin) showed that the findings of marine reptiles decline towards the J/K boundary, being common to abundant in the upper Tithonian *Corongoceras alternans*Zone, rare to common in the upper Tithonian–lower Berriasian *Substeueroceras koeneni*Zone, and with a single specimen–the one here described– recovered from the lower Berriasian *Argentiniceras noduliferum* Zone (Fernández et al., 2019). These authors suggested that this trend can be related to the occurrence of a shallower environment upward in the stratigraphic column and not to an extinction event. Taking into account that in the sections explored up to date J/K boundary beds are included within a shallowing-upwards ramp system (e.g. Legarreta and Gulisano, 1989), and that deeper sections of the Vaca Muerta Formation have not yet been explored, we still cannot confidently relate the decline of marine reptile findings towards the boundary to an extinction event, however, we also cannot discard it.

9. Conclusions

Here, we described a new Rhacheosaurini, *Cricosaurus puelchorum* from the lower Berriasian (*Argentiniceras noduliferum* Zone) from southern Mendoza being the youngest *Cricosaurus* record from the Vaca Muerta Formation (Argentina), and confirming the survival of the genus in the Cretaceous of the southeastern Pacific. Time-calibrated phylogenetic analysis shows a decrease in *Cricosaurus* species richness from the late Tithonian onwards.

The new species is well defined by a unique combination of features and several 664 autapomorphies. Phylogenetic analysis indicates that Cricosaurus puelchorum is closer to 665 upper Kimmeridgian-lower Tithonian species of Cricosaurus from the Solnhofen 666 667 Archipelago than to the other two species from the Tithonian of the southeastern Pacific. It is worthy to remark that the internal relationships of *Cricosaurus* spp, and the hypotheses 668 based on them like the biogeographical affinities, require further scrutiny to identify more 669 670 characters to improve branch supports of phylogenetic trees. 671 Whether the decrease of *Cricosaurus* records from upper Tithonian levels of the Vaca 672 Muerta onwards is an artifact of uneven collecting efforts, or if it can be linked to a real drop of the metriorhynchid diversity towards the Cretaceous, requires further field 673 explorations especially in younger geological units within the Neuquén Basin. 674 675 Acknowledgements 676 We would like to thank G. Campos (MCNAM), M. Reguero (MLP), A. Garrido and B. 677 Bollini (MOZ), M. de La Fuente (MHNSR), J.I. Canudo (MPZ), L. Steel (NHMUK), R. 678 Schoch and E. Maxwell (SMNS), and O. Rauhut (SNSB-BSPG) for provided access to 679 specimens under their care. L. Acosta Burllaile and M. Bigurrarena Ojeda (MLP) are 680 deeply thanked for the preparation of the specimen, and L. Campos (MLP) for the 681 682 assistance with the photographs of the material. E. Vlachos (MEF) and N. Sugrañes (IDEVEA) kindly helped with the new species naming. We also acknowledge the permits 683 684 given by the Dirección de Patrimonio Cultural y Museos of the Mendoza Province, especially thanks to E. Albarrán. Finally, we would like to thank Editor-in-Chief E. 685 Koutsoukos and the reviewers M. Young and S. Sachs, for their constructive and helpful 686 comments that have improved this manuscript. This work was partially supported by the 687

688	Agencia Nacional de Promoción Científica y Tecnológica (PICTs 2014-2597, 2016-0267,
689	2016-1016; 2016-1039); and Programa de Incentivos Universidad Nacional de La Plata
690	(Argentina).
691	
692	References
693	Aguado, R., Company, M., and Tavera, J. M. 2000. The Berriasian/Valanginian boundary
694	in the Mediterranean region: new data from the Caravaca and Cehegín sections, SE
695	Spain. Cretaceous Research 21(1), 1–21. https://doi.org/10.1006/cres.2000.0198
696	Aguirre-Urreta, M. B., and Álvarez, P. P. 1999. The Berriasian genus <i>Groebericeras</i> in
697	Argentina and the problem of its age. Scripta Geologica Special Issue 3, 15–29.
698	Aguirre-Urreta, B., Naipauer, M., Lescano, M., Lopez-Martinez, R., Pujana, I., Vennari, V.
699	De Lena, L.F., Concheyro, A., and Ramos, V.A. 2019. The Tithonian chrono-
700	biostratigraphyof the Neuquén Basin and related Andean areas: a review and update.
701	Journal of South American Earth Science 92, 350–367.
702	https://doi.org/10.1016/j.jsames.2019.03.019
703	Aiglstorfer, M., Havlik, P., and Herrera, Y. 2020. The first metriorhynchoid crocodyliform
704	from the Aalenian (Middle Jurassic) of Germany, with implications for the evolution
705	of Metriorhynchoidea. Zoological Journal of the Linnean Society 188(2), 522-551.
706	https://doi.org/10.1093/zoolinnean/zlz072
707	Andrade, M. B., Young, M. T., Desojo, J. B., and Brusatte, S. L. 2010. The evolution of
708	extreme hypercarnivory in Metriorhynchidae (Mesoeucrocodylia: Thalattosuchia)
709	based on evidence from microscopic denticles morphology. Journal of Vertebrate
710	Paleontology 30(5), 1451–1465. https://doi.org/10.1080/02724634.2010.501442

711	Andrews, C. W. 1913. A descriptive catalogue of the marine reptiles of the Oxford Clay,
712	Part Two. British Museum (Natural History), London.
713	Barrientos-Lara, J. I., Alvarado-Ortega, J., and Fernández, M. S. 2018. The marine
714	crocodile Maledictosuchus (Thalattosuchia, Metriorhynchidae) from the
715	Kimmeridgian deposits of Tlaxiaco, Oaxaca, southern Mexico. Journal of Vertebrate
716	Paleontology 38(4), 1–14. https://doi.org/10.1080/02724634.2018.1478419
717	Bell, M. A., and Lloyd, G. T. 2015. strap: an R package for plotting phylogenies against
718	stratigraphy and assessing their stratigraphic congruence. Palaeontology 58(2), 379-
719	389. https://doi.org/10.1111/pala.12142
720	Blainville, H. D. de. 1853. Letter by H. D. de Blainville. In: J. A. Eudes-Deslongchamps
721	(ed.). Lettres sur les crocodiles vivants et fossiles. Bulletin de la Société Linnéenne de
722	Normandie (Années 1849–1853) vol. IX, 103–138.
723	Bowman, C., Young, M. T., Schwab, J. A., Walsh, S., Witmer, L. M., Herrera, Y., and
724	Brusatte S. L. (submitted abstract). Neurovascular rostral system evolution in
725	metriorhynchoid crocodylomorphs. Progressive Palaeontology 2020.
726	Bremer, K. 1994. Branch support and tree stability. Cladistics 10(3), 295–304.
727	https://doi.org/10.1111/j.1096-0031.1994.tb00179.
728	Bronn, H. G. 1841. Untersuchung zweier Gavial-Skelette und der Gaumen zweier andern
729	aus den Boller Lias-Schiefen, mit Rücksicht auf Geoffroy's genus Teleosaurus. In: H.
730	G. Bronn, J. J. Kaup (eds.). Abhandlungen über die Gavial-artigen Reptilien der
731	Lias-Formation. E. Schweizerbart'sche Verlagshandlung, Stuttgart, p. 5–30.
732	Buchy, M-C., Vignaud, P., Frey, E., Stinnesbeck, W., and González, A. H. G. 2006. A new
733	thalattosuchian crocodyliform from the Tithonian (Upper Jurassic) of northeastern
734	Mexico. Comptes Rendus Palevol 5, 785–794.

735	Charrier, R., Ramos, V. A., Tapia, F., and Sagripanti, L. 2015. Tectono-stratigraphic
736	evolution of the Andean Orogen between 31° and 37°S (Chile and western
737	Argentina). In: S. A. Sepúlveda (ed.), Geodynamic Processes in the Andes of Central
738	Chile and Argentina. Geological Society, London, Special Publications 399, p. 13-
739	61.
740	Chiarenza, A., Foffa, D., Young, M. T., Insacco, G., Cau, A., Carnevale, G., Catanzariti, R.
741	2015. The youngest record of metriorhynchid crocodylomorphs, with implications for
742	the extinction of Thalattosuchia. Cretaceous Research 56, 608–616.
743	https://doi.org/10.1016/j.cretres.2015.07.001
744	Clarac, F., de Buffrénil, V., Brochu, C., and Cubo, J. 2017. The evolution of bone
745	ornamentation in Pseudosuchia: morphological constraints versus ecological
746	adaptations. Biological Journal of the Linnean Society 121(2), 395-408.
747	https://doi.org/10.1093/biolinnean/blw034
748	Cuvier, G. 1824. Sur les ossements fossiles de crocodiles. In: G. Dufour, E. D'Occagne
749	(eds.), Recherches sur les ossements fossiles, Second édition. Dufour and d'Occagne,
750	Paris, p. 143–160.
751	Damborenea, S. 2000. Hispanic Corridor: its evolution and the biogeography of bivalve
752	mollusks. In: R.L. Hall, P.L. Smith (eds.). Advances in Jurassic Research 2000,
753	GeoResearch Forum 6, p. 369–380.
754	Debelmas, J. 1952. Un crocodilien marin dans l'Hauterivien des environs de Comps (Var)
755	Dacosaurus maximus Plieninger var. gracilis Quenstedt. Travaux Laboratoire de
756	Géologie l'université de Grenoble 29, 101–116.

757	Debelmas, J. 1958. Découverte d'une ceinture pelvienne de dacosaure dans le néocomien
758	des environs de Castellane (Basses-Alpes). Travaux Laboratoire de Géologie de
759	l'université de Grenoble 34, 43–48.
760	Debelmas, J., and Demians D'Archimbaud, J. 1956. Sur un métatarsien de Dacosaure
761	trouvé à Robion, près Castellane (Basses-Alpes). Travaux Laboratoire de Géologie
762	de l'université de Grenoble 33, 101–104.
763	Debelmas, J., and Strannoloubsky, A. 1957. Découverte d'un crocodilien dans le
764	Néocomien de La Martre (Var) Dacosaurus lapparenti n. sp. Travaux Laboratoire de
765	Géologie de l'université de Grenoble 33, 89–99.
766	Dessanti, R. N. 1978. Descripción geológica de la Hoja 28 b Malargüe (Provincia de
767	Mendoza). Servicio Geológico Nacional, Boletín 149, 1–50.
768	Eudes-Deslongchamps, J. A. 1868. Remarques sur l'os de la mâchoire inférieure des
769	téléosauriens désigné sous le nom de complémentaire. Bulletin de la Société
770	Linnéenne de Normandie, 2 e série 1 1868, 112–118.
771	Fernández, M., and Gasparini, Z. 2008. Salt glands in the Jurassic metriorhynchid
772	Geosaurus: implications for the evolution of osmoregulation in Mesozoic
773	crocodyliforms. Naturwissenschaften 95(1), 79-84. https://doi.org/10.1007/s00114-
774	007-0296-1
775	Fernández, M. S., and Herrera, Y. 2009. Paranasal sinus system of <i>Geosaurus araucanensis</i>
776	and the homology of the antorbital fenestra of metriorhynchids (Thalattosuchia:
777	Crocodylomorpha). Journal of Vertebrate Paleontology 29(3), 702–714.
778	https://doi.org/10.1671/039.029.0323
779	Fernández, M. S., Herrera, Y., Vennari, V. V., Campos, L., de la Fuente, M., Talevi, M.,
780	and Aguirre-Urreta, B. 2019. Marine reptiles from the Jurassic/Cretaceous transition

781	at the High Andes, Mendoza, Argentina. Journal of South American Earth Sciences
782	92, 658–673. https://doi.org/10.1016/j.jsames.2019.03.013
783	Fitzinger, L. 1843. Systema reptilium. Braumüller & Seidel, Vienna.
784	Foffa, D., Young, M. T., Brusatte, S. L., Graham, M. K., and Steel, L. 2018. A new
785	metriorhynchid crocodylomorph from the Oxford Clay Formation (Middle Jurassic)
786	of England, with implications for the origin and diversification of Geosaurini.
787	Journal of Systematic Palaeontology 16(13), 1123–1143.
788	https://doi.org/10.1080/14772019.2017.1367730
789	Fraas, E. 1901. Die Meerkrokodile (Thalattosuchia n.g.), eine Sauriergruppe der
790	Juraformation. Jahreshefte des Vereins für vaterländische Naturkunde
791	Württembergs 57, 409–418.
792	Fraas, E. 1902. Die Meer-Krocodilier (Thalattosuchia) des oberen Jura unter specieller
793	berucksichtigung von Dacosaurus und Geosaurus. Paleontographica 49, 1-72.
794	Frey, E., Buchy, M-C., Stinnesbeck, W., López-Oliva, J. G. 2002. <i>Geosaurus vignaudi</i> n.
795	sp. (Crocodylia, Thalattosuchia), first evidence of metriorhynchid crocodilians in the
796	Late Jurassic (Tithonian) of central-east Mexico (State of Puebla). Canadian Journal
797	of Earth Sciences 39, 1467–1483.
798	Gasparini, Z. 1973. Revisión de "? Purranisaurus potens" Rusconi, 1948 (Crocodilia,
799	Thalattosuchia). Los Thalattosuchia como un nuevo Infraorden de los Crocodilia. 5º
800	Congreso Geológico Argentino (Villa Carlos Paz), Actas 3, 423–431.
801	Gasparini, Z., and Chong Díaz, G. 1977. Metriorhynchus casamiquelai n. sp. (Crocodilia,
802	Thalattosuchia) a marine crocodile from the Jurassic (Callovian) of Chile, South
803	America. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 153, 341-
804	360.

805	Gasparini, Z., and Denape, D. 1976. Un nuevo cocodrilo marino (Thaiattosuchia,
806	Metriorhynchidae) de la Formación Vaca Muerta (Tithoniano) de la Provincia de
807	Neuquén (Argentina). 1º Congreso Geológico Chileno (Santiago de Chile), Actas,
808	C1–C21.
809	Gasparini, Z. B., and Iturralde-Vinent, M. 2006. The Cuban Oxfordian herpetofauna in the
810	Caribbean Seaway. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen
811	240, 343–371. doi:10.1127/njgpa/240/2006/343
812	Goloboff, P., and Catalano, S. 2016. TNT version 1.5, including a full implementation of
813	phylogenetic morphometrics. Cladistics 32(3), 221–238.
814	https://doi.org/10.1111/cla.12160
815	Goloboff, P., Farris, J., and Nixon, K. 2008. TNT: Tree analysis using new technology,
816	version 1.1 (Willi Hennig Society Edition). Program and documentation. Available
817	at: http://www.zmuc.dk/public/phylogeny/tnt.
818	Goloboff, P., and Szumik, C. 2015. Identifying unstable taxa: efficient implementation of
819	triplet-based measures of stability, and comparison with Phyutility and RogueNaRol
820	Molecular Phylogenetics and Evolution 88, 93–104.
821	https://doi.org/10.1016/j.ympev.2015.04.003
822	Groeber, P. 1946. Observaciones geológicas a lo largo del meridiano 70°. 1. Hoja Chos
823	Malal. Revista de la Sociedad Geológica Argentina 1, 177–208.
824	Hay, O. P. 1930. Second bibliography and catalogue of the fossil Vertebrata of North
825	America, Vol. 2. Carnegie Institute Washington, Washington DC.
826	Herrera, Y. 2012. Análisis morfológico y paleobiológico de Cricosaurus araucanensis
827	(Gasparini y Dellapé, 1976) (Crocodyliformes: Metriorhynchidae). Tesis Doctoral,

828	Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata
829	Vol. 1: p. 346; Vol. 2: p. 116. Unpublished.
830	Herrera, Y. 2015. Metriorhynchidae (Crocodylomorpha: Thalattosuchia) from Upper
831	Jurassic-Lower Cretaceous of Neuquén Basin (Argentina), with comments on the
832	natural casts of the brain. Publicación Electrónica de la Asociación Paleontológica
833	Argentina 15(1), 159–171. http://dx.doi.org/10.5710/PEAPA.09.06.2015.104
834	Herrera, Y., Fernández, M. S., and Gasparini, Z. 2013a. The snout of Cricosaurus
835	araucanensis: a case study in novel anatomy of the nasal region of metriorhynchids.
836	Lethaia 46(3), 331–340. https://doi.org/10.1111/let.12011
837	Herrera, Y., Fernández, M. S., Lamas, G. S., Campos, L., Talevi, M., and Gasparini, Z.
838	2017. Morphology of the sacral region and reproductive strategies of
839	Metriorhynchidae: a counter-inductive approach. Earth and Environmental Science
840	Transactions of the Royal Society of Edinburgh 106(4), 247–255.
841	https://doi.org/10.1017/S1755691016000165
842	Herrera, Y., Gasparini, Z., and Fernández, M. S. 2013b. A new Patagonian species of
843	Cricosaurus (Crocodyliformes, Thalattosuchia): first evidence of Cricosaurus in
844	Middle-Upper Tithonian lithographic limestones from Gondwana. Palaeontology
845	56(3), 663–678. https://doi.org/10.1111/pala.12010
846	Herrera, Y., Gasparini, Z., and Fernández, M. S. 2015. Purranisaurus potens Rusconi, an
847	enigmatic metriorhynchid from the Late Jurassic-Early Cretaceous of the Neuquén
848	Basin. Journal of Vertebrate Paleontology 35(2), e904790.
849	https://doi.org/10.1080/02724634.2014.904790

850	Hoedemaeker, Ph. J. 1982. Ammonite biostratigraphy of the uppermost Tithonian,
851	Berriasian, and lower Valanginian along the Río Argos (Caravaca, SE Spain). Scripta
852	Geologica 65, 1–81.
853	Hoedemaeker, Ph. J. 1987. Correlation possibilities around the Jurassic/Cretaceous
854	boundary. Scripta Geologica 84, 1–56.
855	Holliday, C. M., Porter, W. R., Vliet, K. A., and Witmer, L. M. 2019. The frontoparietal
856	fossa and dorsotemporal fenestra of archosaurs and their significance for
857	interpretations of vascular and muscular anatomy in dinosaurs. The Anatomical
858	Record 303(4), 1060–1074. https://doi.org/10.1002/ar.24218
859	Howarth, M. K. 1992. Tithonian and Berriasian ammonites from the Chia Gara Formation
860	in northern Iraq. Palaeoentology 35(3), 597-655.
861	Hua, S., Vignaud, P., Atrops, F., and Clément, A. 2000. Enaliosuchus macrospondylus
862	Koken, 1883 (Crocodylia, Metriorhynchidae) du Valanginien de Barret-le-Bas
863	(Hautes Alpes, France): un cas unique de remontée des narines externes parmi les
864	crocodiliens. Géobios 33, 467–474.
865	Hulke, J. W. 1870. Note on a crocodilian skull from Kimmeridge Bay, Dorset. Quarterly
866	Journal of the Geological Society, London 26, 167–172.
867	Jäger, G. F. 1828. Über die Fossile Reptilien, welche in Württemberg aufgefunden worden
868	sind. Metzler, Stuttgart.
869	Kietzmann, D. A., Palma, R. M., Martín-Chivelet, J., López-Gómez, J. 2014.
870	Sedimentology and sequence stratigraphy of a Tithonian-Valanginian carbonate ramp
871	(Vaca Muerta Formation): a misunderstood exceptional source rock in the Southern
872	Mendoza area of the Neuquén Basin, Argentina. Sedimentary Geology 302, 64-86.

873	Koken, E. 1883. Die Reptilien der norddeutschen unteren Kreide. Zeitschrift der Deutschen
874	geologischen Gesellschaft 35, 735–827
875	Kuhn, O. 1936. Crocodilia. Fossilium catalogus, Animalia, 1, Pars 75. W. Junk,
876	Gravenhage.
877	Larsson, H. C. E., Dececchi, T. A., and Montefeltro, F. C. 2011. A new metriorhynchid
878	(Crocodyliformes, Thalattosuchia) from the early cretaceous of Colombia (Rosa
879	Blanco Formation, late Valanginian). Ameghiniana (Suplemento) 48, R86–R87.
880	Leanza, A. F. 1945. Ammonites del Jurásico superior y del Cretácico inferior de la Sierra
881	Azul en la parte meridional de la provincia de Mendoza. Anales del Museo de La
882	Plata (NS) 1, 1–99.
883	Legarreta, L., and Gulisano, C. A. 1989. Análisis estratigráfico secuencial de la Cuenca
884	Neuquina (Triásico superior-Terciario inferior, Argentina). In: G. Chebli, and L.A.
885	Spalletti (eds.), Cuencas Sedimentarias Argentinas. Universidad Nacional de
886	Tucumán, Serie Correlación Geológica, 6, pp. 221–243.
887	Legarreta, L., and Uliana, M. A. 1991. Jurassic-Cretaceous marine oscillations and
888	geometry of back-arc basin fill, central Argentine Andes. International Association of
889	Sedimentologists Special Publication 12, 429–450.
890	Lena, L., López-Martínez, R., Lescano, M., Aguirre-Urrreta, B., Concheyro, A., Vennari,
891	V., Naipauer, M., Samankassou, E., Pimentel, M., Ramos, V. A., and Schaltegger, U.
892	2019. High-precision U-Pb ages in the early Tithonian to early Berriasian and
893	implications for the numerical age of the Jurassic-Cretaceous boundary. Solid Earth
894	10, 1–14. https://doi.org/10.5194/se-10-1-2019.
895	López-Martínez, R., Aguirre-Urreta, B., Lescano, M., Concheyro, A., Vennari, V., and
896	Ramos, V. A. 2017. Tethyan calpionellids in the Neuquén Basin (Argentine Andes),

897	their significance in defining the Jurassic/Cretaceous boundary and pathways for
898	Tethyan-Eastern Pacific connections. Journal of South American Earth Sciences 78,
899	116–125.
900	Meyer von, C. E. H. 1831. Neue fossile Reptilien, aus der Ordnung der Sauier. Nova acta
901	physico-medica Academiae Caesareae Leopoldino-Carolinae Naturae Curiosum 15,
902	171–200.
903	Mitchum, R. M., and Uliana, M. 1985. Seismic stratigraphy of carbonate depositional
904	sequences, Upper Jurassic-Lower Cretaceous, Neuquén Basin, Argentina. In: R. B.
905	Berg, and D. G. Woolverton (eds.), Neuquén Basin, Argentina. Seismic Stratigraphy:
906	An Integrated Approach to Hydrocarbon Exploration. American Association of
907	Petroleum Geologists, Memoir 39, 255–274.
908	Nesbitt, N. J. 2011. The early evolution of archosaurs: relationships and the origin of major
909	clades. Bulletin of the American Museum of Natural History 352, 1–292.
910	http://hdl.handle.net/2246/6112
911	Nullo, F. E., Stephens, G., Combina, A., Dimieri, L., Baldauf, P., Bouza, P., and Zanettini,
912	J. C. M. 2005. Hoja Geologica 3569-III/3572-IV, Malargüe, provincia de Mendoza.
913	Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales.
914	Boletín 346, 1–85.
915	Ősi, A., Young, M. T., Galácz, A., and Rabi, M. 2018. A new large-bodied thalattosuchian
916	crocodyliform from the Lower Jurassic (Toarcian) of Hungary, with further evidence
917	of the mosaic acquisition of marine adaptations in Metriorhynchoidea. PeerJ 6,
918	e4668. https://doi.org/10.7717/peerj.4668

919	Paradis, E., Claude, J., and Strimmer, K. 2004. APE: analyses of phylogenetics and
920	evolution in R language. Bioinformatics 20(2), 289–290.
921	https://doi.org/10.1093/bioinformatics/btg412
922	Parent, H., Garrido, A. C., Scherzinger, A., Schweigert, G., and Fözy, I. 2015. The
923	Tithonian-Lower Valanginian stratigraphy and ammonite fauna of the Vaca Muerta
924	Formation in Pampa Tril, Neuquén Basin, Argentina. Boletín del Instituto de
925	Fisiografía y Geología 86, 1–96.
926	Parrilla-Bel, J., Young, M. T., Moreno-Azanza, M., and Canudo, J. I. 2013. The first
927	metriorhynchid crocodyliform from the Middle Jurassic of Spain, with implications
928	for evolution of the subclade Rhacheosaurini. PLOS ONE 8(1), e54275.
929	https://doi.org/10.1371/journal.pone.0054275
930	Pierce, S. E., Williams, M., and Benson, R. G. 2017. Virtual reconstruction of the
931	endocranial anatomy of the early Jurassic marine crocodylomorph Pelagosaurus
932	typus (Thalattosuchia). PeerJ 5, e3225. https://doi.org/10.7717/peerj.3225
933	Plieninger, T. 1846. Über ein neues Sauriergenus und die Einreihung der Saurier mit
934	flachen, schneidenden Zähnen in eine Familie. In: Zweite Generalversammlung am 1
935	Mai 1846 zu Tübingen. Württembergische naturwissenschaftliche Jahreshefte 2,
936	148–154.
937	Pol, D., and Gasparini, Z. 2009. Skull anatomy of <i>Dakosaurus andiniensis</i> (Thalattosuchia:
938	Crocodylomorpha) and the phylogenetic position of Thalattosuchia. Journal of
939	Systematic Palaeontology 7(2), 163–197.
940	https://doi.org/10.1017/S1477201908002605
941	Quenstedt, F. A. 1856. Sonst und Jetzt: Populäre Vortäge über Geologie. Laupp, Tübingen

942	R Core Team. 2013. R: A language and environment for statistical computing. Vienna: R
943	Foundation for Statistical Computing. Available at: http://www.R-project.org/
944	(accessed May 2020).
945	Ramos, V. A., and Folguera, A. 2005. Tectonic Evolution of the Andes of Neuquén:
946	Constraints Derived from the Magmatic Arc and Foreland Deformation. Geological
947	Society of London Special Publication 252, 15–35.
948	https://doi.org/10.1144/GSL.SP.2005.252.01.02
949	Raspail, E. 1842. Observations sur un nouveau genre de Saurien fossile, le <i>Neustosaurus</i>
950	Gigondarum, N. avec quelques notes géologiques sur la commune de Gigondas.
951	Paris: Raspail, 56 p.
952	Rauhut, O. W. M., López-Arbarello, A., Röper, M., and Rothgaenger, M. 2017. Vertebrate
953	fossils from the Kimmeridgian of Brunn: the oldest fauna from the Solnhofen
954	Archipelago (Late Jurassic, Bavaria, Germany). Zitteliana 89, 305–329.
955	Riccardi, A. C. 1991. Significación estratigráfica de la diversidad de los amonites en el
956	Jurásico de la Argentina. 6° Congreso Geológico Chileno, Resúmenes ampliados,
957	149–152. Santiago de Chile.
958	Riccardi, A. C. 2008. El Jurásico de la Argentina y sus amonites. Revista de la Asociación
959	Geológica Argentina 63(4), 625–643.
960	Riccardi, A. C. 2015. Remarks on the Tithonian-Berriasian ammonite biostratigraphy of
961	west central Argentina. Volumina Jurassica 13(2), 23-52.
962	https://doi.org/10.5604/17313708
963	Rusconi, C. 1948a. Nuevo plesiosaurio, pez y langosta de mar jurásico de Mendoza.
964	Revista del Museo de Historia Natural de Mendoza 2, 3–12.

965	Rusconi, C. 1948b. Ictiosaurios del Jurásico de Mendoza. Revista del Museo de Historia
966	Natural de Mendoza 2, 17–16
967	Sachs, S., Young, M. T., Abel, P., and Mallison, H. 2019. A new species of metriorhynchid
968	crocodylomorph Cricosaurus from the Upper Jurassic of southern Germany. Acta
969	Palaeontologica Polonica 64(2), 343–356. https://doi.org/10.4202/app.00541.2018
970	Sachs, S., Young, M. T., and Hornung, J. J. 2020. The enigma of <i>Enaliosuchus</i> , and a
971	reassessment of the Lower Cretaceous fossil record of Metriorhynchidae. Cretaceous
972	Research 114, 104479. https://doi.org/10.1016/j.cretres.2020.104479
973	Salazar Soto, C. 2012. The Jurassic-Cretaceous boundary (Tithonian-Hauterivian) in the
974	Andean basin of Central Chile: ammonites, bio- and sequence stratigraphy and
975	palaeobiogeography. PhD. Thesis, Universität Heidelberg, Heidelberg, 387 pp.
976	Seeley, H. G. 1869. Discovery of <i>Dakosaurus</i> in England. <i>Geological Magazine</i> 6, 188–
977	189.
978	Spalletti, L. A., Franzese, J. R., Matheos, S. D., and Schwarz, E. 2000. Sequence
979	stratigraphy of a tidally dominated carbonate-siliciclastic ramp; the Tithonian-Early
980	Berriasian of the Southern Neuquén Basin, Argentina. Geological Society of
981	London, Special Publication 157, 433–446.
982	Sruoga, P., Etchevarría, M., Folguera, A., Repol, D., and Zanettini, J. C. 2005. Hoja
983	geológica 3569-I, Volcán Maipo, Provincia de Mendoza. Programa Nacional de
984	Cartas Geológicas de la República Argentina, 1:250.000. SEGEMAR, Boletín 290, 1-
985	116.
986	Ugarte, F. R. E. 1955. Estudio geologico de la zona de Coihueco-Cerro de la Brea
987	(Provincia de Mendoza). Revista de la Asociación Geológica Argentina 10, 137-
988	178.

989	Vennari, V. V., and Aguirre-Urreta, B. 2017. Earliest records of the genus Spiticeras Uhlig
990	in the Neuquén Basin, Argentina: systematic and biostratigraphic implications.
991	Ameghiniana 54, 83–106. http://dx.doi.org/10.5710/AMGH.18.10.2016.3021
992	Vennari, V. V., Álvarez, P. P., and Aguirre-Urreta, B. 2012. A new species of Andiceras
993	Krantz (Cephalopoda: Ammonoidea) from the Late Jurassic-Early Cretaceous of the
994	Neuquén Basin, Mendoza, Argentina. Systematics and Biostratigraphy. Andean
995	Geology 39, 92–105.
996	Vennari, V. V., Lescano, M., Naipauer, M., Aguirre-Urreta, B., Concheyro, A.,
997	Schaltegger, U., Armstrong, R., Pimentel, M., and Ramos, V. A. 2014. New
998	constraints on the Jurassic-Cretaceous boundary in the High Andes using high-
999	precision U-Pb data. Gondwana Research 26(1), 374-385.
1000	https://doi.org/10.1016/j.gr.2013.07.005
1001	Vignaud, P., and Gasparini, Z. 1996. New <i>Dakosaurus</i> (Crocodylomorpha, Thalattosuchia)
1002	from the Upper Jurassic of Argentina. Comptes Rendus de l'Académie des Sciences,
1003	Paris 2, 245–250.
1004	Wagner, A. 1852. Neu-aufgefundene saurier-veberreste aus den lithographischer
1005	Schiefernind den obernJuralke. Abhandlungen der MathematPhysikalischen Classe
1006	de Königlich Bayerischen Akademie der Wissenschaften 6, 661–710.
1007	Wagner, A. 1858. Zur Kenntniss der Sauier aus den lithographischen Schiefen.
1008	Abhandlungen der Mathematisch-Physikalischen Classe der Königlich Bayerischen
1009	Akademie der Wissenschaften 8, 415–528.
1010	Weaver, C. 1931. Paleontology of the Jurassic and Cretaceous of West Central Argentina.
1011	Memoirs of the University of Washington 1, 1–496.

1012	Wimbledon, W.A. P. 2017. Developments with fixing a Tithonian/Berriasian (J/K)
1013	boundary. Volumina Jurassica 15(1), 181–186.
1014	Young, M. T., and Andrade, M. B. 2009. What is <i>Geosaurus</i> ? Redescription of <i>Geosaurus</i>
1015	giganteus (Thalattosuchia: Metriorhynchidae) from the Upper Jurassic of Bayern,
1016	Germany. Zoological Journal of the Linnean Society 157(3), 551–585.
1017	https://doi.org/10.1111/j.1096-3642.2009.00536.x
1018	Young, M. T., Andrade, M. B., Etches, S., and Beatty, B. L. 2013. A new metriorhynchid
1019	crocodylomorph from the Lower Kimmeridge Clay Formation (Late Jurassic) of
1020	England, with implications for the evolution of dermatocranium ornamentation in
1021	Geosaurini. Zoological Journal of the Linnean Society 169(4), 820-848.
1022	https://doi.org/10.1111/zoj.12082
1023	Young, M. T., Andrade, M. B., Cornée, J-J., Steel, L., and Foffa, D. 2014. Re-description
1024	of a putative Early Cretaceous "teleosaurid" from France, with implications for the
1025	survival of metriorhynchids and teleosaurids across the Jurassic-Cretaceous
1026	Boundary. Annales de Paléontologie 100(2), 165-174.
1027	https://doi.org/10.1016/j.annpal.2014.01.002
1028	Young, M. T., Bell, M. A., and Brusatte, S. L. 2011. Craniofacial form and function in
1029	Metriorhynchidae (Crocodylomorpha: Thalattosuchia): modelling phenotypic
1030	evolution with maximum likelihood methods. <i>Biological Letters</i> 7(6), 913–916.
1031	https://doi.org/10.1098/rsbl.2011.0357
1032	Young, M. T., Brusatte, S. L., Ruta, M., and Andrade, M. B. 2010. The evolution of
1033	Metriorhynchoidea (Mesoeucrocodylia, Thalattosuchia): an integrated approach using
1034	geometrics morphometrics, analysis of disparity and biomechanics. Zoological

1035	Journal of the Linnean Society 158(4), 801-859. https://doi.org/10.1111/j.1096-
1036	3642.2009.00571.x
1037	Young, M. T., Sachs, S., Abel, P., Foffa, D., Herrera, Y., and Kitson, J. J. N. 2020.
1038	Convergent evolution and possible constraint in the posterodorsal retraction of the
1039	external nares in pelagic crocodylomorphs. Zoological Journal of the Linnean Society
1040	189(2), 494–520. https://doi.org/10.1093/zoolinnean/zlaa021
1041	
1042	
1043	Figure captions
1044	
1045	Figure 1. A, Location of the study section. Main geologic units were depicted after
1046	Dessanti (1978), Nullo et al. (2005), and Sruoga et al. (2005). B, Partial stratigraphic
1047	section of Arroyo Paulino showing Cricosaurus puelchorum (MCNAM-PV 5096) and
1048	Groebericeras bifrons occurrences.
1049	
1050	Figure 2. Groebericeras bifrons Leanza, 1945. 1-2, MCNAM-PI 24858. 1, right lateral
1051	view, 2, ventral view; 3-4, MCNAM-PI 24879, 3, left lateral view, 4, ventral view. Scale
1052	bar: 1 cm. All specimens coated with Ammonium chloride.
1053	
1054	Figure 3. Cricosaurus puelchorum, MCNAM-PV 5096. A, Skull in dorsal view. B, Skull
1055	in ventral view. Abbreviations: an, angular; cnp, nasal cavity proper; cr, crest; d, dentary;
1056	dac, dorsal alveolar canal; fr, frontal; la, lacrimal; ls, laterosphenoid; mx, maxilla; na, nasal;
1057	pa, parietal; pl, palatine; po, postorbital; prf, prefrontal; pt, pterygoid; sch, secondary
1058	choana; sof, suborbital fenestra; sp, splenial; stf, supratemporal fenestra. The dash-dotted

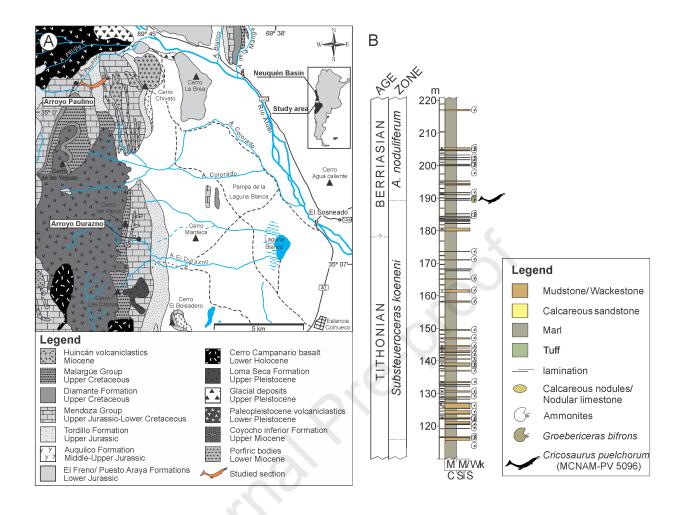
1059	line indicates broken surfaces, dotted surface indicates matrix, striped surface indicates
1060	broken bone, grey surface shows the region preserved as natural endocast, arrows indicate
1061	the transversally broken plane. Scale bar: 5 cm.
1062	
1063	Figure 4. Cricosaurus puelchorum, MCNAM-PV 5096. A, Skull in left lateral view. B,
1064	Skull in right lateral view. C, Right dentary partially preserved. Abbreviations: an, angular;
1065	asin, antorbital sinus; cnp, nasal cavity proper; d, dentary; dac, dorsal alveolar canal; fr,
1066	frontal; j, jugal; la, lacrimal; mx, maxilla; na, nasal; or, orbit; po, postorbital; pref,
1067	preorbital fossa; pres, preorbital sulcus; prf, prefrontal; sp, splenial; sur, surangular; stf,
1068	supratemporal fossa. The dash-dotted line indicates broken surfaces, dotted surface
1069	indicates matrix, striped surface indicates broken bone, grey surface shows the region
1070	preserved as natural endocast, arrows indicate the transversally broken plane. Scale bars: 5
1071	cm.
1072	
1073	Figure 5. Cricosaurus puelchorum, MCNAM-PV 5096. Dentition. A, Maxillary teeth. B,
1074	Dentary teeth. C, Close-up of a maxillary tooth in labial view. D, Close-up of a dentary
1075	tooth in labial view. E, Close-up of a maxillary tooth in lingual view. F, Microscopy image
1076	a maxillary tooth in lingual view. G, Microscopy image of the carina. H, Schematic labial
1077	view of a tooth. I, Schematic cross-section of a tooth. White arrows show the troughs.
1078	Abbreviations: f, facets; la.s; labial surface; li.s, lingual surface; r, ridges; t, troughs. Scale
1079	bars: 1 cm (A–E), 3 mm (F), 400 µm (G).
1080	
1081	Figure 6. Cricosaurus puelchorum, MCNAM-PV 5096. Natural cast. A, Preorbital region
1082	in anterolateral right view. B , Cranium in ventral view with detail of vascularization.

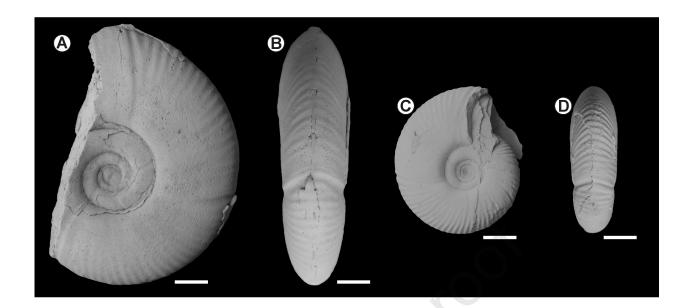
1083	Abbreviations: an, angular; asin, antorbital sinus; cnp, nasal cavity proper; fr, frontal; gd,
1084	salt gland duct; la, lacrimal; mx, maxilla; mx-na, maxillary-nasal suture; na, nasal; npdu,
1085	nasopharyngeal duct; pch, primary choana; pl, palatine; prf, prefrontal; vo, vomer. Arrows
1086	indicate anterior direction. Scale bars: 5 cm.
1087	
1088	Figure 7. Time-calibrated reduced consensus tree of Metriorhynchidae.
1089	
1090	SUPPORTING INFORMATION
1091	Supporting Information 1. Character list used in the phylogenetic analysis.
1092	Supporting Information 2. Applied changes of character codification from the original
1093	datasets.
1094	Supporting Information 3. Strict consensus cladogram, results from prunnelsen
1095	command, reduced consensus cladogram, list of synapomorphies of the reduced consensus,
1096	reduced consensus cladogram depicting the Bremer support values.
1097	Supporting Information S4. Character matrix, nexus file.
1098	
1099	
1100	
1101	
1102	
1103	
1104	
1105	
1106	

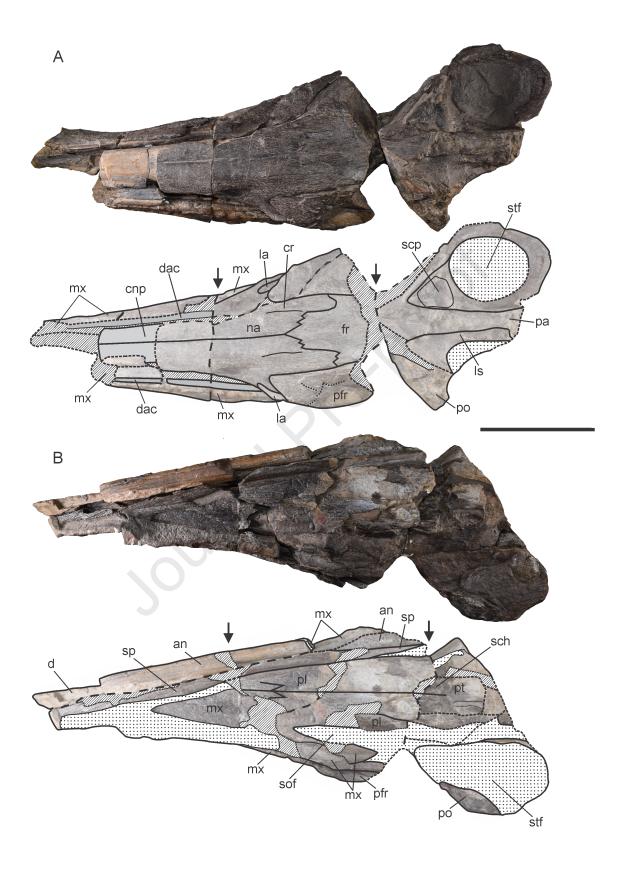
Table 1. Measurements (in mm) of best-preserved *Groebericeras bifrons* Leanza, 1945 specimens.

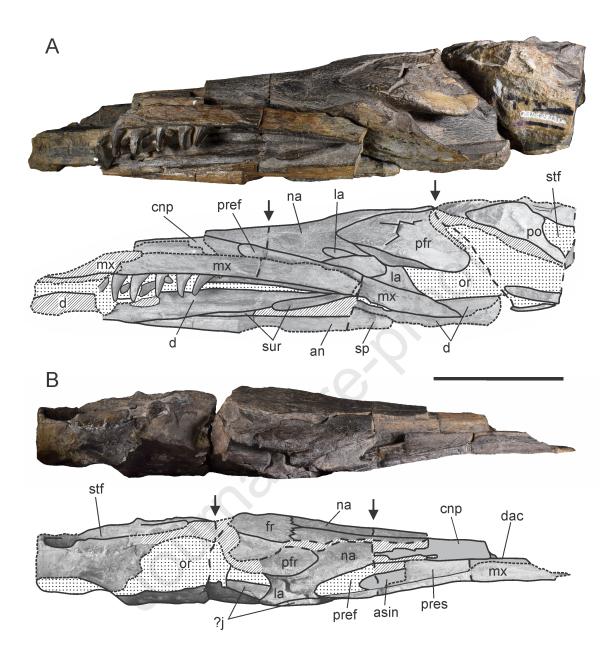
Specimen	shell diameter	whorl height/shell diameter	whorl width/shell diameter	umbilical diameter/shell diameter
MCNAM-PI 24858	78.61	31.01 (0.39)	22.32 (0.28)	25.54 (0.32)
	59.30	24.53 (0.41)	17.98 (0.30)	19.01 (0.32)
MCNAM-PI 24879	44.66	18.85 (0.42)	13.98 (0.31)	13.03 (0.29)
	33.71	14.38 (0.43)	12.01 (0.36)	10.41 (0.31)

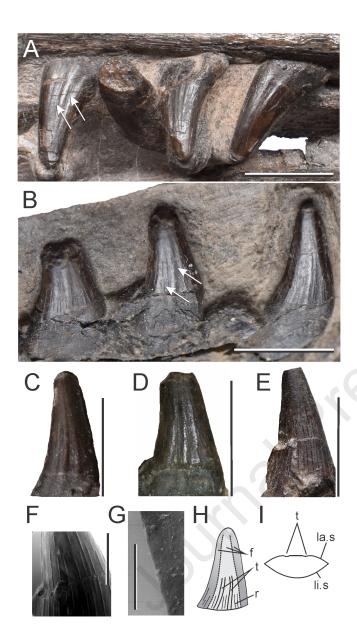
1125

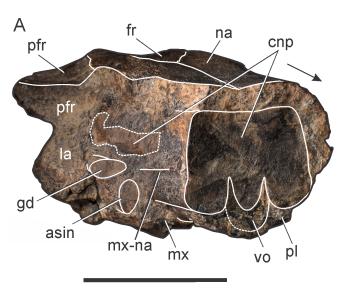

Table 2. List of taxa and specimens used for comparative purposes in the description. **Taxa Specimens** 'Steneosaurus' bollensis (Jäger, 1828) SMNS 15391 'Metriorhynchus' brachyrhynchus (Eudes-NHMUK PV R 3700, NHMUK PV R 3804, NHMUK PV R 4763 Deslongchamps, 1868) Metriorhynchus superciliosus (de Blainville, 1853) SMNS 10115, SMNS 10116 'Metriorhynchus' casamiquelai Gasparini and Chong MGHF 1-08573 Díaz, 1977 MHNSR PV 344, MOZ-PV 6146 Dakosaurus andiniensis Vignaud and Gasparini, 1996 Dakosaurus maximus (Plieninger, 1846) **SMNS 8203** Purranisaurus potens Rusconi, 1948a MCNAM-PV 2060 NHMUK PV R 3948 Rhacheosaurus gracilis von Meyer, 1831 Cricosaurus elegans (Wagner, 1852) Wagner, 1858 SNSB-BSPG AS I 504 Cricosaurus suevicus (Fraas, 1901) **SMNS 9808** 'Cricosaurus' medius Wagner, 1858 SNSB-BSPG AS VI 2 Cricosaurus araucanensis Gasparini and Dellapé, MLP 72-IV-7-1, MLP 72-IV-7-4 1976 Cricosaurus lithographicus Herrera et al., 2013b MOZ-PV 5787 Maledictosuchus riclaensis Parrilla-Bel et al., 2013 MPZ 2001/130a Plesiosuchus manselii (Hulke, 1870) NHMUK PV OR40103

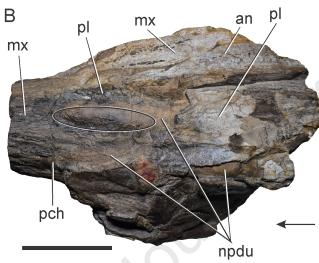

Table 1. Measurements (in mm) of best-preserved *Groebericeras bifrons* Leanza, 1945 specimens.

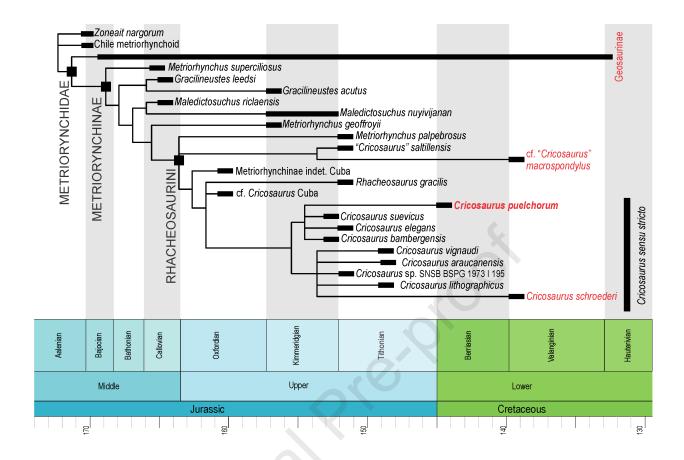

Specimen	shell diameter	whorl height/shell diameter	whorl width/shell diameter	umbilical diameter/shell diameter
MCNAM-PI 24858	78.61	31.01 (0.39)	22.32 (0.28)	25.54 (0.32)
	59.30	24.53 (0.41)	17.98 (0.30)	19.01 (0.32)
MCNAM-PI 24879	44.66	18.85 (0.42)	13.98 (0.31)	13.03 (0.29)
	33.71	14.38 (0.43)	12.01 (0.36)	10.41 (0.31)


Table 2. List of taxa and specimens used for comparative purposes in the description.


Taxa	Specimens
'Steneosaurus' bollensis (Jäger, 1828)	SMNS 15391
'Metriorhynchus' brachyrhynchus (Eudes- Deslongchamps, 1868)	NHMUK PV R 3700, NHMUK PV R 3804, NHMUK PV R 4763
Metriorhynchus superciliosus (de Blainville, 1853)	SMNS 10115, SMNS 10116
'Metriorhynchus' casamiquelai Gasparini and Chong Díaz, 1977	MGHF 1-08573
Dakosaurus andiniensis Vignaud and Gasparini, 1996	MHNSR PV 344, MOZ-PV 6146
Dakosaurus maximus (Plieninger, 1846)	SMNS 8203
Purranisaurus potens Rusconi, 1948a	MCNAM-PV 2060
Rhacheosaurus gracilis von Meyer, 1831	NHMUK PV R 3948
Cricosaurus elegans (Wagner, 1852) Wagner, 1858	SNSB-BSPG AS I 504
Cricosaurus suevicus (Fraas, 1901)	SMNS 9808
'Cricosaurus' medius Wagner, 1858	SNSB-BSPG AS VI 2
Cricosaurus araucanensis Gasparini and Dellapé, 1976	MLP 72-IV-7-1, MLP 72-IV-7-4
Cricosaurus lithographicus Herrera et al., 2013b	MOZ-PV 5787
Maledictosuchus riclaensis Parrilla-Bel et al., 2013	MPZ 2001/130a
Plesiosuchus manselii (Hulke, 1870)	NHMUK PV OR40103







Highlights

Cricosaurus puelchorum a new species of Metriorhynchidae from Mendoza (Argentina).

It is the first definitively Cretaceous metriorhynchid from the Neuquén Basin.

Cricosaurus survives across the J/K boundary at the southeastern Pacific.

Declaration of interests
\mathbf{X} The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: