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ABSTRACT 1 

The upper Valanginian – lower Aptian Centenario Formation is a significant producer of oil 2 

and gas in the Neuquén Basin, western Argentina. This formation is located exclusively in the 3 

subsurface of the eastern and northeastern Neuquén Basin, and is 450-1000 m thick. The 4 

Centenario Formation laterally interfingers with the Agrio Formation. Previous studies addressing 5 

the paleogeographic history of the Centenario Formation are scarce, and a comprehensive 6 

geological model has yet to be put forward. 7 

The current study scrutinizes the Centenario Formation, especially its lower member, within 8 

the northeastern Neuquén Basin. The study area includes the Cerro Hamaca Oeste, Señal Cerro 9 

Bayo, and Volcán Auca Mahuida oilfields operated by Yacimientos Petrolíferos Fiscales (YPF). 10 

Sedimentological and ichnological core data, geophysical well logs, and petrographic thin sections 11 

have been utilized to construct a geological model. Eleven sedimentary facies and three facies 12 

associations have been identified from the core dataset, providing insights into the 13 

paleoenvironmental settings and their stresses on infaunal colonization. Basin-margin deposits 14 

from the northeastern part of the study region were formed in continental environments, 15 

comprising ephemeral fluvial channel complexes and floodplains, and are ichnologically 16 

represented by rare Skolithos and common rhizoliths. The central part of the study area is 17 

interpreted as recording deposition in ephemeral lakes, river-dominated lake deltas, and coastal 18 

lagoons and sabkhas, and is represented by a combination of stressed expressions of both the 19 

Skolithos and Scoyenia Ichnofacies. River-dominated, storm-influenced delta deposits are located 20 

towards the southwestern limit of the study area, and are ichnologically represented by the 21 

Skolithos and depauperate Cruziana Ichnofacies. Deltaic deposits gradually transition into the 22 
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basinal facies of the Agrio Formation to the west. Overall sedimentologic characteristics suggest 1 

semi-arid to arid climatic conditions during deposition.  2 

Keywords: Paleoenvironmental reconstruction; Trace fossils; Fluvial; Lakes; Deltas; 3 

Embayment; Petroleum geology4 
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1. INTRODUCTION 1 

A total of 800 million m3 of oil-equivalent comprising 60% gas are contained within the 2 

Jurassic and Cretaceous succession of the Neuquén Basin, making it an important petroleum 3 

producer (Hogg, 1993). Medium-weight oil (28-35 API) and wet gas are commonly extracted from 4 

the Centenario Formation. The Valanginian to lower Aptian (Lower Cretaceous) Centenario 5 

Formation is located entirely in the subsurface of eastern, northeastern and southeastern 6 

Neuquén Basin and is 450-1000 m thick. Originally, the unit was defined by Digregorio (1972), 7 

and is represented by conglomeratic sandstone and shale of continental and marginal-marine 8 

origin.  The Centenario Formation laterally interfingers with the Agrio Formation to the west.  9 

This study presents a detailed sedimentological and ichnological characterization of the 10 

Centenario Formation. From a sedimentological perspective, the main objectives of this study are 11 

to: 1) document different sedimentary facies and facies associations and 2) suggest an integrated 12 

geological model that adequately explains the distribution of sedimentary facies, allowing for 13 

prediction of the main reservoir trends within the oilfields. From an ichnological perspective, the 14 

study aims to establish the ichnological assemblages present and to refine paleoenvironmental 15 

interpretations. This aspect of the study is critical as stressful environmental conditions play a 16 

major role in controlling the response by the benthos and their interactions with the substrate, 17 

imparting detectable signals in the trace-fossil record. Although trace fossils have been widely 18 

used to detect departures from normal marine salinity (e.g., Howard and Frey, 1973, 1975; Dörjes 19 

and Howard, 1975; Pemberton and Wightman, 1992; MacEachern and Pemberton, 1994; Gingras 20 

et al., 1999; Buatois et al., 2005; MacEachern and Gingras, 2008; Gingras and MacEachern, 2012; 21 

Shchepetkina et al., 2016; Solórzano et al., 2017), the number of studies documenting ichnologic 22 

trends along salinity gradients, from freshwater to brackish water and normal-marine salinity 23 
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conditions within single stratigraphic units are still relatively scarce (e.g., Mángano and Buatois, 1 

2004; Solórzano et al., 2017). A regional-scale paleoenvironmental reconstruction of the 2 

continental to marginal-marine Centenario Formation further enhances our understanding of 3 

trace-fossil assemblages in a back-arc basin setting and allows evaluation of how lateral facies 4 

transitions affect the reservoir continuity and quality. 5 

 6 

2. GEOLOGICAL SETTING 7 

The Lower Cretaceous Centenario Formation is located in the Neuquén Basin, which formed 8 

during the subduction of the southern Nazca Plate under the South American Plate (Hogg, 1993). 9 

The basin has a triangular shape (Fig. 1), and is subdivided into two main zones: the Andes region 10 

and the Neuquén Embayment region; the study area lies within the confines of the petroliferous 11 

embayment region. The basin is limited on its northeastern and southern margins by wide 12 

cratonic areas of the Sierra Pintada Massif and the North Patagonian Massif, respectively (Fig. 1b). 13 

On the western margin, the basin was bounded by the Andean magmatic arc until the end of the 14 

Early Cretaceous (Howell et al., 2005).  15 

The basin records more than 7,000 m of strata deposited from the Late Triassic to the 16 

Cenozoic, consisting of conglomerate, sandstone, siltstone, shale, carbonate, and evaporite that 17 

were deposited in a multitude of depositional settings (Vergani et al., 1995; Howell et al., 2005). 18 

Deposition occurred during three phases: the Upper Triassic intraplate rifting, the Lower-Middle 19 

Jurassic back-arc basin development (including the formation of interest, Fig. 2), and the Upper 20 

Cretaceous – Cenozoic foreland basin regime (Vergani et al., 1995; Howell et al., 2005; Schwarz 21 

and Howell, 2005).  22 
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The Centenario Formation consists of reddish clastic deposits widely distributed on the 1 

Neuquén Basin platform (Digregorio, 1972), and represents an exclusively subsurface, marginal-2 

marine to continental equivalent of the shale-dominated Agrio Formation (Mendiberri, 1984; 3 

Spalletti and Veiga, 2011). The formation is informally subdivided into the lower and upper 4 

members (Fig. 2b) (Cabaleiro, 2002; Cabaleiro et al., 2002; Casadío and Montagna, 2015; Cevallos 5 

et al., 2008; Soraci et al., 2010) with previous paleoenvironmental interpretations being quite 6 

variable (Table 1). 7 

The lower Centenario member is about 350 m thick and spans the upper Valanginian to 8 

lower Hauterivian (Fig. 2b) (Cabaleiro, 2002; Cabaleiro et al., 2002). The onset of deposition began 9 

with a marine transgression (TST) and continued during a highstand systems tract (HST) (Rebasa 10 

et al., 1992; Vottero and Cafferata, 1992; Cabaleiro et al., 2002; Iñigo et al., 2019). A relatively 11 

shallow sea covered the Neuquén Embayment at that time (Fig. 1b), and strata of the HST are 12 

suggested to be deposited in littoral, deltaic, estuarine, and distal fluvial paleoenvironments 13 

(Cabaleiro et al., 2002; Cabaleiro, 2002; Cevallos et al., 2008; Casadío and Montagna, 2015; Iñigo et 14 

al., 2019). The top of the lower Centenario member is marked by an important sea-level fall that 15 

generated a sequence boundary (Cabaleiro et al., 2002; Cevallos et al., 2008; Iñigo et al., 2019). 16 

This Intra-Hauterivian unconformity (Fig. 2b) developed when the connection with the paleo-17 

Pacific Ocean was restricted, which caused initiation of continental deposition, including the 18 

development of ephemeral rivers, aeolian sand seas, playa lakes, and sabkhas (Cevallos et al., 19 

2008; Casadío and Montagna, 2015). The upper Centenario member is about 240 m thick. Its 20 

deposition started with another transgressive interval (TST), which is overlain by a 21 

progradational clastic system (HST), mainly representing the fluvial system (Cabaleiro et al., 2002; 22 

Casadío and Montagna, 2015; Iñigo et al., 2019). The distinction between the lower and upper 23 



 7 

Centenario members becomes increasingly difficult towards the eastern limit of the Neuquén 1 

Basin due to their lithological similarity.  2 

 3 

3. STUDY AREA 4 

The study area includes three oilfields: Cerro Hamaca Oeste (CHO), Señal Cerro Bayo (SCB), 5 

and Volcán Auca Mahuida (VAM) (Figs. 3-4). These oilfields are located on the platformal, shallow 6 

part of the Neuquén Basin (Fig. 3a) (Delpino et al., 2014), where the Centenario Formation serves 7 

primarily as a reservoir. The underlying Vaca Muerta and Quintuco formations form the source 8 

rocks, and a variety of shale, diagenetically altered rocks, and dikes form the cap rock within the 9 

Centenario Formation (Delpino et al., 2014). The predominant trap type is structural, as 10 

represented by a regional northwest-southeast oriented anticline affected by igneous activity and 11 

smaller dome structures. The regional anticline is likely related to the basement structures (Iñigo 12 

et al., 2019). Stratigraphic traps occur due to a change in facies type or diagenetic changes in rock 13 

composition (Cevallos and Rivero, 2009; Delpino et al., 2014). Migration pathways are typically 14 

attributed to the normal faults that cross-cut the sedimentary package.  15 

The CHO oilfield is situated in the northwestern part of the study region (Figs. 3b-4). It sits 16 

on the northwest-southeast oriented anticlinal structure (Soraci et al., 2010). Only the upper 17 

Centenario member has undergone production with 24 drilled wells reported (Soraci et al., 2010). 18 

Two cores from the upper Centenario member (CHO.e-2 and CHO.e-4) have been analyzed in the 19 

current study. The SCB oilfield covers the northeastern part of the Auca Mahuida volcano (Figs. 20 

3b-4) and is situated atop the anticline striking in the northwest-southeast direction (Cabaleiro, 21 

2002). Both Centenario members are productive in the SCB oilfield (Soraci et al., 2010), with a 22 

total of 113 drilled wells. From this oilfield, nine cores from the lower Centenario member have 23 



 8 

been analyzed in this study (SCB-8, 9, 10, 11, 27, 51, 52, 59, 102). The VAM oilfield produces oil, 1 

and to a lesser extent gas (Schwarz et al., 2008), and occupies the northern part of the Auca 2 

Mahuida volcano (Figs. 3b-4). The oilfield is defined by a large, complex anticline oriented north-3 

southwest and cross-cut by numerous faults (Vela et al., 2006; Schwarz and Veiga, 2007; Delpino 4 

et el., 2014). The lower Centenario member has been productive in the VAM oilfield with 89 5 

drilled wells. One core (VAM-80) has been analyzed in the current study. 6 

In regards to probable sediment provenance, the study area is bordered to the northeast and 7 

east by the Sierra Pintada Massif (Fig. 5). In the area closest to the studied oilfields, the Sierra 8 

Pintada consists of the Las Matras and Chadileuvú blocks (Fig. 5) (Cingolani and Heredia, 2001). 9 

The Las Matras pluton is characterized by magmatic arc facies (Sato et al., 2000), and consists of 10 

late Proterozoic tonalite and trondhjemite, intruded Paleozoic granite, upper Cambrian to Lower 11 

Ordovician limestone and marble, upper Carboniferous quartzite, and Permo-Triassic volcanic 12 

rocks (Sato et al., 2000; Llambías et al., 2003). The Chadileuvú block is located approximately 150 13 

km south-east from the Las Matras block, and consists of the lower Paleozoic granodiorite and 14 

monzogranite, Ordovician metamorphic rocks, Permian sedimentary rocks, and Permo-Triassic 15 

volcanic rocks (Sato et al., 2000; Llambías et al., 2003). Similarly, Iñigo et al. (2019) proposed a 16 

local eastward and northeastward sediment supply for the Centenario Formation within the 17 

northeastern border of the Neuquén Basin. 18 

 19 

4. DATABASE AND METHODOLOGY 20 

The study is based on the following data: 1) 12 cores (~261 m) from the CHO, SCB, and VAM 21 

oilfields (Figs. 4-6); 2) 104 petrographic thin sections; and 3) a previously created Petrel project 22 
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(property of YPF) with well locations, basic geophysical well logs (e.g., GR, SP), formation tops, and 1 

lease contours. 2 

The applied methodology included: 1) compilation of the aforementioned data; 2) detailed 3 

sedimentological and ichnological descriptions of cores; 3) description of petrographic thin 4 

sections; 4) integration of datasets (i.e., geophysical well logs, sedimentological and ichnological 5 

data, photos of box cores); 5) definition and interpretation of facies and facies associations; 6) 6 

correlation of facies associations using geophysical well logs; and 7) proposal of a conceptual 7 

paleoenvironmental model based on stratigraphic analysis, facies analysis, and literature review. 8 

Sedimentological and ichnological descriptions were undertaken using the cores located in 9 

the Avellaneda Core Research Facility (Buenos Aires) in August and November 2017. The core was 10 

manually logged and later re-drawn using Adobe Illustrator©. Data collected included bed 11 

thicknesses, bed and facies contacts, physical sedimentary structures, grain size, lithologic 12 

accessories, trace fossils identified at the ichnogenus level, and bioturbation index (Reineck, 1963; 13 

Taylor and Goldring, 1993). Core boxes were photographed in indoor artificial light with a focus 14 

on diagnostic primary sedimentary and ichnological features. 15 

For the preparation of thin sections, samples were washed with toluene to eliminate the 16 

presence of hydrocarbons. Later, the samples were impregnated with Epoxy Blue resin to 17 

highlight pore distributions. Some thin sections were also saturated with Alizarin Red-S (red dye) 18 

to differentiate calcite from dolomite. Grain sizes were determined based on the Udden-19 

Wentworth scale. Description of petrographic thin sections was done using the Nikon ECLIPSE 20 

E200 POL optical microscope at the Instituto de Investigación en Paleobiología y Geología 21 

(General Roca, Argentina) and Avellaneda Core Research Facility (Buenos Aires, Argentina). 22 

Microscopic photos were obtained using Zeiss Axio Imager M2m microscope with an attached 23 
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camera Axiocam 506 Color at the Microscopy-Spectroscopy Laboratory, YPF-Tecnología (La Plata, 1 

Argentina).  2 

 3 

5. SEDIMENTARY FACIES AND DEPOSITIONAL MODEL 4 

Eleven distinct facies were identified in cores, F1-F11 (Figs. 7-9). Detailed facies descriptions 5 

and paleodepositional interpretations are provided in Table 2. The subdivision of facies was based 6 

on the predominant lithology, grain size, bed contacts, and physical and biogenic sedimentary 7 

structures.  8 

Three main facies associations identified in the study area (Table 3, Figs. 10-11) record 9 

continental to shallow-marine depositional environments (Fig. 12). These facies associations stack 10 

vertically and show the evolution of the landscape through time. Their identification was based on 11 

the combination of related individual facies identified through core analysis. The facies 12 

associations are FA1 – continental (fluvio-lacustrine), FA2 – continental to marginal-marine (lake, 13 

coastal lagoon, delta plain), and FA3 – shallow-marine (deltaic).  14 

FA1 consists of F1-F3, and records continental deposition. It is present in the northern and 15 

northeastern parts of the study area. This association occurs in the lower Centenario member in 16 

the eastern part of the SCB oilfield (Fig. 10) and in the upper Centenario member in the CHO 17 

oilfield (Fig. 10). It represents an aggradational depositional pattern with an increase in sandbody 18 

thickness and lateral distribution towards the northeast. In the lower Centenario member, the 19 

change from the purely continental (FA1) to the predominantly marginal-marine (FA2) regime is 20 

detected in the SCB area, somewhere between wells SCB-51 and SCB-27 (Fig. 10). Data on the 21 

upper Centenario member is extremely scarce, and direct observations only exist within two short, 22 



 11

cored wells in the CHO area (Fig. 10). Based on those data points and on regional information, it is 1 

suggested that the upper Centenario member mostly records continental environments.  2 

FA2 consists of F4-F8, and represents sedimentation in continental to marginal-marine 3 

environments. FA2 has been recognized in the lower Centenario member in the SCB and VAM 4 

areas (Figs. 10-11). The succession shows a general progradational and aggradational depositional 5 

pattern. Its thickness and areal distribution increase in the southwest direction towards the center 6 

of the Neuquén Basin. Its areal extent further to the northeast and southwest is unknown due to 7 

the absence of data. It is proposed that FA2 grades into FA1 towards the northeast and into FA3 8 

(or its open-marine equivalents, i.e. the Agrio Formation) to the southwest.  9 

FA3 consists of F9-F11, and records deposition in shallow-marine (deltaic) settings. This 10 

association occurs in the basal interval of the lower Centenario member in the VAM and SCB areas 11 

(Figs. 10-11). FA3 likely possesses a progradational character with delta lobes extending and 12 

thickening to the southwest towards the center of the Neuquén Basin (Figs. 10-12).  13 

 14 

6. ICHNOLOGICAL EVIDENCE AND EVALUATION OF PALEOENVIRONMENTAL STRESS 15 

FACTORS 16 

Integration of ichnological and sedimentological dataset allows for more precise 17 

determination of the paleodepositional settings and possible identification of physico-chemical 18 

stresses present during deposition in individual facies and facies associations.  19 

Continental deposition is represented by FA1, characterized by complexes of ephemeral 20 

freshwater fluvial channels, crevasse splays, surrounding floodplains, and paleosols. Although 21 

each of these depositional environments tends to be characterized by a different trace-fossil 22 

assemblage (Melchor et al., 2012), it is generally accepted that the ichnofacies recognized in 23 
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continental deposits include, among others, the Scoyenia and Skolithos Ichnofacies (Buatois and 1 

Mángano, 2007). In the Centenario Formation, belts of migrating, ephemeral freshwater fluvial 2 

channels and associated crevasse splays (F1-F2) are mostly barren of trace fossils with only rare 3 

occurrences of small, vertical shafts of monospecific suites of Skolithos in discrete layers (BI 0-1), 4 

representing a continental occurrence of the Skolithos Ichnofacies (Buatois and Mángano, 2004, 5 

2007). General lack of bioturbation is explained by highly stressful physicochemical conditions, 6 

such as periodically high sedimentation rates, generally high and fluctuating temperatures, 7 

sediment desiccation, and prolonged sediment exposure with rapid precipitation of infilling 8 

cements, all typical of an arid climate. Paleosols (F3) of FA1 bound the ephemeral channel 9 

complexes, and host abundant, penetrative and relatively straight rootlets, which indicate a low 10 

water table and sporadically available water (Cohen, 1982; Bockelie, 1994; Retallack, 2001). 11 

Vegetation in semi-arid climates is generally established in areas of abundant surficial and 12 

subterraneous water (e.g., floodplains of non-perennial channels, streams, crevasse splays, lakes), 13 

and is exceptionally sparse elsewhere (Cohen, 1982).  14 

Continental to marginal-marine environments are represented by FA2 with an array of facies 15 

interpreted as ephemeral lakes and their margins, various upper delta-plain environments, 16 

distributary channels and mouth bars of river-dominated deltas debouching into lakes and 17 

lagoons, and shallow coastal lagoons/sabkhas. The bioturbation signature in these environments 18 

is more pronounced and characterized by predominantly low to moderate ichnodiversity, 19 

sporadic trace-fossil distribution, and bioturbation intensity ranging from absent to moderate (BI 20 

0-4). Shallow-water ephemeral lakes and their margins (F4) are typified by the Scoyenia 21 

Ichnofacies (sensu Buatois and Mángano, 1995, 1998; Scott et al., 2012), which indicates moist to 22 

wet, muddy to sandy substrates at low energy sites with conditions changing between fully 23 
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aquatic and subaerial, and periodically stressful physicochemical conditions.  Stressors influencing 1 

the infauna likely include temperature variations, prolonged subaerial exposure (manifested by 2 

common secondary cements, mudstone rip-up clasts, brecciated microbialites), rapid 3 

sedimentation rates, and variable salinity levels (evidenced by syneresis cracks) with seasonal 4 

occurrence of hypersaline conditions (denoted by local microbial mats). Upper delta plain 5 

environments, especially crevasse channels/splays (F5), demonstrate colonization by vegetation 6 

with the formation of rhizoliths and vermiform organisms/insects producing Taenidium (see fig. 7 

8.17d in Buatois and Mángano, 2011). Such rootlets at the top of the crevasse channel/splay 8 

deposits and appearance of Taenidium likely represent temporary hiatuses in deposition. A similar 9 

ichnological signature has been documented elsewhere (e.g., Martinius et al., 2012; Gugliotta et al., 10 

2015; Diez-Canseco et al., 2015; Solórzano et al., 2017; Rodríguez et al., 2018), including classic 11 

examples from the Mississippi River delta (Arndorfer, 1973; Cahoon et al., 2011). The trace-fossil 12 

association represents a combination of the Skolithos and Scoyenia Ichnofacies (sensu Buatois and 13 

Mángano, 1995, 1998), typical for fluvio-lacustrine environments (Buatois and Mángano, 2004). 14 

The Skolithos Ichnofacies indicates high-energy conditions (Buatois and Mángano, 1998) common 15 

for crevasse channels and splays. The Scoyenia Ichnofacies points to moist, non-marine, and 16 

shallow aquatic substrates, which are periodically exposed to air (Frey et al., 1984; Buatois and 17 

Mángano, 2002). The absence of striated trace fossils, typical of the firmground suite of the 18 

Scoyenia Ichnofacies implies a soft substrate (Savrda et al., 2000; Buatois and Mángano, 2004). 19 

Terminal distributary channels and mouth bars of a river-dominated delta (F6) debouching into 20 

the shallow, freshwater and periodically brackish-water receiving body contain a stressed trace-21 

fossil assemblage dominated by indistinct or cryptic bioturbation, with a few discrete trace fossils 22 

(e.g., Palaeophycus, Lockeia). Presence of resting traces (Lockeia) indicates the activity of 23 
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suspension- or deposit-feeding bivalves, and suggests abundant detritus either in the water 1 

column or on the sediment under moderate-energy conditions (Mángano et al., 1998). Common 2 

cryptic bioturbation is caused by meiofauna or small infauna (e.g., 0.1-1 mm wide, juvenile 3 

amphipods, nematodes) and is typical for marginal-marine and, more rarely, continental deposits, 4 

where animals cause active sediment disruption through grain ingestion (Howard and Frey, 1975; 5 

Bromley, 1996; Gingras et al., 2008; Gunn et al., 2008; Shchepetkina et al., 2016). Selective-feeding 6 

strategy of meiobenthos similarly points to the abundance of organic material distributed in the 7 

sediments. Shallow-water bodies and surrounding mudflats (F7) are typified by a mixture of non-8 

marine occurrences of the Skolithos and Scoyenia Ichnofacies (Buatois and Mángano, 2011), 9 

indicating moist to wet, muddy to sandy substrates, conditions changing between fully aquatic and 10 

subaerial, and periodically stressful physicochemical conditions that likely included unstable 11 

soupy substrates (indicated by abundant soft-sediment deformation structures, syn-depositional 12 

microfaults, and floating grains), intermittently rapid sedimentation rates, variable salinity levels 13 

(revealed by syneresis cracks), and temperature variations, among others stressors. Finally, 14 

coastal lagoon/sabkha depositional sites (F8) represent an example of the depauperate Cruziana 15 

Ichnofacies. Although this ichnofacies is typical of stressful, brackish-water settings (e.g., Gingras 16 

et al., 1999), depauperate expressions of this ichnofacies are also known from harsh, hypersaline 17 

marine settings (e.g., de Gibert and Ekdale, 1999, 2002; Jaglarz and Uchman, 2010; Mercedes-18 

Martin and Buatois, 2020). Trophic generalists dominate this low-diversity association, and 19 

indicate highly stressed environmental conditions. Environmental stressors likely include variable 20 

water salinity caused by periodically hypersaline conditions, continental freshwater groundwater 21 

recharge, and periodic influx of marine water (Zonneveld et al., 2001).  22 
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The Centenario river-dominated, storm-influenced delta encompasses proximal (e.g., 1 

distributary channels, mouth bars, delta front) and more distal (e.g., prodelta) environments, and 2 

is expressed in FA3. The ichnofossil suites are characterized by increased ichnodiversity in 3 

comparison with FA1-FA2 and highly variable bioturbation intensity (BI 0-6), indicating 4 

fluctuating salinities and alternation of episodic and background sedimentation. Small size of 5 

some ichnotaxa (e.g., Ophiomorpha) is consistent with reduced salinity (Pemberton and Wightman, 6 

1992). Proximal parts of the delta (F9) show low trace-fossil diversity, opportunistic behaviors 7 

(i.e., predominance of simple trace-fossil morphologies with poorly specialized feeding strategies, 8 

such as Skolithos), and the predominant Skolithos Ichnofacies with elements of the depauperate 9 

Cruziana Ichnofacies. These suites indicate a number of physicochemical stresses, including: 1) 10 

changes in water salinity due to fluvial input, 2) increase in water turbidity and phytodetrital 11 

content during the freshets, 3) periods with extremely high sedimentation rates during high river 12 

discharge and/or storms (e.g., indicated by fugichnia), and 4) mobile sandy substrates due to 13 

wave/storm action. Notably, actively migrating bedforms combined with high sedimentation rates 14 

may restrict abundance and type of animals inhabiting such substrates, where only deep 15 

burrowers (e.g., decapod crustaceans forming Ophiomorpha) are able to survive (Pollard et al., 16 

1993; Dashtgard, 2011; Dashtgard and Gingras, 2012). Additional evidence supporting a deltaic 17 

interpretation comes from the presence of abundant, rosette-shaped Haentzschelinia that tends to 18 

occur in shallow-water, nutrient-rich siliciclastic environments with high sedimentation rates 19 

(Fürsich and Bromley, 1985; Agirrezabala and De Gibert, 2004). The presence of suspension-20 

feeding burrows, which is rare in deltaic settings affected by elevated levels of water turbidity 21 

(MacEachern et al., 2005), may suggest winnowing of fine-grained material by waves, further 22 

arguing against a purely river-dominated delta and pointing to wave influence instead. Delta front 23 
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(F10) deposits demonstrate an increased storm influence, as indicated by the presence of “lam-1 

scram” intervals. The laminated portion consists of erosionally amalgamated hummocky (HCS) 2 

and swaley (SCS) cross-stratified sandstone, recording high-energy combined flows during 3 

repeated storm events. Associated escape structures (fugichnia) are formed when organisms try 4 

to reach a new sediment-water interface during a storm, whereas the overprinting trace-fossil 5 

suite (e.g., cryptic bioturbation, Ophiomorpha, Palaeophycus, Skolithos, Diplocraterion, 6 

Haentzschelinia) represents colonization of the storm deposits by opportunistic trace makers. 7 

These storm-dominated intervals are punctuated by periods of quiescence, characterized by more 8 

intense degree of bioturbation and  (scrambled intervals) with moderately diverse suite (e.g., 9 

Ophiomorpha, Skolithos, Lockeia, ?Diplocraterion, Bergaueria, Thalassinoides, Haentzschelinia, 10 

Planolites, Teichichnus), recording the re-establishment of an equilibrium population of trace 11 

makers (Frey, 1990; Frey and Goldring, 1992; Pemberton and MacEachern, 1997; Buatois et al., 12 

2015). Further seaward, in the prodelta (F11), the presence of typical marine ichnogenera (e.g., 13 

Asterosoma, Chondrites, Phycosiphon) indicate slower, continuous rates of deposition in near-14 

normal marine (brackish) salinities  (MacEachern et al., 2005; Buatois and Mángano, 2011). 15 

Reduced rates of deposition are also reflected in more intense biogenic sediment reworking due to 16 

an increased colonization window between the successive storm events (MacEachern et al., 2005; 17 

Campbell et al., 2016).  18 

 19 

7. RESERVOIR IMPLICATIONS 20 

Integration of sedimentological and ichnological datasets allows for the development of a 21 

robust depositional model for the Centenario Formation. This paleoenvironmental reconstruction 22 

can be used to frame the different sedimentary facies from the perspective of reservoir 23 
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characterization. Combination of the facies and petrographic analyses of the cores allowed for a 1 

general determination of the most prospective reservoirs within the CHO, SCB, and VAM oilfields. 2 

A number of facies represent reservoirs, including F1 (freshwater, ephemeral fluvial channels and 3 

crevasse splays), F9 (river-dominated, storm-influenced deltaic distributary channels and mouth 4 

bars), F6 (lake/lagoonal deltaic distributary channels), F10 (river-dominated, storm-influenced 5 

delta front and proximal prodelta), and rarely F5 (crevasse channel/splay deposits) (Table 4, Figs. 6 

12-13). The reservoir facies have been ranked according to oil saturation values, porosity values 7 

(estimated in thin sections), porosity and Klinkenberg-corrected permeability values (derived 8 

from laboratory sample analysis), and effective reservoir thickness (determined from core data) 9 

(Table 4). Data on the range, mode, median, standard deviation as well as the arithmetic, harmonic, 10 

and geometric means have been summarized for the permeability and porosity, these being the 11 

most useful parameters for reservoir modeling and flow simulation (Tables 5-6). Porosity in the 12 

Centenario reservoirs is of primary and secondary origin (Table 4, Fig. 13). Primary porosity in 13 

sandstones is intergranular, and secondary porosity is intragranular (due to partial and total 14 

diagenic dissolution of detrital grains, i.e., feldspars and unstable rock fragments). In rocks with a 15 

high percentage of carbonate intraclasts, secondary moldic porosity predominates. Diagenetic 16 

processes that decrease reservoir porosity include: 1) development of patchy microcrystalline 17 

calcite and dolomite cements, pore-occluding kaolinite and illite cements, and patchy poikilotopic 18 

anhydrite and gypsum cements; 2) chloritization and sericitization of unstable grains; 3) 19 

dolomitization; and 4) syntaxial quartz and feldspar overgrowth (Table 4).  Reservoir porosity is 20 

enhanced by partial and total grain dissolution, preservation of organic grain envelopes that 21 

prevent diagenetic quartz overgrowth , and rare dissolution of dolomite crystals (Table 4). Oil 22 

saturation levels have been determined from visual observations (absent, low, medium, and high) 23 
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and correlated with well data (i.e., low saturation ~5-10%, medium saturation ~10-40%, and high 1 

saturation >40%).  2 

F1 has the best reservoir qualities due to medium-high oil saturation, high porosity (up to 3 

32.7%), permeability (up to 3211 mD), and significant thickness (up to 9.1 m). F1 has been 4 

observed within the lower and upper Centenario members and traced within the northeastern 5 

part of the study area (CHO and SCB oilfields). Based on facies mapping, the reservoir bodies of F1 6 

are channel forms running in NE-SW and E-W directions (Fig. 12).  7 

F9 is the second-best reservoir with wide areal distribution, medium to low oil saturation 8 

levels, substantial porosity (up to 28.8%) and permeability (up to 7364 mD). F9 is present in the 9 

lower Centenario member in the central and southwestern parts of the study area (SCB and VAM 10 

areas). Effective thickness of the depositional bodies can reach 9.4 m. Based on facies mapping, F9 11 

reservoir bodies constitute channel and bar forms, running predominantly in NE-SW and E-W 12 

directions (Fig. 12). 13 

F6 has been ranked lower in regards to its reservoir characteristics due to low to abscent oil 14 

saturation and moderate permeability (up to 2016 mD), despite its high porosity (up to 31.6%) 15 

and impressive effective thickness (up to 9.0 m). F6 has even less viable reservoir characteristics 16 

due to its finer grain size, abundant cements, and highly penetrative diagenetic processes (e.g., 17 

calcite, anhydrite, and gypsum cementation; dolomitization; sideritization; alteration of rock 18 

fragments and feldspars; quartz overgrowth; etc.). F6 has been identified within the lower 19 

Centenario member in the central part of the study area (SCB oilfield). F6 reservoir bodies likely 20 

constitute channel and bar forms, stretching in NE-SW and E-W directions (Fig. 12).  21 

F10 has been ranked fourth in its reservoir potential due to its low and commonly patchy oil 22 

saturation, explained by lower porosity values (up to 28%) and permeability (up to 895 mD). Its 23 
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maximum effective thickness constitutes 3.5 m. F10 has been solely observed within the lower 1 

Centenario member (in its lower confines) and is located in the southwestern part of the study 2 

area (SCB and VAM oilfields). The interpretation of this facies as delta front suggests that the 3 

reservoir stretches in the direction approximately perpendicular to the paleodepositional strike 4 

(i.e., SE-NW and S-N) (Fig. 12).  5 

F5 (crevasse splay/channel) has been ranked the lowest amongst the reservoir rocks of the 6 

Centenario Formation due to its low oil saturation levels, lower porosity (up to 23.7%), poor 7 

permeability (up to 327 mD), and negligible thickness of the depositional bodies (up to 1.8 m). F5 8 

forms a reservoir only within the lower Centenario member in the central part of the study area 9 

(SCB oilfield). Channel and wedge forms likely propagate in any possible direction with the 10 

tendency of being normal to the NW-SE paleochannel direction (Fig. 12).  11 

Available information from previous reservoir studies within the study area is limited and 12 

localized. It has been indicated that within the CHO oilfield, the upper Centenario reservoirs are 6-13 

11 m-thick, include fine- to medium-grained sandstone, and consist primarily of quartz with 14 

subordinate amounts of feldspars, lithic fragments, negligible matrix, and calcareous/dolomitic 15 

cements (Soraci et al., 2010). Ideal porosity for these sandstones is ~30% and permeability ~1000 16 

mD (Soraci et al., 2010). YPF production data indicate that the lower Centenario member at the 17 

VAM oilfield is the main reservoir represented by quartz-feldspathic sandstones with 17% 18 

porosity and 80 mD permeability. As such, the current study reaffirmed the previously published 19 

reservoir data and provided the necessary paleogeographical framework.  20 

 21 

8. CONCLUDING REMARKS 22 



 20

The Lower Cretaceous Centenario Formation has been assessed in detail by combining 1 

ichnological and sedimentological core analyses, petrographic, and well-log data.  Eleven 2 

sedimentary facies and three facies associations have been recognized, providing insights into the 3 

paleodepositional environmental settings. The lower Centenario member was deposited in a 4 

shallow-marine deltaic environment (i.e., river-dominated, storm-influenced delta), which 5 

gradually transitioned into marginal-marine settings by the infill of the accommodation space and 6 

progradation. Subsequently, coastal lagoons and sabkhas, ephemeral lakes, and river-dominated 7 

lake deltas covered the studied area. Continental sedimentation predominanted during the final 8 

stages of the lower Centenario deposition with development of widespread, ephemeral fluvial 9 

channel complexes and floodplains, especially towards the east and northeast of the study area. 10 

Available data on the upper Centenario member is scarce, and indicates that deposition took place 11 

predominantly in continental environments under arid to semi-arid climate conditions. A number 12 

of facies have been identified as reservoirs with F1 (freshwater, ephemeral fluvial channels and 13 

crevasse splays) representing the best reservoir, and facies F5 (crevasse channel/splay deposits) 14 

showing the lowest potential as a reservoir rock.  15 
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FIGURE CAPTIONS 1 

Fig. 1. (a) Location of the Neuquén Basin within South America and Argentina. (b) Close-up of (a): 2 

the Neuquén Basin (in gray) subdivided into the Andes and Neuquén Embayment regions. It is 3 

bounded by the cratonic areas of the Sierra Pintada Massif to the north, the North Patagonian 4 

Massif to the south, and the Andean mountains to the west. 5 

 6 

Fig. 2. (a) Generalized stratigraphic column of the Neuquén Basin with lithostratigraphy and major 7 

tectonic phases (after Howell et al., 2005). (b) Stratigraphic column of the Centenario Formation 8 

and its adjacent units within the study area. Generalized lithostratigraphy and a sequence 9 

stratigraphic interpretation are provided (after Schwarz and Veiga, 2007). 10 

 11 

Fig. 3. Study area. a) Location of the study area (red box) within the Neuquén Basin. b) Close-up of 12 

(a): location of the Cerro Hamaca Oeste (CHO), Señal Cerro Bayo (SCB), and Volcan Auca Mahuida 13 

(VAM) oilfields.  14 

 15 

Fig. 4. A zoomed-in view of SCB showing two cross-sections running from NE to SW along the 16 

cored wells. Well distances with the neighbouring oilfields (CHO and VAM) are out of scale, but are 17 

shown on the inset map. 18 

 19 

Fig. 5. Potential sediment provenance areas for the oilfields in this study (red blocks): the Sierra 20 

Pintada Massif borders the Neuquén Basin to the north (Pampa Province) and consists of the 21 

plutonic blocks Las Matras and Chadileuvú. The blocks are envisioned to source the clastic 22 

material. 23 
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 1 

Fig. 6. A selected gamma-ray log of the studied interval showing the stratigraphic units and cored 2 

sections in the study. The core data cover a small portion of the Centenario Formation. A 3 

consistent gamma-ray log kick at the formation top was chosen as a datum. 4 

 5 

Fig. 7. Photographs of F1 – F4. (a) Subtle trough cross-stratification in F1. CHO.e-2, depth 590.50 m. 6 

(b) Low-angle planar lamination, current-ripple cross-lamination (rp), and organic debris 7 

preserved along the ripple toesets in F1. CHO.e-4, depth 528.70 m. (c) Bed contact with 8 

subangular mudstone rip-up clasts (rip), intraclasts (int), and abundant phytodetrital material 9 

(od) in F1. SCB-27, depth 1596.50 m. (d) Massive silty mudstone with soft-sediment deformation 10 

structures (ssd) and siderite concretions (cn) in reddish siltstone of F2. CHO.e-2, depth 581.20 m. 11 

(e) Silty mudstone of F2 with a siderite concretion (cn). CHO.e-4, depth 517.30 m. (f) Sandstone of 12 

F3 with rhizoliths (rz) and yellowish diagenetic staining. (g) Thinly laminated siltstone and 13 

mudstone of F3, with mottling by rhizoliths (rz). SCB-102, depth 1393.40 m. (h) Mudstone and 14 

sideritized siltstone of F4, with planar parallel lamination (pl), climbing ripples (clm), and 15 

lenticular bedding (len). A large dike (dy) cross-cuts the primary sedimentary fabric. SCB-9, depth 16 

1569.55 m. (i) Sheet-like microbialites (mcr) in F4. SCB-27, depth 1565.20 m. (j) Muddy sandstone 17 

of F4 with climbing current-ripple cross-lamination (clm) and Taenidium (Ta). SCB-9, depth 18 

1601.60 m. (k) Locally, F4 consists of sandstone interbeds with spotty calcite (Ca) and 19 

anhydrite/gypsum (An) cements. Current ripples (rp) and cracks filled with organic residue (cr) 20 

are also present. SCB-9, depth 1598.30 m.  21 

 22 
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Fig. 8. Photographs of F5 – F8. (a) Climbing (clm) and wave/combined-flow ripples (rp) covered 1 

by mudstone drapes (md) in F5. A few Planolites (Pl) and a single sand dike (dy) are visible.  SCB-9, 2 

depth 1571.70 m. (b) Interbedded sandstone and siltstone with thin organic detritus draping 3 

laminae  (od) of F5. Sediments are reworked by a low-diversity suite of ?Arenicolites (Ar?), 4 

Planolites (Pl), and Paleophycus (Pa). Combined-flow ripples (rp) are locally visible in sandstone. 5 

SCB-27, depth 1598.30 m. (c) Organic drapes (od) in F5 are locally cross-cut by ?Taenidium (Ta) 6 

and Planolites (Pl). Climbing (clm) and combined-flow ripples (rp) form characteristic wavy 7 

bedding. SCB-27, depth 1599.10 m. (d) Mottled sediment appearance of F6 with wavy lamination 8 

(wv) due to uneven anhydrite/gypsum (An) cementation. SCB-102, depth 1381.55 m. (e) Oil-9 

saturated sandstone of F6 with organic detritus draping laminae (od) and a lag of mudstone and 10 

coal rip-up clasts (rip). SCB-102, depth 1387.00 m. (f) Abundance of organic material (od) and 11 

coalified clasts (co) in F6. SCB-102, depth 1395.90 m. (g) Monospecific trace-fossil suite of 12 

Taenidium (Ta) in F7. Desiccated mudstone is broken into mudstone rip-up clasts (rip). SCB-27, 13 

depth 1545.40 m. (h) Floating sand grains (flt) in a soupy mud of F7, a lag of mudstone rip-up 14 

clasts (rip), and soft-sediment deformation structures (ssd). SCB-27, depth 1561.80 m. (i) Good 15 

preservation of primary sedimentary structures in F7: planar parallel lamination (pl) and current 16 

ripples (rp). The fabric is penetrated by possible rhizoliths (rz?). Biogenic mottling is notable in 17 

some layers (mt). SCB-102, depth 1385.00 m. (j) Microbial mats (mi) of F8 with wavy appearance, 18 

scattered bioclasts (bio), Arenicolites (Ar), and calcium-filled cracks (cr). Calcium (Ca) and 19 

anhydrite/gypsum (An) cements are present. SCB-11, depth 1631.70 m. (k) Microbial mats (mi) of 20 

F8 forming undulatory (wavy) and wrinkled laminae. Biogenic mottling (mt) is visible in the upper 21 

part of the sample. Calcium (Ca) and siderite (Sid) cements are spotted. SCB-10, depth 1613.90 m. 22 

 23 
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Fig. 9. Photographs of F9 – F11. (a) Low-angle to parallel laminated, oil-saturated sandstone of F9 1 

with organic debris (od) along the depositional surfaces and a cryptic bioturbation (cry). VAM-80, 2 

depth 2615.55 m. (b) Ripples in F9 are marked by organic debris (od) with abundant bioturbation 3 

by Haentzschelinia (Ha). VAM-80, depth 2618.20 m. (c) Sets with high-angle planar stratification in 4 

F9 separated by a reactivation surface (rct).  Mudstone rip-up clasts (rip) appear above the 5 

reactivation surface. Lower part of the illustrated interval is cryptically bioturbated (cry). VAM-80, 6 

depth 2679.60 m. (d) Intergradation of calcite-cemented sandstone (Ca) with bioclasts (bio) and 7 

intraclasts (int) into grainstone with intraclasts (int) in F9. Extensive moldic porosity (mol) 8 

formed within the bioclasts. SCB-10, depth 1643.80 m. (e) Lam-scram fabric, where the laminated 9 

(L) interval is represented by hummocky cross-stratification (HCS) marked by organic debris (od) 10 

and fugichnia (esc), whereas the scrambled (S) intervals are thoroughly bioturbated by 11 

Ophiomorpha (Op) and Haentzschelinia (Ha). SCB-8, 1695.30 m. (f) Interval with soft-sediment 12 

deformation structures (ssd) is overlain by a cryptically bioturbated interval (cry) with low-angle 13 

planar lamination in F10. VAM-80, depth 2680.50 m. (g) Predominance of primary sedimentary 14 

structures in F10: hummocky (HCS), swaley cross-stratification (SCS), and planar parallel 15 

lamination (pl). Organic debris (od) marks the depositional surfaces. Cryptic bioturbation (cry) 16 

and fugichnia (esc) are locally present. SCB-8, depth 1694.40 m. (h) Abundant organic debris (od), 17 

planar parallel lamination (pl), and extensive sediment reworking by cryptobioturbation (cry) in 18 

F10. SCB-10, depth 1647.10 m. (i) Intensely bioturbated sandstone in F10 containing small 19 

specimens of Ophiomorpha (Op). Partial oil saturation. SCB-10, depth 1632.80 m. (j) Thoroughly 20 

bioturbated sandstone in F11 containing Asterosoma (As) overprinted to biogenic mottling (mt). 21 

Underlying heterolithic interval displays Rhizocorallium (Rh), a thin HCS sandstone layer and 22 

mudstone interbeds (fld). SCB-8, depth 1697.30 m. 23 
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 1 

Fig. 10. Cross-section 1 (for location refer to Fig. 4) summarizes vertical facies distribution and 2 

spatial facies associations distribution based on the core (FA1-FA3) and well-log data (FA1-FA3) 3 

analyses.  MD refers to measured depth, SP - to spontaneous potential, and GR – to gamma ray. 4 

Color fill in the GR log indicates likely rock lithology, ranging from sandstone (yellow color) to 5 

mudstone (dark brown color). 6 

 7 

Fig. 11. Cross-section 2 (for location refer to Fig. 4) summarizing vertical facies distribution and 8 

spatial facies associations distribution based on the core (FA1-FA3) and well-log data (FA1-FA3). 9 

Two lithologs from well VAM-80 provide details on the facies characteristics and facies stacking 10 

patterns. MD refers to measured depth, SP - to spontaneous potential, and GR – to gamma ray. 11 

Color fill in the GR log indicates likely rock lithology, ranging from sandstone (yellow color) to 12 

mudstone (dark brown color). 13 

 14 

Fig. 12. Illustration of a proposed paleodepositional model for the Centenario Formation within 15 

the study area.  16 

 17 

Fig. 13. Petrographic expression of the Centenario reservoirs. PPL stands for transmitted, plain-18 

polarized light. (a-c) Microphotographs of F1: a) 2.5x PPL. Low-magnification image of a 19 

moderately to poorly sorted, medium-grained, feldspathic litharenite with kaolinite rims and 20 

patchy distribution of dolomite crystals. Excellent intergranular porosity (~24-28%). CHO.e-2, 21 

depth 584.59 m. b) 10x PPL. High-magnification image of a porous layer within a poorly sorted 22 

fine-grained, feldspathic litharenite with a rounded, high relief ?monazite grain (center). Excellent 23 
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intergranular porosity (~20%). CHO.e-4, depth 521.48 m. c) 10x PPL. High-magnification image of 1 

a well sorted, medium-grained, feldspathic litharenite with an altered shale intraclast (center). 2 

Good to very good intergranular and intragranular (along the cleavage planes) porosity (~15%). 3 

SCB-59, depth 1525.13 m. (d-f) Microphotographs of F9: d) 10x PPL. High-magnification image of 4 

a moderately sorted, feldspathic litharenite with volcanic (center) and metamorphic (upper right 5 

corner) rock fragments. Moderate intergranular and intragranular porosity (~5-7%). VAM-80, 6 

depth 2614.20 m. e) 10x PPL. High-magnification image showing a moderately sorted, medium-7 

grained, feldspathic litharenite with accessory grains of tourmaline (yellow and dark-green). Good 8 

intergranular and intragranular porosity (~10-12%). VAM-80, depth 2610.22 m. f) 5x PPL. High-9 

magnification image of a moderately sorted, medium-grained feldspathic litharenite with 10 

patchy ?dolomite and macrocrystalline siderite (yellow arrows) cements. Good intergranular and 11 

more rarely intragranular porosity (~10-12%). VAM-80, depth 2610.22 m. (g-i) 12 

Microphotographs of F6: g) 2.5x PPL. Low-magnification image of a poorly sorted, fine- to 13 

medium-grained, feldspathic litharenite with cemented and porous patches. Moderate to good 14 

intergranular porosity (~7-12%). SCB-102, depth 1380.47 m. h) 10x PPL. High-magnification 15 

image of a very fine- to fine-grained, feldspathic litharenite with fragments of organic material 16 

with cellular structure (wood/leaf). Very poor fracture and intergranular porosity (~1%). SCB-17 

102, depth 1396.0 m. i) 10x PPL. High-magnification image of a bimodal, very fine- to medium-18 

grained, feldspathic litharenite with poikilotopic calcite cement. Poor intergranular porosity (~1-19 

2%). SCB-102, depth 1381.26 m. (j-k) Microphotographs of F10: j) 2.5x PPL. Low-magnification 20 

image of a well sorted, very fine-grained, lithic arkose. Poor intergranular porosity (~2-4%). VAM-21 

80, depth 2678. 95 m.  k) 2.5x PPL. Low-magnification image of a fine- to medium-grained, 22 

feldspathic litharenite with a tourmaline grain (black arrow) and patchy calcite cement. Poor 23 
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intergranular porosity (~1-2%). SCB-10, depth 1622.23 m. (l) Microphotograph of F5. 5x PPL. 1 

High-magnification image of a moderately sorted, fine-grained, feldspathic litharenite with 2 

argillaceous matrix and patchy microcrystalline calcite cement. Moderate intergranular porosity 3 

(~5-7%). SCB-10, depth 1576.53 m.  4 

 5 

Table 1. Previous paleoenvironmental interpretations of the Centenario Formation. 6 

 7 

Table 2. Sedimentary facies and facies interpretations of the Centenario Formation. For grain size, 8 

L – signifies lower, and U – means upper.  9 

 10 

Table 3. Summary table depicting the constituent facies of FA1-FA3 with the interpreted 11 

subenvironments. 12 

 13 

Table 4. Summary table with the most prospective reservoirs for the Centenario Formation within 14 

the study area. 15 

 16 

Table 5. Summary table showing statistical reservoir permeability data, where K gas is the 17 

laboratory measured gas permeability, and K klik is the Klinkenberg-corrected permeability value. 18 

 19 

Table 6. Summary table showing statistical reservoir porosity data.  20 



Lower Centenario Formation Upper Centenario Formation Source 

Variety of marginal-marine environments Cabaleiro, 2002 

Littoral zone with moderate wave action (e.g., littoral bars, beaches, tidal flats, and tidal 

channels) 

Mendiberri, 1984 

Platform (e.g., storm-reworked bars, shoreface, and 

offshore), lagoon (cap rocks), and estuarine channels 

(reservoir rocks) 

N/A Rebasa et al., 1992 

Platform, tidal flats, estuarine channels, and lagoon  N/A Vottero and Cafferata, 1992 

Coastal-plain to shallow-marine environments (e.g., ebb-

tidal deltas, tidal channels, and barrier islands) 

N/A Cevallos et al., 2008 

Cevallos and Rivero, 2009 

Distal fluvial channels, estuaries, and tidal flats Shallow-marine environments to 

fluvial channels 

Soraci et el., 2010 

Littoral, deltaic, and fluvial environments Fluvial environments Casadío and Montagna, 2015; Ponce et al., 

2015 

Restricted bay, marginal-marine, tidal flat with minor wave 

reworking, tide-dominated delta 

Shoreface, wave-dominated 

delta, embayment, estuary, 

paralic, fluvial 

Iñigo et al., 2019 

 



Facies 

association 

Facies Sedimentology Ichnology Interpretation Distribution 

FA1: 

Continental 

(fluvial) 

environment 

 

F1: Trough 

cross-

stratified, fine- 

to medium-

grained 

sandstone 

Poorly to moderately sorted, trough cross-

stratified, massive, planar parallel and low- to 

high-angle laminated, fine- (L) to medium- (L) 

grained sandstone with some grain-size 

striping. Mica, medium-sized sand grains, and 

organic debris preserved along the foresets. 

Current and climbing ripples marked by 

organic debris. Rare mudstone clasts and soft-

sediment deformation structures. Erosive bed 

contacts marked by mudstone rip-up clasts, 

intraclasts, and sand grains. Sporadically 

distributed spots of secondary cements (e.g., 

calcite, anhydrite/gypsum). Individual beds 

0.3-2.0 m thick (average 1 m), forming 0.45-

9.1 m thick intervals (average 2.2 m). 

Generally sharp basal contacts. Low to heavy 

oil saturation. 

Mostly barren of 

trace fossils (BI 0) 

with only rare 

occurrences of 

Skolithos in discrete 

layers (BI 0-1). 

Freshwater fluvial channels and crevasse splays of 

ephemeral to perennial nature based on predominantly 

medium sandstone grain size, high-energy unidirectional 

sedimentary structures (i.e., trough cross-stratification, 

low- to high-angle planar lamination), paucity of trace 

fossils, abundant organic detritus, and considerable 

thickness (up to 9.1 m). Calcite cement caused by early 

diagenetic processes. Spotty anhydrite/ gypsum cements 

indicate arid and highly evaporitic settings. In wells SCB-9, 

SCB-27, and SCB-59, F1 is interpreted as deposits of low-

gradient fluvial system and of hyperpycnal flows in a lake 

environment based on thinner bodies (0.5-2.5 m), 

intercalation with mudstone and siltstone with dikes and 

microbialites, evidence of microbial action, soft-sediment 

deformation, starved and climbing current ripples. 

Wells CHO.e-2, 

CHO.e-4, SCB-9, 

SCB-27, and  

SCB-59 

F2: Muddy 

heterolithics 

with starved 

current 

ripples 

Interlaminated greenish muddy siltstone, 

argillaceous fine- (U) to medium- (L) grained 

sandstone, and greenish-gray mudstone with 

planar parallel lamination, lenticular bedding, 

starved current ripples, soft-sediment 

deformation structures, microfaults, and 

mudstone rip-up clasts. Floating medium-

sized sand grains, oxidized and sideritized 

intraclasts, pyrite nodules, and local calcite 

and dolomite cements. Very thin laminations 

of possibly microbial origin. Beds 0.2-1 m 

thick (average 0.5 m), forming 0.4-5.2 m thick 

intervals (average 1.3 m). Generally sharp 

basal contacts. Absent to low (in sandy 

lamina) oil saturation. 

No trace fossils (BI 

0) 

 

Abandoned ephemeral fluvial channels, crevasses, and 

floodplains. Overall fine-grained deposits indicate 

predominantly low-energy conditions (i.e., thin planar 

parallel lamination, lenticular bedding, starved current 

ripples) with intermittent pulses of high energy manifested 

in silty and sandy beds, floating medium- (U) sized sand 

grains, and other intraclasts. Abundance of soft-sediment 

deformation features and syndepositional microfaults 

points to the water-saturated nature of the substrate and 

presence of inclined depositional surfaces. Oxidized and 

sideritized intraclasts indicate highly oxidizing 

environmental conditions with extended subaerial 

exposure between the depositional events. Incipient calcite 

and dolomite cementation suggest arid, desert-like climate.  

Wells CHO.e-2 

and CHO.e-4 

F3: Thinly 

laminated 

siltstone with 

rhizoliths 

Siltstone to very fine-grained sandstone with 

mottled appearance. Color diagenetically 

changed (CHO.e-2, SCB-59), some visible 

original bedding, and partial lithification with 

calcite cement. In SCB-102, thinly 

interlaminated siltstone and mudstone. Beds 

0.1-0.3 m thick (average 0.15 m), forming 0.1-

0.5 m thick intervals (average 0.3 m). 

Generally gradational basal contacts. Absent 

oil saturation. 

Abundant rootlets 

(BI 2-4) 

Immature paleosols (some developed in interfluve areas). 

Two types of paleosols: 1) sandy paleosols represented by 

fine- to medium-grained sandstone with a few rhizoliths, 

and 2) interlaminated siltstone and mudstone with 

abundant vertical rootlets. Negligible thickness of F3 due to 

partial or total removal by migrating channels. Calcite/ 

dolomite cement due to quick calcification as calcite 

actively percolates in the desert soil profile. Penetrative and 

relatively straight tap roots indicate well-drained paleosols 

with low water table and sporadic water availability. 

Wells CHO.e-2, 

SCB-59, and 

SCB-102 



FA2: 

Continental 

to marginal-

marine 

environment 

 

 

F4: Muddy 

heterolithics 

with dikes and 

microbialites 

Interlaminated dark gray and green 

mudstone and brownish-red siltstone with 

abundant oscillating and climbing current 

ripples, lenticular and planar parallel 

lamination, syneresis cracks, soft-sediment 

deformation structures, syndepositional 

microfaults, sand- and mud-filled dikes and 

cracks, and microbialites (domes and sheet-

like). Less common mudstone clasts, 

stylolites, breccia, calcite-filled thin cracks, 

floating sand grains, and shell debris. Spotty, 

pore-occluding calcite, dolomite, siderite, 

anhydrite, and gypsum cements. Local 

mottling. Individual beds 0.05-0.9 m thick 

(average 0.45 m), forming 0.1-2.3 m thick 

intervals (average 0.8 m). Gradational to 

sharp basal contacts. No oil saturation.  

 

Low-moderate 

ichnodiversity; 

sporadic 

distribution; sparse 

to moderate 

bioturbation (BI 0-

3). Skolithos, 

Arenicolites, 

Palaeophycus, 

Planolites, 

Taenidium, probable 

rhizoliths. Trace 

fossils 

predominantly in 

fine-grained fraction. 

Shallow-water ephemeral lakes and their margins 

(mudflats) with little vegetation based on fine-grained 

deposits with low-energy sedimentary structures (e.g., 

lenticular and planar parallel lamination) interbedded with 

higher-energy sedimentary structures (e.g., oscillating and 

climbing current ripples, mudstone clasts, floating coarse 

sand grains, and shell debris). Presence of evaporites, 

including dolomite cement, indicates increase in lake 

evaporation rate during hot seasons in arid to semi-arid 

climate conditions. Microbialites point out to drops in the 

lake water level. Microbial laminites, solution collapse 

breccias, and ?root traces suggest frequent wetting and 

drying in the ephemeral lake (hints to strong seasonality). 

Abundant soft-sediment deformation structures, 

syndepositional microfaults, dikes and cracks - periods with 

widespread water-saturated substrates and possible 

triggers, i.e. rapid sediment loading caused by hyperpycnal 

lake underflows, storm wave action or seismic shocks. 

Wells SCB-9, 

SCB-27, and 

SCB-59 

F5: Very fine- 

to fine-

grained 

sandstone 

with climbing  

and 

combined-

flow ripples 

Gray, wavy and low-angle planar laminated, 

very fine- (L) to fine- (U) grained sandstone 

with climbing current and combined-flow 

ripple cross-lamination, mudstone and 

organic drapes, mudstone rip-up clasts, sand- 

and mud-filled dikes, and rare syneresis 

cracks. Sandstone interbedded with lenticular 

bedded mudstone with starved climbing 

ripples. Several reactivation surfaces. 

Common calcite cementation. Individual beds 

0.1-0.3 m thick (average 0.2 m), forming 0.15-

1.8 m thick intervals (average 0.6 m). Sharp to 

erosional basal contacts. Low to absent oil 

saturation. 

 

Low ichnodiversity; 

sporadic 

distribution; low 

intensity of 

bioturbation (BI 0-

1). Skolithos,  

Arenicolites, 

Palaeophycus, 

Planolites, 

?Taenidium, 

fugichnia, rhizoliths. 

Crevasse channel/splay deposition within upper delta plain 

and ephemeral lake environments based on negligible 

thickness of deposits, sharp bases, fine-grained sandstone 

lithology, predominant fining-upward grain-size trend, and 

intimate association with the mudflat and interdistributary 

bay facies (F4, F7). Mudstone clast breccia - high initial 

hydraulic energy with the sediment-laden flow breaching 

through the channel levee and dissipating onto the mudflat 

of the ephemeral lake or interdistributary bay. Wavy and 

low-angle planar laminations form at initial waning stages; 

climbing current ripples – at final waning stages associated 

with rapid flow-velocity deceleration and ripple 

aggradation. Single or multi-storey events with occasional 

preservation of reactivation surfaces. 

Wells SCB-9, 

SCB-10, SCB-

27, SCB-52, 

SCB-59, and 

SCB-102 

F6: Medium- 

to fine-

grained 

sandstone 

with planar 

parallel and 

wavy 

lamination  

Light brown to light gray, wavy,  low-angle 

and planar parallel laminated, and trough 

cross-stratified, fine- (L) to medium- (U) 

grained sandstone with soft-sediment 

deformation structures, current and climbing 

ripple cross-lamination, abundant organic 

debris, grain-size striping, mudstone rip-up 

clasts, and organic drapes. Common rip-up 

clast lags at the base or above reactivation 
surfaces. Predominant coarsening-upward 

trend. No trend or a fining-upward trend  can 

Low ichnodiversity; 

sporadic 

distribution; low 

intensity of 

bioturbation (BI 0-

1). Palaeophycus, 

Lockeia, cryptic. 

Trace fossils mainly 

in the coarse-
grained portion. 

Terminal distributary channels and mouth bars of a river-

dominated delta formed in a lake and lagoon environment. 

Deltaic interpretation supported by a coarser-grained 

sediment fraction, trough cross-bedding, abundance of 

continentally derived organic matter, flow-waning 

structures, and cycles of activity marked by erosional bases. 

Soft-sediment deformation structures - variations in the 

rate of sediment loading during periods of high freshwater 

discharge. Current and climbing ripples suggest periodic 
shallowing of the flow. Stacking of successions indicates 

rapid channel bifurcation and avulsion: common in 

Wells SCB-10, 

SCB-27, SCB-

51, SCB-59, and 

SCB-102 



be present. Common patchy calcite, dolomite, 

anhydrite, and gypsum cements. Beds 0.3-1.3 

m thick (averages 1 m), forming 0.3-9.0 m 

thick intervals (averages 2.8 m). Sharp to 

erosional basal contacts. Medium to absent oil 

saturation. 

dynamic, river-dominated deltas. Shallow-water conditions 

of the receiving body deduced by diminished thickness of 

F6 packages indicating reduced accommodation space. 

F7: Mudstone 

with lenticular 

bedding 

Dark gray shale/mudstone with red-colored 

siltstone and sandstone lenses, mudstone rip-

up clasts, abundant soft-sediment 

deformation structures, syndepositional 

microfaults, dikes, cracks, floating bioclasts 

and sand grains, intact and brecciated 

microbialites, ?syneresis cracks, massive, 

planar parallel and wavy lamination, 

lenticular bedding, current ripple and 

climbing ripple cross-lamination, and organic 

debris. Common biogenic mottling. Zones 

with calcite and siderite cements. Individual 

beds 0.1-0.8 m thick (average 0.3 m), forming 

0.1-3.6 m thick intervals (average 0.9 m). 

Sharp to erosional basal contacts. No oil 

saturation.  

 

Low ichnodiversity; 

sporadic 

distribution; 

variable intensity of 

bioturbation (BI 0-4, 

predominant BI 2-4). 

Skolithos, 

Arenicolites, 

Diplocraterion, 

Palaeophycus, 

Planolites, 

Taenidium, possible 

rhizoliths. 

Shallow-water bays and mudflats of the delta plain. Fine-

grained deposits, low-energy sedimentary structures (e.g., 

planar parallel, wavy and lenticular bedding) interbedded 

with higher-energy sedimentary structures (e.g., ripple 

cross-lamination, rip-up clasts, and soft-sediment 

deformation structures) indicate a generally stable, low-

energy depositional environment dominated by deposition 

from suspension with minor traction currents. Muddier 

areas – deposition at central bay and surrounding muddy 

flats; silty and sandy heterolithic deposits - areas with more 

pronounced sand influx. Abundant soft-sediment 

deformation structures, syndepositional microfaults, and 

dikes indicate periods with widespread water-saturated 

substrates and rapid sediment loading. Brecciated intervals 

- disruption of semi-cohesive to cohesive sediments 

without significant sediment transport. Microbial laminites, 

solution collapse breccias, and ?root traces show frequent 

wetting and drying (hints to seasonality). 

Wells SCB-10, 

SCB-27, SCB-

51, SCB-52, 

SCB-102, and 

VAM-80 

F8: Siltstone 

and sandstone 

with 

anhydrite, 

calcite, and 

dolomite 

cements 

Very thinly laminated, anhydrite/gypsum-

cemented, calcareous to dolomitic siltstone, 

sandstone, and mudstone. Sedimentary 

structures include microbial/algal wrinkled 

lamination, wavy, lenticular bedding, 

oscillatory ripple cross-lamination, scattered 

bioclastic debris, syneresis cracks, soft-

sediment deformation structures, dikes, 

mudstone rip-up clasts, organic debris, 

calcium-filled cracks, and stylolites. Some 

biogenic mottling. Individual beds 0.05-0.3 m 

thick (average 0.15 m), forming 0.4-1.6 m 

thick intervals (average 1.1 m). Sharp to 

slightly erosional basal contacts. No oil 

saturation. 

Low ichnodiversity; 

sporadic 

distribution; 

variable intensity of 

bioturbation (BI 0-

4). Skolithos, 

Palaeophycus, 

Planolites, 

Teichichnus. 

Shallow coastal lagoon or sabkha. Abundant evaporitic 

cements develop in supratidal settings of arid climates. 

Undulatory and wrinkled thin laminae represent 

intermittent growth of algal/microbial bodies or salt-crust 

growth and dissolution acting in low-relief areas of 

sabkhas. Microbial mats are especially common in 

protected intertidal to supratidal environments of shallow 

lagoons and sabkhas. Syneresis cracks - periods of 

freshwater introduction into the depositional setting. 

Mudstone rip-up clasts and scattered bioclastic debris likely 

represent deposition during washover events. Wavy, 

lenticular bedding, and oscillatory ripple cross-lamination - 

a generally quiescent depositional setting punctuated by 

short intervals of traction deposition (possibly by wave 

action). 

Wells SCB-10 

and SCB-11 

FA3: 

Shallow-

marine 

(deltaic) 

environment 

F9: Very fine- 

to medium-

grained 

sandstone 

with planar 

Gray to brown, massive, trough cross-

stratified, wavy and planar parallel laminated, 

very fine- (U) to medium- (L) grained 

sandstone with climbing ripples, soft-

sediment deformation structures, 

Low ichnodiversity; 

sporadic 

distribution; 

variable intensity of 

bioturbation (BI 2-

River-dominated, storm-influenced delta with distributary 

channels, terminal distributary channels, and mouth bars 

based on prevailing unidirectional sedimentary structures 

(e.g., planar parallel, low- and high-angle planar lamination, 

trough cross-stratification, climbing ripple cross-

Wells SCB-8, 

SCB-10, SCB-

11, SCB-52, and 

VAM-80 



 parallel and 

trough cross-

stratification  

syndepositional microfaults, 

mudstone/organic drapes, intraclasts, 

mudstone rip-up clasts, organic debris, 

mudstone layers, scattered granules, 

intraclasts, and bioclasts. Some layers with 

abundant bioclasts and intraclasts show 

moldic porosity. Calcareous, dolomitic,  

anhydrite, and gypsum cements locally 

present. Erosional and reactivation surfaces 

in stacked packages with a predominantly 

coarsening-upward pattern. Rare biogenic 

mottling. Beds 0.25-2.1 m thick (average 1 m), 

forming 0.25-9.4 m thick intervals (average 

2.1 m). Gradational to sharp and, rarely, 

erosional basal contacts. Low to medium oil 

saturation. 

6). Skolithos, 

Arenicolites, 

Ophiomorpha, 

Palaeophycus, 

Planolites, 

?Teichichnus, 

Thalassinoides, 

Haentzschelinia, 

fugichnia, local 

cryptic bioturbation. 

lamination), reworking by waves (e.g., wavy lamination) 

and possibly tides (mudstone/organic drapes), abundant 

plant debris, mudstone clasts, and a typical coarsening-

upward pattern. Thin depositional bodies (1-3 m) – a 

reduced accommodation space (i.e., a ramp setting), where 

river-dominated deltas debouche into a shallow basin and 

form multiple distributary channels. River dominance 

based on coarse sediment size (including granules, 

intraclasts, and bioclasts ), presence of fluid mud layers, 

and variably scaled soft-sediment deformation features. 

Fluid mud layers caused by hypo- and hyperpycnal flows as 

phyto-detrital pulses. Soft-sediment deformation structures 

formed due to high sedimentation rates and sediment 

overloading. Storm influence inferred based on the 

exceptional sandstone cleanliness. 

F10: Siltstone 

to fine-

grained 

sandstone 

with soft-

sediment 

deformation 

structures  

Light- to dark-gray, low- to high-angle planar 

laminated, hummocky (HCS) and swaley 

(SCS) cross-stratified, laminated to scrambled 

(“lam-scram”) siltstone to fine- (U) grained 

sandstone with abundant soft-sediment 

deformation structures, syneresis cracks, 

oscillation ripples, and intraclasts. Some 

intervals contain calcite/dolomite cement and 

floating bioclasts. Local biogenic mottling. 

Individual beds 0.15-1 m thick (average 0.4 

m), forming 0.3-3.5 m thick intervals (average 

1.3 m). Gradiational to sharp basal contacts. 

Negligible oil saturation. 

3 ichofossil suites. 

Laminated (BI 0-2) 

and scrambled 

intervals (BI 3-6). 

Fugichnia, cryptic, 

Ophiomorpha, 

Palaeophycus, 

Skolithos,Diplocrater

ion, Haentzschelinia  

Lockeia, Bergaueria, 

Thalassinoides, 

Planolites, 

Teichichnus. 

River-dominated, storm-influenced delta front. River 

dominance due to finer sediment size, abundant soft-

sediment deformation structures, organic detritus, and 

syneresis cracks. Soft-sediment deformation structures 

imply sediment overloading, dewatering, and liquefaction – 

proximity to delta front. Organic material represents 

phytodetrital pulses common in river-dominated deltas 

during peak-flood discharge. Syneresis cracks - salinity 

fluctuations (i.e., freshets). Higher-energy sedimentary 

structures (i.e., laminated) - increased wave activity, i.e. 

storm erosion and tempestite deposition. 

Wells SCB-8, 

SCB-10, and 

VAM-80 

F11: 

Interbedded 

mudstone and 

very fine-

grained 

sandstone 

with HCS 

Structureless, lenticular-bedded mudstone 

interbedded with planar parallel laminated, 

low- to high-angle cross-stratified, massive 

and wavy bedded, very fine-grained 

sandstone with organic debris, mudstone rip-

up clasts, bioclasts, and reactivation surfaces. 

Common soft-sediment deformations. 

Individual beds 0.03-0.25 m thick (average 

0.13 m), forming 0.2-3.0 m thick intervals 

(average 0.7 m). Sharp basal contacts. Absent 

to low oil saturation. 

Moderate to high 

ichnodiversity; 

highly variable 

intensity (BI 0-6). 

Cryptic, Lockeia, 

Ophiomorpha, 

Thalassinoides, 

Palaeophycus, 

Planolites, 

Teichichnus, 

Haentzschelinia, 

Asterosoma, 

Rhizocorallium, 

Phycosiphon, 

Chondrites. 

River-dominated, storm-influenced prodelta. Storm 

influence evidenced by high-energy sedimentary structures 

(i.e., planar parallel lamination, low- and high-angle cross-

stratification, HCS, wavy bedding, ripple cross-lamination, 

and reactivation surfaces). Finer grain size and absence of 

SCS - slower, continuous rates of deposition in a more distal 

setting. 

Wells SCB-8, 

SCB-10, and 

VAM-80 



HIGHLIGHTS 

• The Centenario Formation is a significant producer of oil and gas in the 

Neuquén Basin, Argentina 

• Detailed sedimentological, ichnological, petrographical, and petrophysical 

analyses provided insight into the paleodepositional environments 

• The Centenario Formation was deposited in a river-dominated, storm-

influenced deltaic environment, which gradually transitioned into the 

marginal-marine (e.g., coastal lagoons, sabkhas, ephemeral lakes) and 

continental depositional settings (e.g., ephemeral fluvial channels, crevasse 

splays, abandoned channels, floodplains, and paleosols) 
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