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1 Introduction

String theory on AdS3 with NS-NS fluxes admits an exact worldsheet formulation in terms

of the SL(2,R) WZW model [1–3]. Recently, motivated by new results in the study of inte-

grable irrelevant deformations of CFT2 [4, 5] and their possible holographic interpretation,

the authors of [6] considered a especial class of marginal deformations of the AdS3 theory

that induces an irrelevant deformations in the dual CFT2. In terms of the SL(2,R) WZW

description, such deformation corresponds to adding to the action an operator quadratic

in the Kac-Moody currents; namely ∫
d2z J+J̄+ . (1.1)

This operator, while being marginal in the worldsheet CFT2, induces an irrelevant de-

formation in the dual CFT2 that can be thought of as a single-trace version of the T T̄

deformation [6, 7]. The worldsheet theory obtained in this way admits the interpretation

of string theory on a background that interpolates between AdS3 and a linear dilaton back-

ground, resulting in a solvable deformation of AdS3/CFT2 that exhibits Hagedorn spectrum

at high energy and Cardy spectrum at low energy. This theory has been studied in [6–19]

and in references thereof. In particular, correlation functions were studied in [8, 11, 12],

where it was shown that the insertion of the operator (1.1) in the correlation functions

produces a logarithmic divergence that leads to the renormalization of the primary op-

erators, which consequently acquire an anomalous dimension. In [11], we compute the

2-point function on the sphere geometry and obtained the anomalous dimension explicitly.
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This provided us with a direct way of determining the spectrum of the theory. In [12], we

extended the computation of [11] to the CFT2 with a conformal boundary: we computed

there the expectation value of a bulk primary operator on the disk geometry, and we gave

a closed expression for such observable, confirming the result for the anomalous dimension

derived in [11]. We also computed the bulk-boundary and the boundary-boundary 2-point

functions on the disk. Here, we extend these results by explicitly computing the bulk-bulk

2-point function on the disk and the N -point function on the sphere, whose forms are also

shown to be in perfect agreement with the results of [8, 11, 12].

The paper is organized as follows: in section 2, we introduce the marginal deformation

of the SL(2,R) WZW model in presence of a conformal boundary. We discuss the form

of the relevant 2-point functions on the disk geometry, we revisit the calculation of the

boundary-bulk 2-point function using a method different from the ones used in [12], and

we employ the same method to compute the bulk-bulk 2-point function. In section 3,

we discuss the theory on the sphere: we compute the 3-point function and the form the

N -point functions take in the deformed CFT.

2 The theory on the disk

2.1 The action

The conformal field theory is defined by an action of the form S = SWZW + SD + Sb,

consisting of the action of the level-k SL(2,R) WZW theory, the marginal deformation

SD, and the appropriate boundary action Sb. The WZW action can be written using the

Wakimoto fields, namely

SWZW =
1

2π

∫
Γ
d2z g1/2

(
∂φ∂̄φ+ β∂̄γ + β̄∂γ̄ +

b

4
Rφ− b2 ββ̄e2bφ

)
, (2.1)

with k = 2 + b−2. In terms of this representation, the WZW theory consists of a scalar

field with non trivia background charge coupled to a β− γ ghost system. In this language,

the term in the action that realizes the marginal deformation (1.1) takes the form

SD = −λ0

π

∫
Γ
d2z g1/2ββ̄, (2.2)

which is controlled by a dimensionless coupling constant λ0. Γ is the Riemann surface

corresponding to the disc geometry, which can be mapped to the complex upper half

plane, which can be parameterized by y ≥ 0 with z = x+ iy, with its boundary ∂Γ being

the real line z = x. The boundary action Sb is given by

Sb =
1

4π

∫
∂Γ
dx g1/4

(
2bKφ+ iβ(γ + γ̄)− iζβebφ − iλbβ

)
, (2.3)

where ζ, λb are two arbitrary constants, the latter corresponding to the marginal defor-

mation on the conformal boundary ∂Γ. Notice that the disc geometry is compact. When

mapping to the complex upper half plane by means of a conformal transformation, the

radius of the disc does not appear in the equations.
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The variation of the boundary terms, using the constraint δ(β + β̄)|z=z̄ = 0, yields

δSb =
i

4π

∫
∂Γ
dx
(
δφ
(

(∂̄ − ∂)φ− ζbβebφ
)

+ δβ
(
γ + γ̄ − ζebφ − λb

))
(2.4)

from which we obtain the gluing conditions

β + β̄|z=z̄ = 0 , (∂̄ − ∂)φ|z=z̄ = ζbβebφ , γ + γ̄|z=z̄ = ζebφ + λb, (2.5)

valid at ∂Γ, where z = z̄, as the subscript indicates. These gluing conditions are consistent

with the symmetry preserving boundary conditions

J− + J̄−|z=z̄ = 0 , T (z)− T (z̄)|z=z̄ = 0 . (2.6)

2.2 Conformal covariance

We consider bulk primary vertex operators of the form

Φj(p|z) = Z0 e
pγ(z)−p̄γ̄(z̄)e2b(j+1)φ(z,z̄) (2.7)

where p can be regarded as a complex momentum in the γ direction, and j is the momentum

in the φ direction. It is convenient to fix the normalization as Z0 = |p|2(j+1).

In the undeformed WZW theory these operators have holomorphic and antiholomor-

phic conformal dimensions hj = h̄j = −b2j(j + 1). Due to the presence of (1.1), we expect

the conformal dimension to be corrected in the deformed theory

hj → hj,pΦ = hj + δhpΦ. (2.8)

We also consider the boundary operators

Ψl(q|τ) = |q|l+1e
1
2 qγ(τ)−1

2 qγ̄(τ)eb(l+1)φ(τ) (2.9)

which are inserted at the boundary with real coordinate τ . In the undeformed theory these

operators have conformal dimension hl = −b2l(l + 1) and we expect that dimension to be

corrected as well, namely

hl → hl,qΨ = hl + δhqΨ. (2.10)

There are three correlation functions that have a fully determined dependence on the

worldsheet coordinates from conformal invariance (see e.g. [20]). These are the bulk 1-point

correlator

〈Φj(p|z)〉 ∼ 1

|z − z̄|2h
j,p
Φ

, (2.11)

the boundary-boundary 2-point correlator

〈Ψl(q|τ1)Ψl(−q|τ2)〉 ∼ 1

|τ1 − τ2|2h
l,q
Ψ

, (2.12)

and the boundary-bulk 2-point correlator

〈Φj(p|z)Ψl(q|τ)〉 ∼ 1

|z − z̄|2h
j,p
Φ −h

l,q
Ψ |z − τ |2h

l,q
Ψ

; (2.13)
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Figure 1. Correlation functions on the disk geometry.

and there is a fourth one with a partially determined dependence on the worldsheet coor-

dinates, namely the bulk-bulk 2-point correlator [21]

〈Φj(p1|z1)Φj(p2|z2)〉 ∼ ζ−h
j,p1
Φ −hj,p2

Φ

|z1 − z̄1|2h
j,p1
Φ |z2 − z̄2|2h

j,p2
Φ

Gjp1p2
(η); (2.14)

see figure 1. In (2.14) we defined two projective invariant cross ratios of the four points z1,

z̄1, z2 and z̄2 as follows

η =
(z1 − z2)(z̄1 − z̄2)

(z1 − z̄2)(z̄1 − z2)
, ζ =

(z1 − z2)(z̄1 − z̄2)

(z1 − z̄1)(z̄2 − z2)
(2.15)

which are related through ζ = η/(1− η). Notice also the identity |z1 − z̄2|2 = |z1 − z2|2 +

|z1 − z̄1||z2 − z̄2|.
Our strategy in our previous paper [12] was the following: by carefully treating the

deformation (2.2) in the path integral approach of the 1-point bulk correlator and the

boundary-boundary 2-point correlator, we read δhpΦ and δhqΨ from the expected scal-

ings (2.11)–(2.12), in a similar way as it was done in [11] for the sphere 2-point function.

In this way, we obtained the corrections

δhpΦ = 2λ0|p|2, δhqΨ = 2λ0q
2 (2.16)

Then, with δhpΦ and δhqΨ at hand, we could verify the scaling (2.13) and verify the consis-

tency of our computation, regularization and renormalization. Now that we have (2.16),

we can also verify the scaling (2.14), which is something we did not address in [12]. Be-

fore doing that computation explicitly, we will redo the computation of the bulk-boundary

2-point function (2.13) in a different way, in order to introduce a new technique that will

help us to solve the conformal integrals involved in the bulk-bulk 2-point function.

2.3 Boundary-bulk two point function revisited

We will use the path integral techniques of reference [22]. The starting point is to perform

the integration over the fields γ, γ̄. This yields two Dirac deltas that constrain the β, β̄

fields. A solution with the proper boundary conditions on the disk only exists for p+p̄+q =

0 and it is given by

β(w) =
p

w − z
+

p̄

w − z̄
+

q

w − τ
,

β̄(w̄) = − p̄

w̄ − z̄
− p

w̄ − z
− q

w̄ − τ
. (2.17)
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Instead of regrouping the denominators, we will multiply term by term in β(w)β̄(w̄) pro-

ducing a total of nine separate contributions to the deformation of the action. Three out of

those nine contributions are trivial since they become tadpole-like integrals in dimensional

regularization. For example, the first term in β(w) times the first term in β̄(w̄) combines

with second respective terms of β and β̄, and it ultimately contributes with the integral

|p|2
∫

Γ
d2w

(
1

|w − z|2
+

1

|w − z̄|2

)
(2.18)

where Γ is the upper complex half plane. Since the integrand is invariant under w → w̄

which exchanges the upper half with the lower half, the integral can be carried out in the

whole complex plane, giving

|p|2

2

∫
C
d2w

(
1

|w − z|2
+

1

|w − z̄|2

)
= |p|2

∫
C
d2w

1

|w|2
→ |p|2(l2eγπ)ε

∫
d2−2εw

1

|w|2
!

= 0.

(2.19)

where in the last steps we have introduced a regularized version of the integral and set it

to zero. As we discuss in the appendix, the resulting integral coming from the products∫
d2wβ(w)β̄(w̄), when considered as a whole, is logarithmically divergent when w hits the

insertion points, as one would have expected. Spurious IR and tadpole-like divergences —

as the one we have just showed — will appear in the intermediate steps of the computation

as an artifact of the separation of the β(w)β̄(w̄) product in multiple terms. It is a well

known fact that using dimensional regularization is a suitable method for handling this

kind of divergence mixing. The remaining six contributions to the deformation can be

reordered in the following way

−SD =
λ0

π

∫
Γ
d2wβ(w)β̄(w)

→ − λ0

π

[
I

(1,ε)
Bb (z) +

(
I

(1,ε)
Bb (z)

)∗
+ I

(2,ε)
Bb (z, τ) +

(
I

(2,ε)
Bb (z, τ)

)∗]
(2.20)

where we defined the regularized integrals (extension to the whole complex plane using the

symmetry w → w̄ will always be carried out)

I
(1,ε)
Bb (z) =

p2

2
(l2eγπ)ε

∫
d2−2εw

1

(w − z)(w̄ − z)
(2.21)

I
(2,ε)
Bb (z, τ) =

pq

2
(l2eγπ)ε

∫
d2−2εw

(
1

(w − z)(w̄ − τ)
+

1

(w − τ)(w̄ − z)

)
. (2.22)

Symbol ( )∗ in (2.20) stands for the complex conjugate (recall p and z are complex while q

and τ are real). We have introduced a scale l to keep the contribution adimensional and

the factor eγεπε to absorb irrelevant constants following the same regularization as in our

previous paper. The precise way of regularizing and computing these integrals is explained

in the appendix. Here we just quote the results

I
(1,ε)
Bb (z, τ) = −p

2

2
π l2εG11(ε)

1

|z − z̄|2ε
, I

(2,ε)
Bb (z, τ) = −pqπ l2εG11(ε)

1

|z − τ |2ε
. (2.23)
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with G11(ε) = eγε Γ(−ε)2Γ(1+ε)
Γ(−2ε) . Combining these two results with their complex conjugates

in (2.20), we obtain

−SD =λ0G11(ε) l2ε
(

p2 + p̄2

2|z − z̄|2ε
+

pq + p̄q

|z − τ |2ε

)
=λ0

(
1

ε
(q2 + 2|p|2) + (2q2 − 4|p|2) log |z−z̄|l − 4q2 log |z−τ |l +O(ε)

)
, (2.24)

where in the last expression we have expanded in ε and made use of p+ p̄+ q = 0. Thus,

by exponentiating we find

e−SD =
e(q2+2|p|2)λ0/ε

|z − z̄|4λ0|p|2−2λ0q2 |z − τ |4λ0q2 (2.25)

which is exactly both what we expected to obtain (cf. (2.13)) to obtain and what we

had obtained in the last paper through a different method. This result is consistent with

our previous knowledge of the anomalous dimensions δhpΦ = 2λ0|p|2 and δhqΨ = 2λ0q
2.

Moreover, the renormalization of the bulk and boundary operators that is consistent with

the 1-point bulk and 2-point boundary functions exactly agrees with the one we need now

to cancel the poles in (2.25) and drop the regulator; namely

Φj(p|z)→ Φj(p|z)e−
2λ0|p|2

ε , Ψl(q|τ)→ Ψl(q|τ)e−
λ0q2

ε . (2.26)

In all, the correlator computation would lead to the relation

〈Φj(p|z)Ψl(q|τ)〉D =
1

|z − z̄|2δh
p
Φ−δh

q
Ψ |z − τ |2δh

q
Ψ

〈Φj(p|z)Ψl(q|τ)〉WZW (2.27)

with δhpΦ and δhqΨ as before. The subindex D on the left hand side means that the

expectation value is computed in the deformed theory (λ0 6= 0), while the subindex WZW

on the right hand side refers to the undeformed WZW theory (λ0 = 0); see [23, 24].

We should emphasize here that the techniques we use to solve the conformal integrals,

while leading to results that exactly coincide with those obtained by other methods consid-

ered in the literature, has an advantage over such methods. For example, in reference [12]

the boundary-bulk 2-point function was computed by means of Mellin-Barnes type inte-

grals, similar to those that usually appear in higher-dimensional quantum field theory. The

result obtained there exactly agrees with the one obtained here; however, the computation

we just presented is more efficient and, as we will see, it permits to be easily generalized to

the case of higher-point correlation functions. Also, the dimensional regularization method

we use here can be shown to agree with other methods considered in the literature, cf. [12].

2.4 Bulk-bulk 2-point function

Now, let us move to the computation of the bulk-bulk 2-point function. Inserting two fields

in the bulk with momenta p1 and p2 at the points z1 and z2 leads, after integrating in the γ,

– 6 –
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γ̄ fields, to a solution for the β, β̄ fields consistent with the boundary conditions, given by

β(w) =
p1

w − z1
+

p2

w − z2
+

p̄1

w − z̄1
+

p̄2

w − z̄2

β̄(w̄) = − p̄1

w̄ − z̄1
− p̄2

w̄ − z̄2
− p1

w̄ − z1
− p2

w̄ − z2
(2.28)

subject to the condition p1 + p̄1 + p2 + p̄2 = 0. Now, there are twelve non-trivial contri-

butions which can be regrouped in terms of only three different types of integrals in the

following way

−SD =
λ0

π

∫
Γ
d2wβ(w)β̄(w)

→ − λ0

π

[
I

(1,ε)
BB (z1, z2) +

(
I

(1,ε)
BB (z1, z2)

)∗
+ I

(2,ε)
BB (z1, z2) +

(
I

(2,ε)
BB (z1, z2)

)∗
+I

(3,ε)
BB (z1|p1) +

(
I

(3,ε)
BB (z1|p1)

)∗
+ I

(3,ε)
BB (z2|p2) +

(
I

(3,ε)
BB (z2|p2)

)∗]
(2.29)

where

I
(1,ε)
BB (z1, z2) =

p1p̄2

2
(l2eγπ)ε

∫
d2−2εw

(
1

(w − z1)(w̄ − z̄2)
+

1

(w − z̄2)(w̄ − z1)

)
(2.30)

I
(2,ε)
BB (z1, z2) =

p1p2

2
(l2eγπ)ε

∫
d2−2εw

(
1

(w − z1)(w̄ − z2)
+

1

(w − z2)(w̄ − z1)

)
(2.31)

and I
(3,ε)
BB (z|p) =

p2

2
(l2eγπ)ε

∫
d2−2εw

1

(w − z)(w̄ − z)
. (2.32)

These three integrals are of the same kind as those that appeared before and are dealt with

in the appendix. Their solution is

I
(1,ε)
BB (z1, z2) = −p1p̄2π l

2εG11(ε)

|z1 − z2|2ε
, I

(2,ε)
BB (z1, z2) = −p1p2π l

2εG11(ε)

|z1 − z̄2|2ε

and I
(3,ε)
BB (z|p) = −p

2π l2εG11(ε)

2|z − z̄|2ε
(2.33)

Inserting these results in (2.29) and expanding in powers of ε, we obtain for the pole and

finite piece; namely

− SD|ε−1 =
λ0

ε

(
2|p1|2 + 2|p2|2

)
(2.34)

and

−SD|ε0 =λ0

[
−2
(
|p1|2 + |p2|2

)
log ζ − 4|p1|2 log |z1−z̄1|l − 4|p2|2 log |z2−z̄2|l

−
(
(p1 + p2)2 + (p̄1 + p̄2)2

)
log η +

(
p2

1 + p2
2 + p̄2

1 + p̄2
2

)
log(1− η)

]
(2.35)

where in both cases we used the condition p1 +p2 + p̄1 + p̄2 = 0. The subindices ε0 and ε−1

in (2.34) and (2.35) refer to the different orders in the expansion in ε. The singular piece of

– 7 –
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the exponential e−SD|ε−1 gets canceled with the same renormalization (2.26). Furthermore,

the exponential of the remaining finite piece yields

e−SD|ε0 =
ζ−δh

p1
Φ −δh

p2
Φ

|z1 − z̄1|2δh
p1
Φ |z2 − z̄2|2δh

p2
Φ

GDp1p2
(η) (2.36)

with

GDp1p2
(η) =

(1− η)λ0(p2
1+p2

2+p̄2
1+p̄2

2)

ηλ0(p1+p2)2+λ0(p̄1+p̄2)2 (2.37)

which is the exact behavior we expected according to (2.14). This manifestly shows the

consistency of the calculation of δhpΦ proposed in [11] with the disk 2-point functions.

3 Back to the sphere

3.1 Three-point function

Now that we have succeeded with this method to solve new observables in the disk geometry,

it is tempting to go back to the sphere and tackle the 3-point function. Conformal symmetry

demands the 3-point function to scale like

〈Φj1(p1|z1)Φj2(p2|z2)Φj3(p3|z3)〉

∼ 1

|z12|2h
j1,p1
Φ +2h

j2,p2
Φ −2h

j3,p3
Φ |z23|2h

j2,p2
Φ +2h

j3,p3
Φ −2h

j1,p1
Φ |z13|2h

j1,p1
Φ +2h

j3,p3
Φ −2h

j2,p2
Φ

(3.1)

where zij = zi−zj . The solutions for the β fields after functional integration over γ fields is

β(w) =
p1

w − z1
+

p2

w − z2
+

p3

w − z3

β̄(w̄) = − p̄1

w̄ − z̄1
− p̄2

w̄ − z̄2
− p̄3

w̄ − z̄3
(3.2)

with p1 + p2 + p3 = 0. Similarly to the computations before, when making the product

ββ̄ three out of the nine terms become trivial. The six remaining terms contribute to the

deformation of the action in the following way

−SD = −λ0

π

[
Iεp1p̄2

(z1, z2) + Iεp1p̄3
(z1, z3) + Iεp2p̄1

(z2, z1)

+ Iεp2p̄3
(z2, z3) + Iεp3p̄1

(z3, z1) + Iεp3p̄2
(z3, z2)

]
(3.3)

with

Iεpip̄j (zi, zj) = pip̄j(l
2eγπ)ε

∫
d2−2εw

1

(w − zi)(w̄ − z̄j)
= −pip̄jπl

2εG11(ε)

|zi − zj |2ε
. (3.4)

This is the same kind of integral we have been doing all along. Combining all the contri-

butions we get

− SD = λ0G11(ε)l2ε
(
p1p̄2 + p2p̄1

|z12|2ε
+
p2p̄3 + p3p̄2

|z23|2ε
+
p1p̄3 + p3p̄1

|z13|2ε

)
. (3.5)

– 8 –
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Expanding in ε and making use of p1 + p2 + p3 = 0 we obtain for the pole and leading

finite piece

−SD|ε−1 =
2λ0

ε
(|p1|2 + |p2|2 + |p3|2), (3.6)

and

−SD|ε0 = −4λ0

[
(|p1|2 + |p2|2 − |p3|2) log |z12|

l + (|p2|2 + |p3|2 − |p1|2) log |z23|
l

+(|p1|2 + |p3|2 − |p2|2) log |z13|
l

]
. (3.7)

The exponential of the poles piece e−SD|ε−1 gets canceled by the renormalization of the

fields, while the exponential of the finite piece is

e−SD|ε−0 =
1

|z12|2δh
p1
Φ +2δh

p2
Φ −2δh

p3
Φ |z23|2δh

p2
Φ +2δh

p3
Φ −2δh

p1
Φ |z13|2δh

p1
Φ +2δh

p3
Φ −2δh

p2
Φ

(3.8)

which is exactly what we expected to obtain: this confirms that both the anomalous

dimension and the vertex operators renormalization derived in [11] are consistent with

the 3-point function. This raises the question as to whether the same occurs for N -point

functions with N > 3.

3.2 N-point functions

It is easy to write down a general formula for the contribution from the action deformation

to the N -point function. The solution for β in that case is [22]

β(w) =
N∑
i=1

pi
w − zi

, β̄(w̄) = −
N∑
i=1

p̄i
w̄ − z̄i

. (3.9)

with
∑

i pi = 0. When making the product β(w)β̄(w̄) we obtain N(N − 1) non trivial

contributions given by

− SD = −λ0

π

N∑
i,j=0
i 6=j

Iεpip̄j (zi, zj) = λ0l
2εG11(ε)

∑
1≤i<j≤N

(pip̄j + pj p̄i)

|zij |2ε
(3.10)

where integral Iεpip̄j was defined in (3.4). With the conservation condition
∑

i pi = 0, which

follows from the integral over the zero-mode of γ, one can derive the following properties

∑
1≤i<j≤N

(pip̄j + pj p̄i) = −
N∑
i=1

|pi|2 and

pip̄j + pj p̄i =

∣∣∣∣ ∑
k 6=i,j

pk

∣∣∣∣2 − |pi|2 − |pj |2 (3.11)

which we use after expanding in ε to write the exponential of the action deformation as

e−SD = exp

(
2λ0

ε

N∑
i=1

|pi|2
) ∏

1≤i<j≤N
|zij |−4λ0(|pi|2+|pj |2−|

∑
k 6=i,j pk|2). (3.12)
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Again, the pole piece exponential is exactly what we expected in order to cancel the pre-

scribed renormalization of the fields, in perfect agreement. After renormalizing the fields,

we arrive to the general proportionality relation between correlation functions

〈
N∏
i=1

Φji(pi|zi)〉D =
∏
i<j

|zij |4λ0(pip̄j+pj p̄i) 〈
N∏
r=1

Φjr(pr|zr)〉WZW (3.13)

This proportionality relation guarantees that the deformed theory satisfies global conformal

invariance for a CFT with primary fields with corrected dimensions hj,pΦ = hj + δhpΦ.

This can be seen as a consequence of the global conformal invariance of correlators of

primary fields in the WZW theory with dimensions hj . The explicit check can be made by

considering the following three operators for each theory

Λ̂Ds =
N∑
i=1

(
zs+1
i

∂

∂zi
+ (s+ 1)zsi h

ji,pi
Φ

)
(3.14)

with s = −1, 0, 1. One can explicitly verify the global conformal Ward identities

Λ̂Ds 〈Φj1(p1|z1) . . .ΦjN (pN |zN )〉D = 0 (3.15)

as a consequence of WZW Ward identities and thanks to the fact that the power of the

proportionality factor in (3.13) satisfies∑
j 6=i

2λ0(pip̄j + pj p̄i) = −2δhpiΦ (3.16)

Let us mention that the form of the N -point function in the AdS3 worldsheet the-

ory (2.1) deformed by the marginal operator (2.2) carries information about the dual

theory, the latter being the symmetric product of a T T̄ -deformed CFT2 [6, 7]. It was

shown in [8] that the form of the 2-point function can be used to study aspects of the

dual theory such as its non-locality and its analytic properties. A key ingredient in the

discussion of [8] was a particular dependence on the momenta that the 2-point function

exhibits; more precisely, an overall factor |p1|4(j1+1)δ(2)(p1 + p2)δ(j1 − j2). The analytic

properties of the 2-point function gets then determined by the spectrum of the theory, as

it restrict the possible values of j1 in terms of the anomalous dimension δhpΦ. Here, we

have implicitly shown that the N -point functions in the worldsheet theory (2.1) deformed

by the operator (2.2) exhibits a similar dependence: using the results of [22] (see section 2

therein) one can verify that the WZW N -point functions on the right hand side of (3.13)

are actually proportional to product
∏N
i=1 |pi|2(ji+1). This is consistent with the expres-

sion for the 2-point functions found in [8] and [11]. It would be interesting to investigate

what information about the dual theory can be extracted from the dependence on pi in

the higher-point correlation functions. Also, it would be interesting to make a comparative

analysis of the results for the correlation functions obtained here and those studied in [27].

We plan to investigate this in detail in the near future.

– 10 –
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3.3 Four-point function

Consider now the four-point function

〈
4∏
i=1

Φji(pi|zi)〉D =
∏
i<j

|zij |4λ0(pip̄j+pj p̄i) 〈
4∏
r=1

Φjr(pr|zr)〉WZW (3.17)

Let us define the cross-ratios

x =
z12z34

z13z24
, x̄ =

z̄12z̄34

z̄13z̄24
. (3.18)

Following the notation of [25], from the four-point function we can define three types of

functions of x and x̄, representing three different channels; namely: the s-type

G21,D
34 (x, x̄) = lim

z1,z̄1→∞
|z1|4h

j1,p1
Φ 〈Φj1(p1|z1)Φj2(p2|1)Φj3(p1|x)Φj4(p4|0)〉D ,

the t-type

G41,D
32 (1− x, 1− x̄) = lim

z1,z̄1→∞
|z1|4h

j1,p1
Φ 〈Φj1(p1|z1)Φj2(p2|0)Φj3(p1|1− x)Φj4(p4|1)〉D ,

and the u-type

G24,D
31 ( 1

x ,
1
x̄) = lim

z4,z̄4→∞
|z4|4h

j4,p4
Φ 〈Φj1(p1|0)Φj2(p2|1)Φj3(p1| 1x)Φj4(p4|z4)〉D .

Notice that in the three cases, the powers of |z1| and |z4|, which arise to render the limit

finite, correspond to the conformal dimension of the deformed theory, hj,pΦ = hj + 2λ0|p|2.

With these definitions, we can use (3.17) to connect these functions with the three different

channels of the WZW 4-point function, and then use the crossing symmetry relations for

the latter. The crossing symmetry of the non-compact WZW theory has been proven

in [26]. This can be expressed as follows

G21,WZW
34 (x, x̄) = G41,WZW

32 (1−x, 1−x̄) (3.19)

G21,WZW
34 (x, x̄) = |x|−4hj3 G24,WZW

31 (1/x, 1/x̄) (3.20)

where the functions G21,WZW
34 (x, x̄) are defined as above but for the undeformed theory

λ0 = 0. Using (3.17) it is possible to show that the deformed theory also satisfies the

crossing symmetry relations: the first relation is the simplest, and reads

G41,D
32 (1−x, 1−x̄) = G21,D

34 (x, x̄). (3.21)

Proving the second relation is more subtle as it requires to use a chain of equalities. The

final result reads

G21,D
34 (x, x̄) = |x|−4h

j3,p3
Φ G24,D

31 (1/x, 1/x̄) . (3.22)

To prove this identity one uses the trasformation of the WZW 4-point function under

x→ 1/x and the momentum conservation
∑4

i=1 pi = 0.

– 11 –
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A Conformal integrals

On the nature of divergences. Expanding of the product ββ̄ term by term, all along

our work we have found two types of divergent integrals; namely

T0(z) =

∫
C
d2w

1

|w − z|2
, I0(z1, z2) =

∫
C
d2w

1

(w − z1)(w̄ − z̄2)
(A.1)

with z, z1 and z2 properly identified depending on each case. The first integral, T0(z), is

both UV and IR divergent: the integral explodes when w → z and for large w. The integral

I0(z1, z2), on the other hand, is UV finite and IR divergent: it is safe when w → z1, z2 (as

long as z1 6= z2) but divergent for w large. At first glance, this could seem contradictory,

since we expected to reproduce an anomalous dimension computation as an effect of the

regularization and renormalization of only UV divergences. To understand this apparent

contradiction consider the solution for β(w) for the N point function

β(w) =

N∑
i=1

pi
w − zi

=
QN−2(w)

(w − z1)(w − z2) . . . (w − zN )
(A.2)

In the last equality we have taken a common factor of all the denominators. Thanks to the

conservation condition
∑

i pi = 0 the numerator QN−2(w) is a polynomial of degree N − 2

(this can also be seen as a consequence of Riemann-Roch theorem limiting the number of

zeros of a 1-form). When we insert β in the deformed action, we obtain

− SD = −λ0

π

∫
C
d2w

|QN−2(w)|2

|w − z1|2|w − z2|2 . . . |w − zN |2
(A.3)

By power counting we see that this integral is finite for large w due to the lowered degree

of the QN−2(w) polynomial. On the other hand, the integral has logarithmic divergences

when the integration point w approaches the insertion points zi, as expected. From this

analysis we see that the mixed UV/IR and purely IR nature of divergences of T0(z) and

I0(z1, z2) respectively are an artifact of the fact that we are separating the whole integral

in N2 different pieces; N of the type T0(z) and N(N − 1) of the type I0(z1, z2), which,

when considered all together as in (A.3) have the correct divergent behavior.

It is easy to realize that a regularized version of the integral (A.3) is much more difficult

to attack than a regularized version of T0(z) and I0(z1, z2). The only reason why we made

the separation of ββ̄ into N2 terms is to make the computation simpler. Nevertheless, one

could worry that by separating an UV divergent integral as (A.3) in multiple terms which

create artificial IR divergences we could be following an inconsistent path. The nice feature

about this is that we are using dimensional regularization which is very well suited to treat

UV and IR divergences on equal footing and dealing with an artificial mixing of spurious

divergences.

– 12 –
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Regularization and solution. Let us go back to integral I0 defined above (T0 is just a

tadpole and we put it to zero in dimensional regularization). All the non trivial integrals

that appeared in this note have the form

I0(z1, z2) =

∫
C
d2w

1

(w − z1)(w̄ − z̄2)

=

∫
C
d2w

(w̄ − z̄1)(w − z2)

|w − z1|2|w − z2|2

= (z̄2 − z̄1)

∫
C
d2w

w − z2

|w − z1|2|w − z2|2

= (z̄2 − z̄1)

∫
C
d2w

w

|w|2|w + z2 − z1|2
(A.4)

with z1 and z2 being two arbitrary complex variables to be properly identified depending

on which integral one is facing at. In the last two equalities of this equation we have taken

two steps: firstly, we have written (w̄ − z̄1)(w − z2) = |w − z2|2 + (z̄2 − z̄1)(w − z2) and

we discarded the first piece because it will eventually lead to a tadpole-like integral when

properly regularized; secondly, we have shifted the integration w → w + z2. Let us focus

in the last piece

J0(z1, z2) =

∫
C
d2w

w

|w|2|w + z2 − z1|2
(A.5)

and define the following regularized Feynman vector-like bubble integral in D = 2 − 2ε

dimensions

Jα(x0) = 2(l2eγπ)ε
∫
d2−2εx

xα

x2(x+ x0)2
(A.6)

In D dimensions the vectors x and x0 have D components that reduce to two components

when we take ε→ 0. We associate those two components with the real and imaginary part

of the points w and z2− z1 in (A.5). Moreover, the integral Jα(x0) has also D components

that reduce to two which we associate with the real and imaginary part of J0(z1, z2).

Integral (A.6) is a standard dimensionally regularized Feynman integral which can be

easily solved, giving

Jα(x0) = −π l
2εG11(ε)

(x2
0)1+ε

xα0 (A.7)

and by the association explained in the last paragraph this means that the regularized

version of J0(z1, z2) becomes

J
(ε)
0 (z1, z2) = −π l2εG11(ε)

(z2 − z1)

|z2 − z1|2+2ε
; (A.8)

going back to the original integral, its regularized version becomes

I
(ε)
0 (z1, z2) = −π l

2εG11(ε)

|z2 − z1|2ε
= 2π

(
1

ε
− 2 log |z2−z1|l +O(ε)

)
. (A.9)
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