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26 ABSTRACT 

27 Composites of cobalt ferrite nanorods in a polyaniline matrix have been synthesized and 

28 characterized by electron microscopy observation, X-ray diffraction, IR spectroscopy, 

29 thermogravimetric analysis, electrical conductivity and DC magnetization 

30 measurements. The composites were prepared using dodecylbenzenesulphonic acid both 

31 as a particle protector and as acid media. In the magnetic experiments hysteresis loops 

32 were observed, revealing ferromagnetism for both particles and composites. The results 

33 indicate that the magnetic properties of the particles were preserved in the composites, 

34 and on the other hand the conductivity was almost independent on the polymer/particle 

35 ratio. These composites are new materials which show easily tunable magnetic 

36 properties, and are expected to be candidates for applications such as microwave 

37 shields.

38

39

40 KEYWORDS: Conducting polymers, composites, nanoparticles.

41

Page 2 of 61

John Wiley & Sons

Polymer Engineering & Science



For Peer Review

43 INTRODUCTION

44 Composites formed by magnetic nanoparticles (MNPs) embedded in a conducting 

45 polymer matrix are very interesting due to the capability of combine electrical 

46 conduction with magnetic properties [1–4]. MNPs are very interesting materials, due to 

47 their many potential applications [5–8]. Among the materials which have been 

48 investigated iron, iron oxides [9,10] and ferrites [11–13] have aroused a great interest. 

49 Particularly cobalt ferrite (CoFe2O4) is very interesting because it is a hard magnetic 

50 material, showing ferromagnetism at room temperature, having high coercivity and 

51 moderate saturation magnetization; in addition, it displays good chemical stability 

52 [14,15]. Most research has been concerned with small, spherical nanoparticles which 

53 fall in the monodomain regime [16]. However, other nanostructures such as nanorods, 

54 nanotubes, etc. are also interesting due to the possibility of tuning the magnetic 

55 properties by changing the morphology of the material [17–19]. It has been noted that 

56 nanorods are interesting candidates for new applications [20], albeit they have not been 

57 studied as extensively as anisotropic particles. Consequently, we have investigated here 

58 a nanorod shaped material.

59 Conducting polymers have been intensively studied due to their outstanding chemical, 

60 mechanical and optical properties [21–25]. Polyaniline (PANI) is an intensively studied 

61 conducting polymer. It is easily synthesized by either chemical or electrochemical 

62 routes [26–29], and has been proposed for a high number of different applications [30–

63 32]. Many PANI based composites have been proposed [3,13,33–36]. Use of 

64 conducting polymers results in materials with properties difficult to obtain with only the 

65 individual components, due to the high magnetic susceptibilities and the appreciable 

66 electrical conductivity [37–39]. These magnetic composites belong to a new type of 

67 multifunctional materials combining properties of ordinary polymers and magnetic 
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68 materials. These materials have been proposed for many applications [40–42]; among 

69 them, several studies have been addressed to microwave shielding [43–45]. All these 

70 applications reveal the importance of studying these materials from both applied and 

71 fundamental points of view. 

72 In this work, composites of CoFe2O4 nanorods in a PANI matrix have been prepared 

73 with in situ aniline polymerization; albeit similar to other materials proposed previously 

74 [3,4], composites of cobalt ferrite nanorods in PANI have not been studied before; also, 

75 a simple preparation route is shown. The nanorods were prepared in several conditions 

76 to select those with better magnetic properties relative to its size, so as to enhance the 

77 magnetic properties of the final material. The nanoparticles were characterized by XRD 

78 studies, SEM observation, BET surface area measurement and DC magnetization 

79 measurements. The composite synthesis was performed in the presence of 

80 dodecylbenzenesulfonic acid (DBSA) as both particle protecting agent and acidic 

81 media. The composites were characterized by SEM observation, XRD studies, 

82 thermogravimetric analysis, electrical conductivity measurements, FTIR spectroscopy 

83 and DC magnetization measurements.

84

85 MATERIALS AND METHODS

86 AR grade chemicals, supplied by Merck and Sigma Aldrich, and water of high purity 

87 from a Milli-Q system were employed throughout. Aniline (Ani), was used untreated 

88 shortly after being received.

89

90 Synthesis of  CoFe2O4 nanorods.
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91 CoFe2O4 nanorods were prepared by a two-step synthesis method based on Yao et al 

92 [46]. In the first step an oxalate precursor [(CoFe2)⅓C2O4•2H2O] was synthesized by 

93 precipitation in aqueous solution at room temperature, using polyvinyl alcohol (PVA, 

94 with a degree of polymerization DP = 300, Fluka) as surfactant to assist in the 

95 preparation of nanorods. First, 6.10-3 mol of FeCl2•4H2O (Merck) and 3.10-3 mol of 

96 CoCl2•6H2O (Fluka) were dissolved in 6.0 mL of Milli-Q water; then, 15 g of PVA 

97 solution (with concentration ranging from 0.0 to 5.0 % w/w) were added. Subsequently, 

98 an equivalent quantity of oxalic acid was added dropwise from a 20% w/w solution for 

99 two minutes. This system was kept under vigorous agitation for 30 minutes, giving a 

100 yellowish precipitate. The obtained precipitate was separated by centrifugation at 2000 

101 g during 10 minutes, then washed with Milli-Q water and ethanol to remove the 

102 reactants excess and finally dried at room temperature for 24h. In the second stage, the 

103 obtained oxalate powder was calcined, heating from room temperature to 600 °C at a 

104 heating rate of 2 °C min-1, then keeping 2 hours at this temperature. A black fine 

105 powder was finally obtained.

106

107 Synthesis of CoFe2O4-PANI composites

108 The synthesis of the composites was performed following previous work [47]. Several 

109 samples were characterized by the molar ratio:

110  (1)
2 4CoFe O

Aninr
n



111  where nAni and stand for the mole numbers of aniline and CoFe2O4 respectively. 
2 4CoFe On

112 In the composite preparation the molar ratio in the synthesis, rS, was varied between 2.0 

113 and 32.0.
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114 As a first step a suspension is prepared adding an amount of CoFe2O4 nanorods in 25.0 

115 mL of 0.2 M dodecylbenzenesulfonic acid (DBSA) solution, keeping a CoFe2O4:DBSA 

116 molar ratio of 0.033. The system was maintained under ultrasound treatment and strong 

117 stirring for 1 h. Then aniline monomer was added according to the desired r ratio and 

118 the suspension was kept in the same conditions for another hour. Finally, 25.0 mL of an 

119 ammonium persulfate solution (APS) was added dropwise during 1.5 h at a constant 

120 rate, assuring a molar ratio of 1:1 with respect to the monomer. The resulting reaction 

121 mixture was maintained under ultrasound treatment and stirring for 1.5 h. The product 

122 was demulsified with 50 mL of isopropyl alcohol. The precipitate was separated by 

123 centrifugation at 5000-10000 g for 10 minutes and washed thoroughly with Milli-Q 

124 water; finally, it was washed with ethanol to remove reactants and oligomers. The 

125 obtained pellets were dried at room temperature for 24 h.

126

127 X-Ray Diffraction

128 The crystalline structure of the particles was studied by X-Ray Diffraction (XRD). The 

129 analysis were performed with a Siemens D5000 powder diffractometer using Cu Kα 

130 radiation (λ = 1.54056 Å). The average crystallite size was obtained with the aid of the 

131 Scherrer equation:

132  (2)
cos
Kd 

 


133 where K is the shape factor, taken here as 0.9, β is the peak full width at half maximum 

134 and θ is the corresponding Bragg angle.

135

136 Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy
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137 The particle morphology, size and surface characteristics were studied by Scanning 

138 Electron Microscopy (SEM). A Carl Zeiss Supra 40 Gemini field emission microscope 

139 was employed, equipped with a secondary electron detector inside the electron column 

140 (InLens), a four-quadrant solid-state detector (QBSD, Oxford Instruments, which 

141 collects backscattered electrons scattered under very low angle) and an Energy 

142 Dispersive X-Ray Spectroscopy (EDS). The samples were prepared by suspending a 

143 small amount of each solid in ethanol and approximately 10-15 μL suspension was 

144 dropped on a silicon substrate. Particle dimensions were measured employing the 

145 ImageJ software, measuring about 100 particles of each sample. 

146

147 Magnetization measurements

148 Magnetization curves were measured at room temperature using a Lakeshore 7400 

149 vibrating sample magnetometer (VSM). Between 10 and 20 mg of each sample were 

150 packed with a Teflon tape.

151

152 Surface area measurements

153 Surface area measurement through nitrogen adsorption-desorption isotherms analyzed 

154 with the BET theory were performed using a Micrometrics ASAP 2020 system. The 

155 CoFe2O4 samples were degased at 60 °C for 12 h and the analysis bath temperature was 

156 set on -195.8 °C

157

158 Fourier Transform Infrared Spectroscopy. 

159 The Fourier transform infrared (FTIR) measurements of composites, nanoparticles and 
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160 polymer were performed with a FTIR Nicolet 8700 spectrometer, recording spectra in 

161 the range 400-4000 cm-1. 0.5 mg of each sample was pressed into a pellet with 150 mg 

162 of KBr. For each sample, 32 scans were accumulated.

163

164 Thermogravimetric analysis

165 Thermogravimetric analysis (TGA) of CoFe2O4 nanorods, PANI and CoFe2O4-PANI 

166 composites was performed with a thermobalance TG-DTA 50 Simultaneous Shimadzu. 

167 The thermograms were recorded for 1-5 mg of each sample at a heating rate of 10ºC 

168 min-1 in the temperature range of 18-810 ºC under air atmosphere.

169

170 Conductivity measurements

171 The electrical conductivity of the synthesized composites was measured on pressed 

172 circular pellets of 1 cm diameter using a Teq_04 (S. Sobral, Buenos Aires, Argentina) 

173 potentiostat/galvanostat under computer control. A known current was applied to each 

174 sample for 60 s and the potential difference was measured, resulting that the 

175 experimental data followed Ohm’s law. Finally, the pellet thickness was measured using 

176 a caliber.

177

178 RESULTS AND DISCUSSION

179

180 Cobalt ferrite particles
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181 Particle size and morphology. The first stage of synthesis yielded a yellow powder of 

182 cobalt/iron(II) oxalate (CoFe2)1/3C2O4 particles. As it is observed in Fig. 1, the particle 

183 morphology is dependent on the PVA content in each synthesis; in the absence of PVA 

184 short, nearly cubic particles are obtained, whereas with increasing surfactant content 

185 nanorods are found with different sizes and even morphologies. Fig. 1 shows that by 

186 means of the PVA concentration the size and morphology of the ferrite particles can be 

187 controlled.

188 After the calcination of the oxalate precursors a black fine powder of CoFe2O4 was 

189 obtained, which is attracted by a magnet. Fig. 2 shows SEM images of the resulting 

190 particles. Moreover, it is noticeable the ferrite particles maintained the original shape 

191 from their precursor. When polyvinylalcohol was added into the synthesis medium, it 

192 directed the growth of the precursor of CoFe2O4 particles in one preferential direction, 

193 so that after calcination nanorods with lengths of 3-5 µm and sections ranging 270-500 

194 nm were obtained. In the absence of PVA, the final product appeared with a great 

195 variety of shapes and sizes.

196 Fig. 3(a) (and Table 3 later on) shows the particle size results found. Upon increasing 

197 the amount of polyvinyl alcohol from 0.5% to 3.0% sharper rods were obtained, 

198 attaining minimum section and length at the latter concentration. When PVA content is 

199 further increased, both length and section increase. At 3.0 % PVA (Fig. 3(b)) the ratio 

200 of alcohol hydroxyl groups to metal cation concentration is close to unity; this suggests 

201 that such ratio is optimal in order to obtain thinner nanorods.

202 Closer inspection of the final particles (Fig. 4) reveals differences in morphology when 

203 compared with the precursor (CoFe2)1/3C2O4 particles. The final particles (Fig. 4(b)) 

204 show a surface with holes or cavities on the surface, result of an irregular structure with 
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205 solid CoFe2O4 regions having size in the range of tens of nanometers, held together by 

206 thin solid bridges. This morphology is presumably caused by the CO2 released during 

207 the calcination phase. The BET surface area of the FINAL CoFe2O4 particles was 15.9 

208 m2 g-1.

209 Crystalline structure. XRD results are shown in Fig. 5, where characteristic 

210 diffractograms of samples of CoFe2O4 produced in presence of different PVA 

211 concentrations are presented. 

212 As a general remark, all results show that the synthesis produced particles with good 

213 crystallinity. The oxalates show the typical orthorhombic phase [48,49] and upon 

214 calcinating process they adopt the cubic spinel structure [50], consistent with ferrite 

215 crystals. The lattice parameters and crystallite sizes estimated through Scherrer equation 

216 using the (311) peak are summarized in Table 1, which lie in the range found in the 

217 literature for this material [17,50]. It is worth notirng that with the same lattice 

218 parameter crystallite sizes vary between 27 and 37 nm approximately. 

219 Magnetic properties. The curves of magnetization, M, as a function of magnetic field, 

220 H, for all CoFe2O4 nanorod samples at room temperature are shown in Fig. 6; Fig. 6 (a) 

221 presents the original curves for different PVA content in the synthesis medium, and Fig. 

222 6 (b) shows the normalized magnetization, M/Ms, where Ms is the saturation 

223 magnetization (taken as the maximum value achieved for positive fields). 

224 Ferromagnetic behavior is observed in all cases. It is found that the coercive field, HC, 

225 shows little change for all curves whereas the remanence, Mr, is dependent on the PVA 

226 content; the results found, along with literature reports for other types of nanoparticles, 

227 are collected in Table 2. Comparing the HC values found here with reported values for 

228 other CoFe2O4 nanoparticles and nanostructures, a noticeable increase is observed, 
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229 except for those obtained through a combustion method, which results in particles of 

230 irregular shape and a wide range of sizes [51]; for spherical or quasi-spherical 12 nm 

231 nanoparticles the reported HC values are between 1/3 and 1/2 approximately of the 

232 present results. Bulk values are also lower: literature results range from about 600 [52] 

233 to 750-1000 Oe [53]. The high values of the coercive field obtained in this work 

234 compared with spherical particles suggests the presence of different mechanisms behind 

235 the reversal magnetization; small nanoparticles are in the single-ferromagnetic domain 

236 regime, giving place to coherent spin rotation as the mechanism governing the 

237 magnetization reversal. In the present case, the nanorods are built from several 

238 crystallites as evident form Fig. 4(a) so they are outside the single domain regime. The 

239 nanorods in Fig. 4(b) appear to be constituted of quasi spherical grains bound together 

240 by thinner bridges. SEM image analysis was performed employing ImageJ software to 

241 estimate grains sizes. The results show that considering the grains as spheroids, the 

242 average major axis length is about 130 nm while the minor axis measures about 67 nm; 

243 thus, these grains are not formed by single crystallites. The high HC values suggest that 

244 there are strong spin interactions between crystallites in grains. Consistently, as it is 

245 observed in Table 3, rods with narrower sections show lower coercive field values. 

246 Likewise, other nanorods and nanotubes found in literature have also higher HC than 

247 spherical particles.

248 Considering the saturation magnetization, it is found that the narrower nanorods show 

249 higher values. In fact the CoFe2O4 nanorods synthesized with 3.0 and 4.0 % PVA show 

250 MS values of 53-54 emu g-1, while all other samples have values not higher than 48 emu 

251 g-1. Comparing the MS values of the nanorods of smaller sections in this work with the 

252 nanotubes and nanorods already cited [17], similar results are found. Also, spherical 

253 NPs show in most cases similar values, except for the smaller 12 nm particles (65 emu 
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254 g-1), where clearly a size effect is present. On the other hand, bulk MS values are 

255 generally higher, about 77-83 emu g-1 [52,53].

256 Regarding the remanence ratio Mr/MS, it is observed (Fig. 6(b)) that for PVA synthesis 

257 concentrations of 3-4 %, this parameter is close to 0.5, whereas for the other cases it is 

258 lower, in the range 0.35-0.40. All other nanoparticles in Table 3 have also low values, 

259 and this is generally found with CoFe2O4 nanoparticles [54]. 

260 Considering the results found for the properties of cobalt ferrite nanorods, those 

261 obtained with 3.0 % PVA were selected for composite synthesis, due to their smaller 

262 section and higher MS.

263

264 CoFe2O4-PANI composites

265 Thermal analysis and composition. The synthesized CoFe2O4-PANI composites were 

266 bright emerald green powders, consistent with literature [3,13]. TG analysis was 

267 performed to obtain the experimental composition data for all CoFe2O4-PANI 

268 composites. In Fig. 7 several thermograms are presented, which are consistent with 

269 similar materials [3,13]. It is found that PANI is completely decomposed at the final 

270 temperature, while cobalt ferrite particles suffer only a small mass loss, due to loss of 

271 residual water. In between those results lay the observations for all CoFe2O4-PANI 

272 composites samples, confirming its composition. All curves in Fig. 8 show an initial 

273 mass loss until 150 °C that is attributable to the removal of water molecules from the 

274 materials. The onset of polyaniline decomposition is observed at ~250-300 ºC, to reach 

275 its end at approximately 600 ºC. This point is in agreement with literature reports 

276 [3,13,33].
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277 Regarding this analysis and results an estimation of the composites composition can be 

278 obtained, considering that for temperatures lower than 150 ºC water elimination takes 

279 place and that at 800 ºC the remaining mass is only from CoFe2O4 particles. In doing 

280 this estimation, it should be taken into account the presence of DBSA, because it is the 

281 only acid present. Considering that the PANI product is obtained in the doped 

282 emeraldine form, an average of half the N atoms are expected be protonated [55]; 

283 because the dopant anion is dodecylbencensulfate (DBS), one mole of DBS should be 

284 present for each two of aniline monomer, and should be included in the mass loss. 

285 Taking this into account, the results for the experimental monomer/ferrite ratio in the 

286 products, rP, compared to the synthesis composition rS are shown in Table 3 along with 

287 the CoFe2O4 mass fraction computed from rP. For comparison, in Table 3 results from a 

288 previous study [3] are included. It is observed that the polymer ratio in the product is 

289 lower than rS; this is attributable to aniline loss due to incomplete polymerization and 

290 oligomers removal during product purification.

291 Morphology. In Fig. 8 SEM images of composites having different rS values are 

292 displayed; in a), c), e), f) and g) standard images (InLens detector) are displayed, 

293 whereas in b), d) and h) the QBSD detector was employed, which enhances contrast of 

294 metallic elements. Fig. 8 a) and b) show that, for rS = 6, the composite is not well 

295 formed and so many particles are partially or totally uncovered, with the polymer 

296 growing in between particles. This is attributable to the low polymer content in the 

297 composite (rP = 0.9). Fig. 8 b) clearly distinguishes nanorods as white areas revealed by 

298 the QBSD detector.

299 When rS is greater than 6, the composites show quite different morphologies. For rS = 

300 12 and 16 a globular morphology is observed, whereas for rS = 24 there is a more 

301 fibrous appearance. In all these cases, the morphology consists in a polymeric matrix 
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302 with particles included and dispersed in the matrix. The QBSD images (Fig.8 d) and h)) 

303 display dark areas that correspond to conductive polymer matrix and, scattered, clearer 

304 spots and bars which correspond to the CoFe2O4 nanorods. The lower contrast observed 

305 in the images is clearly caused by the polymer matrix; this in turn indicates that the 

306 particles are embedded in the matrix rather than on the surface. Thus, the morphology of 

307 the composites is controlled through rS. 

308 These observations suggest that the growth of the conductive polymer could be 

309 interpreted by a nucleation effect of aniline monomers on the surface of the nanorods. 

310 That would clarify the observations on Figure 8 a) and b) where polyaniline grows only 

311 among particles, and the fact that at higher rS values the nanorods become hidden by the 

312 polymer matrix evidencing the growth of the latter over the former. This scheme is in 

313 agreement with observations made in other reports [3].

314 IR spectroscopy. The IR spectra of these materials is consistent with literature reports 

315 [3]. Here, we will focus in the medium wavenumber region. In Fig. 9 the IR region 

316 between 400 – 1800 cm-1 is plotted; the spectra of CoFe2O4 particles, PANI polymer 

317 and two composites are shown. The IR spectrum of PANI confirms the presence of the 

318 main functional groups present in this polymer [56]. The most important bands are 

319 highlighted by solid vertical lines: the bands at 1566 and 1479 cm-1 are attributed to the 

320 quinonoid/benzenoid  ring stretching respectively, the 1292 cm-1 band corresponds to C-

321 N vibration of secondary aromatic amines, at 1112 cm-1 ring-N vibrations and the 784 

322 cm-1 band due to C-H out of plane vibration. In Fig. 9 (a) the main lattice band of 

323 CoFe2O4 is marked at 588 cm-1 [4] in dashed trace. Fig. 9 (c) shows the spectrum for the 

324 composite with rS = 6 ( rP = 0.9), where it is observed the shift of the ferrite main band 

325 to lower wavenumbers. Moreover all main PANI IR bands here studied appear shifted 

326 to higher wavenumbers. The other composite considered (rS = 16, rP = 8.6) is shown in 
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327 Fig. 9 (d), where the particle main lattice band is shifted to higher energy values. It is 

328 less noticeable than for the rP = 0.9 composite, as expected since the latter is composed 

329 by a larger proportion of particles. Besides, the bands assigned to polyaniline are visible 

330 and shifted to higher wave numbers compared with the pure polymer. Moreover in Fig. 

331 9 (b), (c) and (d) the most important band of DBS within the region studied is 

332 highlighted within a circle at approximately 1004-1029 cm-1 [4]. This proves that this 

333 anion is present in the final products.

334 The results reported here show that the main bands from the PANI appear in the 

335 composites IR shifted towards higher wavenumber values. On the other hand the main 

336 lattice band coming from the ferrite particles are also visible in the composite spectra 

337 and suffer a shifting to higher energies in this case. This evidence suggests the presence 

338 of interactions in the composite matrix between PANI, the CoFe2O4 particles and, 

339 presumably the DBS anions. Further analysis of PANI structure can be done by 

340 observing the ring deformation bands position. Upon going from the undoped PANI 

341 base to the fully doped salt form there is a visible red shift of the aforementioned bands. 

342 In Table 4 the positions of the ring deformation bands obtained in this work and 

343 bibliography data are presented. 

344 Electrical conductivity. The electrical conductivity of pure polyaniline and CoFe2O4-

345 PANI composites prepared in this work (Table 5) shows lower values than those 

346 expected form bibliography for PANI [57], ranging between 6.9 × 10-5 S cm-1 and 1.8 × 

347 10-4 S cm-1, not showing a definite tendency with composition. The only exception is 

348 the composite with lower polymer content (rS = 6) for which the resistance was almost 

349 infinity; this fact can be explained by the low, fragmentary, polymer content in the 

350 product. For all the other composites, the low conductivity can be explained by 

351 synthesis conditions, more specifically by the low aniline concentration in the medium 
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352 leading to the formation of short polymer chains [58]. The lack of conductivity change 

353 with material composition can be attributed to PANI percolating efficiently in all cases, 

354 due to relatively high polymer contents.

355 Albeit decomposition does not start up to ~ 250 °C, as seen in Fig. 7, the resistivity 

356 increases irreversibly upon heating, reaching one order of magnitude higher after 

357 heating to ~ 90 °C for 1 hour (Table 5), thus there is relatively low temperature stability, 

358 even when PANI itself is stable. Presumably, DBSA undergoes some transformation 

359 which affects the polymer protonation state and/or structure, decreasing conductivity.

360 Magnetic properties. Magnetization curves as function of applied field measured for 

361 the CoFe2O4-PANI composites are presented in Fig. 10. All curves display a hysteresis 

362 loop, demonstrating that the composites maintain the typical ferromagnetic behavior of 

363 the CoFe2O4 particles. The results displayed in Fig. 10 (a) for the magnetization as a 

364 function of the total mass of the composite show that in general the magnetization 

365 decreases when the relative amount of ferrites in the composite decreases, as expected.

366 On the other hand, in Fig. 10 (b) the magnetization is referred to the actual ferrite mass 

367 present in each composite as estimated by TGA analysis (Table 3); for comparison, the 

368 hysteresis loop for the bare particles is shown. It is observed that with this normalization 

369 all the composite samples reach MS values close to the value of the starting particles. 

370 Inspection of Fig. 10 reveals that there are slight changes in the coercivity, being lower 

371 in the composites than the bare particles. Also, there are small decreases in the 

372 remanence of the composites compared with the CoFe2O4 nanorods. Overall, however, 

373 it can be concluded that the particles magnetic behavior is essentially preserved in the 

374 composites, and that the material magnetization is an almost linear function of the 

375 cobalt ferrite mass contained in the material. Materials with high coercivity are efficient 
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376 microwave shields [13,35], thus the composites studied in this work could be proposed 

377 for shielding applications.

378 Regarding temperature dependence of the magnetic properties, the conductivity changes 

379 upon heating reported above prevented further investigation. However, the magnetic 

380 properties are expected to be stable in the room temperature range, because such 

381 properties come from the cobalt ferrite nanorods, a material whose magnetism is known 

382 to be stable around room temperature. 

383

384 CONCLUSIONS

385 In this work, novel cobalt ferrite nanorod based composites having both ferromagnetic 

386 and electrically conducting behavior are obtained. First, the synthesis of cobalt ferrite 

387 nanorods using a simple synthesis assisted by polyvinyl alcohol as surfactant is 

388 demonstrated. The ratio of surfactant to cation concentration was optimized in order to 

389 improve the magnetization and reduce the size of the nanorods. The composites 

390 prepared with these nanorods in a polyaniline matrix show that the magnetic properties 

391 of the particles are preserved, and the magnetic response of the material is easily tuned 

392 through the ferrite content. On the other hand, except for very low polymer content, the 

393 conductivity of the composites is nearly independent of the ferrite content, thus the 

394 magnetic behavior can be adjusted without affecting the electrical conductivity.
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577 Table 1. Lattice parameter a and crystallite size obtained from Fig. 5.

sample Lattice parameter (Å) Crystallite size (nm)

CoFe2O4 0.5% PVA 8.36±0.02 27.71±0.02

CoFe2O4 1.0% PVA 8.38±0.02 32.90±0.04

CoFe2O4 2.0% PVA 8.37±0.02 32.91±0.04

CoFe2O4 3.0% PVA 8.37±0.02 35.09±0.04

CoFe2O4 4.0% PVA 8.37±0.02 37.60±0.05

CoFe2O4 5.0% PVA 8.37±0.02 27.71±0.02

CoFe2O4 Ref. [50] 8.35 -

578
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580 Table 2. Magnetic properties for CoFe2O4 particles of different morphologies. 

CoFe2O4 sample
Size MS/emu g-

1
Mr /MS HC /Oe

Ref.

nanorods 0.5 % PVA
4 m x 600 

nm
46 0.35 1518

This 

work

nanorods 1.0 % PVA
5 m x 600 

nm
43 0.35 1484

This 

work

nanorods 2.0 % PVA
4 m x 500 

nm
48 0.38 1509

This 

work

nanorods 3.0 % PVA
3 m x 270 

nm
54 0.48 1374

This 

work

nanorods 4.0 % PVA
5 m x 400 

nm
53 0.49 1391

This 

work

nanorods 5.0 % PVA
5 m x 410 

nm
48 0.40 1491

This 

work

spherical nanoparticles 

(precipitation)

12 nm
65 0.18 400

[59]

spherical nanoparticles 

(mechanical alloying)

50-25 nm
47-52

0.28-

0.35

575-

831

[60]

spherical nanoparticles 
(precipitation)

35 nm 47 0.28 233 [51]

spherical nanoparticles 
(coprecipitation)

50 nm 56 0.45 850 [51]

nanoparticles (irr. shape) 

(combustion)

70 nm
57 0.46 2002

[51]

nanotubes
4 m x 700 

nm
55 0.40 1100

[17]

nanorods
1.3 m x 

142 nm
53 0.40 1000

[17]

581
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583 Table 3. Composites composition estimated from TGA measurements.

Synthesis composition 

rS

Measured composition 

rP

CoFe2O4 mass fraction

fCF

6 0.9 0.51

8 3.7 0.20

12 6.2 0.13

16 8.6 0.10

24 7.3 0.11

32 17.0 0.05

5 * 5.9 0.30

10 * 20.8 0.11

20 * 24.1 0.095

584 .* From Ref. [3].
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586 Table 4. IR Ring deformation bands (cm-1) in this work and in references.

Band PANI rS = 6 rS = 16 PANI base [61] PANI salt [61]

Quinonoid  ring 
stretching 1566 1570 1566 1583 1571

Benzenoid ring 
stretching 1479 1496 1487 1493 1479

587
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589 Table 5. Electrical conductivities of PANI and composites obtained.

590

591 * Irreversible change, does not revert upon cooling

592

Material rS T(ºC) σ (S cm-1)

PANI ∞ 20 1.7 x 10-4

CoFe2O4-PANI 8 20 2.5 x 10-4

CoFe2O4-PANI 12 20 6.9 x 10-5

CoFe2O4-PANI 16 20 1.8 x 10-4

CoFe2O4-PANI 24 20 1.8 x 10-4

CoFe2O4-PANI 32 20 1.5 x 10-4

CoFe2O4-PANI 24 38 5.2 x 10-5 *

CoFe2O4-PANI 24 55 4.6 x 10-5 *

CoFe2O4-PANI 24 90 1.5 x 10-5 *
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594 FIGURE LEGENDS

595

596 FIG. 1 (CoFe2)1/3C2O4 particles synthesized with different amount of PVA: (a) 0.0, (b) 

597 1.0, (c) 3.0 and (d) 5.0 % w/w.

598

599 FIG. 2 CoFe2O4 particles synthesized with different amounts of PVA after calcination. 

600 (a) 0.0 %, (b) 1.0 %, (c) 2.0 %, (d) 3.0 %, (e) 4.0 % and (f) 5.0 % w/w. 

601

602 FIG. 3. (a) Length and section of the synthesized CoFe2O4 nanobars as a function of 

603 PVA concentration. (b) Molar ratio of metal cations to alcohol hydroxyl groups as a 

604 function of  PVA concentration in the precursor synthesis.

605

606 FIG. 4.  SEM images of (a) precursor oxalate particles; (b) final ferrite particles. 

607

608 FIG. 5. XRD Patterns of cobalt ferrite and oxalate particles for different PVA synthesis 

609 concentrations.

610

611 FIG. 6. (a) magnetization curves for different PVA contents in the synthesis; (b) 

612 Normalized magnetization curves. Insets: expanded view of the low field region.

613
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614 FIG. 7. Thermogravimetric curves measured for CoFe2O4, PANI and CoFe2O4-PANI 

615 composites.

616

617 FIG. 8. Typical SEM images of CoFe2O4 nanorods-PANI of different feed 

618 compositions: (a) and (b), rS = 6; (c) and (d), rS = 12; (e) rS = 20; (f), (g) and (h), rS = 16.  

619 In image pairs (a) - (b), (c) - d), and (g) - (h) the same region of the sample was imaged 

620 with two different detectors: InLens in and QBSD, respectively. The same particle is 

621 encircled in each case for better comparison.

622

623 FIG. 9. IR spectra for the 1800 – 400 cm-1 region of samples of: a) CoFe2O4 3.0% PVA, 

624 b) pure PANI, and CoFe2O4-PANI composites c) rS = 6 and d) rS = 16.

625

626 FIG. 10. Magnetization curves for CoFe2O4-PANI composites for different rS values: (a) 

627 relative to the total mass of the composite (b) relative to the mass of cobalt ferrite within 

628 the composite sample.

629
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FIG. 1 (CoFe2)1/3C2O4 particles synthesized with different amount of PVA: (a) 0.0, (b) 1.0, (c) 3.0 and (d) 
5.0 % w/w. 
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FIG. 1 (CoFe2)1/3C2O4 particles synthesized with different amount of PVA: (a) 0.0, (b) 1.0, (c) 3.0 and (d) 
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FIG. 1 (CoFe2)1/3C2O4 particles synthesized with different amount of PVA: (a) 0.0, (b) 1.0, (c) 3.0 and (d) 
5.0 % w/w. 
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FIG. 2 CoFe2O4 particles synthesized with different amounts of PVA after calcination. (a) 0.0 %, (b) 1.0 %, 
(c) 2.0 %, (d) 3.0 %, (e) 4.0 % and (f) 5.0 % w/w. 
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FIG. 2 CoFe2O4 particles synthesized with different amounts of PVA after calcination. (a) 0.0 %, (b) 1.0 %, 
(c) 2.0 %, (d) 3.0 %, (e) 4.0 % and (f) 5.0 % w/w. 
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FIG. 2 CoFe2O4 particles synthesized with different amounts of PVA after calcination. (a) 0.0 %, (b) 1.0 %, 
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FIG. 2 CoFe2O4 particles synthesized with different amounts of PVA after calcination. (a) 0.0 %, (b) 1.0 %, 
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FIG. 3. (a) Length and section of the synthesized CoFe2O4 nanobars as a function of PVA concentration. (b) 
Molar ratio of metal cations to alcohol hydroxyl groups as a function of  PVA concentration in the precursor 

synthesis. 
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FIG. 4.  SEM images of (a) precursor oxalate particles; (b) final ferrite particles. 

62x60mm (150 x 150 DPI) 
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FIG. 4.  SEM images of (a) precursor oxalate particles; (b) final ferrite particles. 
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FIG. 5. XRD Patterns of cobalt ferrite and oxalate particles for different PVA synthesis concentrations. 

81x65mm (300 x 300 DPI) 

Page 47 of 61

John Wiley & Sons

Polymer Engineering & Science



For Peer Review

 

FIG. 6. (a) magnetization curves for different PVA contents in the synthesis; (b) Normalized magnetization 
curves. Insets: expanded view of the low field region. 
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FIG. 6. (a) magnetization curves for different PVA contents in the synthesis; (b) Normalized magnetization 
curves. Insets: expanded view of the low field region. 
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FIG. 7. Thermogravimetric curves measured for CoFe2O4, PANI and CoFe2O4-PANI composites. 
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FIG. 8. Typical SEM images of CoFe2O4 nanorods-PANI of different feed compositions: (a) and (b), rS = 6; 
(c) and (d), rS = 12; (e) rS = 20; (f), (g) and (h), rS = 16.  In image pairs (a) - (b), (c) - d), and (g) - (h) 
the same region of the sample was imaged with two different detectors: InLens in and QBSD, respectively. 

The same particle is encircled in each case for better comparison. 
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FIG. 9. IR spectra for the 1800 – 400 cm-1 region of samples of: a) CoFe2O4 3.0% PVA, b) pure PANI, and 
CoFe2O4-PANI composites c) rS = 6 and d) rS = 16. 
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FIG. 10. Magnetization curves for CoFe2O4-PANI composites for different rS values: (a) relative to the total 
mass of the composite (b) relative to the mass of cobalt ferrite within the composite sample. 
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