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Abstract  

Catalytic nanofibers composed of La-Ce and Sr-La-Ce oxides were synthetized by 

electrospinning method with 5 wt.% of Sr and different La/Ce molar ratios. The materials 

were obtained by calcining electrospun polymer composite fibers and were studied for the 

oxidative coupling of methane (OCM). The catalytic performance was compared with 

analogous Sr-La-Ce powder catalysts.  

SEM micrographs of Sr-La-Ce fibers (La/Ce: 0.1, 0.2, 1 and 3) showed nanostructures with 

homogenous and uniform diameters (170-200 nm). In addition, the XRD patterns revealed 

the formation of crystalline solid solutions like LaxCeyOz. The strontium enhanced the CH4 

conversion and C2 selectivity, since it possibly generated structural defects that promote the 

formation of superoxide species. The SrLaCe3 nanofibers reached a CH4 conversion of 

28.5 % and C2 yield of 21.7 % at 600 ºC. The nanofibers randomly packed improved the 

heat and mass transfer properties due to a high geometric surface ratio with high bed 

porosity. 

 

Keywords: LaxCeyOz solid solution; electrospinning technique; surface characterization; 

OCM; high C2 yield. 
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1. Introduction   

A large number of fibrous materials have been described in the literature and a 

significant part of these are in patent documents. In particular, fibrous catalysts offer 

flexibility and endless forms, which not apply to the usual powdered or granular materials. 

Comparison of fibers catalysts with powder and monoliths reveals that structured fibrous 

catalysts are versatile and may find many applications. Cloths made from fibers of easy 

handling can be packed to fit into almost any geometry.1,2 

Furthermore, the use of catalytic materials with fibrous structure of micro-nanometric size 

may present several advantages with respect to powdered ones. They show low resistance 

to internal diffusion and high surface area to volume ratio because of their very small 

diameter. These fibrous structures combine less significant temperature gradients and lower 

pressure drop in a fixed bed reactor than those in powder form due to the high void 

fractions or bed porosity.3 

On the other hand, electrospinning is a remarkably simple and powerful technique for 

generating continuous and thin fibers using a variety of different materials. For application 

in catalysis, one dimensional polymer fibers that result from electrospinning can be used as 

a template for synthesis of simple oxide or mixed oxides catalysts. In this process, polymer 

and inorganic precursors solutions are electrosprayed together to give a composite fiber 

containing the catalytic precursors which are eliminated with a posterior calcination 

process.4 

Recently, nanostructured fiber-based catalysts have ever-increasing attention for the 

industrial catalysis and environment protection. Fiber-structured catalysts have been 

developed for a wide range of reactions, including diesel soot combustion5, CO 
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Oxidation4,6, CO oxidative coupling to DMO7,8, alcohol selective oxidation9,10,  Fischer-

Tropsch synthesis11, dry reforming of CH4
12,13 methanol to propylene14, etc. 

In the last decades, the direct and indirect methods to convert methane into more 

valuable products, including olefins and higher-molecular-weight hydrocarbons, have 

received great attention.15,16 In this vein, oxidative coupling of methane (OCM) is an 

interesting approach, which holds great prospect in converting methane directly into higher 

hydrocarbons in the presence of oxygen.17,18 The most common product obtained by OCM 

is ethylene, which is known as a vital chemical platform for synthesis of most 

petrochemical products.19,20 

During the 90s, despite the research efforts devoted to the OCM reaction, no 

acceptable C2 (ethane and ethylene) yield was accomplished to justify its industrial 

application. However, some significant conclusions were academically achieved about the 

reaction mechanism and active catalyst sites. In this way, methane dehydrogenation and 

methyl radical coupling were considered as the clue reaction steps.21 In this way, acceptable 

reaction performances have been reached with oxides as MgO, MnO2, and La2O3. These 

oxides could be promoted by basic compounds like Li, Na and Sr that can contribute to 

generate superficial active sites for methane dehydrogenation.22–24 Early studies reported 

that La2O3 catalysts doping with Sr showed promising OCM activity because of their high 

C2 yield and thermal stability.22 Moreover, the CeO2 is well known as a redox-active 

catalyst, which may help to diminish coke formation and thus improve the activity and 

durability of catalyst.25 

However, most catalysts for the OCM were studied on its powder form, fixed-bed 

reactors randomly packed, which is not useful for industrial applications. Therefore, under 

industrial conditions, high flows should be used at relatively high temperature, structured 
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catalysts could be a good option, because they provide lower pressure drop, smaller 

diffusion resistance and better mass and heat transfer than powder catalysts.26,27 Recently, 

we have reported promising results obtained with Sr-La2O3 coated onto ceramic monoliths 

and foams. Especially, interesting conclusions were obtained with Sr/La2O3 catalysts 

deposited on the walls of cordierite monoliths; an important increase in both, methane 

conversion and C2 yield, took place. It has been found that monolithic structure provided 

physical and chemical beneficial effects. That is; the disposition of the catalyst on the 

straight channel allowed a more homogeneous flow which resulted in a better contact 

between reactant and catalyst surface and then, in an increase of the overall reaction rate. 

Moreover the catalytic layer enrichment with Mg and Si, coming from the cordierite 

structure, greatly contributed to the improved catalytic behavior.28,29 On the other hand, 

nanofiber-structured catalysts based on CeO2-La2O3
30,31 and Sr-La2O3

32 showed relevant 

catalytic behavior in OCM reaction. 

Although the main criteria for industrial application of the OCM demanded that the 

catalysts were able to reach a C2 yield higher than 25 %,33 some economical estimates 

demonstrated that the yields about 12%−15% could be sufficient for economically feasible 

production of ethylene via OCM in the areas where the relative cost of natural gas 

compared to ethylene is low enough.34 

In this sense, the production of shale gas has been increasing year by year since new 

deposits distributed throughout the planet were discovered. Therefore, this fact encourages 

the production of these higher value products. 

Thus, in this work catalysts based on Sr-La-Ce with nanofiber morphology for the 

oxidative coupling of methane were studied. Therefore, different systems of La-Ce and Sr-

La-Ce nanofibers were synthesized by the electrospinning method and they were tested in 
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the catalytic reaction. The prepared solids were characterized by scanning electron 

microscopy (SEM) with Energy Dispersive X-Ray Spectroscopy (EDX), X-ray diffraction 

(XRD) and X-ray photoelectron spectroscopy (XPS). The La-Ce and Sr-La-Ce catalytic 

fibers were used for the oxidative coupling of methane (OCM) and the performances of the 

best catalytic fibers were compared to the conventional powder catalysts.  

 

2. Experimental 

2.1 Materials and methods 

2.1.1 Precursor materials 

Cerium nitrate hexahydrate (Ce(NO3)3.6H2O, Sigma Aldrich), lanthanum nitrate 

hexahydrate La(NO3)3.6H2O (Sigma Aldrich), strontium nitrate Sr(NO3)2 (Sigma Aldrich), 

poly(vinylpyrrolidone) (PVP Mw 360,000, Sigma Aldrich), ethanol (Sigma Aldrich), citric 

acid and distilled water were used without further purification. 

2.1.2 Nanofiber catalysts preparation  

Two series of nanostructured catalysts were prepared with different concentrations, 

one composed of La and Ce (labeled LaCex), and the other composed of La, Ce and Sr 

(labeled SrLaCex) where x means La/Ce molar ratio. The fibers were prepared with an 

Elmarco’s Nanospider (NS 1WS500U series), a wire-electrode needleless electrospinning 

system. To prepare the electrospinning solution, 1.16 g of salts were weighted and were 

dissolved in a mixture of 40 mL ethanol and 8 mL water. The amount of each precursor salt 

was determined in order to obtain the theoretical compositions (molar ratios La/Ce: 0.1, 
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0.2, 1 and 3) with or without 5 wt.% of Sr. This mixture was maintained under continuous 

stirring at room temperature for 15 min. Then, 4 g PVP was added and the resulting 

mixture was kept overnight under continuous stirring at room temperature. The prepared 

solutions were introduced into the machine injector. Firstly, the parameters of the 

electrospinner were optimized in order to obtain well-formed nanofibers. Pumps were set at 

different air flows: 30-20, 50-40, 60-50, 70-60 m3 h-1, and two voltages were also tested at 

30 and 40 kV. The temperature and humidity were set at room conditions. Electrospun 

fibers were calcined at 625 ºC in a furnace for 10 hours with a heating ramp of 0.5 ºC min-1. 

The calcination temperature was determined by means of TG analysis, proving that at 625 

ºC all PVP is decomposed. The BET area (specific surface area) of nanofibers was very 

low, (10-15 m2g-1) which indicates that these are dense and do not have internal porosity.  

2.1.3 Powder catalysts preparation 

Some powder catalysts were prepared in order to compare their catalytic performance 

to nanofibers. La-Ce mixed oxide was synthesized from Ce(NO3)3·6H2O and 

La(NO3)3·6H2O by the citrate method. The proper amounts of precursors were weighted in 

order to obtain a La:Ce molar ratio of 3. These precursors were dissolved in water and citric 

acid was added in a molar ratio of acid/(Ce+La) = 1. The final solution was heated up to 80 

ºC under constant stirring to evaporate superfluous water until a viscous gel was obtained, 

which was dried at 120 ºC for 24 h to form a spongy material. Finally, this material was 

calcined at 625 ºC for 6 h and it was named as LaCe3-powder. 

On the other hand, Sr was added to LaCe3-powder by wet impregnation in the proper 

amounts to obtain 5 wt.% of strontium. Sr(NO3)2 was dissolved in water and LaCe3-powder 

Page 7 of 46

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 
 

was added to the solution. The mixture was kept under continuous stirring at 80 ºC for 4 h. 

Then, it was dried in an oven at 120 ºC overnight and it was calcined at 625 ºC for 6 h. 

Finally, this sample was called SrLaCe3-powder. The BET areas (specific surface area) 

were 9.8 and 9.3 m2g-1, which suggests that they are non-porous materials. 

2.2 Characterization techniques 

The obtained fibers were analyzed using scanning electron microscopes (JEOL JSM-

IT100 or Philips XL30). Both were equipped with an EDX analyzer. The samples were first 

gold-coated using a sputter coater. The mean diameter was measured using image analysis 

software (Image J) from 100 fibers.  

X-Ray diffraction patterns were collected on a PANalytical MPD X'Pert Pro 

diffractometer operating with Cu Kα radiation (Kα=0.15418 nm) equipped with an 

X'Celerator real-time multiple strip detector (active length=2.12°2θ). The powder patterns 

were collected at 25 °C in the range 3<2θ<70, step= 0.017°2θ, time/step=220s. The phases 

identification has been measured with the X’Pert High score software (PANalytical) and 

the PDF-4+ 2018 database from the International Centre for Diffraction Data (ICDD).  

X Ray photoelectron analysis (XPS) was performed in a multi-technique system 

(SPECS) equipped with a dual Mg/Al X-ray source and a hemispherical PHOIBOS 150 

analyzer operating in the fixed analyzer transmission (FAT) mode. The spectra were 

obtained with a pass energy of 30 eV, the Al Kα X-ray source (hυ = 1486.6 eV) was 

operated at 200 W and 12 kV. The working pressure in the analyzing chamber was less 

than 2∙10−6 Pa. Casa XPS software was employed for data treatment corresponding to 

Page 8 of 46

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9 
 

regions O 1s, C 1s, Sr 3d, La 3d and Ce 3d (as internal reference u''' 916.5 eV). Peaks were 

considered as a mixture of Gaussian and Lorentzian functions in a 70/30 ratio. 

2.3 Catalytic tests  

The experiments were conducted in a fixed-bed flow quartz reactor at atmospheric 

pressure. The reactor design was described in a previous work.29 The reactant flow entered 

the reactor through an inner section of 16 mm diameter, but below the catalytic bed this 

inner section was reduced up to 1/8 inch diameter in order to decrease the homogeneous 

combustion of hydrocarbon products as much as possible. 

The system was heated with a furnace to reach the desired temperatures. The exiting 

gases from the reactor were conducted through a condenser in order to remove H2O from 

the flow. Finally, the exiting flow concentrations were measured using a gas chromatograph 

(GC-2014 Shimadzu) with thermal conductivity detector (TCD) equipped with two 

columns, zeolite 5A and Hayesep D. The carbon balance was always higher than 97 %. The 

catalytic tests were repeated several times over the samples, showing quite reproducible 

results. 

The catalytic nanofibers (250 mg) were loosely packed into a 16 mm (inner diameter) 

quartz tube between two quartz wool plugs. The bulk density of catalytic bed was 

approximately 0.06 g cm-3. For comparison, powdered catalysts (500 mg) were evaluated; 

they had a bulk density around 0.5 g cm-3.  

 The reaction mixture consisted of 60 vol.% CH4, 12 vol.% O2 and 28 vol.% He.  

The gas flow rates were adjusted by means of controllers in order to achieve catalyst-
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weight/total flow ratio = 0.166 mg cm-3 h. The catalysts were tested in a wide temperature 

range (250-700 °C). Methane conversion, C2 selectivity and C2 yield were calculated as 

follows: 

𝑀𝑒𝑡ℎ𝑎𝑛𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑋 (%) =
𝑀𝑜𝑙𝑎𝑟 𝑓𝑙𝑜𝑤 𝑜𝑓 𝐶𝐻  𝑟𝑒𝑎𝑐𝑡𝑒𝑑

𝑀𝑜𝑙𝑎𝑟 𝑓𝑙𝑜𝑤 𝑜𝑓 𝐶𝐻  𝑖𝑛 𝑓𝑒𝑒𝑑
× 100 

𝐶2 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑆 (%) = 2
𝑀𝑜𝑙𝑎𝑟 𝑓𝑙𝑜𝑤 𝑜𝑓 𝐶2

𝑀𝑜𝑙𝑎𝑟 𝑓𝑙𝑜𝑤 𝑜𝑓 𝐶𝐻  𝑟𝑒𝑎𝑐𝑡𝑒𝑑
 × 100 

𝐶2 𝑌𝑖𝑒𝑙𝑑, 𝑌 (%) = 𝑀𝑒𝑡ℎ𝑎𝑛𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 × 𝐶2 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ×
1

100
  

Being C2 ethane and/or ethylene. 

3. Results and Discussion 

3.1. Characterization of catalytic nanofibers 

The theoretical compositions of the catalytic nanofibers La-Ce and Sr-La-Ce obtained 

by electrospinning are detailed in Table 1. The La/Ce molar ratios were 0.1, 0.2, 1 and 3 

and the Sr content was 5 wt.% in all samples. 

In order to select the best operating conditions for the formation of nanofibers from 

the precursor solutions, the parameters in the electrospinning machine were varied. The 

morphology of the obtained nanofibers was studied by SEM. Micrographs taken from the 

LaCe3 samples (before calcination) obtained with different electrospinning machine 

parameters are shown in Figure 1. 

Two parameters were varied; air flux and voltage, and seven different samples were 

obtained. The lowest and highest flux (30 - 20 and 70 - 60 m3 h-1, respectively) did not 
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show good results (Fig 1 (A), (D) and (G)), no nanofibers were obtained. This behavior was 

observed with both applied voltages (30 and 40 kV). It seems that some nanofibers were 

obtained with 60 - 50 m3 h-1 under 40 kV, but the sample was heterogeneous and some 

agglomerations could be seen in Figure 1(F). The sample obtained with this air flux value, 

but under 30 kV was not composed of nanofibers (Fig. 1(C)). Finally, with the air flux 

value of 50 - 40 m3 h-1 and a voltage of 30 kV, homogeneous nanofibers of LaCe3 sample 

were obtained (Fig. 1(B)). These latter parameters, 50 - 40 m3 h-1 and 30 kV, were selected 

to prepare the samples that were studied in this work. 

The SEM micrographs of the nanofibers obtained only with the polymer (PVP), the 

Ce and La salts and PVP (LaCe0.1@PVP) before and after calcination (LaCe0.1) are 

depicted in Figure 2.  

The image of the obtained nanofibers from the PVP polymer is shown in Fig. 2(A). In 

this case, the fibers diameters are the largest in this studied set with an average diameter of 

500 nm, including one that reaches 1.05 m. When the salts were added into the 

electrospinning solution, the average nanofiber diameter decreased, being of around 400 

nm (Fig. 2(B)). This decrease could be related to the fact that the addition of salts to the 

electrospinning solution increases conductivity, improving the spinning procedure. Finally, 

when the LaCe0.1 nanofibers were calcined, the diameters decreased again, reaching values 

of around 150 nm (Fig. 2(C)). This phenomenon is caused by the polymer removal from the 

nanostructures, and also by the formation of the mixed oxides (LaxOy-CezOt).  

In addition, SEM micrographs of four LaCe compositions (after calcination at 625°C) 

are depicted in Figure 3. In these samples (A-D) the nanostructures could be seen. The 
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samples are homogeneous and uniform. In Figure 3(E) - (G) micrographs at higher 

magnifications are displayed. In LaCe0.1 SEM micrograph (Fig. 3(E)) it seems that thin 

nanofibers, of around 140 nm diameter, are attached each other forming a fiber of larger 

diameter, between 350 and 450 nm. The same phenomenon is observed in LaCe0.2 (Fig. 

3(F)). LaCe3 sample was somewhat different, the nanofibers are not all of them glued and 

thin nanofibers of around 200 nm diameter are observed (Fig. 3(G)). However, there is one 

big fiber in the middle of the picture for which this phenomenon of nanofibers packing is 

observed. 

Figure 4 shows the SEM micrographs of SrLaCe nanofibers (after calcination at 

625°C) from four samples with different compositions. In the first four images (Fig. 4A-D) 

it could be seen that the nanostructures are homogeneous and uniform. In SrLaCe0.1 

micrographs (Fig. 4A and E) shorter nanofibers are observed, indicating that somehow the 

addition of Sr to the solution contributes to shorten nanostructures. This phenomenon was 

not observed in the other three samples. In SrLaCe3 the diameter of the fibers was 

measured and values of around 171 nm were obtained (Fig. 4(F)). This diameter was lower 

than those of LaCe3, suggesting that the addition of Sr to the electrospinning solution 

increases its conductivity, improving the experiment conditions and lowering nanofibers 

diameters. The same average diameter of about 150 nm was observed for the other three 

samples (Fig. 4 (F) - (H)). 

The atomic concentrations of the different elements determined by EDX analyses in 

SrLaCe0.1, SrLaCe0.2, SrLaCe1 and SrLaCe3 samples are reported in Table 2. The sample 

SrLaCe0.1 exhibits a La and Ce values of 1.9 and 16.0 %, respectively, which results in 

La/Ce ratio of 0.11, similar to the theoretical one (see Table 1). The oxygen concentration 
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(57.2 %) corresponds to the formation of oxides, hydroxides and/or carbonates. The 

presence of C could be due to carbonates formation in the samples that will be discussed in 

the next sections. All samples showed similar Sr concentration (around 4.5-4.7%), which 

indicates a homogeneous dispersion of Sr in nanofibers. Also, the La/Ce ratios resulted in 

0.26, 1.07 and 3.18 for SrLaCe0.2, SrLaCe1 and SrLaCe3, respectively, in agreement with 

the theoretical ones. These results suggest that during synthesis, there is no preferential 

deposition of any component onto the collector film. Additionally, in the Figure S1 

(supporting information) SEM-EDX results and elements spectra measured for SrLaCe3 

nanofibers are shown.  

On the other hand, SEM image and EDX result for LaCe3 are shown in the Figure S2 

(Supporting Information). The formation of very irregularly shaped large particles can be 

observed in calcined LaCe3 powder.   

Figure 5 shows the XRD patterns of four LaCe samples with the positions of the 

characteristic crystalline CeO2 diffraction peaks (at 28.56, 33.08, 47.48 and 56.34°2θ, full 

line) and La2O3 diffraction peaks (at 27.02, 31.31, 44.86 and 53.16°2θ, dot line).35 It can be 

noted that if the pattern of LaCe0.1 is very close to the pattern of CeO2 the higher the 

percentages of lanthanum incorporated are, the more shifted to the La2O3 peak positions the 

patterns are. These displacements correspond to the formation of solid solutions with 

LaxCeyOz formula (with x and y linked to the peak shifts) and have been confirmed by the 

identification of the phases found and presented in the Table 1. This identification is in 

good agreement with the theoretical ratios La/Ce and the ratios of the solid solution 

compositions obtained by XRD, which seems to indicate that the lanthanum is well 

incorporated in the CeO2 structure. However, the LaCe3 patterns show the presence of 
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additional small quantities of crystalline CeO2. The XRD results are in good agreement 

with those of Noon and co-workers30 for La2O3-CeO2 nanofibers. They established that in 

their samples, solid solutions were formed by reactions between La2O3 and CeO2, such as 

the partial reduction of ceria into Ce7O12 and the incorporation of La3+ ions into the cubic 

lattice of CeO2.
36,37 From XRD patterns, it was estimated the crystallite sizes by means of 

Scherrer equation for each La-Ce samples. The main diffraction CeO2 signal was used to 

calculate the size and the obtained values were around 10 and 11 nm.  

The SrLaCe XRD patterns are shown in Figure 6. The results are quite similar to 

those obtained for LaCe samples and give also solid solutions. Nevertheless, in all the 

patterns, some new XRD peaks appear at 25.34, 25.90, 35.35, 36.78 and 44.11º 2θ, which 

correspond to SrCO3 crystalline phase.38 The SrLaCe0.1 pattern is a little more left shifted 

than the LaCe0.1 XRD pattern. This pattern identification does not permit to give an exact 

solid solution composition. As mentioned in the Table 1, several ICDD reference cards 

could be attributed to this XRD pattern: variable solid compositions (% of lanthanum 

ranges from 0.05 to 0.15) could correspond as well an ICDD card (04-021-0597), which 

contains strontium insertion in the solid solution. For this XRD pattern and the others it is 

not possible to conclude by XRD if the strontium is well inserted in the solid solutions or 

just present as crystalline SrCO3. No significant differences are observed in the SrLaCe0.2 

XRD pattern compared to the one of LaCe0.2, only the presence of peaks characteristic of 

SrCO3 was observed. For higher lanthanum concentration, it seems that the presence of 

strontium changes the solid solutions formed. For SrLaCe1, two solid solution 

compositions can be distinguished and for SrLaCe3, the pattern shows less incorporation of 

lanthanum in the solid solution than in the LaCe3 (left shift lower than this of LaCe3). 
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On the other hand, XRD patterns of LaCe3-powder and SrLaCe3-powder shown no 

significant differences compared to LaCe3 and SrLaCe3 nanofibers. This fact suggests that 

the crystalline phases developed during the calcination stage at 625 ºC are similar in 

powders and nanofibers (See Figure S3 in Supporting Information). 

The XPS results from LaCe3 and SrLaCe3 catalysts are shown in Table 3. Both of 

them were previously used in the OCM reaction. The La 3d doublet is well defined 

showing the satellite structure appearing on the high side of 3d5/2 and 3d3/2 peaks. In LaCe3, 

the La 3d5/2 core level is at 835.6 eV and its corresponding satellite at +4.0 eV (see Fig. 

7(A)). According to literature, both lanthanum species, La2O3 and La(OH)3, have close 

binding energies (BEs) positions.39,40 Sunding et al.41 reported La 3d5/2 values of 835.0 eV 

for La2O3 and 835.1 eV for La(OH)3. In our catalyst, LaCe3, the La (3d5/2-3d·3/2) doublet 

show higher values, suggesting that different chemical environment around La exist (Table 

3). This is related to the XRD analysis, which suggested that La-Ce forms mixed oxides. In 

addition, the incorporation of Sr to the catalytic system slightly decreases BEs of satellites 

and main peaks. 

The complex Ce 3d spectrum of LaCe3 catalyst was fitted with six component peaks 

(denominated v, v’’ and v’’’ for Ce 3d5/2 and u, u’’ and u’’’ for Ce 3d3/2) whose BEs 

positions were very close to those found for the CeO2 (Ce4+). The Ce 3d5/2 BEs in LaCe3 

were 882.9, 888.4, 898.1 eV. According to Paparazzo et al.42, these energies are associated 

to Ce4+ species. This behavior is in agreement with the sample pre-treatments: calcination 

under air at 625 ºC and the exposure to reaction in oxidizing conditions. The Sr 

incorporation to the system does not show significant differences in Ce 3d binding energy 

positions.  
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On the other hand, in O 1s region three peaks appeared at 529.1, 530.6 and 533.2 eV 

over LaCe3 catalytic fibers (see Fig. 7(B)). The peak at lower binding energy corresponds 

to lattice oxygen (O2−) which represents 8.9 % of the total amount of oxygen. Whereas the 

one at 530.6 eV could be attributed to a mixture of different species, including hydroxyl 

(OH−), carbonate (CO3
2−) and peroxide ion (O−), all with similar BEs according to 

literature. This signal represents 44.8 % of total oxygen. The carbonate and hydroxide 

species could have been formed on the fiber surface by contact with atmosphere air. The 

carbonate species were seen also in C 1s region, with a signal around 291 eV. The latter 

oxygen peak, at 533.2 eV, is the main signal, with a concentration of 46.3 %. In our 

previous work, this peak was identified as the superoxide species (O2
-).28,29 Islam et al.43 

investigated the formation of peroxide and superoxide species on Sr-La catalysts. It was 

reported that electron deficient species, such as O- and O2
-, on the catalytic surface, are 

helpful to increase methane molecule activation during OCM reaction.32,44 In SrLaCe3 

catalytic fibers, the superoxide concentration is significantly higher than in LaCe3. It 

represents around the 64 % of total oxygen, this suggests that the incorporation of Sr to the 

catalytic system increases the amount of active species in SrLaCe3. This latter fact will be 

discussed in the next section. 

In SrLaCe3 it was also analyzed Sr 3d region and two components were detected at 

134.8 and 136.6 eV, the spectrum was introduced in Figure 7(C). The signal at lower 

binding energy corresponds to SrO and it represents the 63.6 % of Sr, as it is shown in 

Table 3. The signal that appears at 136.6 eV corresponds to SrCO3 and it is the 36.6 % of 

total strontium.32,45 Nevertheless, these values are at higher BEs than usual (132.1 and 

133.9 eV for SrO and SrCO3 respectively).46 J. Kuyyalil et al.47, attributed this shift to the 
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strontium electrochemical environment. They concluded that this phenomenon could be 

due to the interaction of Sr with the oxygen vacancies. 

Table 4 shows the surface atomic concentrations calculated from the XPS data of 

LaCe3 and SrLaCe3. These values show the composition of surface layers with a depth of 

20-40 Ǻ, where the La/Ce atomic ratio greater than 3, suggests an enrichment of the surface 

in lanthanum.  

3.2. Catalytic performance 

Methane conversion versus temperature for LaCe3, LaCe1 and LaCe0.2 nanofibers is 

shown in Figure 8 (A). It can be observed that the conversion values increase with the 

temperature to achieve maximum values of 24.6 and 14.1 % at 600 ºC for LaCe3 and 

LaCe0.2, respectively, while LaCe1 reaches 20.3 % at 550 ºC. Selectivity towards C2 (Fig. 

8 (B)) increases with temperature. LaCe3 shows mostly uniform values from 350 to 550 ºC, 

these values raise from 34.4 to 40.3 %. At 600 ºC, it is observed 62.4 % of C2 selectivity. 

The LaCe1 nanofibers showed similar behavior, reaching 54.2 % at 600 ºC, while LaCe0.2 

selectivity was null at 350 - 400 ºC and it started to increase at 450 until 600 ºC, with a 

maximum value of 40.1 %. In Figure 8(C) the C2 yield of LaCe nanofibers is shown, as the 

temperature increases the C2 yield increases, with maximum values at 600 ºC: 15.4% for 

LaCe3, 10.3% for LaCe1 and 5.6% for LaCe0.2. This behavior clearly shows that the 

lanthanum concentration in the catalyst is key for OCM reaction. The more La 

concentration in the catalyst is, the better the reaction performance is. To study the 

nanostructure influence in OCM, it is also included in Figure 8(C) C2 yield of LaCe3-

powder to compare with the LaCe3 nanofibers. It could be observed that in the powder 
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approximately the same maximum was achieved (~15%) but at a higher temperature, 750 

ºC. This is suggesting that the nanostructure is improving the reaction conditions; 

particularly it is beneficial to lower the working reaction temperature. The differences in 

surface area and the dispersion of the elements could be also in part responsible for this 

improvement. 

In Figure 9 it is introduced the catalytic performances of SrLaCe nanofibers. Figure 

9(A) shows the methane conversion increasing with temperature for the four different 

catalysts. The best catalytic performance was observed with SrLaCe3 nanofiber, where 

methane conversion is 10.6 % at 350 ºC, and this value augments smoothly to 13.6 % until 

500 ºC. At 600 ºC, it increases notably to 28.5 %. To assess the performance at higher 

temperatures, this catalyst was also tested at 700 ºC, and the conversion stayed mostly 

stable. The same behavior was observed for SrLaCe1, but the conversion was lower, it 

reached a maximum of 19.1 % at 600 ºC. For SrLaCe0.2 and SrLaCe0.1 the methane 

conversion values were lower. In Figure 9(B) it is shown selectivity towards C2 of SrLaCe 

nanofibers. SrLaCe0.2 and SrLaCe0.1 selectivities increase with temperature to reach 39.3 

and 33.5 % at 600 ºC, respectively. The selectivity of SrLaCe3 varies from 77 to 80 % 

between 350 and 500 ºC. From 500 ºC it decays until 70 % at 700 ºC. Although, for 

SrLaCe1, C2 selectivity had an upward trend from 47.7 (350 ºC) to 59.6 % (600 ºC). Figure 

9(C) introduces the C2 yield of the different SrLaCe catalysts. The catalysts with low 

lanthanum concentration, SrLaCe0.1 and SrLaCe0.2, showed a C2 yield around 5 %. As it 

was mentioned before, the high concentration of cerium is detrimental for the catalytic 

activity. Ceria could be lowering the basic character of the catalysts and promoting C2 

hydrocarbon further oxidation. When lanthanum and cerium contents are equal, the 
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catalytic performance improves, a C2 yield of 11.6 % was achieved at 600 ºC. Finally, the 

best catalytic activity was exhibited by SrLaCe3. The C2 yield increases with temperature, 

reaching its maximum of 21.7 % at 600 ºC. This follows the same tendency that for the 

LaCe nanofibers. The catalyst with higher concentration of La shows the best behavior in 

OCM reaction. Moreover, if the results of LaCe3 and SrLaCe3 are compared, it could be 

clearly seen that the addition of Sr to the nanofiber improves the catalytic performance.  

In addition, these catalytic results were better than those reported in our previous 

works, where monolithic Sr/La2O3 catalysts reached a C2 yield of 18 % at 800 °C on OCM 

reaction. The composition of the fibers arranged in a controlled structure are able to achieve 

higher C2 yields at lower temperatures. Table TS1 in Supporting information section shows 

a comparison of catalytic activity of La2O3-based catalysts under the form of different 

structures; powder, monoliths and nanofibers. It could be observed that the yield to C2 

products rises when the catalysts was deposited on a monolithic structure with respect to a 

Sr/Al2O3 powder. On the other hand, when a low percentage of CeO2 (atomic ratio 

La/Ce=3) was added to Sr/Al2O3 powder it reached higher C2 yield and a lower 

temperature (750 °C) than the others (800 °C). Even more, when the Sr-La-Ce catalysts 

were made by electrospinning as nanofiber structures, the highest C2 yield was obtained 

(21.7 %) and at temperature considerably lower (600 °C). 

According to XPS results, the catalytic surface of SrLaCe3 had higher concentration 

of superoxides species (~ 64 %) than LaCe3 (~ 46 %). As it was mentioned before, it is 

believed that oxygen species that have an electron deficiency, as O2
- and O-, are the active 

sites in OCM reaction.43 Moreover, the Sr incorporation into the catalyst was highly studied 

in this process.48–50 It is known that the insertion of strontium into the lattice of the host 
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oxides affects its defect structure, and causes the formation of oxygen-anion vacancies.51,52 

These lattice defects are supposed to play an important role in the OCM and they are 

related to the superoxide and peroxide species. 

Some other tests were performed over SrLaCe3 in order to understand the behavior 

observed between 350 and 500 ºC where C2 yield raised smoothly and then jumped 

surprisingly at 550 ºC. The run was repeated and the catalytic measurements were 

performed while increasing temperature and after that, decreasing it. In the second case, 

only slightly higher C2 yield values were obtained between 600 and 450 ºC. The described 

results can be interpreted on the light of the mechanism proposed by Karakaya et al.25 In 

their study of OCM reaction mechanism over La2O3/CeO2 nanofibers, they suggest that 

both gas-phase and surface reactions play significant roles for CH4 activation, as well as C2 

and COx formation. Despite differences in the active catalytic sites for particular catalysts, it 

is generally known that the methane activation proceeds via the CH3
● radical. The initiating 

CH3
● formation reactions control the overall reaction rate. They propose two contributions 

to the heterogeneous pathway. One is the reaction of methane with surface-adsorbed 

oxygen.53 This step is promoted by the oxygen vacancies that are produced because of the 

introduction of some elements into the catalysts oxygen lattice, creating defects. That could 

be the case of Sr, as it was discussed in the previous paragraphs. This phenomenon may be 

the one that is prevailing at low temperature (between 400 - 500 ºC). The second 

heterogeneous contribution for the methane activation can also be accomplished by reacting 

CH4 with OH● radicals due to the O-H bonds in H2O (497 kJ mol-1) are stronger than the C-

H bond in CH4 (439 kJ mol-1).54,55 These radicals can be found onto the catalytic surface, 

and they prevail at higher temperatures. Therefore, this could be the cause of the strong 
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increase in C2 yield observed from 550 to 600 ºC. There exist some other reactions in the 

gas-phase chemistry that contributes to CH3
● formation via both, oxidative and non-

oxidative reactions which are generally known from combustion research.55,56 However, 

this latter gas-phase chemistry route has less effect in OCM reaction than the heterogeneous 

pathway. The catalytic test shown in Figure 9, in which we study the reaction behavior 

increasing and decreasing temperature, indicated no deactivation of the catalyst in 40 hours 

of time-on-stream. 

In addition, SrLaCe3-powder was prepared in order to compare with the 

nanostructured fibers. It is clearly shown in Figure 9(C) that the powder exhibits worse C2 

yields than the nanofibers. Moreover, the maximum yield of 19.5 % was reached at 750 ºC. 

Once more, the nanostructure is beneficial and it highly improves C2 yield in OCM 

reaction. As said before, no only the morphology of the fibers is important in determining 

in improving C2, the influence of the surface properties and the dispersion of the elements 

should not ruled out. Finally, it is demonstrated that the nanofiber structure allows the 

catalytic system to reach the maximum yields at lower temperatures, 150 ºC less. This 

phenomenon was already seen by other authors, and it could be ascribed to higher mass 

transfer properties of nanofiber catalysts as compared with the powder ones.57. Another 

important feature of nanofibers is the high aspect ratio, which gives rise to randomly 

packed beds with a much higher porosity.4 The combination of a relatively high geometric 

surface area with high bed porosity would favour the methane dehydrogenation step, which 

is the rate-limiting one, and the release of methyl radicals to the gas phase, where they can 

be coupled to form ethane and ethylene. This could be a suitable explanation for the better 

performance of the nanofibers as compared to their powder form. 
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Another important factor that should be considered is the temperature profile inside 

the reactor. Due to OCM is a strongly exothermic reaction, the possible formation of hot 

spots with temperatures higher than those measured must be considered. However, we 

concluded that due to the low reactant flow and concentrations used in the experiments the 

heat flux calculated from the reaction enthalpy and the observed methane conversion is low 

(2.12 W). Therefore, the formation of important hot spots inside the reactor, not detected by 

the thermocouple, it is not expected. However, this is an important point to be taken into 

account, and requires further analysis, for example using a theoretical model to predict 

radial and axial temperature profiles. A thorough study about this point has been recently  

reported.58 

The C2 yield of SrLaCe3 is between the highest values reported in the literature at this 

temperature. It is believed that the tri-component catalysts show the best performances in 

OCM.24 Notably, Othman et al. reported that an OCM reaction conducted in a novel 

microreactor composed of a hollow fiber membrane (made of La0.6Sr0.4Co0.2Fe0.8O3-δ 

(LSCF)) led to an excellent C2 yield of 39 % (highest reported so far in literature) at an 

approximate methane conversion of 50 %.59 However, these results were obtained at 900ºC. 

4. Conclusions 

In summary, the addition of 5 wt.% of Sr to La2O3-CeO2 nanofibers enhances the 

CH4 conversion and C2 selectivity, specially for SrLaCe3 and SrLaCe1. The catalyst with 

higher concentration of lanthanum shows the best behavior in OCM reaction. The addition 

of Sr promotes the formation of electron deficient oxygen species (as O2- and O-) on the 

catalytic surface which constitute active sites in the oxidative coupling of methane reaction.  
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The synergistic effects from combinations of each component in Sr-La-Ce nanofibers 

brought about an improved catalytic behavior for the OCM reaction carried out at lower 

temperature, which cannot be achieved over the conventional SrLaCe powder catalysts. 

In the LaCe and SrLaCe nanofibers as well as in LaCe3 and SrLaCe3 powders, the 

formation of crystalline solid solutions with LaxCeyOz formula were detected by XRD, in 

agreement with theoretical ratios La/Ce, where the lanthanum was well incorporated in the 

CeO2 structure.  

For SrLaCe3 nanofibers CH4 conversion and C2 yield were up to 28.5 % and 21.7 % 

at 600 ºC, respectively; while SrLaCe3-powder achieves C2 yield of 19 % at 750 ºC. This 

behavior was ascribed to higher heat and mass transfer properties of catalytic nanofibers as 

compared with powder one. In addition, the combination of a relatively high geometric 

surface area with high bed porosity of nanofibers improves the catalytic performance on 

OCM reaction. 
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Figure 1. LaCe3 SEM micrographs of different samples (before calcination) obtained by 
diverse machine parameters: air flows and applied voltages. 
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Figure 2. SEM micrographs of: (A) PVP nanofibers. (B) LaCe0.1@PVP nanofibers (before 
calcination) (C) LaCe0.1 nanofibers (after calcination at 625 °C). 
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Figure 3. SEM micrographs of LaCe nanofibers (after calcination at 625 °C) with different 
compositions. (A) and (E) LaCe0.1, (B) and (F) LaCe0.2, (C) LaCe1, and (D) and (G) 
LaCe3. 
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Figure 4. SEM micrographs of SrLaCe nanofibers (after calcination at 625 °C) with 
different compositions. (A) and (E) SrLaCe0.1, (B) and (F) SrLaCe0.2, (C) and (G) 
SrLaCe1, and (D) and (H) SrLaCe3. 
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Figure 5. XRD patterns of LaCe0.1, LaCe0.2, LaCe1 and LaCe3 nanofibers: full lines 
indicate the XRD peak positions of cubic CeO2 (ICDD card 00-034-0394), dot lines 
those of La2O3 (ICDD card 03-065-3185) and  peak position possibilities of solid 
solutions LaxCeyOz. 
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Figure 6. XRD patterns of SrLaCe0.1, SrLaCe0.2, SrLaCe1 and SrLaCe3 nanofibers: 
full lines indicate the XRD peak positions of cubic CeO2 (ICDD card 00-034-0394), dot 
lines those of La2O3 (ICDD card 03-065-3185), * those of SrCO3 and  peak position 
possibilities of solid solutions LaxCeyOz. 
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Figure 7. XPS results from SrLaCe3 and LaCe3 of: (A) La 3d, (B) O 1s and (C) Sr 3d 
regions. 
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Figure 8. Catalytic behaviour of LaCe nanofibers: (A) Methane conversion, (B) selectivity 
towards C2 and (C) C2 yield. Reaction conditions: W/F=0.166 mg cm-3 h, Flow 
composition: 60 vol.% CH4, 12 vol.% O2 and 28 % vol. He. 
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Figure 9. Catalytic behaviour of SrLaCe nanofibers: (A) Methane conversion, (B) 
selectivity towards C2 and (C) C2 yield. Reaction conditions: W/F=0.166 mg cm-3 h, Flow 
composition: 60 vol.% CH4, 12 vol.% O2 and 28 % vol. He. 

300 400 500 600 700
0

5

10

15

20

25

30

 

 

M
et

h
an

e 
co

n
ve

rs
io

n 
(%

)

Temperature (C)

 SrLaCe3
 SrLaCe1
 SrLaCe0.2
 SrLaCe0.1

(A)

300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

 

 

S
el

ec
tiv

ity
 t

o
w

ar
d

s 
C

2 (
%

)

Temperature (C)

 SrLaCe3
 SrLaCe1
 SrLaCe0.2
 SrLaCe0.1

(B)

300 400 500 600 700 800

0

5

10

15

20

25

 

 

C
2 

yi
e

ld
 (

%
)

Temperature (°C)

 SrLaCe3
 SrLaCe3-powder
 SrLaCe1
 SrLaCe0.2
 SrLaCe0.1

(C)

Page 41 of 46

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



42 
 

 

Table 1. Nomenclature of different nanofibers. Theoretical values of sample compositions 

and XRD identification. 

 
Ce  

(wt. %) 

La  

(wt. %) 

Sr 

 (wt. %) 
La/Ce Identified phases 

ICDD 

reference 

cards 

LaCe0.1 90  10  - 0.11 Near CeO2 
Near 00-

034-0394 

LaCe0.2 80  20  - 0.25 La0.2Ce0.8O1.9 04-016-6693 

LaCe1 50  50  - 1 La0.5Ce0.5O2 04-006-3412 

LaCe3 25  75  - 3 

No card available but 

near La2O3 

+ CeO2 

Near 

03-065-3185 

00-034-0394 

SrLaCe0.1 85.7  9.3  5  0.11 

Sr0.06La0.03Ce0.91O1.925 

or La0.05Ce0.95O1.975 

or La0.1Ce0.9O1.95 

or La0.15Ce0.85O1.925 

+SrCO3 

04-021-0597 

01-080-3723 

01-080-3724 

04-019-5520 

01-084-1778 

SrLaCe0.2 76.2  19  5  0.25 

Same pattern than 

LaCe0.2 

(La0.2Ce0.8O1.9) 

+SrCO3 

 

 

04-016-6693 

01-084-1778 

SrLaCe1 47.6  47.6  5  1 

Same phase than 

LaCe3 

+ La0.2Ce0.8O1.9 

+SrCO3 

Near 03-

065-3185 

04-016-6693 

01-084-1778 

SrLaCe3 23.8  71.4  5  3 

Same pattern than 

LaCe1 

(La0.5Ce0.5O2) 

+SrCO3 

 

 

04-018-7404 

01-084-1778 
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Table 2. Atomic concentration of SrLaCe nanofibers 

obtained by EDX technique. 

Catalytic 

fibers 

Atomic concentration (%) 

Sr La Ce O C 

SrLaCe0.1 4.7 1.9 16.0 57.2 20.2 

SrLaCe0.2 4.7 4.9 18.6 48.2 23.6 

SrLaCe1 4.5 8.7 8.0 60.4 18.4 

SrLaCe3 4.6 18.5 5.8 47.9 23.2 
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Table 3. XPS analysis results. 

Catalytic 

fibers 

Binding Energy (eV) 

La 3d5/2 La 3d3/2 Ce 3d5/2 Ce 3d3/2 O1s Sr3d 

LaCe3 835.6 

839.6b 

852.4 

856.4 b 

882.9 

888.4 

898.1 

901.0 

907.6 

916.5 

529.1/8.9 a 

530.6/44.8 

533.2/46.3 

 

SrLaCe3 835.3 

839.1 b 

852.1 

855.9 b 

882.5 

888.8 

898.5 

901.0 

907.1 

916.5 

528.9/14.7 

530.1/21.0 

532.8/64.3 

134.8/63.6a 

136.6/36.4 

a Percentage fraction of each component. 

b Satellite peak 
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Table 4. Concentration of constituent elements on the nanofibers surface. 

Fibers 
Surface atomic concentration (%) from XPS 

La/Ce 
Sr La Ce O 

LaCe3 - 21.6 4.7 73.4 4.6 

SrLaCe3 3.6 14.9 3.5 78.0 4.2 
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