
Parameter Sensitivity of the WRF–LETKF System for Assimilation of Radar
Observations: Imperfect-Model Observing System Simulation Experiments

PAULA MALDONADO AND JUAN RUIZ

Centro de Investigaciones delMar y laAtmósfera,Universidad deBuenosAires–ConsejoNacional de InvestigacionesCientı́ficas

y Técnicas, and Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires, and Institut Franco-Argentin d’Estudes sur le Climat et ses Impacts,

Unité Mixte Internationale, Buenos Aires, Argentina

CELESTE SAULO

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, and Servicio Meteorológico Nacional, and Departamento de

Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,

Buenos Aires, Argentina

(Manuscript received 1 August 2019, in final form 17 March 2020)

ABSTRACT

Specification of suitable initial conditions to accurately forecast high-impact weather events associated with

intense thunderstorms still poses a significant challenge for convective-scale forecasting. Radar data assim-

ilation has been showing encouraging results to produce an accurate estimate of the state of the atmosphere at

the mesoscale, as it combines high-spatiotemporal-resolution observations with convection-permitting nu-

merical weather prediction models. However, many open questions remain regarding the configuration of

state-of-the-art data assimilation systems at the mesoscale and their potential impact upon short-range

weather forecasts. In this work, several observing system simulation experiments of a mesoscale convective

system were performed to assess the sensitivity of the local ensemble transform Kalman filter to both

relaxation-to-prior spread (RTPS) inflation and horizontal localization of the error covariance matrix.

Realistic large-scale forcing and model errors have been taken into account in the simulation of reflectivity

and Doppler velocity observations. Overall, the most accurate analyses in terms of RMSE were produced

with a relatively small horizontal localization cutoff radius (;3.6–7.3 km) and large RTPS inflation param-

eter (;0.9–0.95). Additionally, the impact of horizontal localization on short-range ensemble forecast was

larger compared to inflation, almost doubling the lead times up to which the effect of using a more accurate

state to initialize the forecast persisted.

1. Introduction

Severe weather events associated with deep moist

convection have been drawing vast attention because

of their enormous societal and economic impacts.

Subtropical South America hosts some of the deepest

convective storms and most intense mesoscale convec-

tive systems (MCSs) in the world as shown by satellite

observations (Zipser et al. 2006), and it frequently ex-

hibits synoptic-scale environments favorable for the

development of severe weather as shown by reanalysis

datasets (Brooks et al. 2003). In particular, MCSs ac-

count for 90% of the precipitation over La Plata Basin

and 50% over the Amazon region and produce hazards

such as strong winds, large hail, tornadoes, lightning, and

flooding (Matsudo and Salio 2011; Mezher et al. 2012;

Rasmussen et al. 2014). Thus, to enable accurate short-

range forecasts of these high-impact convective weather

events is a primary concern in our region. One possible

approach to improve these forecasts is by coupling high-

resolution numerical weather prediction models with

data assimilation systems (Yano et al. 2018).

Over the past two decades, data assimilation of

Doppler radar observations has proven to be a feasible

technique for producing storm-scale analyses to initial-

ize dynamical forecasts that can predict the evolution of

convective systems in the following 0–6 h (Gustafsson

et al. 2018; Sun et al. 2014, and references therein). In

this direction, variational data assimilation techniques
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(i.e., 3D-Var and 4D-Var) were initially used with prom-

ising results (e.g., Sun and Crook 1997, 1998; Xue et al.

2003; Caya et al. 2005; Schwitalla and Wulfmeyer 2014,

among others). In recent years, the use of ensemble-based

methods, like the ensembleKalman filter (EnKF; Evensen

1994) and its variants, have also shown great potential for

convective-scale data assimilation as they allow the de-

scription of the flow-dependent evolution of the back-

ground error covariances. Since the nature of these

covariances is not as well known as on the synoptic

scale, where geostrophic and hydrostatic balances play an

important role, being able to estimate these covariances is

one of the main advantages of ensemble methods for

mesoscale and convective-scale applications. Moreover,

as these methods are based on an ensemble of model

states, they also provide valuable information about the

analysis and forecast uncertainty, which can ultimately be

used to initialize short-range ensemble forecasts.

The first application of the EnKF in convective-scale

radar data assimilation was carried out by Snyder and

Zhang (2003) for a perfect-model experiment of a

splitting supercell storm, assimilating simulated obser-

vations of radial velocity. The authors revealed the

ability of the EnKF to produce accurate analyses, even

for unobserved model variables such as vertical velocity

and temperature. Similarly, Tong and Xue (2005) used a

fully compressible cloud model and additionally assim-

ilated simulated reflectivity observations. The authors

demonstrated the potential of the EnKF to retrieve all

water and ice species associated with a multiclass ice

microphysics scheme as well as the wind and thermo-

dynamic variables. The best results were obtained when

both radial velocity and reflectivity data, including re-

flectivity information outside of the precipitation re-

gions, were used. Encouraging results were also shown

when applying the EnKF to assimilate real radar ob-

servations. Dowell et al. (2004) were the first to report

on this application of the EnKF and obtained good-

quality analyses of the main updraft and mesocyclone

of a supercell storm. Aksoy et al. (2009) were among the

first to apply the EnKF to assimilate real radar data for

cases whose behaviors span supercellular, linear, and

multicellular organization. The authors reported robust

results across all cases when assimilating radial velocity

and reflectivity, including ‘‘no precipitation’’ observations

(i.e., reflectivity observations with values small enough to

indicate the absence of precipitation). Further, EnKF ra-

dar data assimilation has also become a key component of

operational high-resolution numerical weather prediction

systems (e.g., Schraff et al. 2016; Gustafsson et al. 2018).

As the EnKF makes use of a finite ensemble size

sampling errors arise, leading to suboptimal perfor-

mance of the method and degrading the estimation of

the background error covariances. Thus, to account for

unrepresented error sources (i.e., sampling as well as

model errors), localization and inflation methods are

employed in ensemble Kalman filters. Localization con-

sists of limiting the impact of observations to nearbymodel

grid points since correlations between an observation and

distant grid points have significant errors and should be

disregarded. Sobash and Stensrud (2013, hereafter SS13)

explored the sensitivity of the EnKF to the localization

cutoff radius in the context of convective-scale data as-

similation and perfect-model experiments. The authors

showed that increasing the horizontal localization and

decreasing the vertical localization produced analyses with

the smallest error for most of the state variables and

discussed the role of model error in the choice of the

optimal localization radius. Lange and Craig (2014) also

performed perfect-model experiments and investigated

the limit of predictability in precipitation forecasts by

comparing analysis schemes that resolve different length

scales. Results showed that high-resolution analysis led to

better forecasts for the first hour, but after 3h, the forecast

quality of the experiments became indistinguishable due to

rapid error growth of the small scales. Inflation consists of

increasing the ensemble variance in each assimilation cycle

to prevent the forecast fromdeviating from the truth since

less weight is given to observations if the ensemble

spread becomes too small. Potentially, this could lead

to a total denial of new observations and ultimately

cause the problem of filter divergence (Anderson and

Anderson 1999). Harnisch and Keil (2015) tested vari-

ous inflation methods to account for unrepresented

error sources in an EnKF using the Consortium for

Small-Scale Modeling (COSMO) limited-area model.

The authors showed that using either multiplicative

covariance inflation or relaxation inflation methods en-

hances the analysis spread and provides initial condi-

tions that produce more consistent ensemble forecasts.

The first goal of this study is to assess the performance

of a convective-scale radar data assimilation system by

carrying out imperfect-model observing system simula-

tion experiments (OSSEs; Lord et al. 1997) of an intense

MCS. Synthetic radial velocity and reflectivity observa-

tions are extracted from a reference simulation and as-

similated using the local ensemble transformed Kalman

filter (LETKF; Hunt et al. 2007). This ensemble-based

method is an efficient implementation of the EnKF that

has also been applied to radar data assimilation at con-

vective scale with promising results (e.g., Yang et al. 2012,

2013; Tsai et al. 2014; Lien et al. 2017). We also examine

the impact of radar data assimilation upon short-range

ensemble forecasts initialized from the generated analyses

and the predictability of this MCS. The second objective is

to evaluate the sensitivity of the convective-scale data
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assimilation system to the specification of some adjustable

parameters of the LETKF. In particular, we explore the

sensitivity of the analysis and short-range ensemble fore-

casts to the horizontal localization cutoff radius and the

magnitude of adaptive multiplicative inflation that is in-

troduced based on a relaxation-to-prior spread approach

(RTPS; Whitaker and Hamill 2012). In this work, we

complement previous OSSE studies by taking model er-

rors into account and using a realistic large-scale forcing.

The rest of the paper is outlined as follows: Section 2

describes the design of our OSSEs, including the reference

simulation and model setup, the synthetic radar observa-

tions, and the assimilation procedure. In section 3, the

impact of assimilating radar observations on both analysis

ensemblemean and short-range forecast ensemblemean is

examined. Section 4 and section 5 present the findings of

the sensitivity experiments to horizontal localization and

adaptive multiplicative inflation, respectively. A conclud-

ing section is given at the end of the paper.

2. Experimental design

The experiments presented in this work are based on

an OSSE approach. In most convective-scale OSSEs, an

idealized setting is considered regarding model error

(i.e., twin experiments) and observations (i.e., simulated

on model grid points). In our experiments, model error

and a realistic large-scale environment are taken into

account, and radar observations are sampled on radar

coordinates considering a realistic observing strategy.

a. Reference simulation

TheWeather Research and Forecasting (WRF) Model,

version 3.6 (Skamarock et al. 2008), is used to create a

reference simulation (also referred to as nature run or

truth) of a well-organized MCS. Initial and boundary

conditions for the nature run are taken from the National

Centers for Environmental Prediction (NCEP) Global

Forecast System (GFS) operational analysis data with 0.58
horizontal resolution every 6h, performing a dynamical

downscaling using three nested domainswith 10-km, 2-km,

and 500-m horizontal grid spacing, respectively (Fig. 1). In

particular, the highest resolution domain (D03 in Fig. 1)

covers the central region of Argentina, spanning 500km

in both horizontal directions, and 20km in the vertical

direction using 60 vertical levels. The physical parame-

terizations include the WRF single-moment 6-class mi-

crophysics scheme (WSM6; Hong and Lim 2006), the

Rapid Radiative Transfer Model (RRTM; Mlawer et al.

1997) for longwave radiation, the Dudhia (1989) short-

wave radiation scheme, the Unified Noah Land Surface

Model (Tewari et al. 2004), and the Yonsei University

planetary boundary layer scheme (YSU;Hong et al. 2006).

The Kain–Fritsch scheme (Kain 2004) for cumulus pa-

rameterization is only used in domainD01 as convection is

explicitly resolved in domains D02 and D03.

The high-resolution nature run is initialized at 1500

UTC 22 January 2014 and consists of a 7-h simulation

(Fig. 2). During the first two hours, a few isolated

thunderstorms rapidly grow upscale giving rise to a long-

lived squall line at the western part of domain D03,

with a dominant north–south orientation and eastward

motion. After 1800 UTC (Figs. 3a–e), the initial squall

line has reached a more mature stage as shown by the

low-level cold pool structure and a strong gust front at its

leading edge. Intense surface winds associated with the

cold pool propagation as well as high-precipitation rates

were produced. Intense convective systems like the one

simulated in this work are similar to those frequently

observed in southern South America during the warm

season and therefore represent a proper scenario to

evaluate our assimilation system.

b. Simulated radar observations

Synthetic reflectivity and radial velocity observations

are extracted from the high-resolution, deterministic

nature run from 1730 to 2005 UTC with a 5-min fre-

quency. Observations are simulated in radar coordi-

nates, and the simulated radar is located at the center of

domainD03 (34.378S, 63.988W), with a scanning strategy

consisting of 14 antenna elevations (ranging from 0.18 to
16.358), a maximum radar range of 240 km, and a 500-m

bin resolution. Gaussian distributed, random observa-

tional errors are assumed with zero mean and stan-

dard deviation of 2.5 dBZ and 1m s21 for reflectivity and

FIG. 1. WRF Model terrain height (shaded). Domain D03 (red

line) is used to run the reference simulation and all OSSEs, with

500-m and 2-km horizontal grid spacing, respectively. Domains

D01 (white line) and D02 (blue line) are used to dynamically

downscale the NCEP GFS initial and boundary conditions to ini-

tialize the reference simulation.
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radial velocity, respectively. The magnitude of these

errors is on the order of those used in previous studies

[e.g., 2 dBZ and 2ms21 in SS13; 5 dBZ and 1ms21 in

Lange and Craig (2014)]. For simplicity, we also assume

that observational errors are spatially uncorrelated,

even though a correlation between adjacent radar pixels

is known to exist in real radar observations. Moreover,

attenuation and clear-air echoes are not considered, a

lower limit of 220dBZ is assigned to reflectivity obser-

vations, and radial velocity observations are assumed to

be available only at locations in which model reflectivity

is over 220dBZ. Although, this value is relatively low

compared to a 0-dBZ threshold used by Tong and Xue

(2005) as the lower limit for reflectivity, the 220-dBZ

threshold implies barely having;8% more observations

than if a 0-dBZ threshold was used.

The radar observation operator described in Tong and

Xue (2005) is employed to compute radial velocity and

reflectivity observations, and it is assumed to be perfect

(i.e., the same one is used to simulate and assimilate

radar observations). Radial velocity observations are

simulated using the model-simulated velocities u, y, and

FIG. 3. Time evolution of reflectivity field (shaded, dBZ), horizontal wind field (vectors; m s21), and 22-K contour of potential tem-

perature perturbation (cyan line) at z 5 1 km, from 1800 to 2000 UTC, every 30min. Thick arrows indicate wind magnitude larger than

20m s21. Radar maximum range (dashed black line) and location (black dot) are shown for reference. (a)–(e) Nature run, (f)–(j) CTRL

analysis ensemble mean, and (k)–(o) NoDA forecast.

FIG. 2. Schematic design of the conducted experiments. Dashed and solid lines represent

deterministic and 60-member ensemble simulations, respectively. Nonfilled and filled dots

indicate that initial and boundary conditions come from the NCEP GFS operational analysis

with and without downscaling, respectively. Nonfilled squares indicate that at 1730 UTC,

CTRL’s and NoDA’s initial condition is taken from the 60-member ensemble forecast ini-

tialized at 1200 UTC.

1348 WEATHER AND FORECAST ING VOLUME 35

Unauthenticated | Downloaded 10/14/21 07:33 PM UTC



w, and the hydrometeor’s averaged terminal velocity is

taken into account following Lin et al. (1983). When

more than one microphysical species is present, a re-

flectivity weighted average is used to estimate this terminal

velocity. For reflectivity observations, the equivalent re-

flectivity factor consists of contributions from rainwater,

snow, and graupel, which are functions of the model-

simulated mixing ratios qr, qs, and qg, respectively. The

equivalent reflectivity factor–mixing ratio relations cor-

respond to a S-band radar, and a Marshall–Palmer ex-

ponential raindrop size distribution is assumed for the

intercept parameter.

c. Data assimilation and OSSEs

Assimilation of simulated observations is carried out

by coupling the WRF Model with the LETKF assimi-

lation method. In particular, the WRF–LETKF system

developed by Miyoshi and Kunii (2012) has been ex-

tended to include the radar observation operator de-

scribed in the previous subsection. Data assimilation

experiments are run in domain D03 (cf. Fig. 1). To

simulate the effect of model errors upon the data assimi-

lation system, the model configuration of all assimilation

experiments differ from the oneused in the high-resolution

nature run in three aspects: (i) horizontal grid spacing (i.e.,

2km instead of 500m) as in Maejima et al. (2019),

(ii) initial and boundary conditions, and (iii) microphysics

scheme (i.e., Lin et al. 1983 single-moment scheme instead

of WSM6).

When radar data are assimilated into convection-

allowing models, the spatial observation number is usu-

ally reduced either by applying a thinning technique (e.g.,

Montmerle and Faccani 2009) or a superobbing approach

(e.g., Weng and Zhang 2012). According to Tsai et al.

(2014), the superobbing approach smooths out small-scale

details reducing the observation representativeness error,

while both techniques diminish the impact of correlated

observation errors. In our OSSEs, observation errors are

assumed to be uncorrelated. Still representativeness error

is an issue since the nature run’s horizontal grid spacing

is smaller than in the data assimilation experiments.

Therefore, a superobbing technique is chosen, and obser-

vations sampled in radar coordinates are smoothed using a

2-km box average to match the model horizontal grid

spacing. Furthermore, reflectivity observations with values

small enough to indicate the absence of precipitation, that

is, below 0dBZ in our case, are deemed no-precipitation

observations. Since these observations are beneficial in

suppressing spurious convection within the assimilation

experiments domain (Tong and Xue 2005; Aksoy et al.

2009), they are assimilated as a 0-dBZ reflectivity value

with the same observation error as for positive reflectivity

observations (described in section 2b).

The assimilation of simulated superobservations is

done every 5min over a 150-min period, from 1735 to

2005 UTC, using a 60-member ensemble. The first

background ensemble is initialized at 1730 UTC when

the squall line has already developed in the nature run.

The first ensemble is taken froma cold-started, 60-member

ensemble forecast initialized from the NCEP GFS opera-

tional analysis at 1200 UTC (cf. Fig. 2). In this way, small-

scale perturbations are allowed to develop throughout the

domain during this 5.5-h forecast, and the spinup time of

moist processes is taken into account so that convection

could form inside the domain by the time the assimilation

experiments begin. Ensemble boundary conditions are

generated by adding two types of perturbations to the

NCEP GFS operational analysis. On the one hand, bal-

anced perturbations are generated by subtracting two

random atmospheric states given by the Climate Forecast

System Reanalysis (CFSR) data with 0.58 horizontal grid
spacing and using an amplitude scale factor equal to 5%of

the climatological value. These perturbations are applied

to all model variables and are used to represent the un-

certainty of the large-scale flow (i.e., synoptic scale;Dowell

et al. 2004) and maintain the ensemble spread outside

convective areas. These perturbations are also used to

initialize the cold-started ensemble forecast at 12 UTC. In

the absence of a coarser-resolution ensemble, using these

types of perturbations has proven to be suitable to account

for uncertainty in the boundary conditions in limited-area

models (Nutter et al. 2004; Torn et al. 2006). On the other

hand, spatially smoothed random perturbations are sam-

pled from a Gaussian distribution with zero mean and a

standard deviation of 2ms21 and 2K for velocity and

temperature fields, respectively, and are applied only at

the boundaries. Finally, 2-h ensemble forecasts are ini-

tialized at 1830, 1900, and 1930 UTC from the generated

60-member analysis ensemble (cf. Fig. 2).

Asmentioned in section 1, localization and inflation of

the error covariance matrix are needed to account for

sampling errors due to limitations in ensemble size. In

our experiments, R localization (Greybush et al. 2011) is

used. Each element of the observation error covariance

matrix R is multiplied by the inverse of a Gaussian lo-

calization function as follows:

Rloc
ij 5R

ij
exp

 
d2
hi,j

2L2
h

1
d2
yi,j

2L2
y

!
,

where dh and dy are the horizontal and vertical distance

between the ith observation and the jth model grid

point, respectively; Lh and Ly are the horizontal and

vertical localization length, respectively; and Rij and

Rloc
ij are the (i, j) element of the original and local-

ized R matrix, respectively. This results in an increasing
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function of observation error with distance from the

model grid point being updated. In particular, observa-

tions farther than a certain cutoff radius r, defined as

;3.65 times L (Miyoshi et al. 2007), will not be assimi-

lated. The horizontal localization cutoff radius rh will

vary among experiments. Vertical localization cutoff

value is fixed at 7.3 km, similar to the one used in pre-

vious studies (e.g., 8 km in Tong and Xue 2005; 7.3 km in

Caya et al. 2005). Additionally, inflation of the back-

ground error covariance matrix is achieved by using a

multiplicative scheme. We consider a constant covari-

ance inflation factor (Anderson and Anderson 1999) of

1.1 (10%). However, we found in previous assimilation

experiments that using this scheme alone produced a

rapid collapse of the ensemble spread. Therefore, an

RTPS scheme (Whitaker and Hamill 2012) is also used

in all experiments presented in this paper. On each ele-

ment of the state vector, this scheme relaxes the analysis

ensemble standard deviation back to the background

ensemble spread and modifies the analysis ensemble

perturbations according to

x0ai ) x0ai

�
a
sb 2sa

sa
1 1

�
,

where x0ai is the departure of the ith ensemble mem-

ber from the analysis ensemble mean; sa and sb are the

analysis and background ensemble standard deviation,

respectively; and a is the RTPS inflation parameter,

whose value will vary among experiments. For a given

value of a, the multiplicative inflation factor is propor-

tional to the amount of reduction of the ensemble spread

due to the assimilation of observations, normalized by

the analysis ensemble spread. Hence, it allows increas-

ing the ensemble variance more in regions where ob-

servations produce a larger reduction of the analysis

uncertainty.

The performance of the WRF–LETKF radar data

assimilation system is first assessed by comparing a

control experiment (CTRL) versus an experiment with

no assimilation of observations (NoDA; cf. Fig. 2). In

CTRL, radar observations are assimilated using an

RTPS inflation parameter a 5 0.9 and a horizontal local-

ization cutoff radius rh 5 7.3km. NoDA is a deterministic

forecast initialized from the mean of the 60-member en-

semble forecast at 1730UTC, thus avoiding smoothing out

small-scale features as would happen if working with the

ensemble mean, and the large-scale forcing comes from a

randomly chosen member of the ensemble of boundary

conditions used in CTRL. Additional assimilation ex-

periments are performed to study the sensitivity of the

data assimilation system to the horizontal localization

cutoff radius and themagnitude of theRTPSmultiplicative

inflation parameter (Table 1). Experiments LOC3.6,

CTRL, and LOC14.6, with a5 0.9 and rh5 3.6 km, rh 5
7.3 km, and rh5 14.6 km, respectively, are used to explore

the former, while experiments RTPS0.7, CTRL, and

RTPS0.95, with rh5 7.3 km and a5 0.7, a5 0.9, and a5
0.95, respectively, are used to explore the latter.

d. Verification metrics

The performance of the WRF–LETKF system is val-

idated against the inner-most domain nature run after

applying a box-averaging interpolation technique to

match the assimilation experiment’s horizontal grid

spacing of 2 km (the interpolated nature run is hereafter

noted as xt).

Thequalityof theanalysesproducedby theWRF–LETKF

system, and the short-range ensemble forecast ini-

tialized from those estimates, is assessed by using

gridpoint-based statistical metrics. Space-averaged root-

mean-square error (RMSE), bias (BIAS), and ensemble

spread (SPREAD) are defined as

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

j51

(x
j
2 xtj)

2

s
, BIAS5

1

N
�
N

j51

(x
j
2 xtj), and

SPREAD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

i5j

"
1

M2 1
�
M

i51

(x
j,i
2 x

j
)2
#vuut ,

where the subscript i is an index over all M ensemble

members, and the subscript j is an index over all N grid

points where convection is present (i.e., defined by

reflectivity values greater than 0 dBZ) either in the

analysis/forecast ensemble mean x or in xt. Defining the

space-averaged computation this way provides a more

thorough measure of the analysis/forecast quality be-

cause it penalizes both misses and false alarms.

The impact of radar data assimilation on different

spatial scales and its effect on forecast predictability are

studied by applying a spectral decomposition technique

to the analysis/forecast mean errors, defined as the dif-

ference with xt. To compute the spectra, a linear trend

removal method following that in Errico (1985) is

TABLE 1. List of assimilation experiments. The asterisk indicates

the same setting as CTRL.

Experiment

name

RTPS inflation

parameter (a)

Horizontal localization

cutoff radius (rh; km)

CTRL 0.9 7.3

LOC3.6 * 3.6

LOC14.6 * 14.6

RTPS0.7 0.7 *

RTPS0.95 0.95 *
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applied to the longitudinal error series, since the model-

simulated fields are not periodic given that a limited-

areamodel is being used. A discrete Fourier transform is

then applied to determine the spectral power associated

with each horizontal scale. The resulting spectra ob-

tained at different latitudes are averaged to obtain a

one-dimensional error spectrum. A time average of the

analysis error spectra is computed between 1830 and

2000 UTC, not including the spinup period of the filter.

Short-range forecast error spectra are averaged over the

three forecast initializations available (i.e., 1830, 1900,

and 1930 UTC). In the following sections, the ratio of

these averaged analysis/forecast error spectrum to the

spectral power of xt spatial variabilitywill be presented and

referred to as ‘‘error relative spectral power’’ (ERSP).

3. Assimilation impact

In this section, we present the results regarding the

performance of the WRF–LETKF on the chosen MCS

case study by assessing the impact of radar data assim-

ilation upon analysis and short-range ensemble fore-

casts, comparing CTRL and NoDA experiments.

a. Analysis performance

Figure 3 shows the time evolution of the reflectivity

field, the 22-K contour of potential temperature per-

turbation, computed as the difference with respect to the

mean value of the potential temperature field at 1 km, to

broadly outline the low-level cold pool, and the wind

field at an altitude of 1 km for CTRL analysis mean

(Figs. 3f–j) and NoDA forecast (Figs. 3k–o).

In general, CTRL correctly retrieves the main char-

acteristics of the MCS, such as the convective mode, the

squall line eastward propagation, and the low-level cir-

culation, while in NoDA the motion of convective cells

roughly agrees with the nature run and the reflectivity

can reach a comparable level of intensity. However, in

terms of wind speed at the leading edge of the cold pool

(i.e., the gust front), the system’s intensity is compara-

tively weaker in NoDA than in CTRL. By 1800 UTC,

a line-structured convective pattern is present in the

analysis mean after six assimilation cycles (i.e., 30min),

while isolated cells are depicted in NoDA forecast. It

takes approximately two hours for convective cells to

organize into a squall line in NoDA (i.e., 1930 UTC),

suggesting that assimilation of radar observations hel-

ped to represent convection organization in CTRL.

Moreover, the analysis ensemble mean locates the squall

line closer to the reference simulation than NoDA as a

systematic lagging of the convective cells is observed in

the latter with no aid from observations to correct it in

successive times. Furthermore, the gust front propagation

velocity is smaller in NoDA than in the nature run be-

tween 1930 and 2000 UTC due to a possible underesti-

mation of the cold pool intensity during that period,

contributing to the misplacement of the system.

It is worth noticing that from 1830 UTC onward,

CTRL continuously improves the cold pool extension

and captures much of the small-scale structures in the

nature run. As no temperature observations are being

assimilated, this variable could be improved in twoways:

(i) by updating the temperature values based on cross

correlations with observed variables (i.e., reflectivity),

especially close to the convective system during the as-

similation step, and (ii) by a good representation of the

mesoscale dynamics of the convective system during the

forecast step. While these two mechanisms are intrinsi-

cally related to each other, and their relative contribu-

tion is difficult to infer from Fig. 3, a good representation

of the cold pool (and of any variable that is not directly

related to observed variables) is an indication that the

system is converging to a solution consistent with the

actual dynamics of the MCS. Moreover, in regions far

from the convective system where radar data are sparse

(except for no-precipitation observations), the presence

of a cold pool is partly a result of a good representation

of the MCS structure driven by the model dynamical

evolution as it adequately propagates information from

convective clouds where observations are available.

The impact of radar data assimilation on different

spatial scales during the assimilation period is studied

by comparing the error spectral power of CTRL and

NoDA (Fig. 4). We also explore the impact on variables

that are directly and indirectly related to those being as-

similated by showing reflectivity and the zonal compo-

nent of the velocity field (i.e., directly related to Doppler

velocity as the MCS has a dominant north–south orien-

tation) for the former and temperature for the latter. All

power spectra present a maximum at the longest wave-

length (i.e., 250 km) with decreasing values toward

smaller scales. NoDA error spectrum amplitudes are

larger than the energy spectrum of the nature run at

nearly all wavelengths and in particular for wavelengths

between 10 and 100km, meaning that there is hardly any

improvement regarding the spatial scales that can be

correctly represented by NoDA compared to the ones

present in the truth simulation. On the other hand, errors

in CTRL experiment show lower energy than in nature

run for wavelengths larger than roughly 6km for zonal

wind, 15km for temperature, and 8km for reflectivity,

suggesting that mesoscale phenomena are better rep-

resented by the analysis mean. Further examination

showed that the maximum wavelength at which the

spectral power of the analysis/forecast error saturates or

becomes similar to the energy spectrum of the nature run
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(hereafter referred to as cutoff wavelength) not only de-

pend on model variable but also present a dependence

with height. For instance, the cutoff wavelength decreases

with height for zonal wind, increases with height for

temperature, and has small variations with height for

reflectivity. These cutoff wavelengths will be determined

more precisely in the following sections. It is important to

note that the error spectral power can be regarded as a

scale decomposition of the root-mean-square error and is

quite sensitive to both intensity and position errors. This

partially explains why NoDA error spectrum is higher

than the nature run spectrum, indicating almost no skill

even when some aspects of the convective system evo-

lution are well captured by NoDA (cf. Fig. 3).

b. Short-range ensemble forecast performance

The ensemble forecast initialized at 1830 UTC from

CTRL analyses ensemble, valid at 1900, 1930, and 2000

UTC is shown in Fig. 5. As expected, CTRL forecast

mean losses skill with increasing forecast lead time (cf.

Figs. 3c–e) but is still distinctly better than NoDA (cf.

Figs. 3m–o). During the first forecast hour, the location

and intensity of the squall line are well represented. In

particular, strong near-surface winds associated with the

leading edge of the cold pool are well captured up to

90min in advance. However, for lead times longer than

onehour, a considerable difference between the truth and

the forecasted evolution of the system is found in the

southern sector of the squall line. This region presents a

significant underestimation of the MCS reflectivity and

surface winds and becomesmore significant as the system

approaches the southeastern boundary. Partly, it could be

explained because theCAPEahead of the convective line

in the reference simulation is higher than in the analysis

used to initialize this forecast (not shown). Another im-

portant aspect related to the weakening of the system is

that the forecast boundary conditions come from the

NCEP GFS analysis available every 6h, while the nature

run employs a two-way nesting between domains D02

and D03 (cf. Fig. 1), allowing a continuous interaction

between the two in each model integration.

Quantification of predictability loss throughout the

forecast period for different spatial scales is assessed

through the forecast ensemble mean ERSP of reflec-

tivity at an altitude of 5 km (Fig. 6). Values greater or

equal than unity imply a complete loss of predictability

for CTRL’s forecast ensemble mean. In the case of

NoDA’s deterministic forecast, the loss of predictability

is reached for values greater than
ffiffiffi
2

p
(Kalnay 2003). The

initial analysis mean from CTRL is able to skillfully

represent the different spatial scales of the spectrum

except for those smaller than the cutoff wavelength (i.e.,

8 km for reflectivity), while a forecast initialized from a

state with no assimilation of radar observations shows

no skill for almost all resolved wavelengths. In CTRL

forecast, the most predictable scales are the ones cor-

responding to the b-mesoscale part of the spectrum (i.e.,

wavelengths larger than 50km), while in NoDA fore-

cast, predictability is limited to the larger spatial scales,

that is, wavelengths higher than 90km, that mainly re-

spond to the forcing from the boundaries. Many studies

have shown that errors at convective scale are eventu-

ally responsible for the loss of predictability on much

larger scales as forecast range increases (e.g., Zhang

et al. 2003; Selz and Craig 2015). For instance, in the

present case study, a 1-h forecast cannot accurately de-

scribe phenomena with a characteristic length smaller

than 40km, and for a 2-h forecast, this threshold in-

creases to 80 km, suggesting a limit of predictability that

roughly reduces the solvable spatial scales at a rate of

20 km per half hour of forecast time. A similar error

FIG. 4. Error spectral power as a function of wavelength, for

CTRL analysis mean (red line) and NoDA forecast (black line).

Nature’s run spectral power is shown for reference (gray line).

(a) Zonal wind at z 5 8 km, (b) temperature at z 5 1 km, and

(c) reflectivity at z 5 5 km.
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growth rate was found by Zhang et al. (2003), as they

showed that errors first grew as small-scale differences

associated with moist convection and then spread up-

scale as their growth began to slow down.

4. Sensitivity to horizontal localization

We explore the sensitivity to horizontal localization

by comparing CTRL (i.e., 7.3-km cutoff radius) with

experiments LOC3.6 and LOC14.6, all of which use a

vertical localization cutoff radius of 7.3 km.

a. State-space statistics

Space-averaged statistics of zonal wind, temperature,

and the sum of rain, snow, and graupel mixing ratios

(defined as Ref-condensates) for NoDA, CTRL, LOC3.6,

and LOC14.6 are shown in Fig. 7. Figures 7a, 7c, and 7e

show the analysis and background scores in a single line

giving the classical ‘‘sawtooth’’ appearance representing

the error growth during the forecast step and the correc-

tions introduced in the analysis step. In particular, zonal

wind and Ref-condensates exhibit larger corrections than

temperature as those variables are directly related to ob-

served variables. Figures 7b, 7d, and 7f show the statistics

for short-range forecast, which are averaged over three

forecasts initialized at 1830, 1900, and 1930 UTC.

During the first 60min of assimilation, all experiments

show a gradual decrease in RMSE and more steady

behavior is reached afterward. Thus, it takes the analysis

almost one hour to converge to a state closer to the truth,

FIG. 6. Time evolution of the forecast ERSP of reflectivity at z5 5 km. (a) Forecast ensemblemean initialized from

the CTRL analysis ensemble and (b) NoDA forecast.

FIG. 5. As in Fig. 3, but for the ensemble forecast initialized at 1830UTC fromCTRL analysis ensemble. Forecast ensemble mean valid at

(a) 1900 UTC, (b) 1930 UTC, and (c) 2000 UTC. Comparison should be made to Figs. 3c–e and 3m–o.
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which is related to a slow convergence of the error co-

variance matrix but also possibly linked to a small initial

ensemble spread compared to the magnitude of the

initial RMSE. All assimilation experiments improve

the RMSE compared with NoDA, and at the end of the

assimilation period Ref-condensates exhibit higher er-

ror reduction than temperature and lower than zonal

wind. LOC3.6 and CTRL present the smallest errors for

all variables, indicating that assimilation of a smaller

number of observations helps to reduce the analysis er-

ror. Sensitivity to horizontal localization is more evident

in temperature than in zonal wind and Ref-condensates,

suggesting that distant convective-scale covariances are

poorly estimated, especially for nonobserved variables.

A slight improvement of LOC3.6 respect to CTRL is

shown toward the end of the assimilation period on

zonal wind and Ref-condensates and, more notably, on

temperature RMSE.

The expected sensitivity to localization in SPREAD is

observed in all variables. The SPREAD value increases

as the localization cutoff radius decreases since fewer

observations impact the model state during the update

at each grid point. Experiments with greater SPREAD

(i.e., LOC3.6 and CTRL) reach smaller RMSE values,

suggesting that changes in the ensemble spread can

partly explain the sensitivity to the horizontal locali-

zation cutoff radius. Moreover, comparison of the

SPREADwith the RMSE indicates an underdispersive

ensemble, especially during the first 45min. The ratio

between ensemble variance and ensemble mean square

error is below the optimal value [defined as N/(N 1 1)

by Murphy 1988] of 0.98 in the case of our 60-member

ensemble. The multiple sources of model error con-

sidered in these experiments can partly explain the

underestimation of ensemble spread. Figure 7 shows

that the SPREAD growth rate is lower than the fore-

cast error growth rate since the latter is probably en-

larged by model errors that are not explicitly being

accounted for in the evolution of the ensemble per-

turbations during model integration.

FIG. 7. Space-averaged RMSE (solid line), BIAS (dashed line), and SPREAD (dotted line) for (top) zonal wind,

(middle) temperature, and (bottom) Ref-condensates for LOC3.6 (green line), CTRL (red line), and LOC14.6

(blue line). NoDA RMSE (solid black line) is shown for reference. The average includes grid points where re-

flectivity is greater than 0 dBZ either in the assimilation/forecast experiment or in the nature run. (a),(c),(e)

Analysis ensemble mean and (b),(d),(f) forecast ensemble mean. Forecast mean statistics are averaged over three

initializations (i.e., 1830, 1900, and 1930 UTC).
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During the whole assimilation period, all experiments

produce a dry and cold BIAS and a systematic overes-

timation of the zonal velocity. Sensitivity to localization

is evident in temperature, with the smallest BIAS for

LOC3.6, while zonal wind and Ref-condensates present

hardly any sensitivity during the entire assimilation pe-

riod. While zonal velocity and Ref-condensates BIAS

are significantly reduced with assimilation time, reach-

ing values close to zero once the analysis has converged

to the nature run, an intriguing feature is that radar data

assimilation slightly increases the temperature cold

BIAS particularly during the spinup of the filter. This

behavior is unexpected, and its cause is still unclear.

Furthermore, the vertical distribution of the tempera-

ture bias presents positive values in the first 4 km and

negative values between 6 and 12 km (not shown),

suggesting weaker low-level evaporative cooling and

mid–high-level release of latent heat, respectively.

Additionally, a negative bias in vertical velocity is

present during the entire assimilation period and the

sensitivity to localization is also observed, with the

largest BIAS for LOC14.6 (not shown). Therefore, ex-

periments with larger systematic errors (that also exhibit

smaller ensemble spread) lead to a less intense convec-

tive system, with weaker updrafts and cold pools.

In short-range forecasts (Figs. 7b,d,f), NoDA also

shows worse results than a forecast whose initial state

has information on the mesoscale. In particular, the

decrease of NoDA RMSE with time is related to

the squall line leaving the computational domain toward

the end of the forecasted period. Zonal wind and Ref-

condensates RMSE exhibit rapid error growth during

the first 30min for all experiments. Afterward, the error

growth rate reduces, and the error stabilizes around a

value of 7m s21 and 1.5 g kg21, respectively. This be-

havior is observed first in LOC14.6, and later in CTRL

and LOC3.6, as the error still increases between 30 and

65min for these two experiments. As mentioned for

NoDA, the halt in error growth might be related to the

MCS leaving the domain. Regarding the BIAS in zonal

velocity and Ref-condensates, model states are compa-

rable among experiments during the entire forecast

period. All experiments exhibit a negative temperature

BIAS decrease during the forecast range as implied

through the assimilation period when the assimilation of

observations seemed to increase the analysis BIAS.

Sensitivity among experiments is observed in all vari-

ables during the entire forecast time for RMSE, and

during the first 75min for temperature BIAS.

b. Ensemble-mean error spectral decomposition

We examine the influence of the localization cutoff

radius on different spatial scales by comparing the

analysis ensemble mean ERSP of LOC3.6, CTRL, and

LOC14.6 (Fig. 8). The smallest wavelength from which

the analysis mean cannot accurately represent small-

scale phenomena (i.e., values higher than unity) differs

for variables types and localization scales. For upper-

level zonal wind, this cutoff wavelength is approximately

6 km for LOC14.6, and 4km for CTRL and LOC3.6.

For low-level temperature, it is roughly 12–16 km for

LOC14.6, 8 km for CTRL, and 6km for LOC3.6. For

midlevel reflectivity, it is nearly 7–8km for LOC14.6,

6 km for CTRL, and 5–6km for LOC3.6. As bigger lo-

calization radius is used, the analysis cannot accurately

depict the smaller scales as well as LOC3.6, and therefore

LOC14.6 inadequately represents the small-scale struc-

tures of this MCS (e.g., wind gusts, intensity of cold pool

and updrafts), which could also explain LOC14.6 pro-

ducing a less intense convective system. Thus, small-scale

FIG. 8. Analysis mean ERSP for LOC3.6 (green line), CTRL

(red line), and LOC14.6 (blue line). (a) Zonal wind at z 5 8 km,

(b) temperature at z 5 1 km, and (c) reflectivity at z 5 5 km.
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phenomena tend to be not properly represented in the

analysis ensemble mean when distant observations are

used, and this effect is even more evident when we con-

sider model variables that are not directly observed.

The time evolution of the difference of forecast mean

error relative spectral power between LOC3.6 and

LOC14.6 is shown for zonal wind, temperature, and

reflectivity (Fig. 9). Using a smaller localization scale

produces more skillful forecasts (as shown by negative

values) and extends the limit of predictability to almost

60min for zonal velocity, 50min for temperature, and

100min for reflectivity (as shown by black lines).

Moreover, model variables exhibit a considerable

contrast on the spatial scales the forecast can accu-

rately represent. For instance, the impact of locali-

zation on zonal velocity and temperature is bounded

for wavelengths between their respective cutoff wave-

lengths and 80km, and up to 40-min forecast lead time.

Whereas the impact on reflectivity is recognized for

wavelengths larger than 30 km and lead times longer

than 40min.

In particular, the most significant difference on reflec-

tivity error spectral power betweenLOC3.6 andLOC14.6

is reached at larger scales (i.e., 50–100km) and around

1-h lead times, possibly associated to a worse represen-

tation of the southern region of the squall line inLOC14.6

than in LOC3.6. Additionally, the impact of localization

on larger scales is reached at longer lead times, which

might be related to the upscale error growth given the

nonlinearity in moist processes (Zhang et al. 2003).

Therefore, it seems that improving the representation of

the smaller scales in the analysis by using a smaller lo-

calization radius has a positive effect on the larger scales,

even though the analysis sensitivity to localization on

those scales is low.

As previously mentioned, LOC14.6 forecasts a less

intense convective system than LOC3.6. Figure 10 shows

the ensemble forecast probability of 60-min accumu-

lated precipitation and 10-m wind from the forecast

initialized at 1830 UTC and valid at 1930 UTC for

LOC3.6 and LOC 14.6. Both experiments can accurately

forecast high 60-min precipitation rates and strong wind

gusts. However, the southern region of the squall line

(i.e., 368S) exhibits the lowest probabilities in both ac-

cumulated rain and surface wind for LOC14.6, sug-

gesting a worse representation of the system intensity

and/or position between LOC14.6 ensemble members

than LOC3.6.

5. Sensitivity to adaptive multiplicative inflation

We explore the sensitivity to adaptive multiplicative

inflation, in particular to RTPS inflation parameter a, by

comparing CTRL (i.e., a 5 0.9) with RTPS0.7 and

RTPS0.95. All experiments use a 7.3-km horizontal local-

ization cutoff radius. Figure 11 shows the space-averaged

statistics for these experiments. Similar features as in lo-

calization experiments are found. However, modifying the

RTPS inflation parameter does not seem tohave an impact

as significant as tuning the horizontal localization radius

does, in both analysis and short-range forecasts errors.

Almost no difference is observed between CTRL and

RTPS0.95 in terms of analysis/forecast errors, but there is a

distinct improvement compared to RTPS0.7.

Zonal wind and Ref-condensates RMSE and BIAS

present low sensitivity to RTPS inflation parameter a

FIG. 9. Time evolution of the difference of forecast ensemble mean ERSP between LOC3.6 and LOC14.6. (a) Zonal velocity at

z 5 8 km, (b) temperature at z 5 1 km, and (c) reflectivity at z 5 5 km. The black line shows the forecast error saturation for LOC3.6

(dashed) and LOC14.6 (solid).
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and smaller errors for RTPS0.95 and CTRL than for

RTPS0.7 during the first 75min from the start of the

assimilation. However, the sensitivity is higher for tem-

perature, showing larger improvement for RTPS0.95 and

CTRL than for RTPS0.7 during the entire assimilation

period. In terms of the SPREAD of the analysis, the ex-

pected behavior is observed as SPREAD increases with

increasing inflation parameter. Furthermore, unlike fix

multiplicative inflation methods in which the ensemble

spread is increased in the same amount for all model

variables, RTPS inflation method produces a more sig-

nificant response for zonal wind than for temperature or

Ref-condensates. Both using a larger amount of inflation

and reducing the number of observations that impact the

update by using a smaller localization radius allow the

ensemble spread to become larger. For instance, LOC3.6

(i.e., a 5 0.9, rh 5 3.6km) produces slightly more

SPREAD than RTPS0.95 (i.e., a 5 0.95, rh 5 7.3km).

Experiments with smaller analyses error only produce

better forecasts during the first 30–45min, and roughly no

distinction is observed among experiments afterward.

This indicates that the impact of RTPS inflation upon the

forecast is shorter than the impact of localization (that

lasts at least up to 75min, cf. Figs. 7b,d,f), suggesting that

FIG. 10. Probabilistic forecast of 60-min accumulated precipitation (cold colors shaded) and 10-m wind proba-

bility (warm colors shaded) for (top) LOC3.6 and (bottom) LOC14.6, for the ensemble forecast initialized at

1830 UTC, valid at 1930 UTC. Contours represent nature’s run corresponding threshold value for 60-min accu-

mulated precipitation (blue) and 10-mwind (red). (a),(c) 20-mmprecipitation and 15m s21 wind thresholds; (b),(d)

30-mm precipitation and 20m s21 wind thresholds.
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for this MCS case, tuning the latter might be essential to

improve short-range forecasts errors.

The analysis mean error relative spectral power of each

experiment is shown in Fig. 12. Changing themagnitude in

which the analysis ensemble is relaxed back to the prior’s

impacts the spectrum at wavelengths roughly between 10

and 100km for both zonal wind and temperature and be-

tween 8 and 20km for reflectivity. However, in contrast to

localization experiments, almost no sensitivity toa is found

at shorter wavelengths as inflation modifies the ensemble

spread magnitude but not the spatial scales present in the

update. In agreement with the state-space statistics, the

main difference among experiments is observed between

RTPS0.7 and the rest of the experiments.

Regarding the difference of the forecast mean error

relative spectral power between RTPS0.7 and RTPS0.95

(Fig. 13), a lower value of a performs worse as it decreases

the forecast skill through most spatial scales (i.e., wave-

lengths shorter than 50km for zonal wind and tempera-

ture, and between 25 and 100km for reflectivity) during

the first 30min for zonal velocity and 60min for temper-

ature and reflectivity. Moreover, the wavelength range in

which a change in a impacts the forecast is narrower than

in localization experiments, particularly for zonal wind and

temperature. As discussed in section 4b, the impact of

adaptive inflation seems to follow the upscale error growth

dynamics, that is, a better representation of the smaller

scales on the analysis improves the larger scales at longer

lead times increasing their predictability.

Joint sensitivity with horizontal localization

As both inflation and localization impact the ensem-

ble spread, additional experiments were performed to

explore the joint impact of localizing and inflating the

covariance matrix by covering all possible combinations

between the horizontal localization cutoff radius and the

RTPS inflation parameters used throughout this work.

Figure 14 shows the analysis ensemble mean, time, and

space-averaged root-mean-square error for all possi-

ble combinations of horizontal localization radius (i.e.,

LOC3.6, LOC7.3, and LOC14.6) and RTPS inflation

parameters (i.e., RTPS0.7, RTPS0.9, and RTPS0.95) for

zonal velocity, temperature, and Ref-condensates. For

all variables, the largest error is reached for LOC14.6-

RTPS0.7, while the smallest error is reached for LOC3.6-

RTPS0.9/RTPS0.95, suggesting that experimentswith the

largest ensemble spread perform better. The optimal lo-

calization radius is the smallest one (i.e., LOC3.6) for all

FIG. 11. As in Fig. 7, but for RTPS0.7 (green line), CTRL (red line), and RTPS0.95 (blue line).
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inflation parameters, while the optimal RTPS inflation

parameter is RTPS0.9 or RTPS0.95 with none/small dif-

ference, except for LOC14.6. Moreover, stronger sensi-

tivity to the RTPS parameter is found when LOC14.6 is

used instead of LOC7.3 and to the horizontal localization

radius when RTPS0.7 is used instead of RTPS0.9.

The results confirm the sensitivity observed in sections 4

and 5, suggesting that the optimal value of one parameter

does not vary depending on the value of the other.

However, this does not imply that the impact of these two

parameters is independent of each other, but instead it can

be shown that this effect cannot be properly describedwith

the resolution used to sample the parameter space in

this study.

6. Summary and conclusions

In this work, we performed radar data assimilation

experiments with simulated observations using the

WRF–LETKF system for a mesoscale convective system

case in the central plains of Argentina. Model error was

taken into account in these OSSEs as the nature run and

the assimilation experiments differ in horizontal resolu-

tion, initial and boundary conditions, and the represen-

tation of microphysical processes. Based on this model

setting, we explored the impact of localization and infla-

tion of the error covariance matrix on both analyses and

very short-range ensemble forecasts and quantified these

sensitivities through state-space statistics and a spectral

decomposition of the analyses/forecast errors.

In agreement with what several studies have been

showing in the last two decades (cf. section 1), radar data

assimilation produces accurate estimates in the meso-

scale and surely adds value to very short-range forecasts

compared to high-resolution forecasts initialized from

analysis with wrong information on the storm scale. In

particular, the impact of radar data assimilation on the

spatial scales that can be accurately represented in the

analysis/forecast, varies significantly on both variables

types and height, likely related to the spatial scales

present in the covariance matrix derived from the en-

semble that is also limited by the spatial scales themodel

can actually resolve.

A key aspect of convective-scale forecasting is verifi-

cation. Given our definition of error metrics and pre-

dictability, a double-counting penalty is being applied.

Therefore, a feature displaced in space scores worse

than either a complete miss or false alarm. Using this

type of verification method could lead to disregard a

forecast (in terms of its quality), that could have had

some value if an object-oriented verification technique

would have been applied instead.

Overall the experiments herein suggest that a rela-

tively small horizontal localization cutoff radius (;3.6–

7.3 km) and large inflation RTPS parameter (;0.9–0.95)

produce themost accurate analysis and the 2-h ensemble

forecast benefits from this initial state. A stronger initial-

condition sensitivity of the 2-h mesoscale ensemble

forecast is observed when the localization cutoff radius

is modified rather than when the RTPS inflation pa-

rameter is, almost doubling the lead times up to which

the effect of using a more accurate state to initialize the

forecast persists. Another interesting aspect regard-

ing sensitivity to both localization and inflation is that

their impact is mainly observed during the first 40-min

forecast in spatial scales between 2 and 50 km. For

reflectivity, this impact propagates to larger scales

with increasing forecast lead time, resembling the

initial error upscale growth. Therefore, improvement

of smaller scales could generate a positive impact on

larger scales even after the smaller-scale error has

reached saturation.

FIG. 12. As in Fig. 8, but for RTPS0.7 (green line), CTRL (red line),

and RTPS0.95 (blue line).
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In terms of the horizontal localization cutoff radius

that produce the best results in these experiments, some

differences were found with the results obtained by

SS13. Even though SS13 simulated a convective organi-

zation mode similar to ours, they found smaller RMSE

values when using a bigger horizontal localization radius

(i.e., 18 km, Fig. 3 in SS13). There are at least two pos-

sible explanations to account for the difference in the

optimal localization radius between our experiments

and the ones presented in SS13. On the one hand, the

optimal localization scale depends on the localization

technique implemented. As Greybush et al. (2011)

showed, when B localization is used (as in SS13) the

optimal localization scale can be 1.5 times larger than in

the case of R localization. On the other hand, in the

presence of model error, the optimal localization scale is

reached at lower values as showed by Metref et al.

(2019) in terms ofRMSEwhen using a toymodel.Model

error reduces forecast skill, thus requiring a greater

amount of ensemble spread to describe forecast uncer-

tainty correctly. Therefore, localization scales associated

with larger ensemble spread may perform better, espe-

cially as the ensemble used herein is underdispersive

compared to SS13 ensemble. Another possible issue

FIG. 13. As in Fig. 9, but for the difference between RTPS0.7 and RTPS0.95.

FIG. 14. Analysis mean, time, and space-averaged root-mean-square error for all possible combinations of horizontal localization radius

(i.e., LOC3.6, LOC7.3, and LOC14.6) andRTPS inflation parameters (i.e., RTPS0.7, RTPS0.9, andRTPS0.95). Time average is computed

between 1830 and 2000 UTC. Space average includes grid points where reflectivity is greater than 0 dBZ either in the assimilation

experiment or in the nature run. (a) Zonal wind, (b) temperature, and (c) Ref-condensates.
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related to model error has to do with the structure of the

background error covariance matrix, and to which ex-

tent not including an explicit representation of these

errors may lead to an overestimation of those covari-

ances. For instance, if model errors in temperature and

reflectivity are not correlated, then an ensemble that

does not take model errors into account will tend to

overestimate the strength of the covariance between

these two variables. Another aspect that should be

considered when choosing a localization scale is the

impact of sampling errors. Using a larger ensemble size

reduces the issue of sampling error and therefore a

larger localization scale would be beneficial, as showed

by Miyoshi et al. (2014).

The results herein suggest that efforts should be made

to optimally tune localization as its importance in accu-

rately representing mesoscale phenomena seems to be

considerable. Moreover, vertical localization is also a key

parameter in ensemble data assimilation, and exploring

the impact of model error upon the optimal value of this

parameter should be considered. Furthermore, work is

needed to extend these results to other convective modes

(e.g., isolated convective cells) and types of synoptic-scale

forcing. These aspects are being considered in real data

experiments to study the impact of ensemble-based radar

data assimilation on short-range predictability of con-

vective systems over central Argentina.
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