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ABSTRACT
We study numerically the appearance and number of axial vortices in the outlets of X-shaped junctions of two perpendicular channels of
rectangular sections with facing inlets. We explore the effect of the aspect ratio of the cross section, AR, on the number of vortices created at the
center of the junction. Direct numerical simulations (DNSs) performed for different values of the Reynolds number Re and AR demonstrate
that vortices with their axis parallel to the outlets, referred to as axial vortices, appear above critical Reynolds numbers Rec. As AR increases
from 1 to 11, the number of vortices observed increases from 1 to 4, independently of Re. For AR = 1, the single axial vortex induces an
interpenetration of the inlet fluids in the whole section; instead, for larger AR’s for which more vortices appear, the two inlet fluids remain
largely segregated in bands, except close to the vortices. The linear stability analysis demonstrates that only one leading eigenmode is unstable
for a given set of values of AR and Re. This mode provides a simplified model of the flow field, reproducing its key features such as the number
of vortices and their distance. Its determination with this method requires a much smaller computational load than the DNS. This approach
is shown to allow one to determine quickly and precisely the critical Reynolds number Rec and the sensitivity function S, which characterizes
the influence of variations of the base flow on the unstable one.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0026829., s

I. INTRODUCTION

One of the challenges of the lab-on-a-chip technology is to
develop a microreactor and analytical equipment that operates at
the scale of a few micrometers and can be used to mix,1,2 sepa-
rate,3–5 trap,6 and transport chemicals or small particles.7 To allow
all those operations, a perfect control of the fluids and of their flow
is required. Knowing and understanding how vortices are created is,
for instance, crucial to combine fluids and to ensure a good mixing
between them in order to enhance mass or heat transfer.8 However,

due to the small dimensions of those systems and because of the
viscosity of the fluids, vortices cannot be obtained by making the
fluid turbulent. Yet, even in relatively viscous flows and in geome-
tries of small size, vortices can be created by carving cavities9 or by
deviating and bending the flow, thereby playing with the channel’s
geometry.10,11 This can be achieved by injecting fluids in X-junctions
and T-junctions in opposing channels: this provides hope for the
development of passive mixers,12 using only static parts to promote
mixing without the need of any external energy supply or movable
elements.10 Another important practical issue is the active control of
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the flow within such junctions and, particularly, of the development
of instabilities.13

Originally, X-junctions were developed because their geometry
allows for the generation of a stagnation point away from channel
walls. In the vicinity of this particular point, the flow is purely pla-
nar, elongational, and free of shear and vorticity along the symmetry
axes.14 These properties have been put at work in many areas of
research, including studies of polymer macromolecules dynamics,
such as DNA15,16 or fluid rheology,17–21 and for imposing controlled
deformations to cells, vesicles, or droplets.22

The flow field is quite simple at low velocity, but increasing
it leads to a more complex vorticity field in the intersection and
in the outlets. For a Newtonian fluid of constant viscosity ν, the
onset of the different regimes is determined by the Reynolds num-
ber Re = Ũ W̃/ν, where Ũ is a characteristic velocity and W̃ is the
dimensional width of the channels. For an X-junction with channels
crossing at an angle α = 90○, the flow along the outlet channels at low
Re’s is symmetric with respect to the plane y = 0 [see Figs. 1(b) and
1(c)]: the two injected fluids remain segregated. At higher Re’s, an
axial vortex appears at the intersection of the channels and extends
toward each outlet. In channels with a square cross section,8,20,23 the
transition between the two regimes occurs for Rec ∼ 40, while for
circular channels,24 it is slightly higher with Rec ∼ 48.

In these square cross section junctions, the redirection of the
flow around the corners at the junction of the streams leads to the
formation of small Dean vortices at the intersection of the chan-
nels,25,26 even for Re < Rec. This secondary flow consists of a dou-
ble pair of counter-rotating vortices positioned symmetrically at the
four corners of the outlet channels, but out of the z-axis (see Fig. 1 in
Ref. 27). Both fluids remain segregated by the plane y = 0 despite
the presence of these small structures. The intensity of these vortices
increases with the flow rate, and at the critical Reynolds number Rec,
two opposite vortices, out of the four, intensify and the symmetry is
broken. The latter vortices finally merge into a single, steady, stream-
wise, vortex centered on the z-axis. This vortex was shown recently
to be strong enough to deform the membrane of living cells that in
turn become porous to nanomaterials,28 which opens the possibil-
ity to use such flows for hydroporation. The creation of “hot spots”
by the vortices where chemical reactions are enhanced was also
found to be a possible method to study chemical reactions.29–32 If the
velocity is further increased, the flow becomes unsteady at Re ∼ 100
and periodic oscillations are observed.26

The dynamics of the destabilization and merging of the
Dean vortices was studied experimentally using time-resolved
flow velocimetry by Burshtein et al.27 They also investigated the
influence of the aspect ratio AR = H̃/W̃, where W̃ and H̃ are,
respectively, the width and height of the channels, on the dynam-
ics of the formation of the central vortex. They confirmed that the
geometry influences the nature of the transition. For wide chan-
nels corresponding to AR < 0.5, the flow recovers its symmetry
at similar Rec values for both decreasing or increasing inlet veloc-
ity variation ramps. For AR ≥ 0.5, the transition changes and
becomes subcritical. As a result, when the flow velocity decreases,
the flow configuration reverts from a single vortex centered in
the outlet channel to a Dean-like one with symmetric vortices at
a Reynolds number Re∗c , lower than Rec. This confirmed previ-
ous results obtained numerically by Haward et al.:23 these authors
have shown that the symmetry-breaking flow bifurcation that is

supercritical (non-symmetric) for wide channels becomes sub-
critical (pitchfork bifurcation) for deep ones. The former stud-
ies demonstrate, therefore, that the geometry of the channel sec-
tion influences the critical Reynolds number for the transition
between the different regimes. Similar observations were made in
Y-junctions or T-junctions33 and in X-junctions with varying cross-
ing angles.24

All these studies dealt with the dynamics of vortex formation
and of the steady “engulfment” regime at relatively low values of AR
(0.4 < AR < 3.8). Moreover, in this range, there is only one axial
vortex inside the flow section. Higher aspect ratios (AR ≳ 4) are,
however, also of interest, for instance, for rheology, because high
AR’s ensure that the strain rate is approximately uniform through-
out the height, which makes rheological measurements easier. To
our knowledge, larger aspect ratios were only used in the exper-
iments of Kalashnikov and Tsiklauri.34 For very large values AR
= 262 and AR = 32, these authors observed a periodic array of vor-
tices stacked over the full height of the channels. When increasing
the flow, this structure appeared above respective critical Reynolds
numbers Rec = 55 and Rec ∼ 43. The transition is, again, subcriti-
cal so that, when the flow is lowered, the vortices disappear for Rec
= 38.5 and Rec ∼ 30, respectively. Qualitative visualizations suggested
that such devices may mix large quantities of fluids at a relatively low
Reynolds number.

Recently, the so-called “structural sensitivity” formalism has
been developed to predict the effect of perturbations brought to a
flow in localized regions:35,36 it allows detecting the locations where
an external actuation either triggers an instability or delays it. Gian-
netti and Luchini35 and Marquet et al.37 applied this approach to
a two-dimensional analysis of the wake generation downstream of
a stationary cylinder. Although the magnitude of linear instability
modes increases continuously with the distance, the region where
a feedback force produces the largest change in the leading eigen-
values (i.e., where the structural sensitivity is largest) is close to the
obstacle and is the best location to control the wake generation.
Using the same approach, Lashgari et al.38 studied the flow insta-
bilities in an X-junction (three inlets, one outlet), for which the base
flow is two-dimensional and the perturbations are decomposed into
biglobal modes.39 In this case, the sensitivity is highest at the edge of
recirculation bubbles at the corners of the junction. Chen et al.36 per-
formed a global sensitivity analysis to study flow through a T-shaped
pipe bifurcation. They observed recirculation zones resembling the
traditional bubble-type breakdown. These regions are highly sensi-
tive to localized feedback forces, and in contrast to observations on
three inlet X-junctions,38 the flow separation at the corners of the
T-junction does not display a clear-cut sensitivity.

The present paper is devoted to the numerical study of the tran-
sitions between the different regimes discussed above for flow in X-
junctions of channels of rectangular cross sections. More specifically,
we report direct numerical simulation (DNS) for AR values between
1 and 11 corresponding to the appearance of 1–4 vortices at the
junction intersection and along the height (z-axis); note that these
computations become more demanding as AR increases. For each
value of AR, the influence of the Reynolds number on the structure
of the flow is studied at Reynolds numbers below 100 correspond-
ing to stationary flow regimes and the possible subcritical nature of
the instability leading to the appearance of the vortices is investi-
gated. We analyze, in particular, whether the number of vortices in
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FIG. 1. (a) X-junction of channels of rect-
angular cross sections with the normal-
ized width and height W and H, respec-
tively. The inlets are perpendicular to the
outlets. (b) Perspective view of stream-
lines corresponding to the segregated
base flow {u0, p0} discussed in Sec.
II A. Streamlines corresponding to the
fluid entering each inlet are labeled with
a different color. (c) Streamlines of the
base flow {u0, p0} in the plane x = 0. The
streamlines shown in graphs (b) and (c)
correspond to Re = 22 and AR = 1.8.

the height only depends on AR or whether Re also has an influence. A
three-dimensional global stability analysis has then been performed
to model the instability leading to the formation of the vortices: we
shall compare its predictions for the critical values of AR and Re
and the number and spacing of vortices to those of the DNS. The
sensitivity of the flow to the application of feedback forces is finally
considered, which may be of interest for flow control applications.

II. PROBLEM STATEMENT AND FORMULATION
We consider the flow of two facing incompressible Newtonian

liquids within an X-junction with an angle 90○ between the inlet and
outlet channels. The device consists of two perpendicular channels
of length 2L and identical rectangular cross sections, with the inlets
aligned with the y-axis and the outlets parallel to the x-axis, as shown
in Fig. 1(a). The dimensional width and height of the channels are W̃
and H̃, respectively, AR = H̃/W̃ being the aspect ratio. The origin O
of the coordinate system is located at the center of symmetry of the
junction. In the following, all lengths are normalized by the width W̃
and the velocities by the mean velocity at the entrances, Ũin. With
these scales, the normalized height and width of the channels are,
respectively, H(=AR) and W(=1).

The flow within the junction is governed by the time-dependent
three-dimensional incompressible Navier–Stokes equations,

∂u
∂t

+ (u ⋅ ∇)u = −∇p +
1

Re
∇2u, (1a)

∇ ⋅ u = 0, (1b)

where u ≡ (u, v, w) and p are the normalized velocity and pressure,
respectively. The Reynolds number is Re = ŨinW̃/ν, where ν is the
viscosity of the liquid. We impose the same parabolic inflow con-
ditions at both inlets (Poiseuille solution for rectangular pipes), a
stress-free outflow at the outlets and u = 0 at the walls.24

A. Linear stability analysis
To perform a standard global linear stability analysis

(LSA),35,37,40 the variables in Eq. (1) are written as the sum of a steady
base flow {u0, p0} and an unsteady small perturbation {u′, p′}. The
base state shares the same initial and boundary conditions as {u, p}.

In our case, it is a symmetrical solution of Eq. (1) in which the liquid
coming from each inlet splits equally between both outlets, with the
streamlines completely segregated by the plane y = 0, as shown in
Figs. 1(b) and 1(c).23,24,41

The perturbations are decomposed into global modes, i.e., {u′,
p′} = {û, p̂}(x, y, z) exp (λ t), where λ = σ + i ω is a complex eigen-
value. The real part σ is the growth rate, and the imaginary part ω is
the oscillation angular frequency of the perturbation. If the growth
rate is positive for, at least, one eigenvalue, the flow is linearly unsta-
ble; otherwise, the perturbation decays to zero. This linearization of
the flow around the base flow and the subsequent eigenmode decom-
position result in the following direct eigenvalue equation for the
perturbations:35,36

λû + (u0 ⋅ ∇)û + (û ⋅ ∇)u0 =
1

Re
∇2û −∇p̂, (2a)

∇ ⋅ û = 0. (2b)

Since {u, p} and {u0, p0} share the same boundary conditions, the
perturbations satisfy homogeneous conditions at all boundaries. The
components of each velocity field are u0 ∶= (u0, v0, w0) and û
∶= (û, v̂, ŵ).

B. Adjoint problem and structural sensitivity
The adjoint of a linear operator is a useful concept in functional

analysis that has been widely applied to problems in turbulence con-
trol, receptivity, and transition, and it has recently been used for the
analysis of flow within micro-junctions.36,40 Following Chomaz,42

and in order to evaluate the sensitivity of the solutions of Eq. (1),
we apply some well known concepts related to the adjoint prob-
lem. In the next lines, we summarize the main equations that we
need to solve in order to compute the sensitivity function. A more
detailed derivation of this theory can be found in Refs. 35, 36, 42,
and 43. Hill43 and Giannetti and Luchini35 developed the theory
of structural analysis and showed that the adjoint fields {u+, p+}
= {û+, p̂+}(x, y, z) exp (−λt) associated with the global mode {û, p̂, λ}
satisfy the eigenvalue problem,

− λ∗û+ − (∇u0) ⋅ û+ + u0 ⋅ ∇û+ = ∇p̂+ − 1
Re
∇2û+, (3a)
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∇ ⋅ û+ = 0. (3b)

Here, we use the notation ((∇a) ⋅ b)i ∶= ∑jbj∂aj/∂xi.36 The bound-
ary conditions for the adjoint modes are p̂+n = (u0 ⋅ n)û+

+ Re−1(n ⋅ ∇û+) at the outlets37,40 and û+ = 0 for the rest of the
boundaries.

Solving Eqs. (2) and (3) allows one to detect the core region
of the instability (for some geometries, the region is named wave-
maker38,42,44,45), i.e., the spots where a local feedback force results in
the largest drift of the most “dangerous” eigenvalue.35,36 This force
could be, for example, the result of the action of an actuator that
reacts to the local velocity of the flow at the point where the actuator
is operating. Giannetti and Luchini found that the maximum change
in the dominant eigenvalue is induced at the location of the greatest
overlap of the direct and adjoint modes and defined the structural
sensitivity function as35,45

S(x, y, z) = ∥û∥∥û
+∥

⟨û, û+⟩ , (4)

where ⟨a, b⟩ ≡ ∫Va∗ ⋅ b dV, the asterisk denoting the conjugate of a
complex quantity.37,40 The regions of the flow where S is large are
the sites where a feedback force will produce the strongest distur-
bance on the flow, and it identifies the region where the triggering
of the instability occurs.42 Note that the location of large values of
the direct eigenfunction does not necessarily play a special role in
determining the spectrum of a stability equation unless the adjoint
eigenfunction is also large at the same spot. This fact is also helpful
for the numerical simulations because it gives a criterion for detect-
ing the region where the mesh should be denser in order to capture
accurately the global modes.

C. Numerical implementation and validation
Equations (1)–(3) were discretized and solved numerically by

a finite element method. Polynomial shape functions P2 and P1
were used for the discretization of the velocity and pressure, respec-
tively. The time-dependent Navier–Stokes equations (1) were solved
by means of a backward differentiation scheme with adaptive time
stepping. The steady-state base flow configuration {u0, p0}(x, y, z)
was solved through an iterative method, the Generalized Minimal
RESiduals (GMRES), preconditioned using a standard multigrid
algorithm. A convergence criterion of 10−3 is used for the relative
error defined by a weighted euclidean norm for two successive iter-
ation steps (see Correa et al.24). In the stability problem given in
Eq. (2), the eigenvalues were computed employing a variant of the
implicitly restarted Arnoldi method in the ARPACK routine.46 The
junction domain was meshed with tetrahedral elements for the time-
dependent problem and hexahedral elements for the base flow and
eigenvalue problems, with a higher concentration near the walls and
in the crossing region of the X-junction. We carried out convergence
studies to estimate the minimal number of grid elements needed to
obtain accurate results.

The accuracy of our numerical procedure is established by a
grid convergence study over the leading eigenvalue (see Table I).
Direct and adjoint eigenvalues, Eqs. (2) and (3), were obtained for
four meshes with AR = 1 and L = 7. The difference among the eigen-
values is less than 1.3% for all the cases considered, so we used M3 in
the rest of this study in order to achieve an accurate spatial descrip-
tion of the corresponding eigenmodes. The minimum size of the

TABLE I. Mesh convergence for the leading eigenvalues of the direct and adjoint
problems with AR = 1, L = 7, and Re = 50.

Mesh Grid elements λD λA

M1 10 368 0.080 21 0.079 79
M2 16 072 0.078 86 0.079 88
M3 22 680 0.078 28 0.078 29
M4 28 800 0.078 35 0.078 02

TABLE II. Variation of the leading eigenvalue for different channel lengths, L, for AR
= 1 and Re = 50.

L λD

4 0.081 02
6 0.078 87
7 0.078 89

domain was determined by analyzing the influence of the lengths
of the channels on the value of λ.38 According to Table II, L = 6
and L = 7 result in accurate calculations of λ and the correspond-
ing eigenmode. Solving with L = 8 shows negligible effects on the
leading eigenvalue and the corresponding eigenmode. Choosing L
= 7 is a good compromise between reliable results and compu-
tational cost to capture fully the dynamics of the flow and its
instability.

We also validated the direct numerical simulation (DNS)
codes and the stability analysis by considering the flow in a three-
dimensional T-shaped channel with two inlets and one outlet. This
flow configuration was first studied experimentally and numerically
by Engler et al. and Soleymani et al., respectively.47,48 Fani et al. stud-
ied the linear stability of the T-junction flow by means of a spectral
element method.40 They reported a segregated flow regime for Re
< 175 and a first flow bifurcation occurring at Re = 175. For larger
Re’s, the symmetry of the flow is broken in an engulfment regime
that mixes both incoming streams. We reproduced their results by
means of the finite element method. The accuracy of the computa-
tion was controlled by a convergence study on the mesh parameters.
A reliable result for the leading eigenvalues is obtained in a mesh
domain of 23 460 elements, finding σ = −1.542 × 10−2. This value
differs by only 1.4% from the eigenvalue reported in Ref. 40. More-
over, the shapes of the direct and adjoint modes associated with the
leading eigenvalue match very well.

III. RESULTS
A. DNS investigation of the flow structure

We analyzed first the flow at low Re values, for which the flow
remains stable. For instance, for Re = 22 [see Figs. 1(b) and 1(c)], the
inlet flows are split into two equal parts after they meet in the cross-
ing region and are in contact inside the outlet channels only in the
plane y = 0. This behavior is observed at small Reynolds numbers,
independently of the value of the aspect ratio AR > 1. Figure 1(c)
shows that this flow displays a noticeable extensional structure in
the z direction.
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For Re > Rec, the segregated flow configuration becomes unsta-
ble and its symmetry is broken by the appearance of vortices with
their axis parallel to the x direction. Their formation is triggered
by inertial effects, which let the incoming liquids cross the plane y
= 0 (see below), resulting in a swirling motion toward the outlets.
Figure 2 shows the streamlines in X-junctions for AR = 1, 6, and 10
and Re > Rec. A key result is that for AR > 3.8 and Re > Rec, more than
one vortex appears in the flow. In this case, the incoming streams
are sorted vertically in the outlets into alternating layers of the two
pure fluids separated by zones where their streamlines are interlaced
[these zones are located at z-coordinates similar to those of the vor-
tex centers, as shown on the right-hand sides of Figs. 2(b) and 2(c)].
In the two latter cases, the total height of these zones of interlace-
ment represents a smaller fraction of H than for AR = 1, as shown in
Fig. 2(a) (right).

The number of layers is directly related to the number n of vor-
tices. As shown above, in the plane y = 0, each vortex is located
between stripes of two different fluids. Since there are fluid layers
between both the upper and lower walls and the nearest vortices,
the total number of layers is n + 1. We note that the layered distri-
bution of the two fluids is the same in both exits, with the stripes
of a given fluid at the same location. After a transient flow set-
tling phase, the flow field and the fluid distribution become time-
independent in the range of Reynolds numbers investigated. Quan-
titatively, we observed one single vortex for AR ≲ 3.8, in agreement

with Refs. 23 and 49, two vortices for 3.8 ≲ AR ≲ 8.5, and three for
8.5 ≲ AR < 11. For AR = 11, which represents the highest demand
for computational-power that we can deal with, four vortices
appear.

Figures 3(a)–3(c) (Multimedia view) display the streamlines
associated with the vortices in the middle plane x = 0 of the junction,
respectively, for one, two, and three vortices, and the multimedia
view included in the figure displays their development with time.
For AR = 1, Fig. 3(a) the upward deflection of the blue fluid (in the
figure) combined with the downward deflection of the orange one
serves as a source for a counter-clockwise rotation, which propa-
gates thereafter in the z direction. For AR = 6, Fig. 3(b) (Multimedia
view), the orange flow is deflected toward the upper and lower walls
of the channel, while the blue one is focused toward the middle. One
has this time two sources of local rotation in opposite directions,
which also propagate along z, creating two vortices of opposite cir-
culations parallel to the direction of the outlet. The vortices result,
therefore, from an inertia driven distortion of the initial separation
plane y = 0 of the two opposite flows encountered in the junction.
If AR increases further, more distortions appear, leading to more
vortices, as shown in Fig. 3(c) (Multimedia view).

In Fig. 3(a) (Multimedia view), one notices that since the two
fluids are identical, a configuration in which the orange fluid is
deflected upward and the blue fluid downward is equally possible,
leading to a clockwise rotating vortex. In the same way, in Fig. 3(b)

FIG. 2. Streamlines obtained by DNSs:
(a) AR = 1 and Re = 50, (b) AR = 6 and
Re = 42, and (c) AR = 10 and Re = 44.
The blue and orange colors indicate liq-
uids coming from each inlet. Left: 3D per-
spective views; right: plane cut showing
representative streamlines.
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FIG. 3. Streamlines in the plane x = 0 for
the same DNS as in Fig. 2 with (a) AR
= 1, Re = 50, (b) AR = 6, Re = 42, and (c)
AR = 10, Re = 44. Vertical lines: location
of outlets walls. (d)–(f) Flow line distribu-
tion for the same experiments in the sec-
tion x = 7 of the outlet channel. Stream-
lines intersect the section at a right angle
and appear as dots. (g)–(i) 3D views of
Q isosurfaces (in red) for the same three
experiments. In blue: streamlines from
one entrance. Multimedia view: devel-
opment of streamlines with time in the
plane x = 0 for these experiments. Re
increases at first linearly with time from
1 (t = 0) to the Re values corresponding
to cases (a)–(c) reached, respectively,
for t = 100, 50, and 50, and remain-
ing constant afterward. Multimedia view:
https://doi.org/10.1063/5.0026829.1

(Multimedia view), the orange fluid might as well advance further at
the center and the blue fluid near the walls. This, too, would result
in a reversal of the two vortices with an orange fluid layer in the cen-
ter of the section and blue layers near the ends. Similarly, for other
values of AR, one may swap the locations of the two fluids in the
outlet channels provided the rotation of the vortices is also reversed.
Experimentally, both configurations should be observed with equal
probabilities.

The effect of the transit of the liquid through the output chan-
nels is demonstrated by comparing Figs. 3(a)–3(c) (x = 0) and

Figs. 3(d)–3(f) (x = 7). For all AR’s, the vortical flow is limited to
the region close to the center of the section at x = 0. Neverthe-
less, the aspect ratio affects the distribution of the two fluids at the
outlets. For AR = 1, Fig. 3(d), the blue–orange streamlines define a
helical-shaped interface that is longer than that observed in the lay-
ered fluid distribution for AR = 6 and AR = 10 shown in Figs. 3(e)
and 3(f), respectively. The vorticity distribution at the center dif-
fers, therefore, strongly from that at the outlet. We identify the 3D
structure of the vortices by Q-contours.26,36,50,51 The criterion Q is
defined as Q = 1

2(∥Ω∥
2
F − ∥S∥2

F), where Ω = 1
2(∇u − (∇u)

⊺) and
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S = 1
2(∇u + (∇u)⊺) are the rotation and the strain-rate tensors,

respectively, and (∥.∥F) stands for the Frobenius norm. In Figs. 3(g)–
3(i), Q isosurfaces are represented in red for AR = 1, 6, and 10;
in these three cases, the vortices develop only in the region where
the channels meet and hardly penetrate into the outlet channels.
As a result, close to the exits, the x-component of the vorticity dis-
appears and the parabolic profile and its vorticity distribution are
recovered.

The physical mechanism of the development of the vortices is
the same for all AR’s analyzed; it is illustrated for AR = 6 in the
time sequence of Figs. 4(a)–4(f) and for AR = 1, 6, and 10 in the

multimedia views of Figs. 3 and 4 by maps of the x-component of
the vorticity and streamlines. Initially, in Fig. 4(a), the vorticity is
non-zero only close to the upper and lower walls and the flow lines
are straight and horizontal. In Fig. 4(b) after Re has increased with
time, the vorticity has diffused from the top and bottom walls toward
z = 0, especially in the region close to the interface. In Fig. 4(c), four
Dean cells start to develop on both walls of the intersection with an
inversion of the sign of the vorticity close to these walls. In Figs. 4(d)
and 4(e), the largest vorticity keeps developing close to these walls
and the flow symmetry is lost. Finally, the steady state correspond-
ing to Fig. 3(b) is reached in Fig. 4(f). The key influence on the

FIG. 4. Time sequence of maps of the x-vorticity component (color scale) in the plane x = 0 for the same experiment as in Fig. 3(b) (Multimedia view) with AR = 6 and Re
increasing linearly with time from Re = 1 (t = 0) to Re = 42 (t = 50) and remaining constant thereafter. Black lines: streamlines. (a) t = 0, (b) t = 20, (c) t = 60 (insets: local
inversion of the sign of the vorticity), (d) t = 80, (e) t = 94, and (f) t = 130. Multimedia view: development of the x-vorticity with time in the plane x = 0 for the same three
experiments as in Fig. 3 (Multimedia view). Multimedia view: https://doi.org/10.1063/5.0026829.2
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FIG. 5. Number n of vortices as a function of the aspect ratio AR. Results
from DNSs:◯; results from linear stability analysis (LSA): ◽ (see Sec. III B for
explanations).

triggering of the instability of the formation of the Dean vortices and
the diffusion of the x-component of the vorticity was first explained
for AR = 1 by Haward et al.23 and Burshtein et al.21 Figures 3 and 4
(Multimedia views) display this same transition from zero to n vor-
tices, respectively, for the streamlines and the vorticity for AR = 1,
6, and 10. We will show in Sec. III B that the regions with the maxi-
mum value for the sensitivity S develop four local x-vorticity maxima
(close to the upper and lower walls) for z ± 1.6 (in the present case).
Then, the actuation on these regions may hamper or boost vorticity
generation.

The first important result of the simulations is that the number
n of vortices observed depends only on the aspect ratio AR and not
on Re provided Re > Rec (Rec depends on AR). The variation of n
with AR is shown in Fig. 5; one observes a stepwise increase with no
overlap between the different steps.

Figure 6 displays the variations of the y-component of the
velocity along the z-axis (x = 0, y = 0) for different AR values, for
which n = 2 [Fig. 6(a)] and n = 3 [Fig. 6(b)] vortices are observed.
The very good collapse of the normalized velocity profiles (vmax ,z is
the maximum absolute value of v along the z-axis) in each graph
implies that the normalized distance dv/H between the centers of
two adjacent vortices is nearly constant with AR: one has dv/H ≃
0.5 for n = 2 and dv/H ≃ 0.33 for n = 3. Therefore, the simula-
tions suggest that the vortices are equidistant along the z-axis; the
distance dv/H between two adjacent vortex centers is ≃1/n, and
the distance of the top and bottom vortices to the adjacent walls is
≃1/2n.

In the same way, we performed these simulations at different
Re’s (≥Rec) for AR = 6 (respectively, 10) corresponding to n = 2
(respectively, 3) vortices. We also included one case with AR = 11,
for which one observes four vortices; further increments of AR are
beyond our current computing capabilities. Figure 7(a) displays, in
the two cases, the distances between the different vortices as a func-
tion of Re: their relative variation is less than 5%. Figure 7(b) shows
the variation of the spacing dv of adjacent vortices (averaged over
several pairs of vortices when n ≥ 2) with AR. Note that the varia-
tions of dv with AR are consistent with the estimation dv ≃ AR/n
[dashed lines in Fig. 7(b)] based on the order of magnitude: dv/H
≃ 1/n, mentioned above.

The onset of the instability is analyzed in Fig. 8. To characterize
it, we selected vmax ,z as the order parameter and explored its varia-
tion with Re for three different AR’s.23 These curves were obtained
by means of numerical simulations using increasing and decreasing
ramps of Re with steps δRe = 1 in the vicinity of the critical value
Rec. The segregated stable flow is characterized by vmax ,z = 0, which
means that the interface between the two fluids remains in the plane
y = 0. The sudden increase in vmax ,z indicates the onset of the insta-
bility. As can be seen from the three examples in Fig. 8, there is an
hysteresis for all values of the number n of vortices. The critical Re’s
for the increasing ramps are Rec = 44, 37, and 41, and for the decreas-
ing ramps, Re∗c = 41, 30, and 36, for AR = 1, 6, and 10, respectively.
The fact that Re∗c < Rec for all the explored values of AR implies,
therefore, that the instability leading to the appearance of vortices is
subcritical in all these cases.

FIG. 6. Variation of the normalized y-velocity component v/vmax,z with z/H along the z-axis (x = 0, y = 0) for several aspect ratios AR and Re = 44. Profiles correspond to (a)
n = 2 and (b) n = 3. Boldface numbers: labels for vortex centers; dij

v/H = normalized distance between the centers of vortices i and j.
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FIG. 7. (a) Normalized distances dv /H
between vortices as a function of Re
> Rec . Circles correspond to DNSs
(squares for linear stability analysis,
Sec. III B). For AR = 6, dv = d12

v :⊕ (⊞),
and for AR = 10, dv = (d12

v + d23
v )/2:⊗

(⊠), dv = d13
v : • (∎). (b) Variation with

AR of the mean of the dimensionless dis-
tances di,i+1

v between adjacent vortices
for different numbers n of vortices from
DNSs (linear stability analysis). n = 2: ⊕
(⊞); n = 3: ⊗ (⊠); n = 4: ◯. Dashed
lines: variations as AR/n.

FIG. 8. Maximum vmax ,z , along the z-axis, of the velocity component v as a function of Re. In (a)–(c), the instability corresponds to the appearance of one (AR = 1), two (AR
= 6), and three (AR = 10) vortices, respectively.

B. Linear stability analysis

In this section, we investigate the global stability of the flow and
compare the results, such as the values of Rec and the number of
vortices and their spacing, to those reported in Sec. III A for the
same aspect ratios AR. The global stability of the flow is analyzed
by the computation of the eigenvalues and eigenmodes of the direct
problem [Eq. (2)]. The natural choice of the base flow required in

the calculation is the steady-state symmetric segregated flow field.
In order to obtain the latter for Re higher than Rec, we compute the
solution in half of the domain and impose a symmetry boundary
condition in the plane y = 0. The solution is then mirrored to the
other half of the domain.

A discrete set of eigenvalues is shown in Fig. 9 for stable (a) and
unstable (b) flows with AR = 1. The excellent agreement between
the direct and adjoint spectra demonstrates the reliability of the

FIG. 9. Eigenvalue spectrum for the
direct (◯) and adjoint (+) problems for
AR = 1 and (a) Re = 40 < Rec and (b) Re
= 50 > Rec . The horizontal and vertical
axes correspond, respectively, to the real
(σ) and imaginary (ω) parts of the eigen-
value. Red numbers above the leading
eigenvalues are the number of vortices
in the corresponding eigenmodes.
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FIG. 10. Real part of the leading eigenvalue as a function of Re for AR = 1. The
vertical dashed line corresponds to the critical Reynolds number Rec = 43.5.

numerical procedure. The eigenvalues λ = σ + iω are distributed
symmetrically with respect to the real axis. In all the simulations, the
eigenvalue with the largest growth rate σ corresponds to a steady-
state perturbation (ω = 0). This is also the case for the two other
eigenvalues with σ closest to 0, labeled 2 and 3 in Fig. 9.

The change in the growth rate σ of the leading eigenvalue from
negative to positive shown in Fig. 10 allows us to determine pre-
cisely the critical Reynolds number, which is found to be Rec = 43.5
± 0.15. The three-dimensional global mode associated with the lead-
ing eigenvalue (labeled 1 in Fig. 9) is shown in Fig. 11 for Re = 50.
The eigenmodes are spatially located mainly in the outlet pipes. The

v̂ and ŵ components are composed of two main lobes, both symmet-
rical with respect to the plane x = 0 and with a maximum of intensity
in the intersection (see arrows in Fig. 12). On the other hand, û con-
sists of four lobes, anti-symmetrical with respect to the plane x = 0,
with their highest and lowest intensities outside the junction, at a
distance x = ±1.7 (see Fig. 12).

The velocity field of the leading eigenmode is displayed in
Fig. 12 in four sections of an outlet branch. Similar to the corre-
sponding DNS, one observes in these (y, z) cut planes a single vor-
tical motion around the junction center. Although all perturbation
components are of the same order of magnitude, v̂ is ∼2.5 times
higher than û and ŵ. The maximum of v̂ occurs at (x, y, z) = (0,
0, ±0.25) where (û, ŵ) = (0, 0). The component ŵ reaches its maxi-
mum value in the plane z = 0 near the lateral walls, at the beginning
of the outlet branches (x = ±0.5).

The stability has also been studied for the junctions with AR
= 6 and 10, and the results are compared to those of the DNSs.
Like for AR = 1, the leading eigenvalues are real and their varia-
tion with Re is shown in Fig. 13. The critical Reynolds numbers are,
respectively, Rec = 39 ± 0.15 and 42.4 ± 0.1 for AR = 6 and 10.

Figure 14 displays isosurfaces of the velocity perturbation com-
ponents of the mode associated with the leading eigenvalue for AR
and Re values corresponding to two, Figs. 14(a)–14(c), and three,
Figs. 14(d)–14(f), vortices. In these cases, like for AR = 1, the values
of v̂ and ŵ are largest inside the intersection and the maximum for û
lies in the outlet branches for û. In addition, û remains antisymmet-
ric with respect to the plane x = 0, while v̂ and ŵ are still symmetric.
There are, however, significant changes compared to the case AR
= 1. For û, the group of four lobes in each outlet channel is split,
for AR = 6, into two distant groups with a new pair of lobes at half
height, while for AR = 10, an additional pair appears. For v̂, there are
three lobes for AR = 6, instead of two for AR = 1, and they are less
elongated along x; for AR = 10, four elongated lobes are obtained.

FIG. 11. Isosurfaces for AR = 1 and Re
= 50 of the û components: (a) û, (b)
v̂, and (c) ŵ. Yellow corresponds to the
value −10−6 and green to 10−6.

FIG. 12. Perturbation solution in yz-planes for AR = 1 and Re = 50 at several distances x along an outlet branch (from left to right: x = 0, 0.5, 1.5, and 3). The length of the
vectors is given by the values of the components v̂ and ŵ, and colors code the component û.
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FIG. 13. Real part of leading eigenvalues
vs Re for (a) AR = 6 and (b) AR = 10. Crit-
ical Reynolds numbers are, respectively,
Rec = 39 and Rec = 42.4.

FIG. 14. Isosurfaces of the velocity per-
turbation components. Top: AR = 6, Re
= 42. (a) û, (b) v̂, and (c) ŵ. Yellow
(green) corresponds to the value −3 ×
10−6 (3 × 10−6). Bottom: AR = 10, Re =
44. (d) û, (e) v̂, and (f) ŵ. Yellow (green)
corresponds to the value −1.5 × 10−6

(1.5 × 10−6).

For ŵ, there are, for AR = 6, four pairs of medium size, mildly elon-
gated lobes and two small, instead of two large, very elongated ones;
for AR = 10, there are two more lobes and they are more elongated.
Regarding the symmetry of the lobes with respect to the plane z =
0, it is determined by the even (n = 2 for AR = 6) or odd [n = 1
(respectively, 3) for AR = 1 (respectively, 10)] values of the number
of vortices.

In Fig. 15, the three velocity perturbation components of the
corresponding leading eigenmode for each AR are presented at dif-
ferent distances x along the outlet. For AR = 6, Fig. 15(a), the field
(v̂, ŵ) displays a double vortex structure in the x = 0 plane as in
the DNS velocity field of Fig. 3(b) (Multimedia view). In the central
region, the perturbation points directly toward the left inlet, extend-
ing slightly beyond the section shown in Fig. 15, while the vortices
are distributed in the upper and lower portions of the plane. For
AR = 10, Fig. 15(b), one observes, as expected, three vortices like in
Fig. 3(c) (Multimedia view). For both AR’s, the v̂ and ŵ modes decay
slowly along the outlet branch of the junction and û changes sign at

the plane y = 0 and at the height z at which a vortex center is located.
For AR = 6, the absolute value of û increases from the center and is
maximal at approximately x = 1, while for AR = 10, it is highest at
approximately x = 1.5. For AR = 6 and 10, one finds, like for AR = 1,
that the three eigenvalues closer to σ = 0 correspond to eigenmodes
with one, two, or three vortices (see Fig. 9); however, only one of
these three eigenvalues may become positive when Re increases and
corresponds to the number n of vortices depending only on AR.

In Fig. 16, we compare the variations of Rec with AR (1 < AR
< 10) obtained from the linear stability analysis (LSA) using Eq. (2)
to those determined from DNSs. The values of Rec found by the sta-
bility analysis are in good agreement with those of the DNS obtained
by using an increasing ramp for Re and display, like them, an initial
linear increase in Rec for AR ≳ 2, leveling off for AR ≥ 5. This sug-
gests that at large values of AR, Rec increases only slowly with H;
Ref. 34 reports indeed a critical value Rec = 55 at AR = 262 for
increasing flow rates and Rec = 43 for decreasing ones. The min-
imum of Rec is found at approximately AR = 2, so that, for Re <
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FIG. 15. Map of the velocity perturbation components (û, v̂, ŵ) of the leading eigenmode in different sections x = cst for (a) AR = 6, Re = 42 and (b) AR = 10, Re = 44. Black
arrows correspond to (v̂, ŵ), and the color map codes the values of û.

23, the flow is completely segregated within the range of AR values
analyzed. The results for both increasing and decreasing Re ramps
compare well with those of Haward et al.,23 who reported an increase
in Rec for decreasing AR when AR ≲ 2. The numbers of vortices as a
function of AR from the linear analysis have been superimposed in
Fig. 5 onto the equivalent data points from the DNS. The results are
perfectly compatible, and the transition from n to n + 1 vortices can
be determined more precisely by means of the linear analysis due to
the reduced computation time.

Let us compare now the spatial structure of these modes to the
single and multiple vortex instabilities of the nonlinear DNS results.
As shown above, the leading mode that dictates the shape of the base
flow instability clearly captures the number of vortices predicted by

FIG. 16. Critical Reynolds numbers Rec as a function of AR: open (respectively,
filled) symbols for increasing (respectively, decreasing) Re’s. DNS:◯ (•); linear
stability analysis (LSA): ◽; Haward et al.23 [inset of Fig. 2(i)]:△ ( ).

the DNS. The distances between adjacent vortices arising from the
two methods have been superimposed in Fig. 7: the values obtained
from the linear analysis are slightly higher (5%) that those from the
DNS. One notes, however, that while accurate Rec values may be
expected from the linear analysis, the spacing between vortices is
approximated since, in the DNS, the instability is already developed
and the flow structure may be influenced by nonlinear terms.

Moreover, the null frequency component ω of the leading
eigenvalues is compatible with the steady state of the flow obtained
for Re > Rec by means of the direct numerical simulations. The
linear stability analysis indicates, indeed, that the instability of the
flow occurs through a pitchfork bifurcation. Additionally, the global
mode structures suggest in all cases that the effect of inertia is higher
in the intersection of the channels, as shown by the large values of
the component v̂. The accommodation of the vortex flow in the
downstream direction leads to a strong perturbation of the veloc-
ity component u0 along the outlet branches. Finally, we observe that
when Re increases, there is a spatial elongation of all eigenmodes
toward the outlets.

C. Sensitivity function
We investigate now the spatial variations of the sensitivity func-

tion S defined by Eq. (4) for flows in which axial vortices are present.
The occurrence and location of regions of large sensitivity to local
feedback forces is indeed closely related to the global mode dynam-
ics.42 For instance, if variations of the flow are induced in regions
of low S values, this influences very little the leading eigenvalue.
Any strategy aimed at controlling the instability must, therefore, be
applied to a region of the flow where S is large.

Figure 17 displays isosurfaces corresponding to several normal-
ized values of the sensitivity S for the cases AR = 1 (a) and AR = 6
(b) studied above; the results obtained for AR = 10 are not shown for
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FIG. 17. Maps of isosurfaces of the sensitivity function S for (a) AR = 1, Re = 50
and (b) AR = 6, Re = 42. Isosurfaces shown correspond to S = 0.25 (yellow), S
= 0.5 (orange), and S = 0.75 (red).

concision but will be briefly mentioned below. The values of S for
the three isosurfaces shown are S = 0.25, 0.5, and 0.75, and the outer
(inner) shells correspond to the smaller (higher) sensitivities.

For AR = 1, Fig. 17(a), S is largest inside two symmetrical
regions of the crossing zone of the junction elongated toward the
inlets. More precisely, the maximum of S is located on the z-axis at
z/H ≈ ±0.15. The inspection of the data shows that these two points
are closer to the center of the junction than the locations of the
maxima of w0 and v̂. We also observe that the region where the sen-
sitivity is highest differs from the location of the vortex (z = 0). The
latter feature resembles the result of Chen et al.36 for T-junctions,
where the sensitivity is highest in lobes located in the exterior region
of the vortices. However, in the geometry of the latter work, the S
lobes are elongated in the direction of the outlets instead of the inlets,

FIG. 18. Comparison between S and Ė at x = 0 for AR = 1 [(a)–(c)] and AR = 6 [(d)–(f)]. [(a) and (d)] Sensitivity S, [(b) and (e)] time derivative Ė of total energy, and [(c) and
(f)] component v̂ v̂ ∂v0/∂y of Ė.
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like in the present work. Interestingly, the minimum of S is located
at the center of the X-junction where the vortex is generated.

For AR = 6, Fig. 17(b), the sensitivity map displays one more
lobe in the intersection of the channels than seen above for AR = 1 (3
instead of 2). S reaches its maximum values on the z-axis, but, here,
there is a local maximum at z = 0 instead of a minimum as for AR = 1.
The absolute maximum for S occurs at two points close to the upper
and lower walls for both AR = 6 and 10 (in the latter case, S displays
four local maxima). This feature may be interesting for control appli-
cations using an external actuator because the most sensitive (target
flow) region is close to the boundaries and not immersed in the bulk
of the fluid. Interestingly, as AR increases, the location of the maxi-
mum value for S is closer to that of the maximum of w0, although the
latter is not involved in the definition of the sensitivity. On the other
hand, for all AR’s, the minimum of S is located at the points where
the vortices appear. Following Ref. 42, this suggests that in order to
control the instability within X-junctions, perturbations must not be
applied at the centers of the vortices.

Despite the differences between the distributions of S for differ-
ent AR’s, an important feature is that in all cases, the sensitivity S is
largest in the region of the interface where the two fluids first meet.
For a T-shaped junction, Fani et al.40 also reported a maximum of
the sensitivity in the crossing region. There are, indeed, two facing
inlets in both the X-junctions and T-junctions; however, the values
of Rec are lower in X-junctions than in T-junctions.

In order to understand better the instability, we compare now
the spatial distributions of the sensitivity S and of the time deriva-
tive of the kinetic energy per unit volume Ė ≡ u′ ⋅ ∂u′/∂t for AR
= 1, Figs. 18(a)–18(c), and AR = 6, Figs. 18(d)–18(f). Larger values
of Ė are concentrated in two (AR = 1) and three (AR = 6) main
regions [Figs. 18(b) and 18(e)] with the maxima located very close
to those of the sensitivity [Figs. 18(a) and 18(d)]. This emphasizes
the importance of these regions for the development of the instabil-
ity. Moreover, the dominant contribution to Ė corresponds to the
exchange of energy between the perturbation and the base flow rep-
resented by the term v̂ v̂ ∂v0/∂y,38,52 as shown in Figs. 18(c) and
18(f); this is due to the strong v̂-component and the large gradient
of the y-component v0 of the base flow, as shown in Sec. III B. This
analysis of the energy exchange confirms, therefore, the important
contribution of the interaction between the two facing flows in the
inlets of the junction to the triggering of the instability.

IV. CONCLUSIONS
In this paper, we have studied numerically the flow structure

and the instabilities creating axial vortices in X-junctions of perpen-
dicular channels of rectangular cross sections with aspect ratios AR.
Previous works had only dealt with either low values of AR (one
vortex)23,26,49 or large ones (many vortices).53 The present study has
been focused, instead, on a transition range: 1 < AR < 11 for which
1–4 vortices are observed.

We first used 3D DNSs to determine the global structure of
the flow field as a function of AR and of the Reynolds number
Re = UinW̃/ν. Up to a critical Reynolds number Rec, one has, for
all aspect ratios, segregated outflows of the two fluids in the two out-
lets, each on a side of the mid-plane y = 0. Above Rec, steady vortex
structures appear at the intersection of the junction and induce some

local mixing of the fluids. Although the geometry of the domains is
different, these steady vortex structures are reminiscent of the one
reported by Kerr and Dold, who analyzed the stability of a stagnation
point flow within an infinite domain.54

For 1 ≤ AR ≤ 3.8 and Re ≥ Rec, a single vortex with the axis
parallel to each outlet develops, in good agreement with the results
of Ref. 23. This feature has also been observed at the intersection of
circular tubes in the range of crossing angles: 68○ ≤ α ≤ 90○.24

For AR ≥ 3.8, more vortices stacked along the z-axis appear for
Re > Rec and their number n increases steadily with AR. In the stud-
ied cases, the number of vortices only depends on AR and not on
Re(>Rec). In addition, the instability leading to the appearance of the
vortices is always subcritical irrespective of AR: the vortices appear
and disappear at different thresholds Rec (respectively, Re∗c ) when Re
follows an increasing (respectively, decreasing) ramp. Re∗c is always
smaller than Rec, and both numbers vary with n but retain similar
orders of magnitude.

Compared to the case n = 1, the flow structures for n = 2, 3,
and 4 display an important difference: for n = 1, the vortex inter-
laces the streamlines of the two fluids across the whole section. For
n > 1, one observes instead, in the outlets, n + 1 alternate stripes of
the two pure fluids separated by zones close to the vortex centers
where their streamlines are interlaced: mixing due to the vortices
is, therefore, less thorough. Another important feature is that the
normalized velocity profiles v(z/H)/vmax ,z corresponding to differ-
ent AR values collapse precisely. As a result, the distance dv between
adjacent vortices is proportional to H and increases, therefore, with
AR for a given aperture W: the velocity field corresponding to
each vortex is then more and more elongated until a new vortex
appears.

The DNSs are heavily time consuming, which makes difficult,
for instance, the precise determination of the threshold of the insta-
bility. In order to obtain such information and understand better
the dynamics of the system, we performed a global linear stability
and sensitivity analysis in which the steady segregated flow is used
as the base state. The critical values Rec for the transition from zero
to n vortices obtained in this way agree well with those determined
from the DNS by increasing Re. For Re > Rec, only one eigenvalue is
both positive and real, which agrees with the idea that both zero and
n vortex configurations are steady, as observed in the DNSs. For a
given AR value, the corresponding eigenmode has the same number
of vortices as that determined by the DNS, and the locations of these
vortices predicted by both methods agree well.

The analysis of the leading eigenmodes also provides interest-
ing information on the perturbation fields of the instability. They
do not reach their highest values at the center of the intersection
(origin of coordinates) but on the z-axis and close to the top and
bottom walls (see Figs. 15 and 16). The sensitivity study, for which
the adjoint modes must be considered, shows that in these spots,
the receptivity to feedback local forces is highest: thus, these are the
regions to actuate in order to control the instability. This result may
be interpreted in terms of the kinetic energy variation with time,
which reaches its maximum values close to the regions where S is
maximum; this variation is mostly due to the transfer of momen-
tum from the base state to the v̂ component (this agreement between
the locations of the maxima of S and the variation of the kinetic
energy has been also reported for X-junctions but with three inlets
and one outlet38). The sensitivity analysis also shows that the core of
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the instability is outside, and not inside, the vortex structures, as also
occurring in T-junctions.36

As indicated above, the total computing time is significantly
smaller for the global stability and sensitivity analysis than for the
DNSs. Typically, the central processing unit (CPU) time to solve
the non-linear problem is about eight times that required for the
computation of five modes in the linear analysis (direct and adjoint
problems). The linear analysis is, therefore, a robust alternative to
study and predict the flow structure, and also for the detection of
the most sensitive regions of the flow, which is a key asset for flow
control strategies. However, computing the eigenmodes for large AR
values requires a large amount of memory for the meshing process.
This has limited up to now the values of AR that we have reached,
and we are currently working to overcome this limitation.

We left the evaluation of the efficiency of active perturbations
in the selection of one of the two steady flow configurations for
future work. This control would be achieved by, for example, suc-
tion/injection of fluid through the upper and lower walls at the
intersection. The technique should be appropriate for our geometry
because the maximum of the sensitivity is measured close to the walls
where it is easier to apply an active external perturbation. This con-
trol strategy was considered by Lashgari,38 also for X-junctions but
with three inlets and one outlet, and it was found to be successful
and might be applicable in the future work to our flow configura-
tion. Another important issue to be considered in future works is
the mixing efficiency of the junction, which is out of the scope of
this article. As an illustration, we present a preliminary evaluation in
the Appendix.
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APPENDIX: MIXING EFFICIENCY AND ASPECT RATIO
As mentioned in the Introduction, junctions are potentially

of interest for fluid mixing applications.55,56 We examined, there-
fore, briefly the mixing performance of the present X-junctions by
adding to our direct numerical simulations a transport equation and
assuming a uniform concentration in each inlet (the dimensionless
concentration is unity in one inlet and zero in the other). In a pre-
liminary evaluation, we characterized mixing by the quality index
M47,55 defined by M = 1 −

√
σ2/σ2

0 , where σ2 is the variance of the
concentration field in a section of the outlet channels and σ2

0 cor-
responds to the maximum variance in this section. For a perfectly

FIG. 19. Variation of the mixing quality index M with the aspect ratio AR. Gray level
images: maps of the dimensionless concentration at the cross section x = 7, for
AR = 1, 6, and 10 (arrows indicate AR values for each map). Vertical dashed lines
= AR values corresponding to the transition between one and two vortices (left)
and two and three vortices (right).

segregated flow, M is equal to zero, and for a completely mixed
one, M = 1.

A qualitative trend of the mixing performance, for the range of
AR values considered here, is shown in Fig. 19: it displays the vari-
ation of M with AR at the cross section x = 7 of one outlet channel,
far from the center of the junctions. The index M decreases with AR
for a fixed number n of vortices: its value is then highest when AR
is near the lower limit of a range corresponding to a given n value
and lowest near the upper limit. This is likely due to the fact that the
height along z of a band of pure injected liquid located between two
vortices (Fig. 2) is smaller near the lower limits mentioned above and
larger near the upper ones. The local maximum of M decreases with
n (mixing is most efficient for AR = 1 in the range considered here),
while the local minimum varies less. Summarizing, when a single
junction is used, increasing AR does not enhance mixing in itself but
increases the number of alternate streams of the two fluids.

The development of new microfluidic and 3D printing tech-
niques opens the possibility to combine junctions57 and to build
complex 3D structures with improved mixing characteristics.58,59

The formation of vortices and their localization in the network will
be key factors of such improvements. In future studies, it will be
interesting to consider as a first step the mixing properties of two
junctions placed one behind the other.
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