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Phonon modes and heat capacity of monolayer films adsorbed in spherical pores
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We examine the hydrodynamic phonon spectrum of a monolayer film adsorbed on the wall of a spherical
pore. Due to the boundary conditions, the monolayer film exhibits a discrete phonon spectrum. The corre-
sponding density of states per unit frequency is thus a set fifnctions, and the heat capacity exhibits
Arrhenius behavior at low temperatures. At high temperatures, the heat capacity approached tHeeGav-
ior of a two-dimensional monolayer film. Our results for the spherical surface film are compared to previous
calculations for films confined to a cylindrical surface.
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Monolayer films have been extensively studied, bothdimensional wave vectok for a planar film and a one-
theoretically and experimentally, in part because they exhibitimensional wave vector in the cylindrical case. Since a
reduced dimensionality and novel phafgg]. For example, spherical film is confinedeffectively zero dimensionglwe
low pressure adsorption on graphite usually yields a twoexpect the quantum number equivalent to a wave vector
dimensional(2D) monolayer, whereas adsorption in carbonhave discrete values. The derivation of the spectrum follows
nanotubes can result in quasi-one-dimensional behavidrom the scalar Helmholtz equation, describing the velocity
[3—6]. As a result of the reduced dimensionality, the phonorpotential ¥':
spectrum and the thermodynamic properties of such films are
altered with respect to bulk properties. The basic reason is V2 + k2W =0, (2
that the substrate imposes its boundary conditions on the
adsorbate. For example, previous calculations of Vidalesyhere k=w/s. This yields solutions of the form
Crespi, and ColdVCC henceforth show that the heat ca- ¥(cos6,¢)=P"(cost)P(¢) [where ®(¢)=€'"?,m=0,*1,
pacity of a monolayer film adsorbed on the inner wall of a=2,...; andP" are the associated Legendre polynomials
carbon nanotube exhibits a crossover from quasi-onefor integersl=|m|]. The boundary condition imposed on the
dimensional to two-dimensional behavior when the thel’mal_egendre polynomialgto be finite when cog=+1) yields
phonon wavelengtih =#sg approaches 2R, the circum-  the expected discreteness of the eigenvédea/l (1 +1)/R.
ference of the cylindrical adsorbed filrs {s the sound speed The dispersion relation for the spherical film follows as
andB~1=KkgT) [7]. Due to the cylindrical geometry, finite in
the radial direction an@assumeginfinite in the axial direc- o= VI(I+1)(s/R). ®)
tion, the surface-parallel phonons have a dispersion relation:

The corresponding density of states per unit frequency,
wn=SVk?+(n/R)?, (1)  g(w), is thus given by a sum aof functions, with multiplic-
ity given by them degeneracy (2+1) of each energy level:
wherek is the quasicontinuous wave vectgarallel to the
cylinder axig andn is the azimuthal quantum number.

Here we consider the analogous case of a thin film ad- g(w)=2 glsph(“’):Z @+D)ow-w). @

sorbed on the inner surface of a spherical cavity. The outline

of this paper is as follows. We derive the in-plane phonon we want to compare the spherical film results with the
dispersion relation for the spherical surface film and compargylindrical and planar densities of states. For the cylindrical

the density of states with corresponding results for the cylinfiim, the number of states within the intervedo is
drical and planar cases. This leads us to anticipate some of

the heat capacity results. Finally, we identify a crossover |
behavior in the heat capacity and compare this with some gcy(w)deZEdk, 6)
experimental measurements.

In the derivation of the phonon dispersion relation, We\\hare| /(277) is the number of states in the 1D reciprocal
adopt a method similar to that of the VCC, concerned W'thspace rangelk, and the factor 2 arises from the-k) de-

cylindrical films [7]. It is noted first that at lowT, the eneracy. Using the dispersion relatigig. (1)], the cylin-
surface-normal vibrations can be ignored since they acquiregﬁcal density of states corresponding to a specific baigl
gap at roughly the first surface-normal excitation energy o

the isolated atom~+ 60 K for “He on graphitg Thus, in a

liquid monolayer film, only the surface-parallel phonons are gyl(w): L G)(“’_—SM/R) (6)
excited at lowT. These are described by a continuous two- 7S J1—(sWwR)?
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behavior of C. The crossover to the latter regime occurs
whenk T exceeds the Debye temperature. We do not consider
this regime ofT here.

We turn our attention to the thermodynamic properties of
the spherical film. Using Eq23), the energy of a phonon is

g(w)/gg, (@)

E|=ﬁ?:\/l(l +1). (9)

N There is no mode for=0, and thus the spherical film pos-

sesses a gap; = (%s\2)/R. The total energy of the phonon
’ ] system is

. B 21+ 1)E,
R B & oqlpE) 1 o

FIG. 1. The density of states of the cylindrical filfdashed ~Where 2+1 is the degeneracy of the energy levels. In the
curve relative to that of planar filn{dotted ling as a function of high T limit, the sum can be replaced by an integral, which
the reduced frequencywR/s. The full vertical lines indicate the

can be evaluated analyticallipecause %I for the predomi-
delta functiongys,(w) for the spherical film. nant modeps
where® (x) is the Heaviside step functidi for x=0 and 0 B~ ﬁ_SJ'“’ 21%d| _ AB) )
for x<0). The total density of states is the sum over all "R Jo expphsUR) —1 834252
bands:

whereA=47R? is the film area and is the Riemann zeta
* function. As in the case of the cylindrical film, the high
g™(w)= 2 g\(w). ()

heat capacity per unit area of the spherical film is the same as
that of a planar film:

At low T, the azimuthal excitationsn&1) are frozen out Coo(T)  34(3)
due to the gaf,p=75s/R (see Ref[7]). Thus, the dispersion KeA = B2 (12)
relation[Eq. (1)] becomesv=sk whenn=0, and the cylin-

drical density of states becomes consiggi{iw) =L/7s. The

; . ) ) ; For simplicity, we define a reduced temperature
planar film has also a linear dispersion relatior sk, butk

is then a 2D wave vector. The corresponding density of states
is

t=R/(pBhS), (13

and the dimensionless heat capacity takes the form
w

A
9%P(w)= In (8)

o ket 2 S 1(1+1)(21 +1)e T D "y
sph' 6 =1 1=01,... (eMFDi_q1y2 - 1

whereA is the area of the surface.

_ T the N As in the case of the cylindrical filfi7], the heat capacity is
The spherical, cylindrical, and planar densities of stateseen to be a universal function of the reduced temperature

are displayed in Fig. 1. In order to get dimensionless numfthe right side of Eq(13)]. Figure 2 shows the dependence

bers, we plot the density of states relative to the planar casen T of the spherical and cylindrical heat capacities, com-
for the same areaA=2xRL in the cylindrical case anéd

pared to the planar heat capacity/Cpanar) - Notice that the
=47R? in the spherical cageNotice that the largest density planar film is the highT limit for both the spherical and
of states at loww corresponds to the cylindrical film, fol-

cylindrical films, as expected. However, the heat capacity of
lowed by the planar film, and finally, by the spherical film. the cylindrical film approaches it from above, whereas the

This implies that the cylindrical film will exhibit the largest heat capacity of the spherical film approaches it from below.
heat capacityper unit areqaat low T, followed by the planar This behavior was expected from the previous discussion of
and then the spherical film. At high, however, the number the densities of states. We note that the asymptotic approach
of states in an intervadw is the same for all types of films to the planar limit occurs at a lowdrin the cylindrical case
considered, as shown in the Appendix. Therefore, the heahan in the spherical case. This can be explained in at least
capacities of the spherical, planar, and cylindrical filmstwo ways. One is that a cylindéhaving one infinite radius
should approach asymptotically the same values at fiigh of curvature is closer to a plane than a sphere is. The other
We note that the “highr” limit in this elastic regime differs  way is that the density of statéfig. 1) of the cylinder is

from the veryhigh Tlimit in an experiment. That is, the law closer to that of a planar surface than is the density of states
of Dulong and Petit corresponds to a very higtconstant

for the sphere. In analogy to the crossover behavior of the
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i only with an unreasonably large speed of sound. However,
i the crossover temperature given by our spherical model is of
DY | the order of 150 mK, comparable to the experimental cross-
| over of 100 mK. Thus, it may happen that the geometry of
\ the Wecor pores produces boundary conditions for the film,
\ 1 whose effect changes with increasing temperature, leading to
a crossover behavior.
A R R NI RRR—— In conclusion, the substrate geometry imposes constraints
on the phonons of monolayer films adsorbed within a spheri-
cal pore. The first effect of the confinement is the discrete-
ness of the phonon spectrum. Because of adogap in the
spectrum, the specific heat exhibits an essential singularity at
o . | . T=0, whereas at higf, it asymptotes to that of a planar
0 03 ' film (C~T?). A somewhat different crossover behavior oc-
curs in the case of a cylindrical film, which has quasi-one-
FIG. 2. The heat capacity of a cylindricalashed curveand a ~ dimensional behavior at low (C~T) and planar(2D) be-
spherical (full curve) film relative to that of a planar film, as a havior at highT. This pair of solutions may explain some of
function of the reduced temperature defined in @¢@). the heat capacity features of monolayers adsorbed in disor-

dered porous materials, whose various pores have different
cylindrical film [7], one may speak of a crossover tempera-geometries and sizes.
ture T.oss from a zero-dimensional system to a two- , ) )
dimensional system, defined as the temperature where the W€ are grateful to the National Science Foundation,
heat capacity is about half of that of a planar film. In theWhich has supported this research. We thank Paul Crowell
present case, from Fig. XgTe,oc~%S/4R. At low T, the and Moses Chan for helpful communications.

spherical heat capacity has an activated behavior:

CIC

t

Cepn/ k=6t 2exp — 2/1). (15) APPENDIX

We do not know of any experiments related to adsorption 1S Paper states that the density of states at high the
in spherical pores, but the irregular confined pores of a disS@me for all three problems discussed here. We will give now
ordered material may conceivably be approximated a@ propf of .th|s statement. Let us start with the case of a
spherical pores. Crowell and Reppy have investigate spherical film, and choose an intervdkw between wq
films adsorbed in two porous glasses, Wcor and aerogef~ VI(I +1)(S/R) and w,=y(I+1)(I+2)(s/R), corre-
using high-precision torsional oscillator and calorimetrySPonding to consecutive values of |, wheal. The number
techniqueg8—10]. At some critical coverage, théHe film ~ Of states in this interval is
undergoes a transition from nonsuperfluid to superfluid be-
havior. In the nonsuperfluid regime, the heat capacity exhib-
its a linear dependence at largebut C/T drops rapidly at “’ngph(w)dw:(m +1)J‘“25(w_ w)=21+1. (A1)
low T, so a crossover temperature between these two behav- o1
iors is defined and calculated to be about 100 mK for the
lowest coverage. In the context of our calculations, a work-
ing hypothesis is that the pore geometry is like an Americanrhys, in the limit of highw, and correspondingly high the
football, i.e., an eIIipse of revolution. This could show the number of states in an intervdl is of the order 2.
behavior of a cylinder €~T) at modestT, but exhibits a For the planar film, we consider the same interdal,
gap at lowT, as in the case of a spherical geometry. We mayynd the number of states in this interval is
estimate the heat capacity at Iowwith our spherical pore
model, and use the cylindrical pore for higherFor a pore
diameter of about 70 A, as in the case of Wcor pores, we "
assume that théHe atoms form a spherical film of about 60 f z
A diameter, so that there are about He atoms in a pore.
Then the heat capacity per mole is of the order of mJ/K, the
same order of magnitude as the experimental heat capacity of
the nonsuperfluidHe film. However, the calculated heat ca- where the area of the planar film equals the area of the
pacity exhibits the characteristic activated behavior seen ispherical film,A=4=7R?2. For high |, the number of states of
Eq. (15), and does not follow the general trend of the experi-the planar film in this intervadlw is therefore of the order of
mental measurements, which looks more like a power law2l, equal to that of the spherical film.
behavior. Also, the heat capacity experimental values at The last case is that of a cylindrical film. The number of
higherT can be obtained with our cylindrical pore model, but states corresponding to the intengab is

5 2wdw=2(|+1), (A2)
w1 2TTS
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L=2R. Then, if we define/I(I+1)—n? asf,(l), a function

of variable |, the result of integration can be writtenfaél
+1)—f,(l), which(for large ) is the derivativef/(1). In the
limit of large I, f,(I)~\1?2—n?, whose derivative is

R. A. TRASCA, A. M. VIDALES, AND M. W. COLE

fsz O(w—sn/R)
o5

=, T—Gear?) %

|
:L > fwz d—w I/\17—n?. Converting the sum to an integral, the number of
TS =21 Ju;, J1-snwR)? states becomes
| |
L 2 I 2 (I dn
=— [+1)(1+2)—n®=I(1+1)—n?). =— —_—= —=2I.
R.2, WD +2)=n? =i+ 1)=n?) Nswes 7 2 === |  7=="2

First, in order to compare the cylindrical and spherical films,Therefore, at high frequency, the integrated number of states
we take their areas to be the same; thusR2.=4=7R? or in the intervaldw is the same in all three cases.
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