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Abstract 

The study of intra- and intermolecular interactions in solid state of four related fluorine-

containing 1,2,3-triazole derivatives (1: R= -H, 2: R= -NO2, 3: R= -CH3, 4: R= -Cl) was carried 

out using quantum chemical calculations, vibrational (IR and Raman) and solid phase UV-

Vis spectroscopy, and single-crystal X-ray diffraction methods. The enol-keto / keto-enol 

tautomerism on the o-hydroxyacetophenone moiety was analyzed in terms of the synergy 

between O-H···O intramolecular hydrogen bond strengthening and the enhancement of  

delocalization within the pseudo ring. The preference of the enol-keto form was attributed to 

the aromatic stabilization energy. The proton in the triazole ring was located on the 

intermediate nitrogen atom, with no evidence of prototropie in the studied series. 

Compounds 1 and 4 have similar structural motifs with N-H···O hydrogen bonds connecting 

amino and carbonyl groups of neighboring molecules in a chain along a-axis. For 2, it was 
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found that both oxygen atoms of the nitro substituent participate as acceptors, connecting 

adjacent molecules by hydrogen bonds through the N-H and O-H groups. In compound 3, 

the crystallization water molecule dominates the hydrogen bonding interactions, which 

associates three molecules of 3, giving rise to a three-dimensional H-bonding network. 

These intra and intermolecular interactions, which affect the absorption bands location of 

the involved groups, were also detected in the vibrational spectra of the studied triazole. 

 

Keywords: X-ray crystal structure, molecular interactions, NBO intermolecular energies, 

Hirshfeld surface analysis, Pixel energies, vibrational spectroscopy 
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1.Introduction 

 

Five-membered ring heterocycles containing three consecutive nitrogen atoms are known 

as 1,2,3-triazoles or vicinal triazoles.1 Its chemistry has been revalued since the appearance 

of click-chemistry, which significantly improved the reaction conditions for the synthesis of 

these heterocycles.2,3 

1,2,3-Triazoles are recognized by its medicinal significance due to their wide range of 

bioactivity. As biologically active molecules, among the most relevant, they demonstrated 

anti-cancer, anti-inflammatory, antitubercular, antileishmanial, antitrypanosomal, 

antimicrobial, antiviral, and antibacterial activity.4–6 Some structural properties of triazoles 

such as high dipole moment value, the presence of acceptor nitrogen atoms and donor N-

H hydrogen groups, and a rich electron aromatic (-excessive) ring allow them to form 

dipole-dipole, hydrogen bonding and  stacking interactions. Such properties are of great 

importance in the field of medicinal chemistry, because they improve the binding with the 

biological target. Structural studies of 1,2,3-triazoles are necessary to fully understand their 

properties. They are widely used as a bioisoster for the design of drug analogues due to an 

additional advantage: their marked stability under hydrolytic, oxidative, and reducing 

conditions. This ring has been used primarily as an amide and ester isostere and allows, for 

example, to reduce the compounds' in vivo susceptibility to enzymatic degradation.7  

Besides, the inclusion of fluorine atoms in its structure, enhance their molecular properties 

and biological activities. Its high electron affinity, lipophilicity and bioavailability extends the 

half-life of the drugs.8–10 Also, the application of fluoride in the design of drugs is related to 

its ability to increase metabolic stability or influence the metabolism of the molecule.11 Within 

the fluorinated drugs, perfluoromethyl substituted compounds have demonstrated a notable 

high activity against the malaria parasite.10 Vicinal triazoles without substitution on the 

nitrogen atom can be obtained by reacting sodium azide with  and  pyrones.12,13 This 

synthetic route is simple and allows the construction of new heterocyclic structures 

substituted with trifluoromethyl groups possessing interesting properties. For this purpose, 

chromone is used as a source of  pyrone, with the advantage that trifluorochromones are 

obtained in a one-step simple way.14,15 

In this work, the synthesis and study of four 4-(2’-hydroxybenzoyl)-5-trifluoromethyl-2H-

1,2,3-triazoles is presented (scheme 1). On the heterocycle, the hydrogen location in one of 

the three nitrogen atoms (prototropie) depends on the molecule structure, its aggregation 

state and the solvent used when they are analyzed in solution.1,16 The triazoles presented 

in this work were studied in solid state, mainly using X-ray diffraction methods. 
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Scheme 1: Hydrogen bonding in the studied triazoles involving the enol-keto (EK, left) 
and keto-enol (KE, right) forms in equilibrium (tautomerism) and the uncharged (upper) 
and ionized (lower) mesomeric structures (RAHB concept). The d1-d4 and t1-t2 are the 
selected -conjugated bonds and torsion angles connecting aromatic planes with the 
carbonyl central group, respectively. 
 

The structures are dominated by intra and intermolecular O-HO hydrogen bond 

interactions, whose strength and geometry are sensitive to the substituents. The study was 

complemented with vibrational spectroscopy (IR and Raman) and theoretical calculations. 

A complete characterization and a tentative assignment of the vibrational spectra were 

performed using reported data of related compounds and the calculated frequencies after 

geometry optimization.17,18 

In this series of triazoles, the phenyl-substituted (2-hydroxyphenyl)carbonyl fragment 

consists of a -diketone enol group (-enol keto group) asymmetrically fused to a phenyl 

ring. It is well known the occurrence of extreme HO‒C═C‒C═O (enol-keto, EK) and O═C‒

C═C‒OH (keto-enol, KE) forms in the keto-enol tautomerism of enolones.19 An important 

feature of -diketones molecular crystals is the packing of the enol tautomers, stabilized by 

strong intramolecular O-HO resonance-assisted hydrogen bond (RAHB).20–24 Following 
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Gilli’s foundational work,20 its RAHB concept has also been successfully applied for other -

conjugated compounds as 2-hydroxybenzoketones.25 

In the RAHB system, the proton acceptor and proton donor groups are connected through 

a chain of delocalized conjugated double bonds d1-d4, stabilizing the molecular system 

(resonance concept). Because of the electron density transfer in the resonance structures, 

the hydrogen acceptor turn into the hydrogen donor and vice versa (see Scheme 1). 

However, though the concept of RAHB has been widely accepted, at present there are 

controversies in the literature about its nature.26,27 In special with the role of the electron 

delocalization in the system.28 Thus, theoretical calculations have suggested for unsaturated 

compounds the formation of stronger intramolecular hydrogen bonds than in their saturated 

analogues, not only through a resonance mechanism but also as a result of steric strain or 

constraints associated to the σ-skeleton.29 Recent studies showed that substituents can 

weaken intramolecular hydrogen bonds, affecting RAHB and favoring intermolecular 

interactions.30 Both inter- and intramolecular noncovalent interactions are crucial in 

determining the molecular organization of the compounds in solution and solid state. This 

fact, considering also the relevant role of intramolecular H-bond in biological and chemical 

processes,31 prompted to analyze the resonance effect on the intramolecular O-HO 

interactions strength for the four structures reported in this work. 

Lattice and intermolecular interaction energies associated to different molecular pairs were 

calculated in order to determine the energy components contributing to crystal 

stabilization.32 Hirshfeld surfaces analysis33 has been used to explore the packing modes 

and the visualization of intermolecular interactions. Quantitative pictures of intermolecular 

contacts, including the relative percentage for each interaction type and their enrichment 

ratios, were obtained from fingerprint plots and their decompositions.34 

 

2. Experimental 

2.1. Synthesis 

The title compounds were synthesized from the respective 2-trifluoromethylchromones 

(TFMC)12,13 and 6-nitro-2-trifluoromethylchromone.35 TFMC were prepared following the 

one-pot procedure reported by Henao Castañeda.14,15 

 

Page 5 of 34 New Journal of Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

N
ew

Jo
ur

na
lo

fC
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
4 

A
ug

us
t 2

02
0.

 D
ow

nl
oa

de
d 

on
 8

/2
5/

20
20

 1
1:

51
:3

1 
PM

. 

View Article Online
DOI: 10.1039/D0NJ02914A

https://doi.org/10.1039/d0nj02914a


2.2. Instrumentation 

2.2.1. X-ray diffraction data 

The measurements were performed on a Rigaku-Oxford Gemini diffractometer equipped 

with an Eos CCD detector and a graphite-monochromated MoKα (= 0.71073 Å) radiation. 

X-ray diffraction intensities were collected ( scans with  and κ-offsets), integrated and 

scaled with CrysAlisPro36 suite of programs. The unit cell parameters were obtained by 

least-squares refinement (based on the angular settings for all collected reflections with 

intensities larger than seven times the standard deviation of measurement errors) using 

CrysAlisPro. Data were empirically corrected for absorption, employing the multi-scan 

method implemented in CrysAlisPro.  

The structures were solved by intrinsic phasing with SHELXT of the SHELX suit of 

programs.37 and the molecular model refined by full-matrix least-squares procedure with 

SHELXL of the same package. The hydrogen atoms of compounds 1, 2 and 4 were located 

from difference Fourier maps and refined at their found positions with isotropic displacement 

parameters. All but the hydroxyl and water hydrogen atoms of compound 3 were positioned 

on stereo-chemical basis and refined with the riding model. The H-atoms of –CH3 group 

were treated as a rigid group allowed to rotate during the refinement around the C–CH3 bond 

as to maximize the sum of the residual electron density at the calculated positions. The 

hydroxyl and water H-atoms were located in a difference Fourier map and refined at their 

found positions with isotropic displacement parameters. Crystal data, data collection 

procedure and refinement results are summarized in Table S1 (ESI†).  

Crystallographic structural data for all four compounds have been deposited at the 

Cambridge Crystallographic Data Centre (CCDC). Enquiries for data can be direct to: 

Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, UK, CB2 1EZ or (e-

mail) deposit@ccdc.cam.ac.uk or (fax) +44 (0) 1223 336033. Any request to the Cambridge 

Crystallographic Data Centre for these materials should quote the full literature citation and 

the reference number CCDC 1589636 (1), CCDC 1589637 (2), CCDC 1589638 (3) and 

CCDC 1936976 (4). The molecular geometries were calculated using WinGX38, and 

PLATON for Windows Taskbar v1.17.39,40, ORTEP-341 and Mercury42 programs were used 

for molecular graphics. 

2.2.2. Infrared and Raman Spectroscopy 

Infrared absorption spectra (KBr pellets) were recorded on a LUMEX InfraLUM FT-02 

spectrometer and on a FTIR Instrument Bruker Equinox, with a resolution of 2 cm-1 from 

4000 to 400 cm-1. The Raman spectra of the solid were performed in the range 3500-100 
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cm-1 at room temperature on a Thermoscientific DXR Raman microscope, using a diode-

pump and a 780 nm solid-state laser, with spectral resolution of 5 cm-1. 

 

2.2.3. Electronic spectra 

Diffuse reflectance UV-Vis spectra were recorded on a Shimadzu UV-2600 

Spectrophotometer in the spectral region of 200-900 nm, using BaSO4 as reference. 

 

2.3. Computational methods 

2.3.1. Lattice and interaction energies 

For each crystal structure under consideration, lattice and intermolecular interaction 

energies for specific molecular pairs were calculated using the CLP (Coulomb–London–

Pauli) approach implemented in the PIXEL program package.43,44 It enables the partitioning 

of the total energy into their coulombic, polarization, dispersion and repulsion contributions 

from the knowledge of the electronic charge density of the free molecule. Accurate electron 

densities around the molecules were calculated at MP2/6-31G** level using Gaussian 03.45 

 

2.3.2. Hirshfeld surface calculations 

Hirshfeld surfaces (HSs) and their associated two-dimensional fingerprint plots (FPs)46–48 

were plotted using CrystalExplorer3.0.49 The dnorm (normalized contact distance) surface and 

the breakdown of two-dimensional fingerprint plots were used for decoding and quantifying 

intermolecular interactions in the crystal lattice. The dnorm is a symmetric function of 

distances to the surface from nuclei inside and outside the HS (di and de, respectively), 

relative to their respective van der Waals radii (rvdW), which allows identification of the 

regions of particular importance to intermolecular interactions. The dnorm surfaces were 

mapped over a fixed color scale of -0.078 au (red) – 0.657 au (blue). Other two-colored 

properties (Curvedness and Shape Index) based on the local curvature of the surface were 

also analyzed. The former is a measure of “how much shape” (low values related with flat 

surface areas, and areas of sharp curvature have a high curvedness), and the latter is a 

measure of “which shape”. The FPs were displayed by using the standard 0.6–2.4 Å 

(compound 1), translated 1.0–2.8 Å (compound 2) and expanded 0.6–2.8 Å (compounds 3 

and 4) ranges, and reciprocal contacts were included. 

2.3.3. Quantum chemical calculations 

Quantum chemical calculations were performed with the program package Gaussian 03.45 

The relaxed potential energy surface scans, geometry optimizations and vibrational 

frequency calculations were performed with the Density Functional Theory (DFT)50 method 
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employing the 6-31g(d,p), 6-311g(d,p)51 and cc-pVDZ52 basis sets. The vibrational and 

electronic spectra of all compounds were computed with B3LYP/6-31g(d,p) level of theory, 

starting from the optimized geometries using the 6-31g(d,p) basis set, since the calculated 

spectra fit better with the experimental ones.53 

The calculated vibrational properties correspond to real minima on the potential energy 

surface, with no imaginary frequencies. Natural Bond Orbital (NBO) analysis,54 as 

implemented in the Gaussian 03 package, was performed at B3LYP/cc-pVDZ level for the 

1 – 4 monomeric and dimers structures, in order to obtain second-order donor → acceptor 

interaction energies. 

 

3. Results and discussion 

3.1. Molecular structure description 

ORTEP drawings of 1 – 4 are shown in Figures 1a-d. In all compounds, the trifluoromethyl 

group adopts a nearly staggered angular conformation, and average C-F and F-C-F bond 

distances and angles are: 1.325(3) Å and 106.7(5)º, and average C-C-F bond angle is 

112.1(3)º, as reported for similar compounds.55 Differing only in substitutions on the phenyl 

ring, the molecules are structurally close to each other. Their conformations are determined 

by relatively unhindered rotations around the C(phe)-(C=O) and (O=C)-C(trz) σ-bonds [bond 

lengths: 1.461(2) and 1.488(2) Å for 1; 1.467(4) and 1.484(3) Å for 2; 1.458(3) and 1.486(3) 

Å for 3; and 1.453(3) and 1.490(4) Å for 4]. Within the aromatic triazole, the C-C, C9-N1 (C9-

N4 for 2), and C8-N3 (C8-N2 for 2) distances are between 1.397 Å – 1.408 Å, 1.324 Å – 

1.336 Å, and 1.336 Å – 1.340 Å, respectively. The C-N bond lengths are longer than that 

expected for formally imino C=N bond character. Although the sp2-hybridized C-C distance 

is greater than the C-N bonds, the former is shorter than the C7-C8 sp2 exocyclic bond 

discussed above (1.484 Å – 1.490 Å). That is consistent with the charge delocalization 

expected for this aromatic heterocyclic moiety. 

In all compounds, the t2 torsion angle connecting the carbonyl and the phenyl ring (scheme 

1) is close to 0º ranging from +4.2(4)º in compound 2 to -10.7(4)º in 4, and hence a nearly 

planar structure in the (2-hydroxyphenyl)carbonyl fragment is preferred. In this conformation, 

the C=O and O−H groups form a pseudo-six-membered ring favoring a strong O–H···(O=C) 

intramolecular hydrogen bond (IMHB), as shown in Figures 1a-d. Both oxygen atoms are 

connected by a -conjugated -diketone enol system, wherein the O–H···O bond is 

presumably assisted by resonance (RAHB).20–24 

The relative occurrence of both tautomeric forms in enolones can be analyzed in terms of 

synergism between O-HO hydrogen-bond strengthening (as determined by the OO 
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a
b 

d c 

distance) and -delocalization enhancing as considered by: a) asymmetric stretching 

coordinate Q  d1-d4+d3-d2, where di are actual bond distances (see Scheme 1); b) -

delocalization index  1-[(n1-1)+(2-n2)+(n3-1)+(2-n4)]/4,56 where ni are the Pauling’s bond 

numbers57 calculated as d(1) - d(n) = c log10n, with values for pure single (n = 1) and double 

(n = 2) bond distances of (1.467–1.349) Å and (1.367–1.217) Å for Csp2—Csp2 and Csp2—

O bonds, respectively, and c) percent delocalization Del%=100(1-|2-1|) induced by RAHB 

in the resonant fragment. The  index is associated to the percent contributions of EK and 

KE forms. Q () varies from Q = Qo= 0.320 Å ( = 1.0) to Q = Qo= -0.320 Å ( = 0) for the 

totally -localized EK and KE tautomers, respectively, being Q = 0 (= 0.5) and Del% = 100 

for complete delocalization of the -conjugated fragment (1:1 mixture of EK and KE). 

The IMHB geometrical parameters of all molecules are given in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. a) View of the crystal packing for 1 showing the labeling of the non-H atoms and 
their displacement ellipsoids at the 50% probability level. H-bonds are indicated by dashed 
lines. Space group symmetry operations: (i) 1+x, y, z; (ii) -1+x, y, z. b) 2 (50% probability 
level; (i) 3/2-x, ½‘y, 3/2-z; (ii) –x, 1-y, 1-z; (iii) 3/2-x, -1/2+y, 3/2-z) c) 3 (30% probability level; 
(i) 2-x, 1-y, 1-z; (ii) 1/2+x, -1/2+y, z) and d) 4 (30% probability level; (i) x-1, y, z). 
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Table 1. Intramolecular O–H···O hydrogen bond geometry (Å,o), d1-d4a bond distances (Å), 

Pauling’s bond numbers nb, and -delocalization parameters (Q,  and Del%) for 1 – 4. 

 

Taking into account the d(O···O) distance, as indicator of length and strength,22 the O-H···O 

IMHB can be classified as strong for all four compounds [(2.50 ≤ d(O···O) ≤ 2.65 Å)], being 

the O···O distances systematically shorter than those for compounds with non-resonant 

hydrogen bonds [(2.59 ≤ d(O···O) ≤ 2.64 Å)].23 The O-H-O angles are in the range 149  5o 

(Table 1), characteristic of intramolecular bonds closing six membered rings.22 

Spectroscopic results provide also evidences of the abnormal shortening of O-H···O IMHB 

for 1 – 4. Thus, the (OH) frequencies (3331-3180 cm-1, see Section 3.6)) are lower than 

3640 cm-1, in absence of hydrogen bond.21 Moreover, the downfield shifts (11.59-12.35 ppm) 

of the hydroxyl proton 1H NMR signals (results to be published), related to the 8.6-10.1 ppm 

range where -resonance does not occurs,23 can be ascribed to the d(O···O) shortening. 

Both descriptors are indicative of the hydrogen bond strength. 

 

In the aim to verify the role of -resonance in the strengthening of O-H···O IMHB for 1 – 4 

in solid state, the d1-d4 bond distances, antisymmetric stretching coordinate (Q), -

delocalization index (), and percent delocalization (Del%) in the 2-hydroxybenzoketone 

resonant fragment were computed (Table 1). The high positive values of Q (0.142-0.176) 

indicating no much equalization of C-C, C=C, C=O and C-O bonds, and the high values of 

 (0.745-0.800) near to unity, show a dominant contribution of the enol-keto form (EK). 

Considering the structures outlined in scheme 1, the keto-enol form (KE) involves the 

breakdown of the aromatic system and the loss of its stabilization energy, therefore, it is 

expected that the equilibrium will be strongly shifted to the EK form. Similar behavior was 

Comp. dO-H dO···O dH···O O-H···O d1 d2 d3 d4 Q  Del% 

1 0.899 2.584(2) 1.78(3) 147(3) 1.343 1.413 1.461 1.235 0.156 0.763 47.4 

     1.12 1.37 1.04 1.84    

2 0.986 2.543(3) 1.64(4) 150(4) 1.337 1.421 1.467 1.231 0.152 0.760 48.0 

     1.15 1.31 1.00 1.88    

3 0.873 2.537(2) 1.74(3) 150(3) 1.356 1.405 1.458 1.233 0.176 0.800 40.0 

     1.05 1.44 1.05 1.86    

4 0.817 2.614(3) 1.88(4) 149(3) 1.338 1.410 1.453 1.239 0.142 0.745 51.0 

     1.14 1.40 1.09 1.81    

a See Scheme 1 for d1-d4 labels. b Pauling’s bond numbers n (1 ≤ n ≤ 2) are in italic. 
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reported for a group of eight 2-hydroxybenzoketones, showing O-H···OH-bond assisted by 

resonance.23 

Meanwhile, in compound 3 the methyl group releases electrons activating the phenyl ring 

and hence hindering the resonance as reflected by lower Del% of 40.0%. However, unlike 

the eight above-mentioned 2-hydroxybenzoketones,23 the expected linear correlation 

predicted by the RAHB model was not found between the shortening of O···O distance and 

the increasing of -delocalization measured through the descriptors Q,  and Del% for the 

O-C-C-C-O hydrogen-bonded ring (see Table 1). Surprisingly, for example, the shortest 

O···O distance of 2.537(2) Å in 3 appears correlated with the lowest Del% (40%) in the 

series, contrary to the RAHB mechanism. According to these results, it can be concluded 

that the enhanced strength of the IMHB in compounds 1 – 4 is not a primary consequence 

of a -resonance effect, but probably a result of the σ-skeleton framework imposing 

constraints to keep oxygen atoms near to each other, as suggested in recent publications.27 

 

3.2. Structural motifs of crystal packing 

In Figures 1a-d are shown the ORTEP drawings of the crystal packing for 1 – 4. Unlike the 

small variations of t2 torsion angle discussed above, t1 involving the carbonyl plane and the 

heterocyclic ring (O2C7-C8C9) seems to be much influenced by intermolecular forces, as 

suggested by angular values in the wide range from -5.2(2)º to -29.9(3)º. The largest one 

occurs in hydrate 3, under the influence of a strong interaction between the donor NH and 

the acceptor water oxygen atom through a hydrogen bond. In fact, the crystals of 1 – 4 are 

mostly stabilized by intermolecular hydrogen bonds involving the triazole ring. The main 

structural motifs corresponding to stronger O–H···O, N–H···O and O–H···N hydrogen bonds 

are described as follow:  

Compound 1: Neighbouring molecules related through a unit cell translation along the a-axis 

are N2H2N···O2’ bonded to each other [d(NH···O) = 2.11(2) Å, (N–H···O) = 142(2)º], 

giving rise to a chain structure that extends in the lattice along that crystal axis (see Figure 

1a). These chains, resembling ribbons, pack along the b-axis through weak intermolecular 

contacts building corrugated (001) layers. Besides, these layers are connected mainly 

through offset - interactions, developing the 3D crystal structure (see section 3.4 Hirshfeld 

surfaces analysis for further details).58 

Compound 2: The O1 and O2 atoms of the -NO2 substituent, with high charge density, 

concentrate the main intermolecular interactions. Neighbouring molecules, symmetrically 

related through the crystallographic two-fold screw-axis, connect the hydroxyl proton with 
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one oxygen (O2) atom of the nitro group, by a bent O3H3O···O2N1 bond, [d(OH···O) = 

2.38(4) Å, (O–H···O) = 112(3)º] hence generating a chain along the unique b-axis. The 

other oxygen atom (O1) participates in adjacent chains, and with additional O⋯H contacts 

with the amino N-H group, through N3H3N···O1N1 interactions [d(NH···O) = 2.25(4) Å, 

(N–H···O) = 145(4)º]. These hydrogen bonds link the molecules into center-symmetric 

dimers, originating ��  
� (20) graph-set motifs producing a layered structure parallel to the 

crystal (1,0,-3) plane (see Figure 1b), in which two trifluoromethyl groups of adjacent 

molecules are facing each other (the distance between centroids is 3.580 Å). Therefore, it 

seems that in 2 the competition between the nitro group and the triazole ring results in an 

intermolecular hydrogen bonds network different from 1. Similar to 1, layers pack through 

offset - interactions building the 3D crystal structure (see section 3.4 for further details).58  

Compound 3: The crystallization water molecule bridges three neighboring molecules: a) as 

acceptor in a N2H2N···Ow bonds with one molecule [d(N2···Ow) = 2.702(2) Å, (N2-

H2N···Ow) = 175º], b) as donor in further OwH···N3’ [d(OwH···N3’) = 2.15(4) Å, 

(OwH···N3’) = 176(3)º] and OwH···O1” [d(OwH···O1”) = 2.08(4) Å, (OwH···O1”) = 

166(3)º] bonds with other two molecules, giving rise to a three-dimensional H-bonding 

network (see Fig. 1c). Two water molecules, which interact as donor and acceptor, link the 

N2-H and N3 atoms of two faced neighboring triazole residues of center-symmetric dimers, 

originating ��  
� (10) graph-set motifs (not shown in Figure 1). Besides, the H-bonding 

networks are assisted by offset ··· contacts between neighboring molecules, further 

stabilizing the 3D crystal structure.58 

Compound 4: Neighboring molecules symmetrically related to each other, through a unit cell 

translation along the a-axis, are N2H2N···O2’ bonded [d(NH···O’) = 2.06(3) Å, (N2-

H2N…O2’) = 137(2)º] giving rise to a chain structure (similar to that found in 1) that extends 

in the lattice (see Figure 1d) like a ribbon. As result, both structures have similar value of 

the a-parameter of the unit cell (see Table S1, ESI†). Furthermore, it seems that along the 

molecular chain, the geometric requirement of the N2H2N···O2’ hydrogen bond places the 

adjacent molecules very close to each other leaving no room for the chlorine atom in the 

main molecular plane and forcing chlorophenyl to deviate from it. Therefore, the angle 

between the phenyl and triazole planes in 4 (36.9°) is greater than in 1 (14.9°)  

Along the c-axis, ribbons are arranged through weak intermolecular interactions building 

(0,1,0) layers, which are packed through offset ··· contacts, developing the 3D crystal 

structure (see section 3.4). 
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In summary, the influence of the substituent on the conformation adopted for the molecule 

in the crystal lattice is strongly dependent of its acceptor capacity. The -H and -Cl substituent 

(compounds 1 and 4) have a similar behavior on the supramolecular assembly, which is 

dominated by the intermolecular N-H···O=C interactions. The carbonyl oxygen atom is a 

better acceptor and short interatomic N···O values of 2.06 Å (4) and 2.11 Å (1) are obtained. 

That explains the weakening of the RAHB interaction as observed in Table 1 with the 

lengthening of the dO···O distance. In 3, the effect of the -CH3 substituent is masked by the 

water molecule, that acts as strong donor-acceptor group. Like the nitro group in 2, the 

intermolecular interactions are controlled by these groups. Now, the RAHB interaction is 

less disturbed. In 2 the phenolic OH group acts as hydrogen donor, both for the RAHB and 

for the intermolecular interaction, but the last one with a larger interatomic O···O (2.38 Å) 

distance. In 3, the intermolecular interaction affects the sp3 hybridized oxygen atom of the 

phenolic group, turning its attached hydrogen into a more acidic atom. Indeed, the shortest 

O···O distance in the RAHB system is found for 3 (see Table 1). 

 

3.3. Lattice and intermolecular energies 

Lattice energy calculations (Table S2, ESI†) show that the dispersion energy (Edisp) is the 

major contribution towards the crystal stabilization for compounds 1, 2 and 4 as generally 

expected for organic compounds, with similar percentages in the range 57.6 - 62.5 % and 

very similar total lattice energies. However, 3 shows a strong decrease in the dispersive 

component (34.9%) and an increase in the coulomb component (43.4%), probably due to 

the inclusion of the water molecule. Water contributes with strong tripartite hydrogen bond 

interactions, involving both the acceptor oxygen and the two donor hydrogen atoms. 

Molecular Docking analysis are in progress to measure the ability of the triazole derivatives 

as enzymatic activity inhibitors. 

Moreover, because of this packing motif, the rotation of triazole ring is hindered around the 

simple C7-C8 bond, and the total lattice energy significantly decreases for compound 3 (-

100.0 kJ mol-1) when compared with the average of -125.6 kJ mol-1 for the remaining 

structures. 

Intermolecular energy calculations from selected molecular pairs are shown in Table 2. The 

occurrence of strong N–H···O hydrogen bonds and offset ··· interactions is a common 

characteristic in all four structures. In 2 and 3, the former is the most and higher interaction 

compared to pairs involving other types of contacts. Besides, ··· interactions are involved 

in molecular pairs with Pixel energies not only comparable with those of the N–H···O 

hydrogen bonds, but even having the highest pairing energy of -46.1 kJ/mol in structure 1. 
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Table 2. Selected Interaction energies (ETOT), greater than 5 kJ/mol-1, and their partitioned 

into coulombic, polarization, dispersion and repulsion contributions (kJ mol−1) for various 

molecular pairs of 1 – 4.  

Comp. Symmetry 
Involved 

Interactions 
d(H···A), 
D—H···A 

Centroid 
distance 

Ecoul Epol Edisp Erep ETOT 

1 

1+x, y, z 

N2-H2N···O2 2.11(3), 142 

6.700 -35.4 -15.3 -27.4 33.5 -44.6 
N2-H2N···F1 2.63(3), 139 
N2-H2N···F2 2.60(2), 138 
O1-H10···N3 2.67(3), 123(2) 
C6-H6···O1 2.60(2), 126(2) 

1/2-x, 1/2+y, 1/2-z 
C4-H4···N1 2.90(2), 153(2) 

10.851 -5.0 -1.4 -7.3 4.1 -9.6 
C5-H5···F3 2.74(2), 136(2) 

3/2-x,1/2+y,1/2-z C3-H3···F3 2.68(2), 151(2) 10.930 -2.7 -0.7 -5.8 2.8 -6.4 
1-x,1-y,1-z Cg1···Cg2 3.7001(2)a 4.566 -19.1 -5.1 -50.3 28.4 -46.1 
1-x,1-y, -z Cg2···Cg2 3.8360(2)a 6.200 -11.4 -3.4 -37.6 21.3 -31.0 
-x, 1-y, -z vdWb --- 8.145 -0.4 -1.3 -12.5 2.2 -12.0 
2-x,1-y,1-z vdWb --- 7.224 -2.8 -1.1 -10.2 3.6 -10.6 

2 

-x,1-y,1-z N3-H3···O1 2.24(3), 145 8.380 -57.3 -21.1 -18.6 30.0 -67.0 

3/2+x, 1/2-y, 1/2+z 
C3-H3···N4, 2.70(3), 145 

9.769 -12.2 -3.3 -11.8 10.2 -17.1 
C3-H3···F3 2.51(3), 155 

1/2-x, 1/2+y, 1/2-z Cg1···Cg3 3.8267 7.049 -6.0 -1.7 -17.9 5.8 -19.8 
1-x,1-y,1-z N3-H3N···O1 2.2447, 144.61 7.854 -13.3 -3.8 -21.4 9.9 -28.5 

3/2-x, -1/2+y, 3/2-z O3-H3O···O2 2.377, 112 10.021 -5.0 -2.2 -10.2 8.8 -8.6 
-1+x, y, z Cg1···Cg2 3.9407(2)a 5.019 2.4 -4.4 -40.0 18.6 -23.4 

1/2-x, -0.5+y, 3/2-z vdWb --- 9.402 -2.3 -0.6 -7.2 3.1 -7.1 

3 

x, y, z N2-H2A···O1W 1.845(2), 176 5.739 -71.9 -29.4 -10.1 63.3 -48.1 
1/2-x,3/2-y,1-z C3-H3···F1 2.580(2), 147 6.407 -7.1 -2.8 -21.0 8.9 -22.0 
1/2+x, -1/2+y, z O1W-H2W···O1 2.08(4), 166 6.201 -33.0 -13.6 -10.1 33.9 -22.7 

2-x, 1-y, 1-z 
O1W-H1W···N3 2.14(3), 176 4.463 -33.3 -15.8 -13.1 36.9 -25.3 
O1W-H···O1W ---(c) 3.945 -5.6 -0.2 -0.8 0.1 -6.5 

1-x,1-y,1-z 
C11-H11C···F3, 2.430(2), 162 

5.667 -15.9 -6.9 -37.6 23.9 -36.5 
Cg1···Cg1 3.6317(2)a 

1-x, y, 1/2-z F1-C10···N1e 3.7746, 160.5 6.564 -5.1 -1.6 -17.5 6.1 -18.2 
1-x, y, 3/2-z C11-H11A··· 2.770, 158.80 9.050 -9.7 -4.6 -24.3 23.2 -15.3 

3/2-x, 3/2-y, 1-z ··· 3.583 6.609 -4.1 -2.2 -30.8 12.8 -24.4 

-1/2+x, 3/2-y, -1/2+z 
C4-H4···O2 2.8138, 164.12 

9.701 -4.9 -1.8 -11.4 5.6 -12.5 C3-H3···F2 3.0502, 125.71 
C11-H11B···O1 2.8464, 133.54 

4 

-1+x, y, z 
N2-H2···O2, 2.06(3), 137 

6.640 -30.9 -14.4 -28.7 28.5 -45.6 
N2-H2···F2 2.69(3), 130 

1-x,2-y,2-z Cg1···Cg1 3.4895(5)a 6.176 -14.9 -4.2 -29.8 14.2 -34.7 
1-x,2-y,1-z Cg2···Cg2 3.8922(5)a 7.689 -0.6 -1.0 -24.3 9.1 -16.8 

x,y,-1+z C4-H4···N1 2.9617, 167.13 11.100 -5.1 -1.2 -8.8 4.0 -11.0 
1-x, 1-y, -z F2-C10···N1e 3.668, 142.3 7.848 -6.8 -1.4 -15.4 7.7 -15.9 

1-x, 1-y, 1-z ··· 3.601d 5.624 -4.3 -2.2 -37.7 16.3 -27.8 
2-x,1-y,1-z C6-H6···Cl 3.2387, 159.62 8.129 -4.4 -2.0 -18.5 5.8 -19.1 

a Inter-centroid distance: Cg1 and Cg2 are the centroids of N2-N4/C8-C9 and C1-C6 rings, 
respectively, for 1; Cg1, Cg2 and Cg3 the centroids of N2-N4/C8-C9,C1-C6 and C1-C2-O3H-O-C4 
rings, respectively, for 2; Cg1 is the centroid of N1-N3/C8-C9 ring for 3; Cg1 and Cg2 the centroids 
of N1-N3/C8-C9 and C1-C6 rings, respectively, for 4. b vdW stands for van der Waals interaction. c 

Hydrogen atoms are not included because their positions are disordered. d Distance between Cg2 
and the benzene ring plane of the neighbor molecule at 1-x, 1-y, 1-z. e Similar to halogen interactions, 
element from group IV to VI can form -hole interactions between an electrophiles group and a region 
rich in electrons or nucleophile. 59 

 

For the intermolecular hydrogen bonds O–H···O and O–H···N in 3, where the water 

molecule participates, is observed that the interatomic distance H···Ow (2.08 Å) is shorter 
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than the Hw···N (2.14 Å) in agreement with expected differences between homonuclear and 

heteronuclear hydrogen bonds. The energy results, showed in Table 2, also reveal that the 

largest contribution towards the crystal stabilization comes from the coulombic component 

(40.8 – 58.2 %) only for molecular pairs involving O–H···O and O–H···N hydrogen bonds. 

Moreover, the dispersion component clearly represents the dominant cohesive energy for 

··· (67.5 – 90.1%) and remaining contacts. 

 

3.4. Hirshfeld surface analysis 

For a better comprehension of the crystal packing of 1 – 4, a complete description of the 

main intermolecular interactions using Hirshfeld surface analysis was carried out. Figure 2 

shows Hirshfeld surfaces (HSs) mapped over the dnorm property, where arrows with number 

indicate key contacts. Those with distances equal to the sum of van der Waals atomic radii 

(rvdW) are represented as white regions and the contacts with distances shorter than and 

longer than van der Waals atomic radii (rvdW) are shown as red and blue colors, respectively. 

Full 2D-fingerprint plots (FPs) of the main intermolecular contacts are depicted in Figure 3,  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Hirshfeld surfaces of 1 – 4 mapped with dnorm in two orientations: (a) front view, 
(b) back view (180o rotated around the horizontal axis of the plot). Close contacts are labeled 
as follows: (1) O···H, (2) F···H, (3) N···H, (4) C···H, (5) F···F. 
 

 

a b 
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Figure 3. Full two-dimensional fingerprint plots for compounds 1 – 4. Close contacts are 
labeled as follows: (1) O···H, (2) C···H, (3) N···H, (4) F···H, (5) Cl···H, (6) H···H, (7) C···C, 
(8) F···F. 

 
The largest and red regions labeled 1 in Figure 2 dominate the dnorm maps for all the four 

structures. They are associated to the H···O/O···H contacts originated by strong N–H···O 

hydrogen bonds, except in compound 3 which also comes from the Ow-H···O hydrogen 

bond (Table 2). These contacts can be observed as a pair of symmetrical (except compound 

3) sharp spikes with a minimum distance (de + di) extending from 1.9 Å (in structure 3) to 

2.1 Å (in structure 2) in the FPs (Figure ). Similar contributions to overall HS area (see Figure 

S1, ESI†) are detected in the range 12 – 14 % for 1, 3 and 4 and notably larger for 2 (23%), 

as result of the nitro group that not only doubles the number of oxygen atoms in the molecule 

but also these oxygen atoms contribute with hydrogen bonds because of their high acceptor 

character. 

The presence of longer and sharper spikes in structure 3 indicates stronger and directional 

intermolecular interactions than those found for remaining structures, consistent with the 

geometric parameters listed in Table 2. In this structure the H···O/O···H interactions, labeled 

as 1, appear as two somewhat asymmetrical spikes. The longest spike labeled 1, at the top 

left region (de>di) of the FP, spread up to the shorter distance of (de + di)  1.7 Å and 

corresponds to points on the surface where the N2 triazole nitrogen atom acts as hydrogen 

donor and the water oxygen atom O1W as hydrogen acceptor establishing the N2-

H2···O1W hydrogen bond. While the shortest spike labeled 1, at the bottom right region 
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(dedi), span up to a distance of (de + di)  1.9 Å is associated with the O1W-H1W···O1 

hydrogen bond between water protons and the phenolic O1 oxygen atom lone pairs.  

The occurrence of small red spots (labeled 2) on the HSs showing H···F/F···H contacts is 

associated to weak N–H···F (1 and 4) or C–H···F (2 and 3) hydrogen bonds (see Table 

2).60,61 In the structures 1, 3 and 4, these contacts can also be observed as a pair of 

symmetrical sharp spikes labeled 4 at (de + di) ranging from 2.3 Å (compound 3) to 2.8 Å 

(compound 4) in the FPs, and account for high contributions of 21% and 22% to the overall 

HS area, respectively. The broad and bright-red spot labeled as 3 for compound 3 is due to 

H···N/N···H contacts associated to O1W–H1W· ··N3 hydrogen bonds, where the water 

molecule again causes the formation of the stronger H-bonds in the structure, as reflected 

by the highest electrostatic energies in comparison to that for C5–H5· ··F1 hydrogen bond 

(Table 2).  

 

In addition to the above-mentioned hydrogen bonds, the crystal structure of compounds 1 – 

4 features a significant contribution from -stacking interactions (Table 2). They occur 

between layers of triazolyl rings (centroid Cg1) for structures 3 and 4, between layers of 

benzene rings (centroid Cg2) for structures 1 and 4, or between layers involving both type 

of rings as observed in 1 and 2 (see Table 2). C···C contacts appear as a distinct pale blue 

to green area labeled 7 at around de = di = 1.8 Å62,63 in the FPs for all four compounds, with 

major contributions of 11 % and 5 % for structures 1 and 4, respectively. 

 

H···H contacts also operate in the crystal packing of all the four structures. These contacts 

are highlighted in the middle (labeled 6) of scattered points of FP maps with minimum values 

of (de + di) in the range 2.4 – 2.6 Å, and highest contributions of 13% and 20% to the total 

Hirshfeld surface for structures 1 and 3, respectively, as result of the relative abundances of 

H-atoms in the respective molecules.  

Although, HS shows F···F contacts as a small red area (labeled 5) for compound 2 (8.4% to 

HS), PIXEL calculations reveal a negligible energy contribution (-0.4 kJ / mol) for this 

interaction. A more detailed view of the fluorine region displays a high charge density in the 

interatomic zone, indicating probably a repulsive interaction. 

It has been reported in literature64 that in aromatic CHF molecules with high proportion of 

fluorine or low content of H-atoms, the C-F group prefers to form C–H···F hydrogen bonds 

rather than F···F contacts, due to the dipolar nature of the F···H interactions. These facts 

prompted to analyze the likelihood of occurrence of intermolecular F···H and F···F contacts, 

as well as other ones in the four compounds under study. The intermolecular interactions in 
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1 – 4 were further assessed by using the enrichment ratio EXY,65 and the values for selected 

contacts are listed in Table S3, ESI†, together with the discussion of the nature of some 

interactions (see ESI), while the relevance of the EXY value in the most significant contacts 

are discussed briefly below. 

The EOH values in the range 1.45 – 2.07 in the studied compounds indicate the very high 

propensity to form homonuclear HO···O hydrogen bonds, and particularly HO/N···O polar 

hydrogen bonds (H atoms bound to O or N) involving in 3 a water molecule as revealed by 

observing the dnorn maps and FPs. Like in CHF data set, the EHF values of 1.49 and 1.50 for 

1 and 4, respectively, indicate a high probability of occurrence of F···H contacts, in contrast 

with the related impoverished F···F contacts (EFH 0.80/0.59). 

The C···C interactions in parallel -stacking have a generally high probability to occur for all 

compounds, as reflected by the ECC values near to unity in 2 (0.86), larger than unity in 3 

(1.75), and even as high as 2.68 and 3.75 in compounds 4 and 1, respectively, in accordance 

with the C···C contributions showed in Figure 3. In comparison, the enrichment of C···C 

contacts for our fluorinated CHFNO aromatic compounds tends to resemble that of CHF 

aromatic compounds previously reported,65,66 which take a wide range of values between 0 

and 4. Finally, it is interesting to notice the presence of rare short contacts (F···N for 1 and 

4; F···Cl for 4; N···O for 2, N···C for 2 and 4, and C···Cl and O···Cl for 4). They contribute in 

small proportion to total Hirshfeld surface in the range of CXY = 3.4 – 7.1% (Table S4, ESI†), 

which are also notably enriched as reflected by the corresponding enrichment ratios larger 

than unity (see Table S3, ESI†). 

A close exploration with Shape index and Curvedness, which are Hirshfeld surface 

properties generally used to identify planar -stacking arrangements,63 was performed. The 

pattern of touching red and blue triangles on the shape index surfaces (marked with arrows 

in Figure S2, ESI†, at left) is characteristic of ··· interactions,62 and visible in all structures. 

This type of interaction is also evident as relatively large and green flat regions delineated 

by blue circles on the corresponding Curvedness surfaces(Figure S2, ESI†, at right).62  

 

3.5. Vibrational analysis 

The experimental IR and Raman spectra of 1 – 4 are shown in Figure S5, ESI† and Table 

3 summarizes the tentative assignment of some vibrational modes (Tables S10-S13, ESI† 

exhibit the complete vibrational assignment for 1 – 4), principally associated with the pseudo 

ring -C-O-HO=C-C. The prediction of the IR spectra were performed at B3LYP/6-31g (d,p) 

level, since the computed ones are close to the experimental, particularly when the O2-

HO1 is observed. The (O-H) is attributed to the strong band located at 3331 (Raman: 
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3330 cm-1), 3271, 3336 and 3334 cm-1 for 1 – 4, respectively. In all compounds, O-H 

absorption shifts to lower frequencies than that expected for free species,67,68 because of its 

participation in intramolecular hydrogen bonding interactions67–70 (see Table 1).  

Particularly, the lowest OH stretching frequency is observed for compound 2, according to 

the increase of the OH distance. This can be attributed to the increase of the OH acidity by 

the influence of the para nitro group as shown in Scheme 2, causing a rise of the C7-O4 

bond order and a lengthening of the O3-H distance. This is consistent with the DRX (see 

Table 1) and with the MEP results (see Figure S4, ESI†), where it can be observed that NO2 

group strongly attracts the electrons of the ring. 

OO

Trz

H

N
+

O
–

O

OO
+

Trz

H

N
+

O
–

O–
 

Scheme 2: Effect of the nitro group on the OH acidity by resonance. 

 

The C=O stretching is attributed to the bands at 1603, 1617, 1612 y 1601 cm-1 (Raman: 

1602, 1620, 1612 and 1603 cm-1) for 1, 2, 3 and 4, respectively, in accordance with observed 

C-O distances (see Table 1) and with reported values for conjugated ketones.18,70 

The N-H stretching was assigned to the weak band at 3673 cm-1 for 2 (Table 3), while this 

mode was not observed in both IR and Raman for the other compounds. 

From DRX results, it is observed that the N-H bond participates in intermolecular interactions 

(Figure 1) in all compounds. The (N-H) is assigned tentatively to the bands at 1426, 1428, 

1427 y 1425 cm-1 for 1 – 4, respectively. 

In 2, the NO2 asymmetric and symmetric stretching bands are assigned to the IR absorptions 

at 1571 and to the intense band at 1342 cm-1 (Raman: 1573 and 1343 cm-1), respectively. 

The high electronic density localized on the NO2 group (Section 3.2),visualized in the 

molecular electrostatic potential map (Figure S4, ESI), is involved in strong intermolecular 

interactions (Figure 1b; Table 2). However, the frequencies of the NO2 group are not 

substantially affected by hydrogen bonding interactions.71,72 The NO2 deformation is 

attributed to the strong IR band at 866 cm-1. The experimental and calculated frequencies 

are in good agreement and with related molecules.15,61  

The CH3 symmetric stretching in 3 is located at 2928 cm-1 (Raman 2931 cm-1), while the 

asymmetric and symmetric deformations at 1487 and 1382 cm-1, respectively. In 4, the IR 
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and Raman bands at 1097 and 1093 cm-1, respectively, are attributed to the C-Cl 

stretching.17 

The heterocycle has characteristic bands, one of which is the ring deformation (TRZ) 

assigned at 993, 995, 990 and 991 cm-1 for 1, 2, 3 and 4, respectively. Besides, there is a 

vibration associated with the in-plane deformation of the benzene ring carbon atoms ( 

(CCC)), located in the IR spectra at 919, 948, 950 and 938 cm-1 for 1, 2, 3 and 4, respectively. 

This deformation together with sCF3 and TRZ define a characteristic pattern for this family 

of compounds between 1100 and 900 cm-1, as observed in Figure 4. Considering these 

results, it can be concluded that the ring substituents and intermolecular interactions have 

no major influence on sCF3 and TRZ, but it is relevant in the deformation mode of the 

aromatic ring carbon atoms. 

1100 1050 1000 950 900

 

  

d(C-C-C)ring

 

 

T
ra

n
s
m

itt
a
n

ce
 (

%
)

Wavenumbers (cm-1)

1

2

3

4

nsCF3

dTRZ

 

Figure 4. IR spectra of 1 – 4 in the range of 1100-900 cm-1. 
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Table 3. Selected experimental and calculated frequencies and tentative fundamental vibration modes assignment of 1 – 4. 
 

Assignment[a] 

1 2 3 4 

Experimental[b] Calculated[e] Experimental[b] Calculated[e] Experimental[b] Calculated[e] Experimental[b] Calculated[e] 

IR[c] Raman[d] Freq.[b] Int.[f] IR[c] Raman[d] Freq.[b] Int.[f] IR[c] Raman[d] Freq.[b] Int.[f] IR[c] Raman[d] Freq.[b] Int[f] 

 (N-H)   3660 143 3673(vw)  3654 152   3661 139   3658 147 

 (O-H) 3331(vs) 3330(23) 3295 316 3271(m)  3238 428 3336(vs)  3296 304 3334(vs)  3292 330 

s (CH3)         2928(w) 2931(21) 3038 38     

 (C=O) 1603(vs) 1602(69) 1661 60 1617(s) 1620(4) 1674 185 1612(m) 1612(3) 1662 80 1601(s) 1603(4) 1654 65 

as (CH3)         1475(vs) 1476(34) 1514 36     

s (CH3)         1382(m) 1382(12) 1435 63     

as (NO2)     1571(s) 1573(13) 1636 102         

s (NO2)     1342(vs) 1343(100) 1392 431         

δs(NO2)     866 (s) 865 (16) 878 53         

as (CF3) 1158(vs)  1218 252 1164(vs)  1218 242 1156(vs)  1218 252 1159(vs)  1219 256 

 (C-Cl)             1097(vw) 1093(11) 1120 39 

s (CF3) 1073(vs)  1092 190 1070(vs)  1089 236 1074(vs) 1072(32) 1092 198 1075(vs) 1069(2) 1092 208 

 (TRZ) 993(m) 993(4) 1008 12 995(w) 994(4) 1009 11 990(m) 990(15) 1008 15 991(w)  1009 14 

 (C=C)ar 919(vs) 919(<1) 934 118 948(s) 948(1) 970 100 950(vs) 949(11) 966 77 938(s) 932(1) 949 85 

[a] ,  represent stretching and in plane deformation modes, respectively; b] (cm-1); [c] vs, very strong; s, strong; m, medium; w, weak; vw, very weak; [d] 

Intensity (arbitrary units); [e] B3LYP 6-31g(d,p); [f] Intensity (km/mol) 
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3.6 Electronic spectra 

 

The UV-Vis spectra were calculated with B3LYP/6-31g(d,p) and CAM-B3LYP/6-31g+(d,p), 

observing for the former a better fit with the experimental values. Table 4 shows the 

experimental and calculated (B3LYP/6-31g(d,p)) UV-Vis spectra in solid phase (using the 

diffuse reflectance accessory) of 1 – 4 (Figure S6, ESI†). Besides, Table S14 (ESI†) displays 

calculated wavelengths for 1 - 4, using CAM-B3LYP functional and 6-31g+(d,p) basis set. 

The calculated molecular orbitals of each compound are presented in Figure S7-S10, ESI† 

and they were used to assist in the assignment of the observed absorptions. According to 

the results summarized in Table 4 the observed absorption bands of 1, 3 and 4 are 

generated by electronic transitions between similar molecular orbitals. Thus, the bands at 

212, 217 and 221 nm for 1, 3 and 4, respectively, are due to HOMO  LUMO+3 excitations, 

from  orbitals of the aromatic ring and non bonding orbitals of both oxygen (and chlorine 

for 4) atoms, to * of both rings and the C-O(H) bond. The absorption at 221 nm has also 

the contribution of HOMO-1  LUMO+1 transition, involving the p orbitals of fluorine atoms 

as well. 

 

The observed band at 250 nm for 2 is generated by dominant HOMO-2  LUMO transitions 

which corresponds to * excitation from the aromatic fragment and non-bonding orbitals 

of the carbonyl and nitro oxygen atoms to both rings. 

 

The absorptions at 269, 271 and 268 nm for 1, 3 and 4, respectively, are mainly attributed 

to a sole one electron excitations from HOMO-1 to LUMO orbitals. They can be assigned to 

transitions from  orbitals of the aromatic fragment to * of both rings, excluding the N1 

atom. The dominant HOMO LUMO excitation is attributed to the observed bands at 361, 

322, 369 and 372 nm for 1, 2, 3 and 4, respectively. They are substantially dominated by 

transitions from  of the benzene and non-bonding orbitals of both oxygen atoms (including 

both nitro oxygen atoms for 2 and chlorine atom for 4) to * orbitals of the whole molecule 

except for N1 atom. Figure 5 shows the energy level diagram (in eV) for the calculated 

frontier molecular orbitals of 1 – 4. The HOMO and LUMO orbitals stabilization in 2 could be 

attributed to the presence of the NO2 group on the benzene ring. Table S15 (ESI†) displays 

the HOMO–LUMO energy gaps (EH-L) for 1 – 4 calculated with CAM-B3LYP approximation, 

which resulted much higher than those obtained with B3LYP functional. 
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Table 4. Experimental and calculated electronic spectra (in nm) for 1 – 4, and tentative 

assignment of the absorption bands. 

Comp. Exp.a, b Calc.a,c fd Assignment % 

1 

212 203 0,0991 HOMO  LUMO+3 44 

269 274 0,2066 HOMO-1  LUMO 93 

361 364 0,077 HOMOLUMO 100 

2 
250 266 0,3421 HOMO-2 LUMO 86 

322 345 0,0818 HOMOLUMO 100 

3 

217 200 0,0986 
HOMOLUMO+3 31 

HOMO-6LUMO 33 

271 273 0,2127 HOMO-1LUMO 72 

369 377 0,0775 HOMOLUMO 100 

4 

221 206 0,2510 
HOMOLUMO+3 41 

HOMO-1LUMO+1 31 

268 270 0,1751 
HOMO-1LUMO  59 

HOMOLUMO+1 39 

372 383 0,0803 HOMOLUMO 100 

aIn nm. bDiffuse Reflectance. c B3LYP/6-31G(d,p). dOscillator strength in atomic units.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Calculated frontier MO energies (eV), and HOMO-LUMO gaps for 1 – 4. 
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3.7. Quantum chemical calculations and NBO analysis  

The geometry of 1 – 4, obtained from single X-ray diffractions data, were optimized for free 

molecules at B3LYP/(6-31g(d,p); 6-311++g(d,p)) and cc-pVDZ level of theory, and their 

computed geometrical parameters were compared with those in solid state (see Tables S5-

S9, ESI†). 

Although the Pople basis set (6-31g(d,p) and 6-311++g(d,p)) (with B3LYP) reproduce fairly 

well the experimental geometries, the NBO calculations were performed with the Dunning 

base B3LYP-cc-PVDZ which was the most suitable for the all the structures allowing to 

compare the obtained results (see Tables S4-S8, ESI†). 

Figure S3, ESI† shows the optimized geometries of 1 – 4 (B3LYP 6-31g(d.p), and the MEP 

(molecular electrostatic potential) maps (see Figure S4, ESI†) show, around the N-H acidic 

hydrogen atom of the heterocycle, the most electrophilic zone in all compounds. Whereas, 

the nucleophilic sites are located on the oxygen atoms of the -NO2 group for 2 and OH and 

CO groups for 1, 3 and 4.  

Natural Bond Orbital (NBO) analysis is a useful technique that allow to study intra- and 

intermolecular interactions among organic systems, considering bond interactions and 

conjugative effects. The interaction energy between donor and acceptor NBO orbitals is 

evaluated using the matrix Fox second-order perturbation theory (E(2))54 and its magnitude 

depends on the electron donating tendency from donors to acceptors and the extent of 

conjugation throughout the system. Hence, the charge transfer between the lone pairs (n or 

) of nucleophilic (Y-A) donor groups and the anti-bonding orbital (*) of electrophilic (D-X) 

acceptor groups is a measure of the D-X···A-Y strength interaction and enables a qualitative 

description of that interactions. In the studied systems the interaction energies E(2) between 

intra- and intermolecular NBO orbitals were calculated, at B3LYP/6-31G(d,p) theory level 

and are listed in Table 5. 

The NBO intramolecular interactions energies were evaluated for monomers with optimized 

(at the same level of theory) and experimental geometries, obtained from X-ray 

crystallographic data. For 2, the NBO analysis (calculated and experimental) indicates that 

both intra-molecular hydrogen bonding energy are close to each other and stronger than for 

the rest of the compounds. Furthermore, for 1, 3 and 4, E(2) resulted quite different for 

calculated and experimental geometries (see Table 5). These results might be rationalized 

considering the acidic nature of the phenolic H atom in 2, favored by the NO2 substituent, 

causing a hyper-conjugative interaction. This interaction involves a higher partial transfer 

(CT) from one lone pair of the O2 atom to the σ* O1-H acceptor orbital, LP O2 → σ*(O1-H). 
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A second less energetic intramolecular interaction is also predicted in all geometry optimized 

monomers, in which the electron lone pair of the N3 atom transfers charge to the empty 

*(C6H6) orbital [LPN3*C(6H6)]. This partial CT is also observed for the molecular 

geometry in the crystalline state of 1 and 2 but not for 3 and 4, probably because in the last 

systems the molecular conformation in the crystal deviate significantly from the planarity 

observed in free molecule (see figure S11, ESI†). 

NBO analysis of selected intermolecular interactions, described in Table 2, were performed 

on dimers constructed from X-ray diffraction data to complement the results of the interaction 

energies calculated with Pixel program. 

The mentioned intermolecular interactions were modeled by building three dimers (for 1), 

four dimers (for 2), three dimers and a tetramer (for 3), and five dimers (for 4). Dimers of 1 

and 4 are shown in Figure S12, ESI† (for 2 and 3, see Figures S13-S14, ESI†). In both 1 

and 4, the only intermolecular interaction that exhibits significant CT is the N2-H2NO2 

hydrogen bonding, which consist in a partial electron transfer from one of the carbonyl 

oxygen lone pairs (LPO2) from one molecule, towards the *(N-H2H) orbital of the other 

molecule, see Table 5. For 1 the second order perturbation energy E(2) value is less than for 

4, because the O2H2N2 distance in the latter (see Table 2) is shorter favoring the 

overlapping of electron donor and acceptor orbitals. In compound 2, significant values of the 

second-order perturbation energy E(2) were observed for N3-H3···O1 (6.3 kJ/mol) and O3-

H3O···O2 (8.5 kJ/mol) intermolecular hydrogen bonds. The lone pairs of both O1 and O2 

oxygen atoms belonging to the nitro group act as electron donors. The last energy value 

corresponds to a partial CT from O2 lone pairs to the *(O3-H3O) acceptor orbital 

[LPO2(3)*O3H3O(1)]and the former energy value is due to the O1 lone pairs 

overlapped with the *(N3H3) orbital [LPO1(2)*N3H3(1)]. Moreover, in compound 3, 

the largest values of the second-order perturbative energy E(2), involve the interaction of the 

water and triazole orbitals. In decreasing order of E(2) energy values they are: a) the 

interaction of one lone pair (LP) of water O1W with the *(N2H2A) antibonding orbital of 

the triazole group [LPO1W*(N2H2A)], 47.9 kJ/mol; b) the interactions of the LP of N3 

triazole nitrogen atom with the *(O1-H1W) antibonding orbital of the water molecule, 17.0 

kJ/mol, and c) the LP of O1 hydroxyl oxygen atom with other O1W-H2W) antibonding 

orbital of other water molecule,10.5 kJ/mol. 
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For the remaining dimers, charge transfers of type FH, OH, NH and/or CgCg were 

also observed, with energies much lower than 4.184 kJ / mol. The atomic charges (NPA) for 

the experimental monomers and dimers are described in ESI† section (Table S16: 1 and 4, 

Table S17: 2, and Table S18: 3). 

 

Table 5. NBO intra e intermolecular interactions energies (kJ/mol) calculated at B3LYP/cc-

PVDZ theory level. 

 
Donor NBO (i) 

 
Acceptor NBO (j) 

E(2) [kJ/mol] 
  1 2 3 4 

Monomers 
(Optimized) 

LP n O2   O1 H 
59.2  123.8 62.8 31.3 

(132.6) (140.5) (132.0)  (134.1) 

LP  N30   C6 H60 
5.0 2.3   

(9.9)  (14.3)  (10.1) (13.98)  

S
e

le
c

te
d

 D
ím

e
rs

 

LP n O2 (2)   N2H2N (1)  9.0  0,0 0,0 

LP  F1(2)   N2H2N  (1) 0.7 0,0 0,0 0,0 

LP  F2(2)   N2H2N  (1) 0.8 0,0 0,0 0,0 

LP n O1(2)   C6 H6(1) 1.3  0,0 0,0 

LP  N3(1)   O1 H1(2) 3.3 0,0 0,0 0,0 

LP  O1(1)   N3 H3(2)  0,0 6.3 0,0 0,0 

LP  O2(3/1)   O3 H3O(1/3’)   8.5   

LP  N4(4/1)   C5 H5(1/4’) 0,0 3.4 0,0 0,0 

LP  F3(4/1)   C5 H5(1/4’) 0,0 3.1 0,0 0,0 

LP  F3(1)   C10 F3(5) 0,0 0.4 0,0 0,0 

LP  O1W(2)    N2 H2A(1) 0,0 0,0 47.9 0,0 

LP  N3(1)   O1W  H1W(2) 0,0 0,0 17.0  

LP  O1(1)   O1W  H2W (2) 0,0 0,0 10.5 0,0 

LP  N1(1)   C6 H6(3) 0,0 0,0 1,4  

LP  F3(1)   C11 H11(3) 0,0 0,0 2.8 0,0 

LP  F1(1)   C5 H5(4) 0,0 0,0 0.8 0,0 
      LP  F3(1)   C10 F3(5) 0,0  0.2  

LP  O2(2)   N2 H2N(1) 0,0 0,0 0,0 16.5 

LP  F1(2)   N2 H H2N (1) 0,0 0,0 0,0 3.4 

LP  F2(2)   N2 H H2N (1) 0,0 0,0 0,0 0.7 

LP  N3(1)   O1 H1(2)0 0,0 0,0 0,0 1.1 
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Conclusions  

The molecules are composed of two planar rings connected to a central carbonyl group. The 

arrangement of the triazole ring respect to the C=O plane is strongly influenced by 

intermolecular interactions within the crystal lattice. However, the o-hydroxyphenyl and 

carbonyl moieties are almost co-planar because of the intramolecular hydrogen bond that 

connects them and limits the free rotation between the planes. This structural portion is 

further involved in an enol-keto / keto-enol tautomerism. A detailed inspection of the bond 

distances within the pseudo-ring shows a strong prevalence of the enol-keto form favored 

by the aromatic resonance stabilization. The differences between compounds were 

attributed to the intermolecular interactions. The triazole ring has expected interatomic 

distances for this kind of heterocycle. The C-C single bond (1.397 Å – 1.408 Å) in the ring is 

noticeably shorter than the exocyclic C7-C8 (1.484 Å – 1.490 Å) with the same sp2 

hybridization pattern, showing a strong delocalization charge. 

The structural motifs of 1 – 4 are dominated by intermolecular interactions between the 

acidic hydrogen (N-H/O-H) and the acceptor lone pairs of N and O atoms. The stacking in 

the crystal packing is complemented with extensive ··· contacts involving mainly aromatic 

rings. The nature and strength of the interactions were evaluated and quantified using the 

Pixel program and Hirshfeld surface analysis, which enable the localization of the most 

relevant contacts. The differences that a water molecule (crystal of 3) causes in the 

intermolecular interactions shows the high predisposition of the studied compounds to 

interact with polar sites, such as that in a protein.  

The results of NBO calculations evidenced the existence of an additional stabilization, 

arising from the intermolecular charge transfer of the oxygen lone pairs to the acceptor 

antibonding orbitals of N-H and O-H hydrogen bonds.  

The intra and intermolecular interactions were evidenced in the vibrational spectra by the 

band shiffting of the groups directly involved in them. The location and shape of the OH, 

(C=O) and (C-O) absorption bands reveal their participation in strong intramolecular 

interactions and, particularly in 2, also in intermolecular contacts. The vibration associated 

with the in plane deformation of the benzene ring carbon atoms,  (CCC) is sensitive to the 

ring substituents and intermolecular interactions. 

The dominant predicted HOMO  LUMO transitions for 1 – 4 involve essentially excitations 

from the aromatic ring to orbitals of the whole molecule. The absorption values are similar 

for compounds 1, 3 and 4, revealing that this transition is not affected by the substitution of 

the benzene ring. However, the shifting of the HOMO-LUMO excitation to lower wavelength 

in 2 could be attributed to the nitro group. According to DFT calculations, the computed 
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energies of HOMO and LUMO orbitals for compound 2 present the lowest values with 

respect to 1, 3 and 4, indicating that both could be stabilized by the NO2 group, giving rise 

to the largest energy gap (HOMO-LUMO). 

 

Supporting Information Available 

 

Table S1. Crystal data and structure refinement results for compounds 1-4; Table S1. Lattice 

energies (kJ mol−1) partitioned into coulombic (Ecoul), polarization (Epol), dispersion (Edisp) 

and repulsion (Erep) components for 1 – 4. Table S3. Enrichment ratio (EXY)*of selected 

intermolecular contacts for compounds 1 – 4; Table S4. Hirshfeld contact surfaces CXY(%)*, 

proportion of chemical type on the molecular surface Sx (%), and random contacts RXY(%) 

of intermolecular interactions for compounds 1  – 4; Table S5. Calculated geometrical 

parameters of pseudo ring of 1 – 4; Table S6. Experimental and calculated geometrical 

parameters of 1: Table S7. Experimental and calculated geometrical parameters of 2; Table 

S8. Experimental and Calculated geometrical parameters of 3; Table S9. Experimental and 

Calculated geometrical parameters of 4; Table S2 – S13. Experimental and calculated 

frequencies and tentative assignment of fundamental vibration modes of 1 – 4. Table S14. 

Experimental and calculated electronic spectra (CAM-B3LYO/6-31g+(d,p)) for 1 – 4; Table 

S15. Calculated frontier MO energies and HOMO-LUMO gaps (eV) for 1 – 4. Table S16. 

Natural Population Analysis for 1 and 4; Table S17. Natural Population Analysis for 2; Table 

S18. Natural Population Analysis of 3. FigureS1. Relative contributions of selected 

intermolecular contacts to the Hirshfeld surface area for structures 1 – 4. Figure S2. Hirshfeld 

surfaces for 1-4, mapped over: (a) shape index, highlighting the regions involved in -

stacking interactions, and (b) curvedness; Figure S3. Optimized geometries calculated with 

B3LYP 6-31g(d.p): a. 1. b. 2. c. 3 and d. 4; Figure S4. Molecular electrostatic potential maps 

(MEPs) calculated with B3LYP 6-31g(d.p): a. 1. b. 2. c. 3 and d. 4; Figure S5. Infrared (upper 

trace, KBr pellets) and Raman (lower trace) spectra of the solid at room temperature of: a. 

1. b. 2. c. 3 and d. 4; Figure S6. Calculated and experimental electronic spectra of 1 – 4; 

Figure S7. Molecular orbitals involved in the electronic transitions of 1. The energy scale is 

only qualitative and does not represent the actual energy of the molecular orbitals; Figure 

S8. Molecular orbitals involved in the electronic transitions of 2. The energy scale is only 

qualitative and does not represent the actual energy of the molecular orbitals; Figure S9. 

Molecular orbitals involved in the electronic transitions of 3. The energy scale is only 

qualitative and does not represent the actual energy of the molecular orbitals; Figure S10. 

Molecular orbitals involved in the electronic transitions of 4. The energy scale is only 
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qualitative and does not represent the actual energy of the molecular orbitals; Figure S11. 

Calculated (B3LYP/cc-PVDZ, red) and experimental geometries (green) for: a. 3 and b. 4; 

Figure S12. Dimers of: a. 1 and b. 4; Figure S13. Dimers of 2. a. I and b. II; Figure S14. 

Dimer of 3. 
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