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We present a comparison of different particles’ velocity and acceleration statistics in two
paradigmatic turbulent swirling flows: the von Kármán flow in a laboratory experiment, and
the Taylor-Green flow in direct numerical simulations. Tracers, as well as inertial particles,
are considered. Results indicate that, in spite of the differences in boundary conditions and
forcing mechanisms, scaling properties and statistical quantities reveal similarities between
both flows, pointing to new methods to calibrate and compare models for particles dynamics
in numerical simulations, as well as to characterize the dynamics of particles in simulations
and experiments. The comparison also allows us to identify contributions of the mean flow
to the inertial range scaling of the particles’ velocity structure functions.

I. INTRODUCTION

Turbulent flows are common in nature and industrial applications. One of their main properties
is the enhancement of the mixing of quantities transported by the flow, and in recent years, sig-
nificant advancements have been made in the study of turbulent particle-laden flows [1–3]. The
modeling of such flows requires a wide variety of approximations, and their study in the laboratory
has important consequences for flow characterization as well for practical applications. Examples
of such applications include cloud dynamics and droplet formation [4], aerosol and pollution dis-
persion in the atmosphere [5], and nutrient transport in the oceans [6] among others [7]. In many
cases, the study of particle-laden flows has focused on the paradigmatic case of isotropic and
homogeneous turbulence, a landmark in the study of turbulence. In such case, experiments of
particle-laden flows are often carried out in wind tunnels, while numerical simulations use delta-
correlated random forcing to sustain the turbulence against dissipation [8–11].

However, in recent years significant advancements were made in the study of turbulent swirling
flows in the laboratory using an experimental setup that allows generation of flows with high
Reynolds numbers and with strong turbulent fluctuations superimposed on a well-defined mean
flow. This includes experiments in water and air, and in different configurations (open or closed
domains) and geometries (cylindrical or square cells), between two counter-rotating propellers,
in a setup that generates a von Kármán flow [12–14]. The turbulence generated using this setup
is not isotropic and homogeneous, and as a result it has been sometimes called “axisymmetric
turbulence” [15]. Experiments using this setup have been employed to study statistics of turbu-
lence [16], turbulent transport [17, 18], bistabilitiy and long-term memory [19], the emergence of
singularities [20], and even dynamo action when conducting flows are used [21].

Studies of tracers and inertial particles in such experiments have confirmed that turbulence in
this flow displays some specific properties, and that under some circumstances transport is domi-
nated by the strain in the center of the domain, in what have been called “stagnation point turbu-
lence” [22]. Evidence of anisotropy in the flow has also been reported, as well as some common
behavior with observations of particle-laden flows in isotropic and homogeneous turbulence when
the mean flow is statistically removed [17].
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The von Kármán flow shares some similarities with a paradigmatic flow in the study of tur-
bulence in periodic boundary conditions: the Taylor-Green flow [23]. This flow, that displays
multiple symmetries [24], has been used to study turbulence [24, 25], singularities of the Euler
equation [26, 27], and dynamo action [28]. In studies of magnetohydrodynamic dynamo action,
it was successfully used to compare with von Kármán experiments, reproducing many features
observed in the laboratory except for those directly associated with the different boundary condi-
tions in both flows [28, 29]. It is thus worth pointing out that while some recent numerical studies
consider flows with more realistic mechanical forcing and boundaries (in comparison to the von
Kármán experiments) [30, 31], the similarities between Taylor-Green and von Kármán flows still
allow for interesting comparisons when it comes to attaining the largest possible Reynolds number
at a fixed spatial resolution, as periodic boundary conditions are amenable to powerful and high
order numerical methods.

In spite of these similarities, there are very few comparisons of Taylor-Green and von Kármán
dynamics in the case of particle-laden flows. With this motivation, in this work we present a
comparison of particles’ velocity and acceleration statistics in these two paradigmatic turbulent
swirling flows, considering on one hand laboratory experiments, and on the other direct numerical
simulations. Tracers and Lagrangian particles are compared, as well as the particular case of a
large inertial particle. Numerically such a particle is modeled using the Maxey-Riley equation
[32] in the small particle approximation, which is considered here only as an effective model. The
main objective is to characterize similarities and differences between the two approaches and to
evaluate the possibility of using such a comparison to validate models for particle dynamics. We
consider spectra, correlation functions, single and two-times statistics, and structure functions for
the particles’ velocities and accelerations. In spite of the differences in boundary conditions and
the forcing mechanisms, scaling properties and statistical quantities share interesting similarities
between both flows, and also display a clear effect of the mean flow on particle dynamics which
affect turbulent statistical properties. The comparison also allows us to disentangle contributions
of the turbulence and of the mean flow to Lagrangian statistics of the particles, in particular for the
often reported poor inertial range scaling of the second order Lagrangian structure function.

II. EXPERIMENTAL AND NUMERICAL SETUPS

A. The von Kármán flow experiment

The experimental setup comprises two facing disks of diameter D = 19 cm, separated by a
vertical distance of H = 20 cm, and each fitted with 8 straight blades. The blades have a height of
1 cm, a width of 1 cm, and a length such that they do not reach the center of the disk (see Fig. 1).
However, their inner faces are in contact with each other in the central region of the disks, so that
there is no radial flow in the surface of the disks coming from their central region. Also, there is
no solid cylinder filling the central region, and thus this region is left empty. The impellers are
contained in a cell of square cross-section, with side h = 20 cm, giving access to an experimental
volume of (20× 20× 20) cm3 where the flow can be measured. The total size of the cell is
(20×20×50) cm3, leaving space on the back of the impellers for shafts that connect the impellers
to motors, and for refrigeration coils that allow heat removal if needed. Each impeller is driven by
an independent brushless rotary servomotor (Yaskawa SMGV-20D3A61, 1.8 kW), controlled by a
servo controller (Yaskawa SGDV-8R4D01A) which provides access to the instantaneous velocity
and torque of the motor. The cell is filled with distilled water from a double pass reverse osmosis
system, to remove ions and dissolved or suspended solid particles from the working fluid. The
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FIG. 1. (a) Experimental setup, with a schematic representation of the mean large-scale flow in the von
Kármán experiment. H is the separation between the two impellers, D is the diameter of the impellers, h is
the horizontal length of the cell, and f0 denotes the rotation frequency of the impellers. (b) Schematic top
view of the setup, with the measuring configuration (not to scale). The cell is illuminated with two LED
panels, and a fast camera, placed at a distance L from the cell, captures the position of the particles.

setup is similar to those considered in previous laboratory studies of von Kármán flows (see, e.g.,
[18]).

In all configurations considered in this study, the two disks rotate in opposite directions with
angular velocity ±Ω0, stirring the working fluid in the cell. This generates two large counter-
rotating circulation cells producing, on average, a strong shear layer at the mid-plane between
the disks (its detailed dynamics, however, is rather complex and it has been shown that this shear
layer gets deformed and fluctuates between different configurations over time [33]). A secondary
circulation in the axial direction is also generated by the impellers, resulting in a fully three-
dimensional turbulent flow [34]. But as a result, the flow has a mean macroscopic structure which
is anisotropic: the large-scale structures in the directions parallel to the plane of the disks are larger
than the structures in the axial direction. A schematic visualization of the setup and the mean flow
generated is depicted in Fig. 1(a).

For each individual experimental run we seed the flow with either tracer or inertial particles,
and stir the flow employing different values of the angular velocity Ω0 = 2π f0 (expressed in rad/s),
with f0 being the frequency (in Hz). For practical reasons, we will also refer to the disks’ rotational
velocity as measured in revolutions per minute (rpm), which will be herein denoted by f ′0, with
f ′0 = 60 f0.

The tracer particles are neutrally-buoyant polyethylene micro-spheres (density equal to 1 g cm−3)
of diameter d = 250−300 µm, commercially available from Cospheric. These particles are com-
monly used in experiments as Lagrangian tracers [35]. Prior to suspension, these particles were
coated with a biocompatible surfactant (Tween 80) in order to ensure proper placement in sus-
pension. For these particles we explored three different rotation velocities; namely: f ′0 = 25,
50 and 100 rpm (corresponding to f0 = 0.42, 0.83 and 1.66 Hz, respectively). At the largest f0
considered the particles verify d/η . 5, η being the Kolmogorov dissipation length of the flow.

The inertial particles are 6 mm plastic spheres with density (0.98± 0.01) g cm−3. Particles
were 3D-printed using a thermoplastic polymer (acrylonitrile butadiene styrene, or ABS). Errors
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in the determination of the density are mainly associated with the fact that the printed particles are
slightly porous. They were injected in the flow generated by stirring exclusively at f ′0 = 50 rpm.

In all cases, measurements of particles’ dynamics are carried out using a variation of shadow
particle tracking velocimetry (SPTV) [36]. The cell is illuminated from two adjacent sides using
two (25× 25) cm2 LED panels (each 1880 lm, 22 W) and a fast camera captures the particle’s
shadow projection over a bright background, instead of capturing reflected light as it is typically
done in standard PTV techniques. Exploiting the discrete π/2 rotational symmetry of the setup
about the z axis, imposed by the square cross-section of the cell, only a projection of the trajectories
in the xz-plane is registered. Individual particles are tracked in this plane using a high-speed
Photron FASTCAM SA3 camera with a resolution of (1024× 1024) px2 and 12-bit color depth.
The camera is placed in front of the cell at a distance L = 3.5 m so that the region of observation
of (20× 20× 20 cm3) covers the whole experimental volume while warranting minimal optical
distortion. A 70-300 mm lens is employed, using an effective focal length of 143 mm. Under
these experimental conditions, we estimate that the error in imaging a particle’s position due to
perspective effects is of ≈ 230 µm, which is less than the tracers’ diameter and much less than the
inertial particles’ diameter (see [36] for other illumination techniques to reduce parallax effects).

For the tracers there are approximately 100 particles being detected by our tracking algorithm
simultaneously in each individual frame, resulting in O(103) trajectories captured after multiple
realizations of the experiment, with a mean duration per trajectory of 0.45/ f0. Datasets are ob-
tained using a frame rate of fs = 500 Hz, which is adequate since we are not interested in fully
resolving the dissipative time scales in the experiments. For the inertial particles, in contrast, only
one sphere is present in the cell in each experimental run, so as to avoid possible interactions
that would result from the presence of other particles. In this case its motion within the whole
experimental volume is tracked using the fast single camera but with a sampling frequency of
fs = 125 Hz. Multiple realizations of the experiment result in O(103) trajectories with a mean
duration per trajectory of 1/ f0. Finally, and irrespective of their nature (tracer or inertial), each
particle instantaneous velocity is derived from its individual trajectory after applying a Gaussian
filter.

The experiments can be characterized by two dimensionless numbers, one pertaining to the flow
and another related to the particles’ dynamics. An integral Reynolds number for the experiment
can be defined as

Reint =
2π f0(D/2)2

ν
, (1)

where ν is the kinematic viscosity of water. The other important dimensionless parameter for the
inertial particles is the Stokes number, which is usually defined as [37]

St =
2R2 (ρp/ρ +1/2)

9ν

u
`
= Tp

u
`
, (2)

where R is the particle radius, ρp is the particle density, ρ is the fluid density, Tp is the particle
Stokes time, and u and ` are a characteristic fluid velocity and length, respectively. Generally,
` and u are chosen so that their quotient `/u = τη = (ν/ε)1/2 is the Kolmogorov time scale of
the flow; in that case we will use the notation Stη . Another possible choice is to use ` = L and
u = U , both associated to the large (or integral) scale motion; the Stokes number resulting from
this choice will be denoted as Stint. Alternatively, an effective Stokes number may be also defined
as

StR =
τR

τη

, (3)
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where τR is the turbulent turn over time associated with a scale ` of the order of the particle size,
i.e., `= R, and therefore

τR =

(
R2

ε

)1/3

. (4)

Finally, for the inertial particles we can define Rep, the Reynolds number at the particle scale, as

Rep =
R |u−v|

ν
, (5)

where u and v are the flow and particle velocities, respectively.

B. Taylor-Green direct numerical simulations

We performed direct numerical simulations (herein, DNSs) of the incompressible Navier-
Stokes equations

∂u
∂ t

+u ·∇u =−∇p+ν∇
2u+F, (6)

where u is the solenoidal fluid velocity field (∇ ·u = 0), p is the pressure, ν is again the kinematic
viscosity, and F is an external volumetric mechanical forcing. Equations are written in dimen-
sionless units based on a unit length L0 and a unit velocity U0, and solved in a three-dimensional
2π-periodic cubic box using a parallel pseudo-spectral method with the GHOST code [38, 39]. A
fixed spatial resolution of N3 = 7683 grid points is used. To mimic the geometry of the large-scale
flow in the von Kármán experiments, the external forcing F is given by the Taylor-Green flow [25],





Fx = F0 sin(kFx) cos(kFy) cos(kFz),
Fy =−F0 cos(kFx) sin(kFy) cos(kFz),
Fz = 0,

(7)

with forcing wavenumber kF = 1. Note that this forcing corresponds to a periodic array of
counter-rotating large-scale vortices, which in the domain [0,π)× [0,π)× [0,π) reduces to just
two counter-rotating vortices separated vertically by a shear layer.

Such forcing is anisotropic: it is similar in the x and y directions (in fact, it has a discrete
π/2 rotation symmetry about the z axis as the von Kármán flow), and it injects no energy directly
into the z component of the velocity. As a result, the generated flow presents symmetries in a
statistical sense (see [24, 25] for more details) while keeping its anisotropy. Also as a result
of these symmetries, the Taylor-Green flow in the full (2π)3 domain can be split into 8 cells,
each consisting of two counter-rotating eddies akin to those generated in the von Kármán flow as
mentioned above (see Fig. 2). As in the case of the von Kármán flow, the resulting Taylor-Green
flow in this cell has a layer of strong shear in which the forcing is zero, and which separates two
planes of maximum forcing. The instantaneous streamlines of the flow in a cell are shown in
Figure 2(b). As it evolves in time, the flow generates a secondary circulation in the axial direction
(ẑ), driven by pressure gradients (unlike its experimental counterpart, in which Ekman pumping
plays a crucial role). As mentioned in the Introduction, due to both the geometrical similarities
between the Taylor-Green and von Kármán flows and the convenience of having a similar flow
with periodic boundary conditions for the numerical study of turbulence, this forcing has been
used in many cases to compare simulations with experimental data obtained from von Kármán
setups [29, 40], specially for magnetohydrodynamic dynamo studies.
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FIG. 2. (a) Schematic of the 2π-periodic 3D domain used in the DNSs. When z changes in π , the Taylor-
Green vortices change their sense of rotation. A region of the domain is highlighted, where the flow has a
large-scale structure reminiscent of the one in the laboratory experiment (although with different boundary
conditions). (b) Instantaneous streamlines in a sub-region of the solving domain. Colors denote intensity
of the horizontal (x) component of the (Eulerian) velocity field. Note the two large-scale counter-rotating
eddies.

In our DNSs, the flow is first evolved until a turbulent steady state is reached. From that instant
on, point particles are injected and evolved in time together with the flow, while computing their
instantaneous position, velocity, and acceleration. Particles do not interact with each other, and
their dynamics do not affect the flow evolution. Multiple simulations with different particles are
then performed, in each case with 106 particles.

We study the dynamics of two types of particles. Firstly, we consider Lagrangian tracers which
evolve according to

dxp

dt
= u(xp, t), (8)

where xp(t) is the position of the Lagrangian tracer at time t, and u(xp, t) is the velocity of the
fluid element at position xp(t).

Secondly, the evolution of inertial particles will be described by an effective simple model
based on the equations for the dynamics of inertial neutrally-buoyant point particles. In principle,
sufficiently small inertial particles with a density mismatch to that of the fluid can modeled by
the Maxey-Riley equation [32, 37], which when considering only first order effects in the particle
radius reads

dv
dt

=
1
Tp

[u(xp, t)−v(t)]+
3
2

γ

1+ γ/2
Du(xp, t)

Dt
+

1− γ

1+ γ/2
g, (9)

where v(t) is the particle’s velocity, u(xp, t) is again the fluid velocity at the particle position,
Tp is the Stokes time defined as in Eq. (2), γ = ρ/ρp is the fluid to particle density ratio, D/Dt
is the convective derivative, and g is the acceleration of gravity. This approximation is valid for
particles with a radius R much smaller than all the characteristic lengths of the flow, and provided
the velocity difference between the particle and the flow is not large (i.e., provided Rep� 1). The
equation, neglecting the effect of gravity, has been previously used to study the dynamics of inertial
particles in turbulent flows using DNSs [41], and to compare the particles’ acceleration statistics
with data obtained from von Kármán experiments [42]. However, no simple equation is available
for particles with size much larger than the Kolmogorov scale η , even if higher order corrections
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in R are taken into account in Eq. (9). As a result, we will use a much simpler equation, which
we will evaluate as a phenomenological model with an effective coefficient. We consider just
the effect of Stokes drag, assuming the velocity of large particles tries to match the fluid velocity
with an effective Stokes relaxation time τp, with two main goals: (1) To see what features in the
experiments can be modeled by such a simple equation, and (2) to identify ways of computing an
effective Stokes time such that results from the experiments are reasonably well captured by the
DNSs. The equation for the evolution of the inertial particles in our DNSs is then given by

dxp

dt
= v(t),

dv
dt

=
1
τp

[u(xp, t)−v(t)] . (10)

Both for the tracers and for the inertial particles, integration of the corresponding dynamical
equations (either Eq.(8) or Eq. (10)) is performed using a high-order Runge-Kutta time stepping
scheme combined with a high-order three-dimensional spatial spline interpolation to obtain the
fluid velocity u(xp, t) at the position of the particles [43].

Just as in the experiments, for these “effective” inertial particles the Stokes number St is de-
fined as the ratio of two characteristic times: the relaxation time of the particle, τp, and some
characteristic time of the fluid τ` at scale `, so that St = τp/τ`. As in Sec. II A, when τ` is the the
Kolmogorov dissipation time scale τη , we obtain Stη = τp/τη . When τ` is evaluated at the flow
integral scale L, we obtain Stint = τp/τL. And finally, it is worth noting that Eq. (4) allows us to
estimate an effective radius R for the (otherwise point) inertial particles in the simulations, as

R = τ
3/2
p ε

1/2. (11)

From this relation, we can also compute an effective Stokes number StR using Eq. (3), and the
Reynolds number based on the particle scale Rep using Eq. (5).

III. LAGRANGIAN TRACERS

To study the dynamics of the von Kármán flow from a Lagrangian viewpoint, we track the
evolution of the tracers (described in Sec. II A) using three different rotation velocities: f ′0 =
25, 50 and 100 rpm, following their trajectories in the horizontal (x) and axial (z) directions. For
reference, these datasets will be labeled EXP25, EXP50, and EXP100 respectively (see Table I). In
the Taylor-Green numerical simulations, Lagrangian characterization is done by evolving tracers
according to Eq. (8). The measurements of the tracers’ velocities, together with the Lagrangian
autocorrelation times τ

(i)
L (computed as the first zero-crossing of the autocorrelation function of

the i-th component of the particle’s velocity, as detailed in Sec. III A), lead us to define quantities
that supplement those defined in Sec. II, and that will allow for comparisons of experiments and
simulations on equal footing.

We start with the quantification of the energy injection rate. The numerical simulations provide
us with direct access to the energy injection rate ε from the computation of the power injected
by the forcing. In contrast, in the experiments we will estimate the energy injection rate from the
r.m.s. value of the horizontal component of the particles’ velocity, vx, denoted herein by U , and
from the time τ

(x)
L , the Lagrangian autocorrelation time of vx, as

εL =
1
2

U2

τ
(x)
L

. (12)



8

Dataset f ′0 U L τ
(x)
L f0 εL η Reint Repart Rλ τ

(x)
L /τ

(z)
L

[rpm] [m/s] [m] [W/kg] [µm]
EXP25 25 0.033 0.19 0.36 6×10−4 200 2.4×104 0.6×104 170 1.27
EXP50 50 0.083 0.19 0.34 8.5×10−3 105 4.7×104 1.6×104 290 1.39
EXP100 100 0.168 0.19 0.33 7.1×10−2 60 9.5×104 3.2×104 410 1.41
DNS 1/2π 0.904 2π 0.35 2.4×10−1 4.4×10−3 - 1.3×104 305 1.27

TABLE I. Values of the parameters for both experiments and simulations with tracers. DNS values are
dimensionless. For the experiments, f ′0 corresponds to the rpm frequency of the disks ( f ′0 = 60 f0, where
f0 is the frequency in s−1). For the DNS, f0 is the frequency associated to a large-scale eddy turn over
time. U is the r.m.s. value of vx, the x component of the particles’ velocity, L is the flow integral scale,
and τ

(x)
L is the particle velocity autocorrelation time based on vx. The energy injection rate is given by

εL =U2/(2τ
(x)
L ) in the experiments, and measured directly from the injected power in the simulations. The

Kolmogorov dissipation scale is η = (ν3/εL)
1/4. Reint and Repart are respectively the integral and tracer-

based Reynolds numbers. The Taylor-based Reynolds number is Rλ =
√

15U4/ν εL, and τ
(x)
L /τ

(z)
L is the

ratio of the particles’ autocorrelation times based on vx and vz.

The choice of using the x component of the velocity in this definition results from the fact that, both
in the numerics and in the experimental flow, the largest eddy lies in this direction. In addition, for
all the datasets considered, the tracers decorrelate in a similar fashion in this direction. Moreover,
the estimation of the energy injection rate from Eq. (12) scales as expected with increasing f0.
On the contrary, usual estimates of the energy injection rate measured directly from the power
consumption of the motors εpow (as done, e.g., in [44, 45]) do not scale as expected with increasing
f0 for our experiments. This behavior could be a consequence of moderate Reynolds number
effects (arising, e.g., from significant energy losses associated with friction and boundary layer
effects), but could also be attributed to specific properties of von Kármán flows in square cells,
such as those discussed in [22]. Most certainly, the former effects result from the fact that, in
order to facilitate comparisons with numerical simulations, we employ values of f0 lying on the
lower range of those considered in previous studies of von Kármán flows. The latter effects result
from the choice of using a square cell, which also facilitates comparisons with the simulations.
It is also worth mentioning that estimating the energy injection rate from the zero crossing of the
acceleration autocorrelation function, as done in [22], yields values similar to those obtained from
our definition of εL in Eq. (12). Still, it should be noted that to our knowledge, the definition used
here has not been used in the past by other groups doing experiments of von Kármán flows. Table
I lists all values of εL for the experiments, while for the simulation it lists εL = ε .

Using the r.m.s. velocity U we can now define a Reynolds number based on the particles’
velocity (not to be confused with Rep) as

Repart =
U L
ν

, (13)

where L is associated to the forcing scale and is provided in Table I. For the simulations, Repart ≈
Reint. Using U and εL, the Taylor-based Reynolds number can now be also defined as

Reλ =

√
15U4

νεL
. (14)
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FIG. 3. Particle velocity autocorrelation function for the horizontal (x) and axial (z) components of the
velocity, in experiments and in simulations. The time axis is normalized by f0 (the rotation frequency of the
blades in the experiments, and the frequency associated to the largest eddy turnover time in the DNSs).

All the relevant parameters for the experimental and numerical datasets are listed in Table I.
Note that from the values of Repart and Reλ , EXP50 (i.e., the experiment with f ′0 = 50 rpm) and
the DNS share comparable values of the Reynolds number (note other dimensionless numbers are
also comparable between this experiment and the simulation). In the following, and in light of
these similarities, comparisons between experiments and simulations for Lagrangian tracers will
focus on these two cases.

A. Velocity autocorrelation functions

We start by characterizing tracers’ dynamics by means of the Lagrangian autocorrelation func-
tion of particles’ velocities. For a single Cartesian component of the tracer velocity vi, the La-
grangian (normalized) autocorrelation function is given by

R(i)
L (τ)≡ Cv(τ)

Cv(0)
=
〈vi(t)vi(t + τ)〉
〈v2

i (t)〉
(15)

where the brackets 〈·〉 denote averages over the time t and over all trajectories, and where τ is the
time lag. To compute this magnitude, only experimental velocity tracks with a duration longer
than 1/ f0 were included in the ensemble averaging, so as to capture contributions from the mean
flow, and to maintain consistency in the comparisons with data stemming from the DNS (in which
all particles can be tracked for arbitrarily long times). No significant bias was observed by doing
so. The resulting autocorrelation functions for both the experiments and the simulations are shown
in Fig. 3, for the horizontal (i = x) and axial (i = z) velocity components.

For the sake of clarity and consistency in the graphical representation of our results, we shall
adopt the following convention throughout the rest of the paper. Symbols (lines) are used to iden-
tify experimental (numerical) results. Full symbols or continuous lines (depending on whether the
data is experimental or numerical) denote the horizontal component (x), whereas empty symbols
or dashed lines represent the axial component (z). In the case of the experiments, runs performed
at f ′0 = 25,50, and 100 rpm are symbolized by circles, squares, and upside triangles respectively.

Firstly, it is worth noting that, both in the experiments and in the simulations, the Lagrangian
autocorrelation function becomes negative for long times and does not converge rapidly to zero af-
terwards. This can be interpreted as an effect of the mean flow in the system. Although the effects
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of the mean flow in the statistics can be partially alleviated by studying particles’ statistics in a
smaller subdomain of the von Kármán cell or by carefully removing mean flow components (see,
e.g., [17, 46]), in our case we wish to compare quantities in simulations and experiments without
removing the effects associated with the large-scale flow, so as to identify global similarities and
differences between both setups. Secondly, we observe that for short times the autocorrelation of
the axial velocity component, R(z)

L , decays faster with τ than its horizontal counterpart, R(x)
L , and

that this behavior is also common to both the experiments (for all values of the Reynolds number
considered in this study) and the simulation.

From Fig. 3 we can estimate τ
(i)
L , the tracers’ component-wise velocity autocorrelation time, as

the instant corresponding to the first zero-crossing of the corresponding autocorrelation function.
The differences in the decay of R(x)

L and R(z)
L with τ show that the ratio τ

(x)
L /τ

(z)
L > 1, which is a

signature of the flow anisotropy and of the effect of the large-scale circulation. This ratio grows as
the Reynolds number is increased (see values in the right-most column of Table I). However, the
product f0τ

(x)
L is comparable for all datasets, numerical or experimental. This further motivates

using τ
(x)
L in the computation of the energy injection rate εL in Eq. (12). A related point to consider

is the fact that the autocorrelation functions for f ′0 = 50 rpm and f ′0 = 100 rpm (i.e., those with
the highest values of the Reynolds numbers considered) collapse component-wise for nearly all
time lags. This could indicate that the main contributor to the decorrelation of particles’ velocities
is the mean flow, which is expected to vary less as the Reynolds number becomes sufficiently
large. This is also reinforced by the fact that the data corresponding to f ′0 = 25 rpm, while still
displaying a similar qualitative behavior to the other experimental datasets, do not collapse with
the other curves, which is consistent with the fact that the Reynolds number in this experiment is
close to the threshold for developed turbulence in von Kármán setups [34, 47].

B. Velocity power spectra

The power spectra of the tracers’ velocities for the horizontal and axial velocity components in
the three experiments and in the DNS are depicted in Fig. 4. For the experiments, Fig. 4(a) shows
that spectra are compatible with a scaling law over a frequency range exceeding a decade. For low
frequencies (i.e., long time scales associated with large scale motions) the power law exponent is
close to−5/3 (see the inset for compensated spectra). For intermediate frequencies, the power law
may be compatible with a−2 scaling, albeit in a shorter range of wavenumbers (see also the inset).
This behavior is somehow unexpected: a Kolmogorov scaling of the Eulerian energy spectrum
E(k) ∝ k−5/3 is expected to yield a Lagrangian spectrum E( f ) ∝ f−2, as Lagrangian trajectories
are not expected to be affected by sweeping (see, for example, [48, 49] and references therein, and
the discussion in Sec. III C) which results in the ∝ f−5/3 Eulerian frequency spectrum. As will be
confirmed by the second order Lagrangian structure functions and the acceleration spectrum, our
data indicates that sweeping by the large-scale flow plays a relevant role in the particle evolution
even in the Lagrangian frame.

In Fig. 4(b) we compare the power spectra of the tracer’s velocities from EXP50 (the exper-
iment with f0 = 50 rpm) with those resulting from the simulations. As mentioned before, these
datasets have the closest matching values of Repart and Reλ . All curves collapse for nearly all
time scales (including forcing and dissipative time scales), and scaling ranges compatible with
both power laws (−5/3 and −2) are again identifiable in both datasets. The DNS spectra are
slightly more anisotropic at the largest scales, as the curves for the x and z velocity components
have a larger relative difference in their amplitudes. Indeed, the ratio U/Uz, where U (Uz) is the
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FIG. 4. Lagrangian velocity power spectra in log-log scale. (a) Experimental results, for the different
rotation frequencies f0, and for the different velocity components. The inset shows the same spectra com-
pensated by power laws with exponents −5/3 (top) and −2 (bottom). The spectra in the inset with the
two compensations were separated by multiplying them by an arbitrary factor for the sake of clarity. (b)
Comparison of the DNS Lagrangian spectrum with that from EXP50, the experimental dataset with the
closest matching value for the Reynolds number. The inset shows the compensated spectra with the same
conventions.

r.m.s. value of the x (z) component of the tracers’ velocity, is larger for the DNS than for EXP50:
for the DNS UDNS/UDNS

z ≈ 1.4, while for EXP50 UEXP50/UEXP50
z ≈ 1.2 (this ratio has similar

values for all the other experimental datasets). Except for this difference, the power spectra of the
tracers’ velocities in the experiment at f ′0 = 50 rpm and the simulation show good agreement. Note
also that this quantification of the anisotropy, while slightly smaller than that reported in other von
Kármán experiments in square cells [22], is also consistent with the fact that we use a cubic cell
with unitary aspect ratio (i.e., disks are separated by a distance equal to the cell of 20 cm width
and depth), while results in e.g., Ref. [22], have the ratio between these two lengths equal to 4:3.

C. Structure functions

The tracers’ (component-wise) second order velocity structure function is given by

S(i)2 (τ) = 〈[vi(t + τ)− vi(t)]2〉, (16)

where again the index i denotes the Cartesian component of the velocity considered, and τ is the
time lag. In Fig. 5 we show these structure functions for each component, both for the experiments
and the DNS. While for very small time lags we can expect S(i)2 ∝ τ2 from the regularity of the
velocity field, for intermediate time lags (i.e., in the turbulent inertial range) the prediction for
isotropic and homogeneous turbulence is S(i)2 ∼ ετ [50]. Such a behavior is compatible with the
prediction for the Lagrangian energy spectrum E( f ) ∝ f−2. As a result, in Fig. 5 the structure
functions are compensated by ετ . A very short range with constant S(i)2 /(ετ) is seen, slightly
more clearly for EXP100 with f ′0 = 100 rpm. The lack of clear scaling has already been pointed
out in the literature, for both numerical and experimental data [51–53]. It has been reported that
the reason for this can be that this quantity mixes low-frequency and inertial-range fluctuations



12

10−2 10−1 100 101

τ/τ
(x)
L

10−2

10−1

100

S
(i

)
2
/(
ετ

)
(a)

x EXP25

z EXP25

x EXP50

z EXP50

x EXP100

z EXP100

10−2 100

1.0

1.5

√
S

(x
)

2
/S

(z
)

2

10−2 10−1 100 101

τ/τ
(x)
L

10−2

10−1

100

S
(i

)
2
/(
ετ

)

(b)

x DNS

z DNS

x EXP50

z EXP50

10−2 100

1.0

1.5

√
S

(x
)

2
/S

(z
)

2

FIG. 5. Second order tracers’ velocity structure functions (for each velocity component separately), com-
pensated by the inertial range prediction ετ , for: (a) Experimental data, and (b) DNS data compared with
EXP50. In both figures the curves for the z component of the velocity are shown with an arbitrary vertical
displacement of 10−1. The insets show

√
(S(x)2 /S(z)2 ) using linear scale in the vertical axis, for the three

experiments in panel (a), and for EXP50 and the DNS in panel (b).

[54], and that it converges very slowly towards its asymptotic value reaching a plateau only for
Reλ & 3×104 [55].

The structure functions provide us with an alternative way of quantifying the anisotropy in the
tracers’ r.m.s. velocity. To this end we compute

√
(S(x)2 /S(z)2 ), shown in the insets in Fig. 5. On the

one hand, for values of τ/τ
(x)
L ≈ 1 or slightly smaller this ratio is comparable to the values of U/Uz

discussed in Sec. III B, and it becomes larger for larger time scales (i.e., for τ > τ
(x)
L ). On the other

hand, for time lags τ/τ
(x)
L . 10−1 the ratio approaches a value of 1 both in the experiments and in

the simulations. This again confirms that the large-scale von Kármán flow generates anistropies
in the fluctuations of the velocity, while the slightly smaller amount of anisotropy when compared
with previous studies as those reported in Huck et al. [22] could be associated with the differences
in the aspect ratio of our experimental cell.

Another effect associated to the mean flow (which has low-frequency components), both in
the von Kármán and in the Taylor-Green flows, can be the observed anomaly in the expected
S(i)2 ∼ ετ scaling of the Lagrangian structure function. Indeed, the mean flow can introduce a
decorrelation time associated with a large-scale turnover time, resulting from the sweeping of the
tracers by the largest eddies. This argument, which is often considered in the Eulerian frame
[56, 57], may be also important in Lagrangian measurements as indicated by recent models of
Lagrangian dispersion [58, 59]. Kraichnan already noted this when developing the Lagrangian-
History Direct Interaction Approximation (LHDIA), and introduced mixed Eulerian-Lagrangian
correlations (based on his so-called “generalized velocity”) to fully remove the advection of eddies
by a large-scale flow [60, 61]. In a similar bridging effort between the Eulerian and Lagrangian
descriptions, Belinicher and L’Vov [62] showed that sweeping effects can be eliminated by using
a reference frame (termed the quasi-Lagrangian reference frame) shared by all fluid points inside
a large eddy (see also [63, 64], and references therein).

If sweeping by the large-scale eddies is indeed affecting the second order Lagrangian statistics,
we can estimate its effect in the context of Kolmogorov’s theory. In the inertial range, the second
order Eulerian structure function scales as S2(`) ∼ (ε `)2/3. If instead of assuming that decorre-
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FIG. 6. Second order tracers’ velocity structure function as in Fig. 5, but compensated by a sweeping-
dominated prediction (ετ U)2/3, for: (a) Experimental data, and (b) DNS data compared with EXP50. In
both figures the curves for the z component of the velocity are shown with an arbitrary vertical displacement
by multiplying them by 10−1.

lation in the measurements is controlled by the local turnover time we consider the decorrelation
from the large-scale eddies, then τ ∼ `/U instead of τ ∼ `/u` (where U is again the r.m.s. value
of the total velocity of the flow, taking into account the contributions of the mean flow and of the
turbulent fluctuations, and u` is the characteristic velocity at scale `). As a result, it follows that

S2(τ)∼ (ετU)2/3. (17)

If sweeping is not negligible even in the Lagrangian frame, this scaling can be expected to hold
for time scales τ . τL, while for τ� τL we can expect to recover the predicted Lagrangian scaling
S2(τ)∼ ε τ . Note that this behavior is also compatible with a scaling of the Lagrangian frequency
spectrum E( f ) ∝ f−5/3 at intermediate frequencies, and of E( f ) ∝ f−2 only for sufficiently large
frequencies as seen in Fig. 4.

In Fig. 6 we show the second order Lagrangian structure functions S2(τ) compensated by this
prediction, both for all experimental datasets, as well as comparing EXP50 data with the DNS.
A range of time lags with approximately constant compensated structure functions can be seen;
its width being approximately independent of the Reynolds number. This is consistent with the
interpretation that the observed scaling of S2(τ) is associated with large-scale flow effects, as the
structure of the mean flow is fixed by the geometry of the setup in the experiments or by the
volumetric forcing in the DNS. Indeed, energy is injected at approximately the same scales in
all experimental runs, and the mean flow has little dependence with the Reynolds number when
turbulence has reached a fully developed state, as already discussed. The observed plateau is
slightly wider for the horizontal velocity component, which is also consistent with the anisotropy
generated by the mean flow at the largest scales (large-scale vortices in von Kármán and Taylor-
Green flows display larger correlation length and correlation time in the horizontal than in the
vertical direction). Both the experiments and the DNS show similar levels of anisotropy (although,
as before, the DNS results are slightly more anisotropic). All these observations reinforce the idea
that advection of the tracers by the mean Eulerian flow affect second order Lagrangian statistical
measurements, and could also be the source of the very limited S2(τ) ∼ ε τ scaling reported in
previous experiments [12, 53].
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FIG. 7. Logarithmic derivatives of the particle velocity structure functions of order p = 1 and p = 2 (see
labels in the inset). Each individual panel gathers both experimental and numerical results for a given
Cartesian component of the velocity; x component in panel (a), and z component in panel (b). Values of 1/3
and 2/3 are indicated as references by the horizontal dashed lines.

The anomalous behavior of the second order Lagrangian structure function, and the impact of
the mean flow, can be also observed in other statistical moments of the tracers’ velocity. Statistics
of the tracers’ for other orders can be accessed, e.g., considering the Lagrangian structure function
of order p,

S(i)p (τ) = 〈|vi(t + τ)− vi(t)|p〉. (18)

In order to asses the statistical properties locally, we compute the local scaling exponent (LSE)
given by the logarithmic derivative of the corresponding structure function:

ξ
(i)
p (τ) =

d log S(i)p (τ)

d log(τ)
, (19)

for p= 1 and 2. LSEs are more conducive to analysing scaling properties scale-by-scale as they are
expected to remove large-order non-universal contributions coming from the overall prefactors in
the structure functions (see, e.g., [65]). In particular, the case p = 2 provides us with an alternative
way to analyze the behavior of S(i)2 (τ). The results for all the experiments and the simulation are
shown in Fig. 7, each panel corresponding to a different Cartesian velocity component. In the
Lagrangian inertial range and in the absence of intermittency, ξp ≈ p/2 is expected, whereas in
the sweeping-dominated range we anticipate ξp ≈ p/3. For τ/τ

(x)
L ≈ 0.1 the local slopes cross

the Lagrangian inertial range prediction, while for τ/τ
(x)
L . 1 the local slopes are consistent with

sweeping for both p = 1 and 2. Moreover, and as noted for other quantities, a better scaling is
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FIG. 8. Second order tracers’ structure functions for each Cartesian velocity component, conditioned to
particles located in the central subregion of the cell (subregion C), and compensated by the Lagrangian
inertial range prediction ετ . Panel (a) shows experimental data, and panel (b) shows DNS data compared
with EXP50. In both figures the z component is displayed with an arbitrary vertical displacement of 10−1.
The insets show

√
(S(x)2 /S(z)2 ) using linear scale in the vertical axis.

seen (for both ranges) in the horizontal component of the velocity, both for the experiments and
the DNS, with clear differences between the two velocity components due to anisotropy.

D. Statistics of velocity fluctuations in subregions

In light of the presence of two different behaviors in the second order Lagrangian structure
functions (one compatible with S2 ∝ τ and the other with S2 ∝ τ2/3), and considering that the
sweeping by the large scale flow may be the cause of the former behavior, we compute second
order velocity structure functions for the tracers but now restricting the tracers’ positions to two
different subregions of the cell. The choice of the two subregions attempts to clarify the effect
of the mean flow. In the experiments, one subregion comprises the central horizontal 1/3 of the
observed volume, and includes (on the average) the shear layer in which the von Kármán flow
can be expected to be less inhomogeneous and anisotropic. This subregion will be labeled “C” in
the following, for “central” region. The other subregion includes the top 1/3 and bottom 1/3 of
the volume closer to the disks. In these regions the effect of the mean flow can be expected to be
more important as they are closer to the forcing mechanism. This whole subregion well be labeled
as “D” as it comprises the fluid close to the disks. In the DNS, following the same procedure,
we separate each Taylor-Green cell in two subvolumes, 1/3 corresponding to the central part
including the shear layer (and where the external forcing is minimal), and the top 1/3 and bottom
1/3 (where the Taylor-Green forcing is maximal). For these subregions we use the same labels as
in the experiments.

We first consider S2(τ) in subregion C. Figure 8(a) shows the experimental results compensated
by ετ , the expected behavior in the Lagrangian inertial range of homogeneous and isotropic turbu-
lence. Even though the structure functions display more fluctuations than when computed for all
trajectories (as a result of having less statistics), a broader plateau than in Fig. 5 can be seen, and
for larger time lags τ/τ

(x)
L (note also that the values of τ

(x)
L used to normalize times in this figure

were recomputed for the trajectories in this subregion, and are approximately half the value of the
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FIG. 9. Second order tracers’ structure functions for each Cartesian velocity component, conditioned to
particles located in subregion D, and compensated by the sweeping-dominated prediction (ετU)2/3. Panel
(a) shows experimental data, and panel (b) shows DNS data compared with EXP50. In both figures the z
component is displayed with an arbitrary vertical displacement of 10−1. The insets show

√
(S(x)2 /S(z)2 ) using

linear scale in the vertical axis.

autocorrelation time in the entire domain). The width of the plateau seems also independent of
whether S(x)2 (τ) or S(z)2 (τ) are considered. As shown by the ratio

√
(S(x)2 /S(z)2 ), subregion C seems

also more isotropic than the flow in the entire volume. This is also confirmed by the ratio of the
autocorrelation times τ

(x)
L /τ

(z)
L computed only for trajectories in subregion C in the three exper-

iments: τ
(x)
L /τ

(z)
L = 1.02 in EXP25, 0.94 in EXP50, and 1.07 in EXP100 (compare these values

with those listed for the entire domain in Table I). Figure 8(b) then compares S2/(ετ) in the same
subregion for the DNS and for EXP50. A similar behavior is observed: a good collapse of numeri-
cal and experimental data, a plateau, and a similar reduction in the flow anisotropy (see the inset in
this figure). Finally, in this subregion, when structure functions are compensated by (ετU)2/3 (not
shown), the sweeping-dominated scaling range is significantly shortened when compared with the
data for the whole volume in Fig. 6.

Figure 9 show S2(τ) compensated by (ετU)2/3 for the experiments and for the DNS, but now
conditioned to particles in subregion D. For all the datasets, a plateau is observed for both Cartesian
velocity components, and for the x component of the velocity in a broader range of time scales than
that observed in Fig. 5 for the entire volume. Note also that the ratio

√
(S(x)2 /S(z)2 ) indicates the

flow is more anisotropic in this subregion. Again, a good agreement is seen between EXP50 and
the DNS data, with a broader plateau in the structure function of the x velocity component, and
with the DNS data being more anisotropic for the largest time lags than the experimental data. And
as in the previous case, the data in this subregion shows no clear scaling range when compensated
by ετ (not shown).

These results give further evidence that the origin of the ∼ (ετU)2/3 scaling is associated with
the effect of the mean flow, as the scaling is stonger in subregions in which the mean flow is
stronger. This also implies that, once the effect of the mean flow has been mitigated (e.g, by
condering regions in the cell far from the injection mechanism, or by carefully removing it as
done in Refs. [17, 46]), a more clear ∼ ετ scaling could be identified.
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E. Acceleration spectra

As discussed in the previous sections, the reason for the anomalous behavior of the energy
spectra E( f ) and of the structure functions S2(τ) observed in the literature and in our datasets
seems to be the contamination of the scaling by mean flow effects. It has already been proposed
by other authors (albeit not identifying the source of contamination to sweeping) that second order
structure functions mix low frequency fluctuations with inertial range fluctuations [54], and that
once the large scale contamination is removed, a plateau should emerge even at Reλ ≈ 400 [66]. As
a result, computation of the so-called acceleration spectrum was proposed as another solution, as
this spectrum is expected to better disentangle the contributions from different time scales, and as
a result show a clearer Lagrantian inertial range scaling [55]. Recently, the acceleration spectrum
was computed for data from von Kármán flows [46], and it was found that the anisotropy of the
flow is indeed contained in low frequencies, and that the spectra are isotropic for frequencies in
the dissipative range.

The tracers’ one-dimensional acceleration spectrum, computed from the particles’ acceleration
autocorrelation function C(i)

A (τ), is defined as

φ
(i)
A (ω) =

2
π

∞∫

0

C(i)
A (τ) cos(ωτ)dτ =

2
π

ω
2

∞∫

0

C(i)
v (τ) cos(ωτ)dτ, (20)

where ω = 2π f as before. Note the second expression allows computation of φ
(i)
A (ω) directly from

the velocity autocorrelation function C(i)
v (τ). This spectrum is expected to scale as πφA(ω)/ε ∝ ω2

for ω→ 0, and as πφA(ω)/ε =C0 in the inertial range, i.e., for τ
−1
L � ω� τ−1

η . The value of C0,
estimated by extrapolating the peak in S2(τ)/ετ , is found to be C0 ≈ 6.9 (see [55]). As mentioned
before, in previous studies it was noted that this spectrum converges much faster to a plateau than
S2(τ), and thus it should be a better indicator of the existence of a Lagrangian “Kolmogorov-like”
inertial range.
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FIG. 10. Particle acceleration spectra normalized by the energy injection rate ε , in (a) experiments, and (b)
EXP50 and the DNS. The dashed horizontal line indicates the amplitude C0 = 6.9, which corresponds to the
asymptotic value expected for the amplitude of the acceleration spectrum in the Lagrangian inertial range.
In panel (b) a ω2 slope is also indicated as a reference. The insets in both panels show the same spectra
compensated by a power law with exponent 1/3, corresponding to sweeping.
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The normalized acceleration spectra associated to our experimental datasets are shown in
Fig. 10(a), while the DNS data is compared with results from EXP50 in Fig. 10(b). In all cases,
spectra are computed from particle trajectories in the entire volume. For both the experiments
and the simulation, we obtain a plateau spanning almost one decade in frequency range, with an
amplitude close to the predicted value for C0. The extension of the plateau appears to grow with
the Reynolds number. For low frequencies, a range compatible with a power law with exponent
1/3 is also visible in all the datasets (see the insets with compensated spectra in Fig. 10). The
presence of this power law is consistent with the−5/3 range visible in the velocity power spectra,
and the sweeping-like scaling in the Lagrangian structure functions. For the DNS, where larger
times have been sampled, at even smaller frequencies (ωτ

(x)
L ≈ 1) the spectrum grows as ω2, as

expected. More importantly, the numerical and experimental data show a remarkable collapse,
sharing characteristics such as the growth at low frequencies, a comparable span of time scales for
the inertial range, and a similar drop at high frequencies. The large-scale anisotropy of the flow
can be also identified in these curves: the plateau is wider for the horizontal component although,
as in all previous cases, the anisotropy at large scales is more pronounced in our DNS than in the
experiments.

IV. INERTIAL PARTICLES

The good agreement between the statistical properties of tracers’ velocity and acceleration in
the von Kármán experiments and in the Taylor-Green simulations, even when considering large
scales associated to the mean flow and in spite of the conspicuous differences in the boundary
conditions, encourages us to perform comparisons between inertial particles in the laboratory flow
and the simulations. The motivation behind the comparisons in this section is to explore the
possibility of performing validation of effective models for large particles (and their parameters)
using statistical comparisons between two reminiscent flows. Thus, we consider a large particle
in the experiment, and we compare it with point particles in simulations that evolve according to
Eq. (10), looking for effective values of the Stokes time that make the statistical properties between
the two cases comparable. Other models for the particles could be considered, as, e.g., the Maxey-
Riley equation with all corrections up to first order in the particles’ radius as given by Eq. (9), or
to order R2. However, even in the latter case the equations hold only for particles with Rep� 1,
while in many cases (including our experiment) Rep & 1. As a result, instead of considering other
effects, we will regard Eq. (10) as an empirical model with one effective coefficient, assuming the
velocity of large particles tries to match the fluid velocity with an effective relaxation time τp. If
this can be succesfully done, in future studies we will consider other models with more effective
parameters to take into account, e.g., the effect of gravity and of an effective added mass [32].

Comparisons of inertial particles in DNSs and von Kármán flows taking into account some of
these effects have already been reported in the bibliography (see, e.g., [42]), where simulations of
isotropic and homogeneous turbulence showed good agreement with the experimental data. The
authors also pointed out effects induced by the finite size of the particles in their comparisons, that
were not captured by the simulations. In our case, we will focus instead on exploiting the Eulerian
and Lagrangian similarities of the Taylor-Green and von Kármán flows, to test which effects of the
experimental particle’s dynamics are well captured by the simulations even when using a simpler
model, and to focus mostly on the effect of the large scale flow in the statistics of the particles in
both the numerics and the experiments.

To this end, on the one hand the dynamics of a large particle (with diameter 6 mm) is studied
in the experiment, using f ′0 = 50 rpm. As shown in the previous section, this rotation frequency
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Dataset f ′0 τ∗p R/η Rep Stη Stint StR τ
(x)
L f0 τ

(x)
L /τ

(z)
L T (x) f0 T (x)/T (z)

[rpm] [ms]
EXP6 50 100 29.5 3.5 274 1.24 9.5 0.38 1.19 0.18 1.26
DNS0.2 1/2π 0.2 10.2 4.4 4.7 0.029 4.7 0.43 1.29 0.16 1.39
DNS0.5 1/2π 0.5 37.1 16.0 11.1 0.069 11.1 0.48 1.22 0.19 1.26
DNS1.5 1/2π 1.5 201.0 27.7 34.3 0.22 34.3 0.58 1.09 0.27 1.15
DNS3.0 1/2π 3.0 574.1 79.0 69.1 0.43 69.1 0.72 1.00 0.36 1.09

TABLE II. Parameters of experiments and simulations with inertial particles. The DNS values are di-
mensionless. The flow is characterized by the Lagrangian/tracers measurements (see Table I). For the
experiment, f ′0 = 60 f0, where f0 corresponds to the frequency of the disks measured in Hz, whereas for
the DNS, it corresponds to the frequency associated to a large-scale eddy turn over time. Then inertial
particles’ response time is denoted by τ∗p, and corresponds to the time that best describes the particles’ dy-
namics when compared with the simulations (see text). In the experiments, τ∗p = τR = R2/3/ε1/3, R being
the particle’s radius; in the DNSs τ∗p = τp. Equivalently, the effective radius of the particles in the simu-

lations is defined as R = τ
3/2
p ε1/2. Rep = R|u− v|/ν , where u and v are the flow and particle velocities,

respectively. Stη = Tp/τη , where in the experiments Tp = (2/9ν)R2(ρp/ρ +1/2), and in the DNSs Tp = τp.
Stint = Tp/τint, where τint = L/U . StR represents the Stokes number based on τR, and is given by StR = τR/τη

(= τp/τη in the DNSs). τ
(x)
L /τ

(z)
L is the ratio of the correlation times τ

(i)
L , obtained from the zero-crossing

of the normalized autocorrelation functions R(i)
L (τ). T (x) f0 and T (x)/T (z) are dimensionless measurements

of the “particle integral time” T (i) =
∫ τ95

0 R(i)
L (τ)dτ , with R(i)

L (τ95) = 0.05.

generates an experimental flow with a Repart value similar to that reached in the simulations. On
the other hand, in the simulations, four values of τp are explored; namely: τp = 0.2, 0.5, 1.5, and
3.0 (in dimensionless units). For ease of reference, simulations for each of these values of τp will
be termed DNS0.2, DNS0.5, DNS1.5, and DNS3.0, respectively. Inertial particles were evolved
in the same turbulent flow employed in the study of Lagrangian tracers described in Section III.

The different values of the Stokes number for the DNSs and the experiment, calculated from
Eqs. (2) and (3) are shown in Table II. As is usually the case in studies of particle-laden turbulent
flows, the values of the Stokes numbers in the experiment and in the simulations can be vastly
different depending on the definition used. The particle Stokes time Tp computed as in Eq. (2)
yields Tp = 2840 ms, resulting in Stokes numbers Stη and Stint with differences of several orders
of magnitude between the experiment and the DNS data (even though, as will be shown next, sta-
tistical results between the experiment and the simulations are compatible in many cases). Instead,
the Stokes number StR defined as in Eqs. (3) and (4) (based on τR = 100 ms for the experiments)
results in values which are comparable with those of the simulations showing closest agreement
to the experimental data. Using StR, values of the experimental data lay between DNS0.2 and
DNS0.5, the numerical simulations with τp = 0.2 and 0.5 respectively. Note that the ratio R/η ,
and the value of Rep for each dataset, as well as other dimensionless numbers in Table II, are also
of the same order of magnitude for these datasets. Indeed, from R we can estimate Rep = 3.5
for the experiment. Keeping in mind that τp and all Stokes numbers for the DNSs are effective
quantities (as we are considering a particle with Rep & 1), we can also estimate from the effective
value of R in the simulations the effective value for Rep. Based on this number the experimental
data seem to be close to DNS0.2.
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FIG. 11. Normalized probability distribution function of the Cartesian components of the inertial particles
velocity. Panel (a) gathers all four DNSs, while panel (b) compares results for EXP6, DNS0.2, and DNS0.5.
A normal distribution with unit disperstion, labeled as N(0,1), is shown for comparison. In both panels, the
z component is shown with an arbitrary vertical displacement of 10−1.

A. Velocity probability density functions

We begin by studying the probability density functions (PDFs) of the Cartesian components of
the velocity of the inertial particles. Even though a Gaussian distribution is expected in the case
of tracers, deviations resulting, e.g., in sub-Gaussian statistics have been reported in the case of
inertial/finite-sized particles in experiments [13], and in numerical simulations of homogeneous
and isotropic turbulence [67].

Probability density functions, normalized by their standard deviation, are shown in Figure 11.
Panel (a) presents the results for the four numerical simulations considered. As for the experi-
ments both the Stokes number based on the particle radius, StR, and the ratio R/η , lie between
the corresponding values of simulations DNS0.2 and DNS0.5 (see Table II), Fig. 11(b) offers a
comparison between these two simulations and the experiment.

We observe a sub-Gaussian tendency in the distributions obtained from the experimental data,
which is well captured by the inertial point-particles in the simulations DNS0.2 and DNS0.5 (see
Fig. 11(b)). The values of the kurtosis κ for those datasets are κDNS0.2

x = 2.62, κDNS0.5
x = 2.62,

and κEXP6
x = 2.56 for the horizontal (x) component; whereas for the axial (z) component we ob-

tain κDNS0.2
z = 2.96, κDNS0.5

z = 3.14, and κEXP6
z = 3.02. Incidentally, the flatness values for the

horizontal component of the velocity are very close to those reported in [13]. The effects of the
large-scale anisotropy of the flow are evident in the PDFs: while the distribution for the horizon-
tal component is sub-Gaussian, the statistics in the axial direction presents a kurtosis close to the
Gaussian value. For the numerical data, it is also interesting that as the particle relaxation time
is further increased (or equivalently, the Stokes numbers are increased), tails in the distributions
become heavier, as is clearly seen in Fig. 11(a).

This behavior could be explained by a preferential sampling of the flow by the inertial particles,
further enhanced by the particle increasing inertia [3, 68], or by the presence of the large-scale flow.
Regarding the possible preferential sampling of some large-scale regions of the flow, we verified
that in our datasets inertial particles explore more or less the same regions in the experiments as
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in the simulations. In the axial (z) direction, PDFs of particles’ positions show no clear tendency
towards sampling any specific region (i.e., PDFs of axial positions are approximately flat). In the
horizontal (x) direction, particles in the experiments also show no clear preference, while particles
in the simulations with τp = 0.2 and 0.5 show a small tendency to be near the edges of the Taylor-
Green cells. However, the probability of finding particles in the third of the domain closer to the
edges is only 1.1 larger than of finding particles in the center of the cell. Moreover, this tendency
is not present in the datasets with τp = 1.5 and τp = 3.0. In spite of these similarities in the mean
exploration of the large-scale flow by the particles, the tails in the PDFs of simulations DNS1.5
and DNS3.0 (with larger Stokes numbers) deviate significantly from the data from EXP6. Thus,
we conclude that these differences are due to the effective Stokes times in these simulations being
too large.

B. Velocity power spectra

The inertial particles’ velocity power spectrum was computed for the x and z components of
the velocity. The results for the DNSs are shown in Fig. 12(a). A power law compatible with a
−5/3 exponent is observed in the data corresponding to DNS0.2 and DNS0.5 in a short frequency
range. Moreover, as τp increases further in the simulations, almost no power law can be discerned;
still, in the spectra compensated by −5/3 (see the insets in Fig. 12) a narrow plateau may still be
identified at low frequencies in all datasets. The narrower −5/3 scaling range might be linked to
the fact that as the particle response time grows, the particle becomes less sensitive to fluctuations
in frequencies f � 1/τp. To illustrate this we can consider fields in Eq. (10) as random variables,
and Fourier transform this equation. Taking the absolute value results in

|v̂ f |2 =
|û f |2

1+(2π f τp)2 , (21)
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FIG. 12. Inertial particles’ velocity power spectra in log-log scale. Labels are the same as in Fig. 11. (a)
Numerical results, for particles with different response time τp. The inset shows the spectra compensated
by a power law with exponent −5/3. (b) Comparison of the experimental spectrum EXP6 with numerical
simulations DNS0.2 and DNS0.5. The inset shows the spectra compensated by−5/3 (above) and−2 power
law exponents (below). The −2 compensated spectra was shifted vertically by a factor 10−4 for clarity.
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where v̂ f and û f are respectively the Fourier transforms of v and u. Note this equation can be
interpreted as a filter: fluctuations in the fluid velocity u (at the particle position) with frequency
f � 1/τp are attenuated in v. Moreover, assuming that the particle samples the flow in the same
way as a tracer (which is not entirely correct, as preferential flow sampling has been observed for
particles with inertia and finite-size [2]), then u(xp, t) should have the same spectral properties
as the power spectrum of the tracer’s velocity. Under these hypothesis, v should have a power
spectrum similar to the spectrum in Fig. 4 at low frequencies, and damped amplitudes for large
frequences (compared with 1/τp). Increasing τp should also result in a stronger filter acting at
smaller frequencies. Even though these arguments neglect the effect of (small-scale) preferential
sampling, the conclusions are in qualitative agreement with the observed spectra.

Figure 12(b) exhibits the experimental data compared with the data from DNS0.2 and DNS0.5.
The experimental data presents a power law compatible with −5/3 for almost a decade of fre-
quencies. The −2 power law, which was present in the tracers measurements, appears here only
for a very short range. The particle’s finite-size effectively filters the fluctuations at intermediate
frequencies corresponding to the inertial range. Consequently, the −2 range shortens significantly
when compared with the tracers. Both at low and at intermediate frequencies (up to f/ f0 ≈ 8) the
DNSs and the experimental data are in good agreement (slightly better when EXP6 is compared
with DNS0.2). This again indicates, as with the PDFs of the particles’ velocities, that numer-
ical simulations of point particles in a Taylor-Green flow can mimic some statistical properties
observed in the von Kármán periments when the Stokes number is estimated using the particles’
effective response time τR.

Moreover, note that even though the numerical datasets DNS0.2 and DNS0.5 have similar StR
and R/η , the “filtering” of the spectrum observed in the experiment is sharper: while the DNS and
experimental spectra coincide up to f/ f0 ≈ 8, for larger frequencies the experimental spectrum
decays much faster than in the simulations. This is an indication that to fully capture the behavior
of the particle in the experiments other effects need to be considered in the simulations, such
as buoyancy, added mass effects, or other effects related to the finite size of the particles [32].
However, the behavior observed in the experiments can be also mimicked if the filtering of the
fluid velocity by the particle is of the form

|v̂ f |2 =
|û f |2

1+(2π f τp)α
, (22)

where α controls how abruptly the inertial particle power spectrum deviates from the fluid velocity
power spectrum. As α grows, the spectrum |v̂ f |2 retains the behavior of |û f |2 better up to f ≈ 1/τp,
and decays faster for f � 1/τp. Note the model in Eq. (10) can be also modified to result in such
a sharper decay.

C. Velocity autocorrelation functions

The inertial particles’ velocity autocorrelation function is computed using the definition in
Eq. (15). The curves for the DNSs are shown in Fig. 13(a). It can be seen that the larger τp,
the smaller the anisotropy between the x and z coordinates: the zero-crossing times of the two ve-
locity components become more similar (see values in Table II). At the same time, as τp increases,
the particles decorrelate more slowly. This is in agreement with the simple “filter” model dis-
cussed in the previous section. Since the velocity autocorrelation function is related to the energy
spectrum via the Wiener-Khinchin theorem, the Fourier transform of the expression in Eq. (21) is
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FIG. 13. Inertial particle velocity autocorrelation functions for the horizontal (x) and axial (z) components of
the velocity in both experiments and simulations. The time axis is normalized by f0, the rotation frequency
of the blades in the experiment, and the frequency associated to the largest eddy turnover time in the DNS.
Panel (a) corresponds to the four numerical runs, while panel (b) shows the experimental data alongside
DNS0.2 and DNS0.5.

the velocity autocorrelation function Cv(τ) associated to that spectrum. By numerical computation
of the Fourier transform of Eq. (21) (using the spectrum |û f |2 obtained from the tracers), we can
confirm that the autocorrelation decays faster for smaller values of τp, which is consistent with the
behavior observed in the data.

In Fig. 13(b) the experimental data is compared with the numerical datasets DNS0.2 and
DNS0.5. A similar decay is observed in the EXP6 and DNS0.5 curves, specially for time lags
τ f0 ≤ 0.3. The zero-crossing times τ

(i)
L (for i = x or z) are again comparable between the ex-

periment and simulations DNS0.2 and DNS0.5 (see also Table II). An even better agreement is
obtained if instead of τ

(i)
L , we compute a component-wise “particle integral time” as

T (i) =
∫

τ95

0
R(i)

L (τ)dτ, (23)

where the time τ95 is the time needed for R(i)
L (τ) to decrease by 95%. This definition was in-

troduced by Machicoane and Volk [17] to better quantify decorrelation times of inertial particles
in von Kármán experiments; here we use the same definition but, following our motivation to
compare bulk flows, we do not apply any specific method to try to reduce the effects of mean
flow contributions. The values for this time are also shown in Table II; we find that the product
T (x) f0, as well as the ratio T (x)/T (x), are similar for EXP6, DNS0.5, and DNS0.2, accounting for
the similar decay of RL(τ), and confirming once again certain statistical agreement between the
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FIG. 14. Inertial particles’ velocity second order structure function, compensated by ετ , the prediction for
the Lagrangian inertial range of the fluid. Time lags in the figures are made dimensionless using the particle
inertial time T (x). Panel (a) shows the data from the DNSs, for the Cartesian velocity components x and z,
while panel (b) compares the experimental data with DNS0.2 and DNS0.5. In both figures the z-component
curves are shown with an arbitrary vertical displacement of 10−1 for clarity.

behavior of inertial particles in the von Kármán experiment, and of the modeled particles in the
Taylor-Green simulation.

D. Structure functions

The one-dimensional second order velocity structure function is calculated as in Eq. (16) for
the inertial particles. The numerical data, compensated by the Lagrangian prediction for the iner-
tial range, is shown in Fig. 14(a). No plateau is present, and the amplitude of the curves decreases
with increasing τp. The absence of a plateau (which is already barely visible in tracers’ measure-
ments when trajectories in all the cell are considered), is in this case also a consequence of the
particles’ insensitivity to fluctuations in time scales τ < τp, combined with the slow convergence
of S2(τ) towards its asymptotic value in the inertial range discussed in Sec. III. On the other hand,
as S2(τ) = 2(Cv(0))−Cv(τ)), the numerical estimation of S2(τ) from Eq. (21) indicates that in-
creasing τp has the same effect observed in our data: the amplitude of the curves decreases as τp
grows. Since S2(τ) is a measure of how disperse the particle’s velocity increments are for a given
time lag τ , a decrease in its amplitude can be also thought of as a smoothing of the velocity signal.

In Fig. 14(b), the compensated data from EXP6 is compared with the numerical data from
DNS0.2 and DNS0.5. The overall shape of the curves is similar, notably they reach their maximum
value at nearly the same value for the ratio τ/T (x). Note in this case the time axis is normalized
by T (x) instead of using τ

(x)
L , as it was shown that the former time captures better the similarities

in the decay of the velocity autocorrelation functions. The experimental data, as in the case of
the tracers, displays a plateau for a narrow range of frequencies, and is less anisotropic than that
obtained from the simulations.
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FIG. 15. Experimental inertial particle’s second order velocity structure functions, compensated by ετ

in panel (a) for trajectories conditioned to subregion C (top curves, displayed for clarity with a vertical
displacement by multiplying them by a factor of 10), and to subregion D (bottom curves). Panel (b) shows
S2(τ) compensated by (ετU)2/3, with the same convention as in panel (a) for trajectories conditioned to
subregions C and D. Numerical results are not shown for clarity, but display the same qualitative behavior.

E. Statistics of particles’ velocity fluctuations in subregions

As in the case of tracers, the second order velocity structure function is computed conditioning
the inertial particles’ trajectories to the same two regions considered in Sec. III D, i.e., near the
center of the cell (subregion C) and near the disks (subregion D). The data corresponding to EXP6
for the two subregions is displayed in Fig. 15(a) compensated by ετ , and in Fig. 15(b) compensated
by (ετU)2/3. The curves conditioned to subregion C show no considerable difference between the
two Cartesian components x and z. At the same time, a short plateau appears at τ/T (x) . 1 for
S2/(ετ), although narrower than the plateau observed for the tracers in the same region of the cell.
A different behavior is observed for the data conditioned to subregion D. The curves display a
clear anisotropy for time lags τ ≥ T (x), the time scales in which the mean flow can be expected to
become dominant. The curves for the axial component of the velocity behave similarly than for the
tracers’, with nearly half a decade compatible with S2 ∝ τ2/3. The horizontal velocity component,
however, shows no plateau on this range of time scales when compensating S2 by τ2/3. This may
be linked to the effect of the energy injection mechanism on the particles’ trajectories close to the
disks. Comparison with the simulations is qualitatively the same as in Fig. 14, and not shown in
this figure for clarity.

F. Acceleration spectra

Finally, the inertial particles’ acceleration spectrum is computed from the velocity autocorrela-
tion function using the definition in Eq. (20). The spectra, normalized as for the case of the tracers,
is plotted in Fig. 16(a) for the DNSs. For DNS0.2, the numerical dataset with the smallest value
of τp, a narrow plateau may be present in the vicinity of ωT (x) ≈ 3. No plateau is observed in
the rest of the curves, which is consistent with the absence of clear scaling laws in the velocity
power spectrum of the inertial particles. At the same time, the amplitude of the curves decreases
as τp grows. Since we can estimate

√
〈a2(τ)〉 ∼ 〈v(t + τ)− v(t)〉t/τ , a smaller amplitude of the
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FIG. 16. Inertial particles’ acceleration spectra normalized by the energy injection rate ε , in panel (a) for
all the DNSs, and in panel (b) for experiment EXP6 and for simulations DNS0.2 and DNS0.5. References
for the curves are the same as in Fig. 14. The horizontal dashed line with C0 = 6.9 corresponds to the
asymptotic amplitude expected in the inertial range for Lagrangian trances, and is only given as a reference.
The insets show the spectra compensated by a power law with exponent 1/3.

acceleration spectrum is compatible with a smaller σvτ , the dispersion of the velocity differences
at a given τ , which was already observed to decrease with increasing τp in the second order struc-
ture functions in Sec. IV D. An inset with the acceleration spectra compensated by ω−1/3 (the
sweeping-dominated scaling) is also shown as a reference in this figure; a narrow plateau can be
identified for the smaller frequencies in the vicinity of ω T (x) ≈ 100.

In Fig. 16(b) the experimental data is compared with DNS0.2 and DNS0.5. Even though the
DNS data is more anisotropic, the amplitude and overall shape of the experimental spectra are
similar to those of DNS0.5. However, the experimental curves do display a plateau for almost
a decade of frequencies, but with an amplitude smaller than that of the tracers. This difference
between the simulations and the experiments further suggests that additional effects need to be
considered in the simulations in order to achieve a more detailed description of the behavior of the
particle dynamics in the experiments. Still, all the datasets present a short plateau when compen-
sated by ω−1/3 (see inset in Fig. 16(b)), consistently with the−5/3 range observed in the velocity
power spectra in Fig. 12(b).

V. DISCUSSION

In this work we presented a comparison of tracers’ and finite-size inertial particles’ velocity and
acceleration statistics in two paradigmatic turbulent swirling flows: an experimental von Kármán
flow, and a numerical flow obtained by imposing a Taylor-Green mechanical forcing. For the
simulations of the inertial particles, a simple point particle model was used, which was considered
as an effective model with an effective particle response time.

In spite of the differences in boundary conditions and in the forcing mechanisms, scaling and
statistical properties of tracers share similarities between both flows, and also display a clear effect
of the mean flow on particle dynamics which in turn affect turbulent statistical properties. Results
from the experiments and the simulations show good agreement in the decorrelation times of the
tracers’ velocity, and also in the power laws observed in the velocity power spectrum. We find
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two different power law exponents: a range compatible with−2 for sufficiently small frequencies,
and one compatible with −5/3 for frequencies associated to the large-scale motion of the flow.
In both the numerical simulations and the experiments, the compensated tracers’ velocity second
order structure function has a short plateau corresponding to the Lagrangian inertial range. A
more clear scaling range is also seen, associated to the effect of the mean flow. Similar results are
obtained in the experiments and the simulations when the acceleration spectrum is considered, up
to high frequencies that can be associated to the dissipative range. Remarkably, our results for the
second order Lagrangian structure functions and the acceleration spectra indicate that sweeping
by the large-scale flow plays a relevant role in the particle evolution even in the Lagrangian frame.
This is further confirmed by studying the statistics of tracers’ velocities in subregions close to
the central shear layer, and in subregions close to the forcing mechanism (either the disks in the
experiments, or the maximal Taylor-Green forcing in the simulations). Statistics conditioned to
the former subregion show a clearer Lagrangian inertial range scaling, while statistics conditioned
to the latter subregion indicate stronger sweeping effects.

Having found good agreement between the experiment and the numerical simulations from the
tracer’s dynamics viewpoint, we compare the velocity and acceleration statistics of an inertial par-
ticle. We find that a suitable way to compare finite-size particles in the experiments with inertial
point-particles in the numerics is via an effective Stokes number based on the eddy turnover time at
the particle radius. Even though in our simulations only viscous drag is considered, several statis-
tical quantities in the experiments are well captured by the simulations; these include the behavior
of the velocity probability distribution function, the velocity power spectrum, the amplitude of the
second order velocity structure function, and the acceleration spectrum. However, the “filtering”
of fast fluctuations in the flow by the inertial particles is more accentuated in the experiment than
in the DNSs. Such a deficiency can be corrected by a simple modification to the equation for the
evolution of the particles. This also points out that important physical effects are missing in the
simple phenomenological model we consider for our inertial particles. Other effects were taken
into account and shown to be relevant in Ref. [42], although still under the assumption of small
particles. Indeed, most models for inertial particles are imperfect in this sense. Our results indicate
that not only other forces acting over the particles should be taken into account, but that also the
impact of the large scale flow on the particles must be considered in the comparisons.

The comparative analysis presented here between experimental data and numerical simulations
also led us to introduce definitions of dimensionless numbers that allow comparisons between the
von Kárrmán and Taylor-Green flows. In particular, definitions of Reynolds numbers, Taylor-based
Reynolds numbers, dimensionless autocorrelation times, and Stokes numbers were provided that
are in good agreement between the experiments and the simulations that display similar behavior
for the different particles studied.

Finally, in spite of the similarities in the results, there are important discrepancies and limi-
tations that are worth mentioning, and that open new paths for future studies. Firstly, only one
inertial particle was used in the experiments, and a detailed exploration of particles with different
masses and radius is needed to better calibrate effective dimensionless numbers for the simula-
tions. Secondly, the large-scale flow in the simulations displays a stronger anisotropy in its veloc-
ity components than the flow in the experiments. To improve comparisons between experiments
and simulations, the geometry of the blades in the impellers could be changed, to change the ra-
tio of the vertical to horizontal velocities in the von Kármán flow (as was done before, e.g., in
von Kármán dynamo experiments, see [21]). And thirdly, our numerical model for the particles
is based on a model for point particles that only considers the Stokes drag, and as a result our
particles response times can only be interpreted in an effective way. Other effects, such as added
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mass effects, buoyancy, or finite size effects such as the Basset-Boussinesq history term or the
Faxén corrections [32] should be taken into account to improve particle modeling, and to properly
consider the spatial variation of the flow in the vicinity of the finite-size particles.

ACKNOWLEDGMENTS

The authors acknowledge financial support from grants UBACYT No. 20020170100508BA
and PICT No. 2015-3530.

[1] N.M Qureshi, M. Bourgoin, C. Baudet, A. Cartellier, and Y. Gagne, “Turbulent transport of material
particles: an experimental study of finite size effects,” Phys. Rev. Lett. 99, 184502 (2007).

[2] R. Monchaux, M. Bourgoin, and A. Cartellier, “Analyzing preferential concentration and clustering
of inertial particles in turbulence,” Int. J. Multiph. Flow 40, 1–18 (2012).

[3] G. Falkovich and A. Pumir, “Intermittent distribution of heavy particles in a turbulent flow,” Phys.
Fluids 16, L47–L50 (2004).

[4] I. Saito and T. Gotoh, “Turbulence and cloud droplets in cumulus clouds,” New J. Phys. 20, 023001
(2018).

[5] K.K. Chandrakar, W. Cantrell, K. Chang, D. Ciochetto, D. Niedermeier, M. Ovchinnikov, R.A. Shaw,
and F. Yang, “Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distri-
butions,” Proc. Natl. Acad. Sci. U.S.A. 113, 14243–14248 (2016).

[6] E.R. Abraham, “The generation of plankton patchiness by turbulent stirring,” Nature 391, 577 (1998).
[7] N.F. Del Grosso, L.M. Cappelletti, N.E. Sujovolsky, P.D. Mininni, and P.J. Cobelli, “Statistics of

single and multiple floaters in experiments of surface wave turbulence,” Phys. Rev. Fluids 4, 074805
(2019).

[8] S. Goto and JC Vassilicos, “Sweep-stick mechanism of heavy particle clustering in fluid turbulence,”
Phys. Rev. Lett. 100, 054503 (2008).

[9] M. Obligado, T. Teitelbaum, A. Cartellier, P.D. Mininni, and M. Bourgoin, “Preferential concentration
of heavy particles in turbulence,” J. Turbul. 15, 293–310 (2014).

[10] R. Monchaux, M. Bourgoin, and A. Cartellier, “Preferential concentration of heavy particles: a
Voronoı̈ analysis,” Phys. Fluids 22, 103304 (2010).

[11] J. Bec, L. Biferale, G. Boffetta, A. Celani, M. Cencini, A. Lanotte, S. Musacchio, and F. Toschi,
“Acceleration statistics of heavy particles in turbulence,” J. Fluid Mech. 550, 349–358 (2006).

[12] N.T. Ouellette, H. Xu, M. Bourgoin, and E. Bodenschatz, “Small-scale anisotropy in Lagrangian
turbulence,” New J. Phys. 8, 102 (2006).

[13] R. Volk, E. Calzavarini, E. Leveque, and J-F Pinton, “Dynamics of inertial particles in a turbulent von
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