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The magnetic behavior of bcc iron nanoclusters, with diameters between 2 and 8 nm, is investigated by means
of spin dynamics simulations coupled to molecular dynamics, using a distance-dependent exchange interaction.
Finite-size effects in the total magnetization as well as the influence of the free surface and the surface/core
proportion of the nanoclusters are analyzed in detail for a wide temperature range, going beyond the cluster
and bulk Curie temperatures. Comparison is made with experimental data and with theoretical models based on
the mean-field Ising model adapted to small clusters, and taking into account the influence of low coordinated
spins at free surfaces. Our results for the temperature dependence of the average magnetization per atom
M(T ), including the thermalization of the transnational lattice degrees of freedom, are in very good agreement
with available experimental measurements on small Fe nanoclusters. In contrast, significant discrepancies with
experiment are observed if the translational degrees of freedom are artificially frozen. The finite-size effects on
M(T ) are found to be particularly important near the cluster Curie temperature. Simulated magnetization above
the Curie temperature scales with cluster size as predicted by models assuming short-range magnetic ordering.
Analytical approximations to the magnetization as a function of temperature and size are proposed.
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I. INTRODUCTION29

At the nanoscale, finite-size effects can strongly influence30

the magnetic properties of materials [1]. Fe layers deposited31

on W substrates (typically on the order of few hundreds of32

Fe atoms) are a prototypical example of those effects [2].33

Numerical and experimental studies have extensively demon-34

strated the impact of the size, dimension, and number of35

Fe monolayers on their magnetic properties, including order-36

ing temperature (Curie or Néel), magnetic susceptibility, or37

magnon dispersion relations [3–5]. In the field of magnetic38

nanoclusters, large departures from the corresponding bulk39

magnetic properties have also been observed. For example,40

hysteresis loop, coercive field, ordering temperature, or spon-41

taneous magnetization, have been shown to drastically depend42

on the size of iron oxide nanoparticles (NPs) [6–8].43

Understanding magnetism at the nanoscale is important44

since the computed or measured magnetic properties can be45

used to parametrize micromagnetic models, which are ex-46

tremely valuable to simulate technological applications [9].47

This is the case, for example, even in the most basic Stoner-48

Wohlfarth (SW) model [10], which represents the coercivity49

*gonzalodossantos@gmail.com

and switching field of a magnetic single-domain NP. In its 50

simplest form, the SW model depends on the total magne- 51

tization and anisotropy energy of the particle. It is therefore 52

of fundamental importance to develop accurate numerical 53

tools evaluating how the cluster magnetization is affected 54

by temperature and particle size. Electronic first-principles 55

calculations are certainly extremely valuable to obtain better 56

insight at localized effects and to derive magnetic interaction 57

parameters [11]. However, the involved computational costs 58

and their poor scalability makes them unpractical for simu- 59

lating NPs in the size range of technological interest, as they 60

are typically limited to systems up to a few hundreds of atoms 61

[12,13]. Consequentely, developing reliable novel approaches 62

is crucial for the progress in this field. 63

Leveraging an adiabatic atomistic spin approximation [14], 64

atomistic spin dynamics (ASD) is a widely used classical spin- 65

lattice methodology allowing us to model complex nanoscale 66

systems [15–18]. Magnetic trajectories are simulated on a 67

potential energy surface generated by a magnetic Hamilto- 68

nian usually parametrized from first-principles calculations 69

[19]. Assuming fixed atomic positions, ASD simulations do 70

not account for magnon-phonon interactions. Former studies 71

have displayed the importance of those interactions on the 72

description of materials properties such as magnon lifetime, 73

phononic thermal conductivity, magnetic switching or critical 74
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temperature [20–22]. Spin dynamics (SD) can also be used as75

a coarse grained approach, to compute the time evolution of76

blocks of the systems having many atoms with some effective77

magnetization. This allows the simulation of micron-sized78

systems that are of technological relevance [23–26]. ASD has79

been recently applied to Fe oxide NPs, using a triangular80

lattice [27].81

A study accounting for the magnon-phonon interactions in82

molecular dynamics (MD) simulations has been performed by83

Dudarev and Derlet. Using a combination of the Stoner and84

the Ginzburg-Landau models, they developed a “magnetic”85

potential for α iron to take into account some effects of86

magnetism, including the energetics of point defects [28,29].87

Later, a numerical methodology coupling MD and ASD by88

explicitly treating atomic and spin degrees of freedom as well89

as their coupling through a magnetoelastic Hamiltonian was90

presented by Ma et al. [30]. Recently, a large number of91

investigations have been carried out applying MD coupled92

to spin dynamics simulations (MD-SD) to explain experi-93

ments of magnetic instability [31], demagnetization, impact94

of temperature on magnetomechanical properties, and phase95

transitions [21,32]. This includes the development of a new96

software for the implementation of the model, SPILADY [33].97

Perera et al. carried out studies of magnetic Fe using MD-SD98

[34], including spin-orbit coupling effects [35]. Other recent99

studies incorporate additional exchange parameters obtained100

from ab initio methods [36].101

In this paper, SD coupled to classical MD simulations102

[37] is used to incorporate thermal spin and mechanical ef-103

fects which are difficult to include in ASD simulations. This104

method is applied to Fe nanoclusters to obtain magnetization105

versus size and temperature, subsequently comparing those106

results to semianalytical models.107

The paper is organized as follows. In Sec. II, the simulation108

framework employed is presented, as well as the details of109

the calculations. In Sec. III, two semianalytical models are in-110

troduced to qualitatively analyze numerical simulations. The111

results are presented and discussed in Sec. IV. Finally, the112

main conclusions are drawn in Sec. V.113

II. METHODS114

A. Theoretical framework115

In this paper, we perform MD-SD, where the spin degrees116

of freedom are coupled to the lattice degrees of freedom. For117

this purpose, we run our simulations under the SPIN package118

recently added to the software LAMMPS [37]. Under this119

framework, one is able to introduce magnetic effects in a120

classical MD simulation through a generalized Hamiltonian:121

H =
N∑

i=1

|pi|2
2mi

+
N∑

i, j,i �= j

V (ri j ) + Hmag. (1)

The first term is the kinetic energy of the atoms and the122

second term is a classical interatomic potential describing the123

mechanical interactions between the atoms. The last term is124

a magnetic Hamiltonian, which can contain several terms,125

accounting for spin-spin exchange interactions, magnetic126

anisotropy (cubic, uniaxial), Zeeman, dipolar, Dzyaloshinskii-127

Moriya, and magnetoelectric interactions. In this paper, we128

will consider isolated Fe NPs, with no interaction with ex- 129

ternal magnetic fields. The simplified magnetic Hamiltonian 130

used in the present work is given by 131

Hmag = −
N∑

i, j,i �= j

J (ri j )si · s j + Hcubic. (2)

The first term is a Heisenberg Hamiltonian accounting for 132

spin-spin interactions, where si is the normalized spin vector 133

of spin i and J (ri j ) is the Heisenberg magnetic coupling ex- 134

change constant, which depends on the distance ri j between 135

atoms i and j. The second term accounts for cubic magnetic 136

anisotropy and is given by 137

Hcubic =
N∑

i=1

K1[(si · n1)2(si · n2)2 + (si · n2)2(si · n3)2

+ (si · n1)2(si · n3)2]+K2(si · n1)2(si · n3)2(si · n3)2,

(3)

where K1 and K2 are the intensity coefficients and n1, n2, and 138

n3 are unitary vectors along the three anisotropic directions 139

of the material. For bcc iron n1 = (100), n2 = (010), and 140

n3 = (001). The anisotropy term given by Eq. (3) applies a 141

precession torque on each magnetic spin. 142

The central aspect of this simulation scheme is the addition 143

of a classical spin vector si to each atom i. This enables mag- 144

netic degrees of freedom to be explicitly treated and added to 145

the atomic degrees of freedom, momentum pi, and position 146

ri. The equations of motion (EOM) can be derived from the 147

Hamiltonian of Eq. (1): 148

dri

dt
= pi

mi
, (4)

d pi

dt
=

N∑
i, j,i �= j

[
dV (ri j )

dri j
+ dJ (ri j )

dri j
si · s j

]
ei, (5)

dsi

dt
= wi × si, (6)

where ei is a unit vector along the direction of the vector ri j 149

and wi is the analog of a spin force applied to spin i, defined as 150

wi = −1

h̄

∂Hmag

∂si
. (7)

The distance dependence of the exchange constant J (ri j ) 151

on the first term of Eq. (2) is a key aspect of the model since 152

it mediates the spin and lattice coupling. Furthermore, J (ri j ) 153

is modeled by a function based on the Bethe-Slater curve 154

[38,39], parameterized using three coefficients that must be 155

fitted to ab initio calculations: 156

J (ri j ) = 4α
( ri j

δ

)2
[

1 − γ
( ri j

δ

)2
]

e−(
ri j
δ

)2
�(Rc − ri j ), (8)

where �(Rc − ri j ) is the Heaviside step function and Rc is 157

the cutoff distance. In the present paper, we have used the 158

parametrization for bcc iron described in previous works 159

[20,37] from ab initio calculations reported by Pajda et al. 160

[40]. Specifically, the values of the fitting parameters are 161

α = 25.498 meV, γ = 0.281, δ = 0.1999 nm, and exchange 162

interaction cutoff distance Rc = 0.34 nm. The same J (ri j ) ap- 163

plies to all atoms in the NP. Notice that there is no general 164
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agreement about the exact value of the coupling-exchange165

constant for different interatomic distances for bcc Fe. In fact,166

the reported values of J (ri j ) from ab initio calculations found167

in the literature show large discrepancies [40–42].168

Temperature in other simulation schemes, such as micro-169

magnetic simulations, is not uniquely defined and has to be170

rescaled to compare with experiments [24]. In the simulations171

presented here, lattice and magnetic temperatures have a clear172

definition. The equilibrium lattice temperature is related to the173

kinetic temperature of the atoms and is defined as in classical174

MD simulations,175

TL = 2

3NkBT

N∑
i=1

|pi|2
2mi

, (9)

where kB is the Boltzmann constant. Following the approach176

of Nurdin and Schotte [43], the temperature of the spin system177

is defined as follows:178

TS = h̄

2kBT

∑N
i=1 |si × wi|2∑N

i=1 si · wi

. (10)

In addition, in these spin-lattice simulations, the effect179

of temperature in lattice expansion is more realistic (due to180

the spin-lattice coupling) than in some previous approaches,181

which consider, for example, an homogeneous linear thermal182

expansion of the lattice with fixed atoms [44]. To thermalize183

the system and maintain a constant temperature, both the184

lattice and spin subsystems can be connected (separately) to185

a thermal bath. This connection is performed following the186

Langevin approach [14,45]. For the SD, this connection intro-187

duces a random torque and Eq. (6) is replaced by a stochastic188

Landau-Lifshitz-Gilbert equation, while for the lattice subsys-189

tem a damping term and a random force are added to Eq. (5).190

This yields the following EOM:191

dri

dt
= pi

mi
, (11)

d pi

dt
=

N∑
i, j,i �= j

[
dV (ri j )

dri j
+ dJ (ri j )

dri j
si · s j

]
ei

− γL

mi
pi + f (t ), (12)

dsi

dt
= 1

1 + λ2
[(wi + η(t )) × si + λsi × (wi × si )], (13)

where λ and λL are damping parameters for the spin and lat-192

tice subsystems, respectively. In addition, the random vector193

η(t ) and the random fluctuating force f (t ) are drawn from a194

Gaussian probability law with 〈η(t )〉 = 〈 f (t )〉 = 0. For extra195

details on thermostats and the properties of η(t ) and f (t ),196

see Ref. [37]. The interaction between atoms is modeled us-197

ing an embedded atom model (EAM) interatomic potential198

[46] which describes reasonably well several Fe properties,199

including the thermal expansion, phonon dispersion curves,200

mean-square displacements, and surface relaxations. The in-201

teratomic cutoff distance for this potential was set to 0.35 nm.202

The simulations are performed using classical atomic203

dynamics and classical SD, without considering any quantum-204

mechanical effects. This is in line with the adiabatic approx-205

imation. However, the behavior at cryogenic temperatures206

FIG. 1. Finite-size scaling for bulk magnetization simulations,
using periodic boundary conditions. The data correspond to simu-
lations run at 300 K and error bars show standard deviation resulting
from averaging magnetization over the final 0.5 ns.

might not be well described. Moreover, other effects result- 207

ing from electron-phonon and electron-spin coupling are not 208

included. There are studies which include electrons within a 209

“classical” two-temperature model approach for electrons and 210

atoms, leading to a three-temperature model when spins are 211

also included [33]. 212

The SD is calculated using a Landau-Lifshitz-Gilbert 213

approach [14], integrated with a Suzuki-Trotter integrator. 214

Details can be found in Tranchida et al. [37]. 215

B. Simulation details 216

Body centered cubic (bcc) iron NPs are simulated ranging 217

their diameter and temperature from 2 to 8 nm and from 218

10 to 1300 K, respectively. In addition, “bulk” simulations 219

were run and used as a reference to address the finite-size 220

effects of the NPs. In these cases, we have modeled cubic 221

simulation boxes with linear sizes of 10 a0, 20 a0, and 30 a0 222

(with a0 = 2.8665 Å the bcc Fe lattice parameter) containing 223

2000, 16 000, and 54 000 atoms, respectively, and considering 224

periodic boundary conditions in the three directions. 225

The magnetization values for the bulk systems were ob- 226

tained from linear finite-size scaling analysis. As shown in 227

Fig. 1, the magnetization values for the systems with L = 10, 228

20, and 30 are plotted as a function of 1/L, and then the bulk 229

magnetization is determined as the intercept of a linear fit for 230

those points. 231

All systems were simulated without external magnetic 232

field, and considering cubic magnetic anisotropy along the 233

three main axes of the bcc lattice (details of how the 234

anisotropy is included in the simulations are given in 235

Ref. [37]). The anisotropy constants were set to K1 = 236

3.5 μeV/atom and K2 = 0.36 μeV/atom [47]. It has been 237

argued that anisotropy values vary near the surface of NPs 238

due to the reduction of coordination [48,49]. Nevertheless, as 239

shown by Ellis and Chantrell [50], for example, the overall 240

effect in FePt NPs of 4.632 nm and 2.316 nm is a change 241

of about 10% in the anisotropy constant. In this paper, the 242

anysotropy constant is assumed to be the same for all NPs, 243
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FIG. 2. Time dependence of the components mx , my, mz, of the
magnetization along the x, y, and z axes and the total magnetization
M during a typical simulation. The results correspond to simulations
of a 2-nm-wide sphere at 400 K.

despite surface proportion being clearly different for the sizes244

studied here.245

Initially, all atomic spins were oriented along the z axis246

([001] direction). This initial configuration was chosen since247

the magnetization reaches an equilibrium value faster than248

when the spins start from a random configuration (see Fig.249

S1 in the Supplemental Material [51]).250

All simulations span more than 0.5 ns, using a time step of251

1.0 fs. All samples were initially thermalized to equilibrium252

using a Langevin thermostat applied to the lattice and another253

thermostat applied to the spins to ensure fast thermal equilib-254

rium. In all cases, we used a damping factor of λL = 1.0 for255

the lattice thermostat and a transverse damping λs = 0.1 for256

the spin system. Before the thermostat was applied, atomic257

velocities were set so as to obtain an initial temperature of258

300 K (or 10 K in the cases of the simulations with T <259

300 K). Applying the thermostat, thermal equilibrium was260

reached in all cases in a time between 2 ps and 10 ps with261

some fluctuations around the set temperature. Similarly, the262

resulting magnetization quickly reaches a stable value and263

remains stable during the simulation although its components264

may fluctuate, as shown in Fig. 2.265

Once the simulation results were obtained, we conducted266

post-processing analyses using the free software OVITO [52].267

In particular, we employed the coordination analysis tool to268

distinguish between atoms in the outer layer of the sphere269

(shell or surface) and the inner ones (core) to obtain the mag-270

netization curves of these two different regions. In all cases,271

a single layer of atoms was selected within the surface group,272

as shown in Fig. 3. Details of the number of atoms contained273

in each NP and the ones belonging to the surface and the core274

regions are presented in Table I.275

TABLE I. Total number of atoms, surface atoms, core atoms, and
percentage of surface and core atoms for each studied Fe nanocluster.

Diameter No. of atoms Surface atoms Core atoms % surface % core

2 nm 339 177 162 52.21 47.79
3 nm 1243 528 715 42.48 57.52
4 nm 2741 808 1933 29.48 70.52
5 nm 5601 1480 4121 26.42 73.58
6 nm 9577 2054 7523 21.45 78.55
8 nm 22659 3695 18 964 16.31 83.69

FIG. 3. Snapshot of one half of a 6-nm diameter Fe NP, obtained
with software OVITO [52], inscribed in a cubic region with periodic
boundary conditions. The shell and core regions are indicated by the
colors, where each small sphere represents an atom.

Total magnetization averages were computed over the last 276

300 000 steps of the simulation. To minimize computational 277

cost, core, and shell magnetization (Mc and Ms, respectively) 278

results were obtained averaging over the last 100 ps of the 279

simulation. 280

III. MEAN-FIELD ISING MODELS 281

Coupled MD-spin simulations are an advanced modeling 282

tool that has never been applied to magnetic NPs. It is there- 283

fore useful to probe our results by comparing them to simpler 284

and more commonly used models. In this section, two variants 285

of the mean-field Ising model have been applied to NPs to 286

perform that comparison. 287

A. Spin model including surface effects 288

Our results can be compared with a theoretical model that 289

includes surface effects on the magnetization. This model, 290

originally proposed by Mills [53], is known as semi-infinite 291

Ising model with a free surface, i.e., basically a mean-field 292

Ising model of a ferromagnet with a free surface. It is assumed 293

that the spins are arranged in a lattice (bcc in this case) and 294

that the spins in all lattice sites are given by Si = ±1 where 295

Si = +1 means that spin i is pointing along the positive z 296

direction and Si = −1 means that spin i is pointing in the op- 297

posite direction. In this model, the exchange coupling constant 298

J is the same for all nearest-neighbor (NN) pairs, except for 299

the case of pairs at the surface of the ferromagnet where it is 300

denoted by Js. A layered structure is then obtained with the 301

Hamiltonian being given by 302

H = −J
N∑

〈i, j〉/∈S

μi · μ j − Js

N∑
〈i, j〉∈S

μi · μ j . (14)

Following the mean-field approach, the magnetization for 303

the surface ms and for each successive layer m1, m2, . . . mn, 304

are given by 305

ms = 〈μi∈S〉 = tanh(4KSmS + Km1), (15)

m1 = 〈μi∈1〉 = tanh(4Km1 + KmS + Km2), (16)
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mn = 〈μi∈n〉 = tanh(4Kmn + Kmn−1 + Kmn+1), (17)

where Ks = βJs and K = βJ with β = 1/kBT and kB is the306

Boltzmann constant. It is important to notice that K and Ks307

are not related to the anisotropy constants K1 and K2 described308

previously. In this paper, we have adopted a two-layer approx-309

imation, meaning that we have considered that the system’s310

magnetization is unaltered after the first layer (the one after311

the surface), m1 = m2 · · · = mn = mbulk. Therefore, m1 repre-312

sents the cluster core magnetization and, in addition, we have313

set Js = J . In this way, the summation on the first term of the314

right-hand side of the Hamiltonian [Eq. 14)], runs over the315

eight first neighbors (core) and the one on the second term316

runs over four first neighbors [(100)-like surface]. Related317

electronic models have been used to obtain the magnetization318

of Fe thin films [44].319

B. Spin model including finite-size effects320

A previous theoretical model developed in Ref. [54] is321

summarized below. The model is based on the mean-field322

approximation for the Ising model, adapted to the statistics of323

few-particle systems. The mean-field approach is well known324

and does not need explanation. However, if a few-particle sys-325

tem is analyzed, we should be careful with the approximations326

that are used when obtaining the fundamental equations in327

the microcanonical formalism [55]. In particular, the Stirling328

approximation (ln x! ≈ x ln x − x) cannot be applied, and the329

factorial must be written in terms of the Gamma function:330

	(x) = (x + 1)!. This implies working with the derivative of331

this function, known as the digamma function:332

ψ (0)(x) = d	

dx
. (18)

Taking this into account, a self-consistent equation for the333

magnetization M is found. If there are N atoms in the system334

and the coordination number between them is z, the magneti-335

zation is given by the solution of the equation336

M = kBT

zJ

{
ψ (0)

[
N

2
(1 + M ) + 1

]
−ψ (0)

[
N

2
(1 − M ) + 1

]}
.

(19)

Naturally, this simple model does not allow us to make pre-337

cise quantitative predictions due to the coarseness of the338

mean-field approach. However, one could expect to obtain339

a reasonable qualitative comparison with the results of the340

simulations. Equation (19) has to be solved numerically for341

the conditions in each simulation.342

IV. RESULTS AND DISCUSSION343

A. Simulation results344

Typical initial atomic and spin configurations and its evolu-345

tion after 500 ps of simulation can be seen in Figs. 4 and 5 for346

different NP sizes and temperatures. For more insight about347

the individual atomic spins dynamics, the reader is referred348

to movies SM1 and SM2 in the Supplemental Material [51],349

where evolution of simulations are shown for a group of spins350

FIG. 4. Snapshots of a typical simulation of a NP with a diameter
of 6 nm. In (a), the atomic spins are displayed as arrows, with color
indicating magnitude of mz at 600 K. (b) Same as (a) for thin slab at
the center of the nanoparticle. The initial condition of the simulations
was mz = 1, i.e., all spins pointing along the positive z axis. See also
the movies SM1 and SM2 in the Supplemental Material [51].

belonging to a slab at the center of the sphere (SM1) and also 351

for the spins from the surface of the NP (SM2). 352

The temperature dependence of the total magnetization is 353

shown in Fig. 6 for NPs of 2, 4, and 8 nm in diameter, along 354

with the bulk system. Results for all simulated clusters are not 355

included in this graph to avoid cluttering; a graph with the 356

complete set of the simulated NPs appears in Fig. S2 of the 357

Supplemental Material [51]. Figure 6 indicates that the bulk 358

Curie temperature, TC , in our simulations is around 650 K, 359

lower than the 1040 K in experiments, and this difference 360

FIG. 5. Snapshots of simulations showing the z-component mz

of the atomic magnetization for nanoparticles having (a) 2 nm and
300 K, (b) 2 nm and 1200 K, (c) 6 nm and 300 K, and (d) 6 nm
and 1200 K. The small spheres represent atoms. White indicates that
the spins point along the positive z axis, while black indicates that
mz points along the negative z axis. The z axis is vertical with the
positive direction pointing upward in the figures.
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FIG. 6. Total normalized magnetization as a function of temper-
ature for different NPs compared to the bulk values.

is discussed later. From Fig. 6, there are indications of an361

increase of TC with decreasing cluster size, reaching around362

TC ∼ 800 K for a 2-nm cluster with ∼500 atoms.363

At the low-temperature regime, as the size of the Fe nan-364

oclusters is reduced, the magnetization takes lower values than365

the bulk ones for all sizes. The difference is larger as the366

temperature is increased up to about 550–600 K. This is the367

expected behavior since the surface contribution to the total368

magnetization is more important in smaller NPs due to the369

larger surface/bulk proportion (see Table I). When the temper-370

ature is raised to about T ≈ 500 K, the surface magnetization371

decreases faster than the core contribution since the spins on372

the outer layer, having smaller local coordination number,373

are disordered more easily (see Fig. 11). For temperatures374

higher than 500 K, the bulk magnetization is the one that375

decreases faster, i.e., changing to the opposite behavior. This376

is displayed by the interception of the curves around T ≈377

550 K in Fig. 6. A similar crossover has been also observed in378

other studies of magnetic NPs [50,56].379

It is interesting to compare our results with those of sim-380

ulations in which the atoms are static. In Fig. 7, we have381

compared the magnetization curves with the ones correspond-382

ing to NPs with fixed atomic positions. At low temperatures,383

below 400 K, there is no significant difference. Our results384

for bulk Fe are consistent with other simulations which found385

only a small decrease of the critical temperature with the386

inclusion of a thermalized, moving lattice [36,57]. For the387

2-nm case, the moving atoms lead to a minor decrease in388

magnetization, since the NP is already quite disordered, from389

a magnetic point of view, at temperatures where the fluctu-390

ations of the interatomic distances become important due to391

the large fraction of surface atoms (see Table I). For the 8-nm392

case, magnetization goes to zero at lower temperatures for393

the moving atoms, as expected from the bulk simulations. At394

600 K, near the critical temperature, the mean value of the395

NN distances changes less than 1% with respect to the one396

for the frozen lattice. As a result, the value of J (ri j ) averaged397

over the distribution of NN atomic distances at 600 K is only398

slightly different than the value J (rNN) for fixed atoms, chang-399

ing less than ∼3%. Therefore, neither a lattice expansion nor400

FIG. 7. Temperature dependence of the magnetization M(T ) as
obtained using MD-SD, for (a) Fe bulk, nanoparticle diameters
(b) 8 nm, and (c) 2 nm. The results for thermalized and frozen trans-
lational degrees of freedom are compared. Bulk results correspond to
cubic simulation boxes with 20 a0 sides.

a fluctuating mean value for J can explain the decrease in 401

magnetization found in our simulations for a moving lattice. 402

This is a clear indication that the coupling between lattice and 403

spins play a significant role for not-too-small Fe particles near 404

TC . Calculation of time and spatial correlation functions might 405

help understanding this in detail. 406

Complementary insight is obtained by comparing our 407

results with simulations for static spins in a regular lat- 408

tice [58]. Let us assume only NN interactions and J = 409

15 meV, similar to the value in our simulations for dis- 410

tances between first and second neighbors. The Ising model 411

in 3D gives TC = zJ/kB for the mean-field approximation, 412

where z is the coordination number (8 for bcc) result- 413

ing in TC = 1393 K. However, Bethe’s solution gives TC ≈ 414

2J/kB ln(z/(z − 2)) ≈ 1200 K. The classical Heisenberg 415

model gives TC ≈ 4zJ/3kB = 1857 K, using the mean-field 416

approximation. Using a high-temperature expansion, this 417

changes to (105/96)(z − 1)J/kB = 1333 K [58]. As expected, 418

the mean-field approximation overestimates the Curie temper- 419

ature compared to the exact analytical models or to numerical 420

solutions. 421

Our NPs magnetization results are consistent, and show 422

really good agreement, with the experimental magnetization 423

curves for Fe nanoclusters reported by Billas et al. [59], 424

Fig. 8(a), where it can be seen that both the shape of the curves 425

and the estimated Curie temperature for the iron nanoclusters 426

are well reproduced. To compare with experimental results, 427

we have assumed a constant local magnetic moment of 2.2 μB. 428
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FIG. 8. (a) Experimental results for a Fe nanocluster of about 500–600 atoms as reported by Billas et al. [59] compared to the results of
our simulations of a Fe NP composed of 533 atoms using two different exchange functions J (ri j ). The exchange function J (ri j ) fitted from the
calculations of Pajda et al. [40] is the one used in this work and it reproduce quite closely the experimental results. The open circles correspond
to simulation results using the exchange function proposed by Ma et al. [30]. (b) Magnetization of a Fe Bulk system (cell size 20 × 20 × 20a3

0)
as obtained using the exchange function proposed by Ma et al. [30] (full circles). Bulk experimental data (triangles) and the results reported
by Ma et al. (open circles) are also shown for the sake of comparison.

While our simulation results match with experiments for429

small clusters, our bulk simulations yield an estimated Curie430

temperature around TC ≈ 650 K, far below the experimental431

value of 1043 K. The main reason for this discrepancy is the432

exchange coupling function used in this paper. When J (ri j ) is433

replaced, for example, by the one used by Ma et al. [30] (note434

the large discrepancies found in the literature for J (r) reported435

in Fig. 1 of Ref. [30]), our simulations show similar results436

regarding the experimental Fe Curie temperature, as the re-437

sults reported in that paper [Fig. 8(b)]. Should one use those438

parameters for small clusters, one obtains an overestimation439

of the cluster TC . Hypothetically, this is an indication of an440

important increase of the effective exchange function J (ri j )441

as the size of the NPs increase. It also reflects the challenge442

of modeling broad size ranges in the size-dependent effective443

interaction parameters.444

Some recent SD simulations which incorporate finite-445

temperature effects obtain a lower Curie temperature, TC , than446

experimental values [36,60]. It is known that SD simulations447

tend to smooth the ferromagnetic-paramagnetic transition448

near the Curie temperature due to the intrinsic coarse-graining449

of the numerical scheme and since quantum effects are not450

taken into account [20]. Nevertheless, adding a quantum me-451

chanical treatment does not guarantee a correct determination452

of TC [61]. The discrepancy between TC obtained in our sim-453

ulations and the experimental one could also be partly related454

to the fact that our magnetic exchange function J (ri j ) is not455

temperature nor size sensitive. In fact, in this framework, it is456

not possible to take into account any temperature-dependence457

changes in the electronic structure from which J (ri j ) is ob-458

tained. Modeling an exchange parameter that is function of459

T is expected to lead to a more precise estimation of TC460

[20,62,63]. In addition, including system-size variations of461

J (ri j ) might help reproducing the changes in TC which can462

be derived from Fe cluster experiments [59].463

Figure 9 displays the size dependence of the total magne-464

tization M(T ) which is plotted as a function of the inverse465

diameter for representative temperatures T. This allows 466

us to show the bulk magnetization values corresponding to 467

1/d = 0. At low temperatures, the calculated size dependence 468

is almost negligible. This trend contrasts with the well-known 469

enhancement of the average ground-state magnetization in Fe 470

clusters and surfaces, which can be qualitatively explained 471

from an electronic perspective as a consequence of 3d-band 472

narrowing [64]. The effect could be easily incorporated in 473

our simulation by taking into account the size dependence of 474

FIG. 9. Size dependence of the total magnetization at different
representative temperatures. The normalized magnetization is plotted
as a function of the particle inverse diameter (1/d). Symbols and
full curves correspond to the simulation results, whereas the dashed
lines represent the fitted curves. The error bars indicate the standard
deviation of the data that are taken into account in the average over
the last 0.3 ns. For the fitted curves, the function is M = a(1 −
bT )(1/d ) + ( T −TC

T )1/3 where a = 0.1, b = 1.003, and TC = 650 K.
The black dash-dotted line corresponds to M = 0.35(1/d )0.514 and
is related to the magnetization scaling behavior near the critical
temperature in the 3D Heisenberg model as detailed in the text.
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the local magnetic moment μi = |〈si〉|. As the temperature475

increases, so does the influence of the NP size on the total476

magnetization. These results are in good agreement with477

those reported by Iglesias and Labarta [7], who studied the478

size effects on maghemite NPs via Monte Carlo simulations.479

It is notable that Fig. 9 clearly shows two different regimes:480

low (T < 600 K) and high (T > 600 K) temperatures, sep-481

arated by the 600 K curve. For temperatures below 600 K,482

we find that the magnetization behavior is almost linear with483

the inverse diameter, showing higher values for larger NPs.484

This trend is expected, as adding more magnetic atoms to485

the particle stabilizes a stronger ferromagnetism, and thus486

increases the resilience of the total magnetization to thermal487

disorder. In addition, this linear size dependence is stronger488

when the temperature is increased. To further analyze these489

results, we have proposed a functional with only two free490

parameters for the magnetization as a function of temperature491

and cluster size. This approximation manages to reproduce the492

size dependence of the magnetization very well for tempera-493

tures below 600 K, as can be seen from the dashed lines in494

Fig. 9. The corresponding function is495

M(T, d ) = a(1 − bT )
1

d
+

(
TC − T

TC

)1/3

, (20)

with a = 0.1, b = 1.003, TC = 650 K, and d the NPs496

diameter.497

For temperatures above 600 K, the linear relation between498

M(T ) and 1/d is reversed, although the trend remains almost499

linear. At higher T, larger NPs retain less magnetization than500

smaller ones. This qualitative change reflects the intersection501

of the magnetization curves in Fig. 6.502

The two different regimes observed in Fig. 9 are separated503

from each other by the 600 K curve, where a different trend504

is observed. This different behavior may be due to competing505

effects, as the system is close to the critical temperature.506

Behavior of the magnetization with varying size is gov-507

erned by finite-size scaling laws. According to finite-size508

scaling theory [66,67], magnetization near the critical point509

should scale with size as M ≈ L(β/ν), where β and ν are the510

critical exponents related to the order parameter and corre-511

lation length, respectively. This means that the value of the512

magnetization for the bulk near the critical point would be513

lower than the simple extrapolation from a linear fit, as the514

one shown in Fig. 1. Magnetization near the critical tempera-515

ture is expected to scale as M (1/L)(β/ν) = (1/L)0.514, where516

β/ν = 0.514 is the estimated value for the critical exponents517

of the 3D Heisenberg model [68–71]. Therefore, the bulk518

value should be closer to the values for finite size NPs, as also519

shown in that figure. In addition, the behavior of the 600 K520

curve for clusters is also consistent with these arguments, as521

shown by the dashed-dotted line in Fig. 9, corresponding to522

M = 0.35(1/d )0.514.523

In practice, Fig. 9 shows that even above Tc, small sub-524

clusters of atoms with similar spin orientations nucleate in the525

NPs as well as in the bulk cells (before rapidly dissipating). In526

large NPs and bulk cells, those local clusters are likely to be527

averaged down by the larger number of atoms, or by other lo-528

cal clusters with opposition magnetization. As NPs are getting529

smaller, fewer clusters can nucleate and thus cannot average530

FIG. 10. Fe NP magnetization as a function of the number of
atoms N in the nanoclusters (symbols) at two representative temper-
atures above the predicted cluster TC , compared with different power
law relations, including the one proposed in Ref. [65], for clusters
with 15 atoms.

down the resulting local magnetic moments of each others. 531

This results in the persistence of a small net magnetization at 532

higher temperature. The trend observed above 600 K may be 533

thus explained by the presence of spin-spin correlations above 534

the Curie temperature. Indeed, short-range magnetic ordering 535

(SRMO) is known to persist in the paramagnetic state of iron 536

bulk and surfaces [72–74]. The importance of SRMO in Fe 537

above the Curie temperature has been explicitly demonstrated 538

in Ref. [65], where it was shown that correlated clusters with 539

size Ncl for a system with N atoms led to a magnetization M ∝ 540

(Ncl/N )1/2, with Ncl = 15 for Fe. This dependence is similar 541

to the one above from finite size-scaling, and Ncl = 15 is con- 542

sistent with 1st and 2nd NN shells in the bcc lattice, totalling 543

14 atoms, which is expected since the 2nd NN shell is only 544

around 14% further away than the NN shell, as it is shown 545

later in this section. Fig. 10 shows that our MD simulations 546

near TC , at 700 K, follow this relationship extremely well, 547

and that for larger temperatures Ncl decreases significantly, 548

due to thermal fluctuations decreasing magnetic correlation 549

as expected. In future work, the temperature dependence of 550

spin-spin correlation functions and related structure factors 551

could be evaluated for different NP sizes in order to study this 552

in detail. 553

The two different regimes observed in Fig. 9 may also 554

be explained by assuming distinct core and surface magneti- 555

zations. Making this distinction, the total magnetization can 556

be written as M(T ) = Mc(T ) − [Mc(T ) − Ms(T )] 1
d , where 557

Mc(T ) and Ms(T ) represents, respectively, the core and shell 558

magnetization contributions for a NP of diameter d . In this 559

way, the total magnetization is closer to the bulk magnetiza- 560

tion as the size of the NP increases. Consequently, if Ms(T ) 561

decreases faster than Mc(T ) as the temperature is increased, 562

the slope of M vs. (1/d ) becomes steeper, ([Mc(T ) − Ms(T )] 563

becomes larger), which is the case observed in Fig. 9 until 564

T = 500 K . At 600 K, for the smaller NPs ( 1
d � 0.33), both 565

the interior and surface spins are disordered, that is, Mc(T ) 	 566

Ms(T ) and the curve is flatter, i.e. practically does not depend 567
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FIG. 11. Total normalized magnetization M, core magnetization Mc and shell magnetization Ms a functions of temperature for Fe NPs
having different diameters. The Fe bulk magnetization is also shown.

on 1/d . For larger nanoclusters, both shell and core spins are568

disordered, resulting in a small global magnetization.569

Having a free surface on the NPs naturally introduces570

finite-size effects on the thermal behavior of the magnetiza-571

tion. The effects of the free surface were studied for different572

NPs and results are shown in Fig. 11. Surface (red dots) and573

core (blue triangles) contributions to the total magnetization574

(black squares) are plotted along with bulk magnetization575

results (dashed line). Surface magnetization is calculated av-576

eraging over the atoms belonging to a single-atom wide577

spherical shell composed of the outer layer of atoms as de-578

scribed in sub-section (II-B) (see Fig. 3).579

The width of the surface is held constant for all spheres.580

The main qualitatively result is that the NPs retain less581

magnetization than the bulk system and this difference in582

magnetization increases as the particle size decreases. This583

is a consequence of the low coordination of the spins at the584

surface, together with the large surface-to-volume ratio and585

their contributions to the total magnetization. In this way, it586

is clear that for the 2nm sphere the surface contribution is as587

relevant as the core one. Therefore, all three curves, M, Ms588

and Mc, are far apart from the bulk values. As the particle589

diameter increases, the surface contribution to the total mag-590

netization decreases. Thus, two main features can be seen: the591

total magnetization becomes increasingly similar to the core592

magnetization and, straightforwardly, the core magnetization593

approaches more and more the bulk magnetization values.594

This tendency of the core magnetization to approach to the595

bulk values is stronger at low temperatures, while near TC596

there is still a clear departure from the bulk behavior. In597

addition, there is a temperature range where the cluster mag-598

netization behavior and, in particular, the surface contribution599

displays an approximately linear temperature dependence, as 600

it has been previously reported by Iglesias and Labarta [7]. 601

Furthermore, this temperature range is larger for smaller par- 602

ticles. In Ref. [7], it was argued that this linear behavior was 603

related to an effective 3D–2D dimensional reduction of the 604

surface shell, and that it has been observed in thin film systems 605

and in simulations of rough ferromagnetic surfaces [75–79]. 606

The surface, core and total magnetization are related by 607

M = pMs + (1 − p)Mc, (21)

where p = Ns/NT is the shell fraction, NS (NT ) being shell 608

(total) number of atoms [7]. Assuming that the shell is much 609

thinner than the NP radius, one can arrive at the approximate 610

expression 611

M(d ) = Mc − �M
�rS

V
= Mc − �M

6�r

D
, (22)

where S (V ) are the surface (volume) of the particle, �r 612

is the thickness of the surface layer, D is the diameter of 613

the spheres and �M = Mc − Ms. Figure 12 displays a good 614

agreement between the simple two component approximation 615

and our simulation results. In particular, Eq. (22) manages to 616

reproduce the intersection of the curves around TC , a fact that 617

is related to the surface/core proportion as discussed above. 618

B. Exploring possible NP premelting 619

The EAM potential used in the previously mentioned study 620

yields a bulk melting temperature TM 	 2000 K [80]. How- 621

ever, small clusters are expected to have much lower TM due to 622

the reduced surface coordination number. Indeed, in Ref. [81], 623

a reduction of about 30% in the melting temperature of 2-nm 624
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FIG. 12. Temperature dependence of the total magnetization M
of Fe NPs.The results of our MD-SD simulations (symbols) are
compared with the core-shell two component model described by
Eq. (22) (curves).

Fe clusters has been reported. Assuming the same reduction of625

TM for the EAM potential used here would give TM 	 1350 K.626

The structure and diffusivity of core and shell atoms have627

been analyzed at different temperatures, to evaluate possible628

premelting of Fe nanoclusters in the framework of our model.629

The pair correlation function, g(r), for the whole nanocluster,630

is shown in Fig. 13. There are broad but well defined peaks631

for second- and third-NNs at high temperatures, as expected632

for a crystalline solid.633

At 1200 K, the NN distance for bulk Fe is 0.245 nm, while634

for the smallest NPs this distance is closer to 0.25 nm, which635

correpond to a change of only 2%. The effect of large changes636

in neighbor distance for Fe films was evaluated by Garibay-637

Alonso et al. [44], who also observed a nearly linear decrease638

of the layer magnetization with temperature, as in Fig. 11.639

The radial distribution functions g(r) shown in Fig. 14 for640

FIG. 13. Coordination analysis for spherical Fe NPs with diam-
eters (a) d = 2 nm and (b) d = 6 nm at different temperatures. The
data are taken from the last configuration of the system. They indicate
lack of melting, even for the smallest considered nanocluster.

FIG. 14. Correlation function in the core and shell regions of a
2nm Fe NP at T = 1200 K .

T = 600 K, show that there are non-negligible fluctuations on 641

the first and second-neighbor separation distance as the size of 642

the system is reduced. These fluctuations may result in values 643

of J (ri j ) (see parametrization of J (ri j ) in Ref. [37]), that could 644

drive the systems into an antiferromagnetic phase for the 645

smallest clusters at 600 K, as it is shown in Ghosh et al. [82]. 646

In Fig. 14, results are given for the interatomic correlation 647

function g(r) in the shell and core regions at a temperature 648

near the cluster TC . The well-defined peaks in g(r) show no 649

evidence of surface premelting at this temperature, even for 650

the smallest NPs. To further investigate this mater, we have 651

carried out atomic diffusivity calculations. At 600 and 1200 K, 652

diffusivity for core atoms has a value close to zero, but for 653

shell atoms has values of the order of D = 4.0 × 10−10m2/s, 654

as seen in Fig. 15. For reference, the bulk self-diffusion 655

coefficients values are around D = 1.0 × 10−15m2/s for 656

1000 K as reported in Ref. [83]. The diffusivity for molten 657

FIG. 15. Mean-square displacement of the shell atoms at 600 and
1200 K, as obtained from our simulations for a 4 nm NP. The straight
dashed line represents a linear fit of the 1200 K results, giving a
diffusion coefficient D = 4.0 × 10−10m2/s. Note that this simulation
is 10 times longer (5 ns) than those performed for the magnetization
calculations.
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FIG. 16. Temperature dependence of the core and shell magne-
tizations as obtained from the semi-infinite Ising model with a free
surface for different values of the exchange constant J (Sec. III A)
compared with MD-SD simulations results. The curves are obtained
for a Fe NP with a diameter of 6 nm.

Fe has been typically calculated above 1500 K. For instance,658

Gosh et al. [84] used the EAM parameters of Bhuiyan et al.659

[85] and obtained values which, extrapolated down to 1230 K660

give D close to 1.5 × 10−9m2/s. Given that, according to661

the results shown in Fig. 15, the shell region of a 4-nm662

Fe NP at 1200 K has a diffusivity similar to extrapolated663

molten bulk values, one could argue that the shell region is664

molten or partially molten at 1200 K, while at 600 K it is665

still solidlike. However, we note that the shell region contains666

mostly surface atoms, and that surface diffusion is complex at667

high temperatures [46]. Therefore, further studies are needed668

to elucidate this point.669

C. Comparison with theoretical models670

We have compared our simulation results with a semi-671

infinite mean-field Ising model, an analytical model that672

includes surface effects and is described in Sec. III A. In673

Fig. 16, we have compared the bulk and shell magnetizations674

obtained from the model with the ones from MD-SD simula-675

tions for different values of the exchange constant J . As can676

be seen, the model results are highly sensitive to the value677

J , but the qualitative behavior of the system is reasonably678

well reproduced for the three values considered. The thermal679

behavior of the analytical surface magnetization reproduces680

the shape of the corresponding MD-SD curve, also displaying681

an inflexion point at high temperatures, i.e., dM/dT does not682

show a monotonous decrease. The rapid decrease of surface683

magnetization is also observed for the surface magnetization684

of thin films [44].685

Figure 17 shows the analytical results of the model pre-686

sented in Sec. III B and the computational results for different687

NPs, showing a good qualitative agreement. It can be seen that688

the rough qualitative behavior of the different magnetizations689

is well reproduced.690

Quantitative agreement is difficult to achieve using mean-691

field models like the ones in Figs. 16 and 17. As expected, any692

FIG. 17. Total, core and shell magnetization curves M, Mc, Ms,
as obtained in the model presented in Sec. III B (dashed lines) [54]
and in the present MD-SD simulations (solid line and symbols) for
Fe NPs having different diameters.

mean-field model requires an effective J much lower than the 693

one used in our spin Hamiltonian to adjust the critical tem- 694

perature. Both models show good agreement with our results 695

for J = 6.5 meV. In addition, there are non-negligible dif- 696

ferences between Ising and Heisenberg models, as expanded 697

below. Nevertheless, these results are usefull in order to test 698

and support the MD-SD results. It is notable how the model 699

manages to reproduce very well the behavior of the different 700

magnetizations as the size of the NP is enlarged. It shows, 701

as well as the MD-SD simulations, that an 8nm diameter 702

nanosphere behaves closely to a bulk system. 703

The Ising model variations shown above do not offer an ac- 704

curate quantitative prediction of our magnetization curves. All 705

of them use the mean-field approximation, and only up/down 706

spin states. This is because solving the Heisenberg model 707

in 3D is not trivial, even for periodic boundary conditions. 708

Recent work shows the “phase diagram” for different values 709

of J at first-, second-, and third-NNs (J1, J2, J3) [82]. The 710

frontier for the (π, π, π ) antiferromagnetic phase appears at 711

J2/J1 = 2/3 ∼ 0.67. In our case, for the chosen J (ri j ), this 712

ratio changes with temperature, and it is also affected by 713

strain in the NP but is close to J2/J1 = 0.6, and J3/J1 = 0. 714

This puts our system in the ferromagnetic state and, therefore, 715

close to the frontier between the (0,0,0) ferromagnetic and 716

(π, π, π ) phases. The (q,q,q) spiral phase is close, but J3 > 0 717

would be needed to reach that region of the phase diagram. 718

At 10 K, the separation distance between NN spins (dnn) is 719

around dnn = 0.245 nm, and the distance between second NN 720

(d2nd) is about d2nd = 0.285 nm, resulting in J1 = 19.5 meV 721

and J2 = 12.12 meV, J3 = 0, giving J2/J1 = 0.62. At 1000 K, 722

dnn = 0.25 nm, d2nd = 0.29 nm, J1 = 19 meV, J2 = 11 meV, 723

J3 = 0, giving J2/J1 = 0.58. 724

As an alternative simple model for magnetization vs tem- 725

perature, Fig. S3 of the Supplemental Material [51] shows 726

the curve for the “shape” model by Kuz’min [86]. The com- 727

parison of the model with our bulk results shows reasonable 728

agreement if one sets the critical temperature to Tc = 650 K in 729

the model. 730
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V. CONCLUSIONS731

We have performed combined MD and SD simulations732

on isolated bcc Fe spherical nanoclusters and studied their733

magnetic properties as a function of temperature and cluster734

size, in the absence of external magnetic fields. To this aim,735

we have used a classical spin Hamiltonian coupled to classical736

MD. The effect of anisotropy is also considered. Our results737

naturally include lattice expansion, surface stress, and other738

factors, which are difficult to include in spin lattice models.739

Our simulations include Fe nanoclusters with up to 23 000740

atoms, and bulk simulations with up to 250,000 atoms in the741

simulation cell. The temperature of the lattice and the spins742

can be defined without any additional scaling factors [37], as743

usually required in SLD simulations [24].744

Given the complexity of solving 3D magnetic models,745

simulations including thermal lattice effects, like thermal746

expansion and lattice strain due to surface effects, can be747

valuable tools in understanding and predicting the behavior of748

nanoscale magnetic systems. We find significant differences749

between our simulations with moving atoms, and simulations750

with frozen atoms as in most atomistic SD simulations, spe-751

cially at temperatures above 2/3 of the critical temperature.752

Recently, lattice relaxation was found to produce significantly753

larger coercitivity enhancement in NPs than the case of an754

unrelaxed, fixed lattice [87].755

Our results show excellent agreement with experimental756

measurements of Fe nanoclusters [59]. The magnetization757

thermal behavior of small clusters is well reproduced and the758

estimated Curie temperature is also very similar. Total magne-759

tization decreases with increasing temperature and decreasing760

size and, therefore, the decrease of magnetization with tem-761

perature is faster for the smallest clusters. Qualitatively, these762

results are expected, but they are quantitatively different from763

the ones in simple semi-analytical mean-field Ising models,764

even when size and surface effects are considered. Above765

the Curie temperature we find that magnetization scales with766

system size as predicted by models assuming SRMO [65].767

For temperatures above 1000 K, we observe evidence of768

possible melting of the shell region, as shown by both diffu-769

sivity and radial coordination studies. This is consistent with770

melting temperature reduction due to finite size and surface771

effects in nanoclusters, but only occurs well above TC in our772

model.773

Regarding our bulk simulations, we obtain an estimated774

Curie temperature close to TC = 650 K for bulk systems. The775

discrepancy with the experimental value is attributed to the776

exchange coupling J (ri j ). Large differences of the reported777

values of J as a function of pair separation distance are found778

in the literature and, therefore, fitting the function J (ri j ) with779

a different set of ab initio calculations results in different780

magnetization curves. This statement is clearly verified in 781

Fig. 8 where the bulk Curie temperature is well reproduced if 782

a different set of ab-initio data is used to fit the J (ri j ) function. 783

Our calculations indicate that possible size dependence of 784

J (ri j ) might lead to significant magnetization changes. 785

The total NP magnetization can be considered to be the 786

result of an ordered core plus a less ordered outer shell. In 787

fact, simple two-component models provide a reasonable fit to 788

our results. Core magnetization resembles bulk magnetization 789

and, as cluster size increases, dominates the overall magne- 790

tization. Shell magnetization is significantly lower than bulk 791

magnetization, as expected due to the reduction of the local 792

coordination number. 793

We propose a functional form for the magnetization as a 794

function of size and temperature, which has only two free 795

parameters and works extremely well for temperatures below 796

TC , and for the range of sizes studied, from 2-nm cluster 797

diameter up to bulk conditions. 798

It is clear that the classical MD-SD simulations presented 799

in this paper still have several limitations, for example, 800

assuming classical continuous spin variables or the fact 801

that exchange, anisotropy, and magnetic moments are the 802

same for surface and core atoms. However, they are ex- 803

pected to contribute to the understanding of magnetism in 804

nanoscale systems, providing quantitative values to compare 805

with experiments for nanocluster magnetization. Among the 806

improvements to be implemented in future studies, it would be 807

interesting to consider the effect of defects in the clusters, such 808

as vacancies, impurities, dislocations and grain boundaries, 809

together with the role of an external magnetic field and dipolar 810

interactions with other nanoclusters. 811
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