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ABSTRACT

Massive stars present strong stellar that which are described by the radiation driven wind the-

ory. Accurate mass-loss rates are necessary to properly describe the stellar evolution across the

Hertzsprung–Russel Diagram. We present a self-consistent procedure that coupled the hydrodynamics

with calculations of the line-force, giving as results the line-force parameters, the velocity field, and the

mass-loss rate. Our calculations contemplate the contribution to the line-force multiplier from more

than ∼ 900, 000 atomic transitions, an NLTE radiation flux from the photosphere and a quasi-LTE

approximation for the occupational numbers. A full set of line-force parameters for Teff ≥ 32, 000

K, surface gravities higher than 3.4 dex for two different metallicities are presented, with their corre-

sponding wind parameters (terminal velocities and mass-loss rates). The already known dependence of

line-force parameters on effective temperature is enhanced by the dependence on log g. The terminal

velocities present a stepper scaling relation with respect to the escape velocity, this might explain

the scatter values observed in the hot side of the bistability jump. Moreover, a comparison of self-

consistent mass-loss rates with empirical values shows a good agreement. Self-consistent wind solutions

are used as input in FASTWIND to calculate synthetic spectra. We show, comparing with the observed

spectra for three stars, that varying the clumping factor, the synthetic spectra rapidly converge into

the neighbourhood region of the solution. It is important to stress that our self-consistent procedure

significantly reduces the number of free parameters needed to obtain a synthetic spectrum.

Keywords: Hydrodynamics – Methods: numerical – Stars: early-type – Stars: winds, outflows – Stars:

mass-loss

1. INTRODUCTION

The study of massive stars (i.e., stars with M∗ >

10M�) is a relevant topic in the framework of stellar as-

trophysics, because these stars exhibit some of the most

extreme physical conditions, such as the hottest temper-

atures, the highest outflows of matter, and a complex

nucleosynthesis.

Corresponding author: Alex C. Gormaz-Matamala

alex.gormaz@postgrado.uv.cl

∗ Member of the Carrera del Investigador Cient́ıfico,
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Strong outflowing stellar winds of massive stars eject

high amounts of matter that contribute to the chemical

enrichment of the ISM in a relatively short timescale.

Moreover, it has been found that differences on a factor

of two in the mass-loss rate considerably affects the final

fate of a star (Meynet et al. 1994; Smith 2014). There-

fore, a better understanding about massive stars and

their evolution strongly requires accurate determination

of their fundamental parameters, with the mass-loss rate

being the most relevant (Kudritzki & Puls 2000; Puls

et al. 2008).

Lucy & Solomon (1970) described the mechanism that

drives the strong stellar winds observed in hot stars: the
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so-called radiation driven winds. According to these au-

thors, the absorption and further reemission of photons

by UV resonance lines is the wind-driven mechanism

for hot stars, that produces an outward line-force. The

foundation of the theory of radiation driven winds was

later developed by Castor et al. (1975, hereafter CAK

theory), who, based on the Sobolev and the point-star

approximations, modelled the line-acceleration analyti-

cally in terms of the acceleration produced by electron

scattering times a force multiplier factor. This factor

represents the contribution of absorption and reemis-

sion processes depending on the optical depth only, and

it was parametrised by two constant parameters through

the wind, namely k and α.

Later, Abbott (1982) performed a detailed calcula-

tion of these line-force parameters taking into account

the contribution of a full set of atomic line transition

data for elements from hydrogen to zinc. Due to the

point-star approximation the derived hydrodynamical

values for mass-loss rates were overestimated; Pauldrach

et al. (1986) and Friend & Abbott (1986) relaxed this

approximation and considered the finite-disk shape of

the star. With this modified theory (hereafter m-CAK),

they solved the equation of motion and obtained im-

proved theoretical results, in better agreement with the

observed mass-loss rates.

Due to scarce works concerning NLTE (nonlocal ther-

modynamic equilibrium) calculations of the line-force

parameters (Pauldrach et al. 1986; Puls et al. 2000; Ku-

dritzki 2002; Pauldrach 2003; Noebauer & Sim 2015), it

was difficult to obtain from the m-CAK hydrodynam-

ics the velocity profiles and mass-loss rates; thus, the

massive star community started to use the so-called β-

law velocity profile. This simplified description of the

velocity field is widely used as input in radiative trans-

fer and NLTE model-atmosphere codes such as FAST-

WIND (Santolaya-Rey et al. 1997; Puls et al. 2005) or

CMFGEN (Hillier 1990; Hillier & Miller 1998; Hillier &

Lanz 2001) to calculate synthetic spectra. In this proce-

dure, stellar and wind parameters (terminal velocity and

mass-loss rates) are treated as free and are determined

by varying them to adjust synthetic to observed line

profiles. Kudritzki & Puls (2000) argued that the use of

β-law for the velocity field is only justified a posteriori

once the fit is achieved. There are other approaches that

coupled the hydrodynamics with comoving frame radia-

tive transfer, see, e.g. Sander et al. (2017) or Krtička

& Kubát (2010, 2017), that do not use a β-law velocity

profile.

Calculations of line-force wind parameters coupled

with hydrodynamics are necessary to derive self-

consistent velocity profiles and mass-loss rates. More-

over, they depend nonlinearly on the stellar parameters,

chemical abundances, and atomic data via the wind-

driven mechanism. To obtain the line-force parameters

it is necessary to calculate the total acceleration pro-

duced by the contribution of hundreds of thousands of

lines participating in the absorption and reemission pro-

cesses (hereafter line-acceleration, gline). Thus, having

reliable atomic data is essential to perform line-statistics

calculations.

The number of contributing lines to the driven line-

acceleration depends on the wind opacity and it is

strongly coupled to the wind density and velocity pro-

files. To solve this highly nonlinear problem an iterative

procedure is required to satisfy both: line-statistics and

m-CAK hydrodynamics.

In this work, we calculate self-consistent solutions to

obtain accurate m-CAK line-force parameters (k, α, δ)

and wind properties of hot massive stars. The hydro-

dynamics is provided using our code HydWind (Curé

2004), whereas abundances have been updated from As-

plund et al. (2009). Final self-consistent line-force val-

ues correspond to a unique solution obtained when line-

force parameters, velocity profile and mass-loss rate con-

verged. Hence, we present here a new set of m-CAK self-

consistent line-force parameters for Teff > 32 000K and

log g ≥ 3.4, with the corresponding velocity profile and

mass-loss rate. These line-force parameters are com-

pared with previous numerical studies. Furthermore,

with these new results we calculate synthetic spectra

with FASTWIND contrasting them with observations.

We show that applying few times our procedure we ob-

tain a very good fit of the observed line profile. Fur-

thermore, we derived (i) an alternative recipe for the

mass-loss rate which only depends on the stellar param-

eters and the abundance; (ii) the ratio vinf/vesc as given

by Eq. (18) now depends not only on the line-force pa-

rameter α but also on log g.

This paper is organised as follows: The theoretical for-

mulation of m-CAK theory is given in Section 2. Section

3 describes the methodology used, explaining the iter-

ative procedure and how convergence is assured. Sec-

tion 4 shows results for the calculation of the line-force

multiplier using the standard solution, together with a

detailed analysis about under what conditions (k, α, δ)

can be treated as constants. In Section 5, we calcu-

late synthetic spectra based on our self-consistent pro-

cedure and compare them with observations. A discus-

sion about the results is given in Section 6. Finally, our

conclusions are presented in Section 7.

2. THEORETICAL FORMULATION
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The m-CAK theory (Castor et al. 1975; Friend & Ab-

bott 1986; Pauldrach et al. 1986) describes in spherical

coordinates a stationary, nonrotating, expanding atmo-

sphere, taking into account the line-acceleration gline.

The equation of momentum and equation of continuity

respectively read:

v
dv

dr
= −1

ρ

dP

dr
− GM∗(1− Γe)

r2
+ gline , (1)

and

Ṁ = 4πρ(r)r2v(r) . (2)

Here, Ṁ is the mass-loss rate, v(r) is the radial veloc-

ity field, ρ(r) is the mass density, P is the gas pressure

and M∗(1−Γe) corresponds to the effective stellar mass,

where Γe is the radiative acceleration caused by Thom-

son scattering in terms of gravitational acceleration.

Introducing the following dimensionless variables: r̂ =

r/R∗, v̂ = v/a and v̂crit = vesc/a
√

2, where the escape

velocity is defined as v2
esc = 2GM∗(1 − Γe)/R∗. Then,

the equation of motion reads:(
v̂ − 1

v̂

)
dv̂

dr̂
= − v̂

2
crit

r̂2
+

2

r̂
+ ĝline , (3)

with ĝline = (R∗/a
2) gline. We have used the equation

of state of an ideal gas, P = a2ρ, with a being the

isothermal sound speed:

a =

√
kBTeff

µmH
, (4)

with µ being the mean atomic weight.

The line-acceleration can be defined in terms of the

radiative acceleration due to electron scattering ĝe =

(R∗/a
2) ge, multiplied by M(t) = ĝline/ĝe, called the

line-force multiplier factor. M(t) corresponds to the

sum of spectral lines that contribute to drive the wind:

M(t) =
∑
lines

∆νD
Fν
F

1− e−ηline t

t
, (5)

with ∆νD being the line broadening due to Doppler ef-

fects. Fν and F are the monochromatic and total stellar

flux, respectively, and ηline is the absorption coefficient.

Castor (1974) parametrisedM(t) in terms of the optical

depth t, which depends on the wind structure only:

t = σe ρ(r) vth

(
dv

dr

)−1

, (6)

with vth being the mean hydrogen thermal velocity.

Then, Castor et al. (1975) proposed the following an-

alytical expression for M(t):

M(t) = k t−α , (7)

where the parameters k and α are the so-called line-force

multiplier parameters (or line-force parameters). Ab-

bott (1982) added a third line-force parameter called δ,

being the exponent of the diluted-electron number den-

sity, Ne/W (where W is the dilution factor). With these

three line-force parameters (k, α, δ), M(t) becomes:

M(t) = k t−α
(

10−11Ne
W

)δ
. (8)

The physical interpretation of the line-force parame-

ters (see, e.g. Puls et al. 2000) are as follows:

• The k parameter is directly proportional to the ef-

fective number of driving lines, and is related to

the fraction of the photospheric flux, which would

have been blocked by all lines if they were optically

thick and overlapping effects were not considered.

Higher values of k are obtained at higher densities

and, therefore, higher mass-loss rates. In addition

to the dependency of ρ(r), k presents also a strong

dependence with metallicity and temperature due

to the large number of driving lines: a lower tem-

perature implies lower ionisation stages, and thus

more lines; therefore, a higher M(t). More lines

(above a given threshold line strength) are also

present for higher metallicities.

The overlapping of two or more spectral lines pro-

duces an overestimation in the calculated value of

k. On the other hand, k is underestimated when

multiscattering effects are not taken into account

(i.e., the summation inM(t) considers only direct

photospheric radiation, and not radiation repro-

cessed in the wind). As was pointed out by Puls

(1987), the inclusion of both effects might cancel,

at least for O stars, and the effective k becomes

moderately reduced. In this work, we have not

considered these effects; therefore, our k values

should be maximum.

• The α parameter is related to the exponent of the

line-strength distribution function, and quantifies

also the ratio of the line acceleration from optically

thick lines to the total one (for details, see Puls

et al. 2008).

• The δ parameter represents the change in the ion-

isation throughout the wind. It has been found

that, high values of δ (& 0.25) ”slows” the wind,

yielding a different wind solution (Curé et al.

2011).

Some studies have pointed out that the line-force pa-

rameters are a function of radius (Schaerer & Schmutz
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1994) or can be considered in a piecewise constant struc-

ture (Kudritzki 2002). Nevertheless, in this work, we

will consider k, α and δ as constants throughout the

wind (see Section 4.2).

3. CALCULATION OF THE M(T ) FACTOR

To calculate theM(t) factor, we include different im-

provements: (i) a larger line list, (ii) a quasi-NLTE ap-

proach for the ionisation equilibrium, (iii) a NLTE ra-

diative stellar flux and (iv) an optical depth range in

concordance with the wind structure. Then we test it

for one single-step and also the whole iteration proce-

dure until convergence of line-force parameters, velocity

profile and mass-loss rate is achieved.

3.1. Selection of atomic database

To calculate the line-acceleration and obtain a proper

value ofM(t), Abbott (1982) established that it is nec-

essary to sum the contribution of hundreds of thousands

of spectral lines participating in the line-acceleration

processes. Therefore, aiming to get the most accurate

value of M(t), we decided to employ around ∼ 900 000

line transitions. These atomic data were obtained (and

modified in format) from the atomic database list used

by the code CMFGEN1 (Hillier 1990; Hillier & Miller

1998). Specifically, we have extracted information re-

lated to energy levels, degeneracy levels, partition func-

tions and oscillator strengths fl, which are necessary to

calculate the absorption coefficient ηline of each line in

terms of lower (l) and upper (u) level populations nl
and nu, and their statistical weights gl and gu. The

absorption coefficient ηline is given by:

ηline =
πe2

M.C.
fl

nl
ρ(r)

(
1− nu

nl

gl
gu

)
. (9)

Elements and ionisation stages considered in this work

are listed in Table 1.

3.2. Ionisation equilibrium

Line-acceleration is calculated over the contribution

of numerous transitions for every element at every ion-

isation stage present in the wind. Abbott (1982) deter-

mined the ionisation degrees using the Saha’s equation

for extended atmospheres (Mihalas 1978), namely:(
Ni+1

Ni

)
LTE

= 2

(
2πmekB
h2

)3/2
TR

√
Te

Ne/W

Ui+1

Ui
e
− Ei

kBTe ,

(10)

1 Atomic data used here are those which were updated by DJH
in 2016 (http://kookaburra.phyast.pitt.edu/hillier/cmfgen files/
atomic data 15nov16.tar.gz).

Table 1. Atomic elements and ionisation stages used to
calculate M(t).

Elem. Ions Elem. Ions

H I He I−II

Li I−III Be I−IV

B I−V C I−IV

N I−VI O I−VI

F I−VI Ne I−VI

Na I−VI Mg I−VI

Al I−VI Si I−VI

P I−VI S I−VI

Cl I−VI Ar I−VI

K I−VI Ca I−VI

Sc I−VI Ti I−VI

V I−VI Cr I−VI

Mn I−VI Fe I−VI

Co I−VI Ni I−VI

where TR, Te are the radiation and electron tempera-

tures, respectively, and Ei is the ionisation energy from

stage i to i + 1. More precise treatment called approx-

imate NLTE (hereafter quasi-NLTE) has been used by,

e.g., Mazzali & Lucy (1993) and Noebauer & Sim (2015).

Here the ionisation balance is determined by the appli-

cation of the modified nebular approximation (Abbott &

Lucy 1985). Following this treatment, the ratio of num-

ber densities for two consecutive ions can be expressed

in term of its LTE value, multiplied by correction effects

due to dilution of radiation field and recombinations:

Ni+1

Ni
≈
(
Ne

W

)−1

[ζi +W (1− ζi)]
√
Te

TR

(
Ni+1Ne

Ni

)
LTE

,

(11)

where ζi represents the fraction of recombination pro-
cesses that go directly to the ground stage. Eq. (11) is

an alternative description to the one given by Puls et al.

(2005), who included a different radiative temperature

dependence in the wind, which is specially important in

the far UV region of the spectrum that is not optically

thick.

Modifications in the treatment of atomic populations

Xi, with i being the excitation level, are also based on

the work of Abbott & Lucy (1985). It is necessary to

make distinction between metastable levels (with no per-

mitted electromagnetic dipole transitions to lower en-

ergy levels) and all the other ones:

(
Xi

X1

)
=


(
Xi

X1

)
LTE

metastable levels

W (r)
(
Xi

X1

)
LTE

others

http://kookaburra.phyast.pitt.edu/hillier/cmfgen_files/atomic_data_15nov16.tar.gz
http://kookaburra.phyast.pitt.edu/hillier/cmfgen_files/atomic_data_15nov16.tar.gz
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Atomic partition functions, Ui (necessary for Saha’s

equation and the calculation of atomic populations), are

calculated following the formulation of Cardona et al.

(2010), i.e.,:

Ui = Ui,0 +Gjke
−εjk/T +

m

3
(n3−343)e−Ên∗jk/T , (12)

where Ui,0 are the constant partition functions, Ên∗jk is

the mean excitation energy of the last level of the ion, n

is the maximum excitation stage to be considered, while

Gjk, εjk and m are parameters tabulated by Cardona

et al. (2010).

The advantage of this treatment is that it provides val-

ues for atomic partition functions explicitly as a function

of temperature and implicitly of electron density, giving

a more accurate ionisation balance. Following Noebauer

& Sim (2015), the temperature will be treated as a con-

stant (TR = Te = Teff). Then, for a specific value of

(Teff, Ne), the ratio between number densities of ionisa-

tion stages j and i (for a specific Z-element) is calculated

by a matrix (hereafter ionisation matrix) given by:

DZ,i,j =
Nj
Ni

=
∏

i≤k<j

Nk+1

Nk
. (13)

In reference to the abundances of the different chem-

ical elements, these were adopted from the solar abun-

dances given by Asplund et al. (2009). However, these

can be easily modified to evaluate stars with nonsolar

metallicity (see Sect, 4).

At this point, it is necessary to remark that previous

authors (Abbott 1982; Noebauer & Sim 2015) have con-

sidered the diluted-electron density Ne/W as constant

throughout the wind. Nevertheless, to calculate δ,M(t)

must be evaluated considering changes in the ionisation

stages, and therefore, Ne(r)/W (r). Since, the calcula-

tion of electron density depends on the ionisation stages

of each specie which in turn are functions of Ne, we deal

with a coupled nonlinear problem. To obtain a solution,

we use the following formula to calculate (as an initial

value) the electron number density:

Ne,0 =
ρ(r)

mH

XH + 2XHe

XH + 4XHe
, (14)

with mH being the hydrogen atom mass, and XH and

XHe the abundances of hydrogen and helium, respec-

tively.

We used this initial electron density to start calculat-

ing the ionisation matrix and to recalculate both atomic

populations and electron density iteratively:

Ne(r) =

(
XH

D1,1,2

1 +D1,1,2
+XHe

(D2,1,2 + 2D2,1,3)

1 +D2,1,2 +D2,1,3

)
× ρ(r)

XH + 4XHe
. (15)

1 2 5 10 20
109

1011

1013

1015

r/R*

N
e/
W
(r
)

Figure 1. Final value of Ne/W (r) as function of stellar
radius even when Ne,0 is set as constant input (black solid
line), after one iteration (single dashed line), after two itera-
tions (dashed-dotted line) and after five iterations (red solid
line).

Convergence of Ne is easily obtained after just a few

iterations (see Fig. 1). It is important to remark that

even when we use Ne,0 as a constant value (not described

by Eq. 14), the final converged value for Ne is the same.

3.3. Radiation field

Together with an accurate treatment of atomic popu-

lations and electron density, Eq. 5 requires as an input

the radiation field in the term Fν/F .

Abbott (1982) used the radiation fields from Kurucz’

models (Kurucz 1979), whereas Noebauer & Sim (2015)

from a blackbody. In this work, we use the radia-

tion field calculated by the NLTE line-blanketing plane-

parallel code Tlusty (Hubeny & Lanz 1995; Lanz &

Hubeny 2003).

The overlap effects among tens of thousands of spec-

tral lines are not considered when we sum the contri-

butions to the force-multiplier M(t) across the wind.

However, line blanketing effects are partially considered

as we are using the Tlusty radiation field in the calcu-

lations of M(t).

3.4. Determination of the optical depth range

Previous studies by Abbott (1982) and Noebauer &

Sim (2015) have considered a fixed range for the optical

depth t to fit the force multiplier (Eq. 8).

However, given the definition of t (Eq. 6), it is clear

that the optical depth range is constrained by the phys-

ical properties of the stellar wind (density and velocity

profiles). For this reason, calculations presented in this

work are constrained inside the wind, characterised by

this range of t.
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0.574

0.576

0.578

0.580

0.582

0.584
α

0.188

0.189

0.190

0.191

0.192

0.193

0.194

k

1 2 3 4 5

0.036

0.038

0.040

0.042

Nº iter

δ

Figure 2. Values of α, k and δ as a function of the itera-
tion number, starting from different initial values. Different
initial values (iteration 0, not shown) converge to the same
final self-consistent solution.

Because m-CAK theory is based upon Sobolev approx-

imation (Sobolev 1960; Lamers & Cassinelli 1999) in this

work we will use as upper and lower limits of t its values

at the sonic point and at infinity (usually r ∼ 100R∗),

respectively. It is important to remark that although t

decreases outward it never reaches zero. Therefore, it is

always possible to define a proper range.

3.5. Iterative procedure

Velocity profile and Ṁ from hydrodynamics is re-

quired in order to calculate the line-acceleration gline.

-5.95

-5.90

-5.85

-5.80

-5.75

-5.70

lo
g
(M

)

1 2 3 4 5
2200

2300

2400

2500

2600

2700

2800

2900

Nº iter

v ∞

Figure 3. Same as as Fig. 2, but for the mass-loss rate and
terminal velocity.

At the same time, line-force parameters fitted from gline,

are necessary to solve the m-CAK hydrodynamic equa-

tions and obtain the mass-loss rate and velocity profile.

Therefore, a self-consistent iterative procedure should be

implemented to solve this coupled nonlinear problem.

Our procedure is the following: (i) using a β-law pro-

file with a given mass-loss rate, initial values for the line

force parameters (k0, α0, δ0) are calculated; (ii) a nu-
merical solution of the equation of motion (Eq. 3) is ob-

tained with HydWind 2, getting an improved hydrody-

namics: v(r) and Ṁ ; (iii) a new force multiplier is calcu-

lated; (iv) new line-force parameters (ki, αi, δi) are fitted

from M(t); and (v) steps ii - iv are iterated. Conver-

gence is usually obtained after ∼ 4−5 iterations (see Fig.

2), independently on the initial values. Our criterion for

convergence is when two consecutive iterations (i, i+ 1)

get a value for ‖∆p‖ = ‖pi+1 − pi‖ ≤ 10−3, where p

2 This code solves the m-CAK equation of motion with an eigen-
value that depends on the mass-loss rate. At the location of the
singular point, both solution branches (singular point to stellar
surface and singular point to infinity) are smoothly merged to
obtain the velocity profile, see Pauldrach et al. (1986); Friend &
Abbott (1986) and Curé (2004) for details.
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is a line-force parameter and this condition should be

satisfied for each one of these parameters.

Figure 3 shows the convergence of the mass-loss rate

(top panel) and the terminal velocity (lower panel) as

a function of the procedure’s iterations. Both values

depend nonlinearly on the stellar and line-force param-

eters.

Table 2. Comparison of k and α parameters from Abbott
(A) and Noebauer & Sim (N), with our one single-step re-
sults.

Previous Studies Present Work

Teff Ne/W δ k α k1 α1

[kK] [cm−3]

A 30 1.0× 108 0.12 0.093 0.576 0.062 0.661

A 30 1.0× 1011 0.12 0.156 0.609 0.097 0.611

A 30 1.0× 1014 0.12 0.571 0.545 0.487 0.450

A 40 1.8× 108 0.12 0.051 0.684 0.072 0.639

A 40 1.8× 1011 0.12 0.174 0.606 0.120 0.609

A 40 1.8× 1014 0.12 0.533 0.571 0.289 0.552

N 42 1.0× 1015 0.0 0.381 0.595 0.376 0.572

A 50 3.1× 108 0.092 0.089 0.640 0.148 0.611

A 50 3.1× 1011 0.092 0.178 0.606 0.196 0.595

A 50 3.1× 1014 0.092 0.472 0.582 0.289 0.566

3.6. A single-step test

To compare our line-force parameters with the results

obtained by Abbott (1982) and Noebauer & Sim (2015),

we use one single-step only. Following these authors, δ

and Ne/W are set as input and the optical depth range

is fixed between −6 < log t < −1. The selection of

a fixed interval of log t does not require any velocity

field structure. Furthermore, we have considered Ku-

rucz’ and black-body fluxes to reproduce Abbott (1982)

and Noebauer & Sim (2015) calculations, respectively.

Then, starting from a β-law and a Ṁ , we calculate k1

and α1 (single-step). These results are shown in Table

2. The coefficients of determination, R-Squared, for α

and k (respectively) between previous and our single-

iteration results are: (i) R2
α = 0.87 and R2

k = 0.93

for Teff ≥ 40 000 K; (ii) R2
α = 0.4 and R2

k = 0.81 for

Teff ≥ 30 000 K. We conclude that our calculations re-

produced previous results, now using a modern atomic

database and abundances.

4. RESULTS

4.1. Self-consistent calculations

The following results are computed self-consistently

with the methodology detailed in Section 3.

Teff=45kK,log g=4.0
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Figure 4. Force-multiplier M(t) as function of t for some
stellar models presented on Table 3 with Teff = 45 000 K and
log g = 4.0 (blue), Teff = 40 000 K and log g = 3.6 (cyan),
Teff = 36 000 K and log g = 3.4 (green) and Teff = 32 000 K
and log g = 3.4 (red). Coloured areas below curves indicate
the range of t, where the fits for (k, α, δ) have been adjusted.
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Table 3. Self-consistent line-force parameters (k, α, δ) for adopted standard stellar parameters, together with the resulting
terminal velocities and mass-loss rates (ṀSC). Ratios between self-consistent mass-loss rates and Vink’s recipe values (re-scaled
to match metallicity from Asplund et al. 2009) using v∞/vesc = 2.6 are shown in the last column. Error margins for mass-loss
rates and terminal velocities are derived over a variation of ±500 for effective temperature, ±0.05 for logarithm of surface gravity
and ±0.1 for stellar radius.

Teff log g R∗/R� Z/Z� log tin log tout k α δ vSC
∞ ṀSC ṀSC/ṀVink

[kK] [km s−1] [10−6M� yr−1]

45 4.0 12.0 1.0 −0.31 −4.53 0.167 0.600 0.021 3 432± 240 2.0±0.65
0.5 1.00

45 4.0 12.0 0.2 −0.77 −4.85 0.142 0.493 0.017 2 329± 210 0.38±0.15
0.11 0.74

45 3.8 16.0 1.0 0.28 −4.07 0.135 0.648 0.022 3 250± 300 6.4±1.6
1.3 0.84

45 3.8 16.0 0.2 −0.06 −4.28 0.114 0.545 0.014 2 221± 230 1.7±0.6
0.45 0.88

42 3.8 16.0 1.0 −0.10 −4.36 0.137 0.629 0.027 3 235± 300 3.4±0.9
0.7 0.94

42 3.8 16.0 0.2 −0.55 −4.73 0.108 0.534 0.019 2 313± 230 0.73±0.3
0.21 0.79

42 3.6 20.4 1.0 0.70 −3.80 0.122 0.671 0.039 2 738± 230 11±3.5
2.5 0.74

42 3.6 20.4 0.2 0.37 −4.09 0.091 0.586 0.022 2 043± 200 3.1±1.2
0.75 0.82

40 4.0 12.0 1.0 −0.88 −4.97 0.164 0.581 0.027 3 300± 220 0.66±0.19
0.15 1.17

40 4.0 12.0 0.2 −1.43 −5.44 0.133 0.492 0.038 2 329± 160 0.11±0.05
0.03 0.76

40 3.6 20.4 1.0 0.42 −3.96 0.118 0.659 0.044 2 813± 290 6.6±1.8
1.4 0.89

40 3.6 20.4 0.2 −0.05 −4.40 0.091 0.572 0.025 2 116± 230 1.7±0.5
0.4 0.90

40 3.4 18.0 1.0 1.30 −3.14 0.099 0.715 0.094 1 548± 240 14.5±5.0
3.5 0.73

40 3.4 18.0 0.2 1.90 −3.50 0.073 0.650 0.047 1 334± 230 4.7±2.4
1.3 0.92

38 3.8 16.0 1.0 −0.63 −4.79 0.130 0.610 0.036 3 153± 240 1.2±0.3
0.25 1.10

38 3.8 16.0 0.2 −1.18 −5.28 0.091 0.542 0.033 2 473± 300 0.25±0.08
0.06 0.89

36 4.0 12.0 1.0 −1.45 −5.50 0.132 0.580 0.036 3 314± 200 0.21±0.065
0.05 1.17

36 4.0 12.0 0.2 −1.97 −5.97 0.101 0.517 0.068 2 402± 140 0.036±0.014
0.01 0.78

36 3.6 20.4 1.0 −0.29 −4.55 0.104 0.644 0.062 2 809± 240 2.2±0.7
0.5 1.12

36 3.6 20.4 0.2 −0.87 −5.09 0.071 0.581 0.033 2 534± 220 0.5±0.17
0.13 1.00

36 3.4 18.0 1.0 1.78 −3.77 0.091 0.686 0.116 1 708± 170 4.4±1.6
1.0 1.13

36 3.4 18.0 0.2 0.41 −4.21 0.072 0.607 0.048 1 566± 160 1.0±0.4
0.25 1.01

34 3.8 16.0 1.0 −1.27 −5.37 0.103 0.604 0.043 3 093± 210 0.34±0.1
0.07 1.12

34 3.8 16.0 0.2 −1.93 −5.94 0.069 0.555 0.028 2 791± 180 0.074±0.025
0.018 0.95

34 3.6 20.4 1.0 −0.61 −4.82 0.095 0.637 0.074 2 732± 180 1.2±0.4
0.3 1.25

34 3.6 20.4 0.2 −1.29 −5.46 0.058 0.590 0.031 2 642± 180 0.25±0.07
0.05 1.03

32 3.4 18.0 1.0 0.37 −4.30 0.078 0.675 0.159 1 653± 190 1.3±0.5
0.3 1.67

32 3.4 18.0 0.2 −0.70 −4.15 0.053 0.610 0.052 1 847± 140 0.23±0.075
0.05 1.16

Self-consistent solutions for a grid of models are pre-

sented in Table 3. The effective temperature ranges from

32 to 45 kK and log g from 3.4 to 4.0 dex. This grid con-

siders different stellar radii and two abundances: 1 and

1/5 of the solar value. This table shows the stellar pa-

rameters, the calculated t-range, and the fitted m-CAK

line-force. In addition, we calculated the corresponding

wind solution using HydWind, and their error margins

were derived considering variations of ∆Teff = ±500,

∆ log g = ±0.05, and ∆R∗ = ±0.1R� in the stellar ra-

dius, keeping constant the line-force parameters.

Convergence has been checked for each solution. Fig-

ure 4 shows the last iteration of M(t) for four models

from Table 3 with different ranges of t. Due to the quasi-

linear behaviour of the logarithm of the force-multiplier,

parameters k and α are easily fitted and their values can

be considered constant throughout the wind (see Sect.

4.2). To fit δ in the M(t)–Ne/W plane, it is necessary

to perform an extra calculation ofM(t) using a slightly

different value for the diluted-electron density. Last col-

umn of this table shows the ratio between our mass-loss

rate and the one calculated using Vink’s recipe (Vink

et al. 2001), with v∞/vesc = 2.6 and rescaled to current

abundances (Asplund et al. 2009). The mean value of

ṀSC/ṀVink = 0.98 ± 0.2. As we have not included in

our procedure multi-line nor line-overlapping processes,

we support conclusion given by Puls (1987) that these

effects are somewhat canceled, because we do not ob-

serve relevant discrepancies in the mass-loss rates when

a comparison with Vink’s recipe is performed.
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Figure 5. Behaviour of line-force parameters (k, α, δ) as a
function of the effective temperature (in kK), for different
surface gravities and metallicities. Circles represent models
with log g = 4.0, squares: log g = 3.8, stars: log g = 3.6,
and triangles: log g = 3.4. Black dashed lines are for models
with solar metallicity and grey dashed lines for Z = Z�/5.

In Fig. 5, we observe clear trends for the behaviour of

the (k, α, δ) parameters with Teff , log g, and Z. While

k increases and δ decreases as a function of the effective

temperature, for both metallicities. It is interesting to

remark the influence of the surface gravity on the result-

ing line-force parameters, values for k and δ decrease as

the gravity decreases. Notice that globally our line-force

parameter results are similar to the values obtained in

previous works (Puls et al. 2000; Kudritzki 2002; Noe-

bauer & Sim 2015). However, we found an important

dependence on log g as a result of the hydrodynamic

coupling in the self-consistent procedure.

On the other hand, the behaviour of α depends on the

metallicity, it increases with effective temperature for

solar abundance, but for low abundance and low grav-

ities, it slowly decreases with temperature. Moreover,

the change in α is more significant for log g than for Teff :

a difference in ∆ log g ± 0.2 dex produces a ∆α ∼ 0.04,

whereas variations on ∆Teff = ± 2 000 K, might produce

∆α ∼ 0.02.

Figure 6 shows the results for the mass-loss rates as a

function of the effective temperature, for different gravi-

ties and metallicities. The upper panel shows the results

from our self-consistent procedure and the bottom panel

shows the result using Abbott’s methodology (a single

iteration) to calculate line-force parameters and apply

them in our hydrodynamic code HydWind (hereafter

Abbott’s procedure). We found that Ṁ increases with

effective temperature and metallicity and decreases with

gravity. This behaviour is similar to the one obtained

using Abbott’s procedure, but the self-consistent calcu-

lated mass-loss rates are about 30% larger.

From the mass-loss results tabulated in Table 3, a sim-

ple relationship for solar-like metallicities (with a coeffi-

cient of determination or R-squared, R2 = 0.999) reads:

log ṀZ=1.0 =10.443× log

(
Teff

1000 K

)
− 1.96× log g

+ 0.0314× (R∗/R�)

− 15.49,

(16)

and for metallicity Z/Z� = 0.2 the relationship reads

(with R2 = 0.999):

log ṀZ=0.2 =11.668× log

(
Teff

1000 K

)
− 2.126× log g

+ 0.04× (R∗/R�)

− 17.63,

(17)
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where Ṁ is given in 10−6M� yr−1. These relationships

could be considered analogous to that given by Vink

et al. (2000) to obtain theoretical mass-loss rates for

solar-like metallicities. However, the advantage of our

description is that it depends only on stellar parameters

and we do not need to consider the value of v∞/vesc. It

is important to remark, however, that this formula has

been derived for the following ranges:

• Teff = 32− 45 kK

• log g = 3.4− 4.25

• M∗/M� ≥ 25.0.

-7.5
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-6.0

-5.5

-5.0

lo
g(
M
)

32 34 36 38 40 42 44
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)

Figure 6. Behaviour of mass-loss rate as a function of effec-
tive temperature (in kK) for different abundances and gravi-
ties. Top panel is for self-consistent calculations and bottom
panel is for Abbott’s procedure, now including the finite-disk
correction factor. Symbol description is the same as than in
Fig. 5.
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Figure 7. Same as Fig. 6, but for the terminal velocities.

Concerning terminal velocities, see Fig. 7, self-

consistent calculations (top panel) show that v∞ is

almost constant with respect to the effective tempera-

ture, but it decreases as a function of log g and Z. On

the other hand, Abbott’s procedure results do not show

the same behavior and exhibit a maximum in the Teff

interval.

4.2. Range of validity for line-force parameters

It is important to remember that the range of opti-

cal depths used to calculate our self-consistent line-force

parameters is defined along almost all the atmosphere

of the star, i.e., downstream from the sonic point. This

procedure improves the criterion used by Abbott (1982),

who determined the parameters at t = 10−4. This value

sometimes lays outside the optical depth range here de-

fined, as shown in Fig. 4.

To analyse the change on the line-force parameters due

to the selection of the t-range, we define four different
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Table 4. Influence of the optical depth interval on the line-force parameters for some reference models given in Table 3.
Absolute values of the differences in the resulting wind parameters with respect to the reference solution are presented.

Teff log g log tin log tout k α δ |∆v∞| |∆Ṁ |
[km s−1] [10−6M� yr−1]

45 000 4.0 −0.31 −2.03 0.099 0.686 0.037 780 0.23

−0.31 −2.87 0.107 0.650 0.029 600 0.30

−0.31 −3.71 0.120 0.638 0.027 420 0.21

−0.31 −4.55 0.167 0.600 0.021 0 0

40 000 4.0 −0.87 −2.50 0.099 0.633 0.040 521 0.09

−0.87 −3.32 0.099 0.634 0.036 610 0.07

−0.87 −4.14 0.107 0.621 0.026 594 0.07

−0.87 −4.96 0.164 0.581 0.027 0 0

40 000 3.6 0.08 −1.44 0.095 0.666 0.090 247 0.58

0.08 −2.28 0.098 0.680 0.075 75 0.13

0.08 −3.12 0.101 0.692 0.067 323 0.92

0.08 −3.96 0.118 0.659 0.044 0 0

36 000 3.6 −0.29 −2.00 0.084 0.637 0.112 520 0.58

−0.29 −2.85 0.092 0.648 0.078 114 0.15

−0.29 −3.70 0.089 0.668 0.075 267 0.01

−0.29 −4.55 0.104 0.644 0.062 0 0

32 000 3.4 0.37 −1.49 0.066 0.630 0.251 631 0.77

0.37 −2.43 0.075 0.636 0.221 457 0.57

0.37 −3.37 0.079 0.662 0.179 168 0.11

0.37 −4.31 0.078 0.675 0.159 0 0

intervals inside the whole range of t, and compute these

parameters in each range. Table 4 summarises these

calculations. Regarding the uncertainties of our proce-

dure in the terminal velocities, these are of the same

order as the uncertainties owe to the errors in the deter-

mination of the stellar parameters in the range 32 000

K < Teff < 40 000 K, while, the uncertainties in Ṁ

are much lower than the ones produced by variations of

stellar parameters. These small uncertainties indicate

that it is a good approximation to consider line-force

parameters as constants throughout the wind. Due to

the fact that the entire t-range represents the physical

conditions of almost all the wind, we recommend using

the complete optical depth range to derive the line-force

parameters.

For Teff < 30 000 K, we found that log M(t) is no

longer linear with respect to log t and the corresponding

line-force parameters can be approximated to a linear

piecewise description. Due to this reason, we establish

that our set of self-consistent solutions describes stellar

winds for effective temperatures and log g in the range

32 000− 45 000 K and 3.4− 4.0 dex, respectively.

5. SYNTHETIC SPECTRA

In order to know whether our calculations reproduce

realistic physical features observed in hot stars, we cal-

culate synthetic spectra for three O-type stars using

FASTWIND. We select some stars in the range of the

considered Teff , trying to cover the extreme cases of tem-

perature and log g. We choose firstly the O4 I(n)fp star

ζ-Puppis (HD 66811) because it has been extensively

studied (Puls et al. 1996; Repolust et al. 2004; Puls

et al. 2006; Sota et al. 2011; Bouret et al. 2012; Noe-

bauer & Sim 2015). Mentioned authors have indepen-

dently adopted different sets of stellar and wind param-

eters, which are summarised in Table 5. Here, the wind

parameters were determined by Repolust et al. (2004).

Puls et al. (2006) has used their parameters and derived

clumped mass-loss rates from Hα, IR and radio, using

analytical expressions for the corresponding opacities,

whereas Bouret et al. (2012) used CMFGEN. Both cal-

culations include clumping, so these results correspond

to a clumped mass-loss rate.3 On the other hand, the

mass-loss rate given by Noebauer & Sim (2015) was ob-

tained using their Monte-Carlo radiation hydrodynam-

3 FASTWIND uses the clumping factor fcl ≥ 1 (with fcl = 1
representing the smooth limit), where fcl = 1/f if the inter-clump
medium was void (Sundqvist & Puls 2018). On the other hand,
CMFGEN-clumping is represented by the so-called volume filling
factor f , which scales homogeneous and clumped mass-loss rates
under the relationship Ṁhom = Ṁclump/

√
f (notice that this f

takes values between 0 and 1).



12 Gormaz-Matamala et al.

ics (M.C.RH) method assuming a homogeneous media

(fcl = 1.0).

Particularly, we compare our results with those given

by Puls et al. (2006), who did an exhaustive analysis of

the clumping throughout the wind. Two different values

for mass-loss rate are given by these authors, because

they considered different stellar radii depending on the

assumed distance for ζ-Puppis: (i) the ”conventional”

(d = 460 pc) and (ii) the one given by Sahu & Blaauw

(1993, d = 730 pc). We examine here the ”conventional”

case with R∗/R� = 18.6. We can observe from Table 5

(last row), that our new calculated mass-loss rate agree

quite well with the value from Puls et al. (2006).

Figure 10 shows the observed spectra (kindly provided

by D. J. Hillier) and the resulting synthetic spectra for

ζ-Puppis. Stellar parameters are taken from Puls et al.

(2006, see Table 5) and wind parameters from our self-

consistent procedure (ṀSC = 4.6× 10−6 M� yr−1). We

calculated three synthetic spectra with different clump-

ing factors: fcl = 1.0 (homogeneous), fcl = 5.0 and

fcl = 9.0. The best fit is for fcl = 5.0, which is the same

clumping factor found by Puls et al. (2006) with their

Ṁ = 4.2 × 10−6 M� yr−1. Moreover, we also include

the synthetic spectra obtained with the self-consistent

solution (see Fig. 11), calculated using the stellar pa-

rameters given by Bouret et al. (2012, see Table 5) and

Najarro et al. (2011). The best fit is achieved when we

use a clumping factor of fcl = 5.0. These results suggest

that the real stellar parameters lie in the neighbourhood

given by Puls et al. (2006) and Najarro et al. (2011).

The observed spectrum for HD 163758 (O9 I) has been

obtained from the UVES-POP database4. We calcu-

lated the synthetic spectra for this star (see Fig. 12)

using stellar parameters from Bouret et al. (2012) and

wind self-consistent parameters (see Table 6) with dif-

ferent clumping factors, the best fit is for fcl = 6.0.

Last spectrum corresponds to the O3.5 V star HD

164794, also obtained from the UVES-POP database.

Stellar parameters were extracted from Krtička et al.

(2015), as shown in Table 6. Contrary to previous cases,

the best fit is obtained for the homogeneous model (fcl =

1.0, see Fig. 13).

In view of these first results, our self-consistent itera-

tive procedure takes us quickly into the neighborhood of

the solution that reproduces the observed wind spectra

for O-type stars.

6. DISCUSSION

4 http://www.eso.org/sci/observing/tools/uvespop/field stars
uptonow.html

We have developed a self-consistent methodology to

calculate the line-force parameters and derived conse-

quently mass-loss rates and velocity profiles. We found

that mass-loss rate is about 30% larger than the one

obtained using Abbott’s procedure (non-self-consistent

calculation).

6.1. Terminal velocity

It is well known that the scaling relation for the termi-

nal velocity in the frame of the line-driven wind theory.

This relation (Puls et al. 2008) reads:

v∞ ≈ 2.25

√
α

1− α
vesc . (18)

This is an approximation of the formula found by Ku-

dritzki et al. (1989, their Eqs. 62 to 65).

In Fig. 8 we have plotted v∞/vesc versus
√
α/(1− α)

using the results from Table 3. Contrary to the expected

result (Eq. 18) for solar abundances, we find a different

linear behaviour that strongly depends on the value of

log g. This is a new result that comes from applying

our self-consistent procedure. The m-CAK equation of

motion shows an interplay between the gravity (log g)

and the line force term. This balance of forces defines

the location of the singular point and therefore fixes the

value of Ṁ . As a consequence, the velocity profile de-

pends also on the value of log g. This result cannot be

obtained from Eq.18 which is an oversimplification of

this nonlinear coupling. However, Eq. 18 presents a fair

fit when Z=Z�/5, where the dependence of the slope

on log g is weak because the radiation force is driven by

fewer ions.

The dependence of v∞/vesc on log g yield that stars

with solar abundances present an intrinsic variations of

v∞/vesc in the range of 2.4 − 3.7, as shown in Fig. 8.

This range might explain the scatter observed on the hot

side of the bistability jump shown by Markova & Puls

(2008, in their Fig. 12).

6.2. Mass-loss rate

In this section we want to compare our theoretical

results with the ones obtained from line-profile fittings

for homogeneous (unclumped) winds with a β-law, and

the mass-loss (recipe) from Vink et al. (2000).

Table 7 shows our results for the only two O-type star

reported by Bouret et al. (2005): HD 96715, Teff = 43.5

kK, log g = 4.0, and HD 1904290A, Teff = 39 kK,

log g = 3.6. These results were obtained for the self-

consistent solution together with the ones after just one

iteration starting from a β-law. It is observed that

models starting from a β-law largely overestimate the

terminal velocity and slightly underestimate the mass-

loss rate. Self-consistent calculations find a fairly good

http://www.eso.org/sci/observing/tools/uvespop/field_stars_uptonow.html
http://www.eso.org/sci/observing/tools/uvespop/field_stars_uptonow.html
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Table 5. Stellar and wind parameters for ζ-Puppis from previous studies compared with our self-consistent results. Line-force
parameters are also listed.

Previous Studies Present Work

Reference Teff log g R∗/R� Ṁ v∞ k α δ ṀSC vSC
∞

[kK] [10−6M� yr−1] [km s−1] [10−6M� yr−1] [km s−1]

Noebauer & Sim (2015) 42 3.6 19.0 45.0 881 0.120 0.678 0.041 11.0±3.5
3.0 2 500± 280

Bouret et al. (2012) 40 3.64 18.7 2.0 2 300 0.120 0.655 0.039 5.2±1.6
1.2 2 700± 300

Puls et al. (2006)
39 3.6 29.7 8.5 2 250 0.115 0.654 0.044 9.3±2.9

2.2 3 200± 350

39 3.6 18.6 4.2 2 250 0.114 0.658 0.049 4.6±1.3
1.1 2 570± 300

Table 6. Same as Table 5, but for HD 163758 and HD 164794. Stellar and wind parameters are from Bouret et al. (2012) and
Krtička et al. (2015) respectively.

Previous Studies Present Work

Name Teff log g R∗/R� Ṁ v∞ k α δ ṀSC vSC
∞

[kK] [10−6M� yr−1] [km s−1] [10−6M� yr−1] [km s−1]

HD 163758 34.5 3.41 21.0 1.6 2 100 0.087 0.679 0.112 3.3±1.1
0.8 2 040± 280

HD 164794 43.8 3.92 13.1 2.9 3 090 0.141 0.614 0.020 2.3±0.6
0.5 3 304± 400

Table 7. Comparison of self-consistent with β-law (single-step) models for the two stars analyzed by Bouret et al. (2005).
Self-consistent models reproduce better the line-fitted wind parameters obtained by these authors (β=1: v∞ = 3000 km s−1,
Ṁ = 1.8× 10−6 M� yr−1, and β=0.8: v∞ = 2300 km s−1, Ṁ = 6× 10−6 M� yr−1).

Model Teff log g R∗/R� k α δ v∞ Ṁ

[kK] [km s−1] [10−6M� yr−1]

Self-Consistent 43.5 4.0 11.9 0.159 0.603 0.032 3 342± 240 1.55±0.45
0.3

β = 1.0 43.5 4.0 11.9 0.118 0.647 0.021 4 187± 290 1.45±0.35
0.25

Self-Consistent 39 3.6 19.45 0.116 0.657 0.079 2 412± 210 5.8±2.0
1.3

β = 0.8 39 3.6 19.45 0.039 0.815 0.062 6 789± 570 4.2±0.9
0.7

agreement to both: the observed mass-loss rate and ter-

minal velocity. For the mass-loss rate in this figure,

we have included the result calculated using Vink et al.

(2000) recipe. It is clear that our self-consistent method

gives values of Ṁ much closer to the observed ones.

We also apply our self-consistent procedure to objects

analyzed by means of FASTWIND adopting unclumped

winds. For that purpose, we also examine some field

Galactic O-type stars from Markova et al. (2018). Table

8 summarizes our results. We found a fair agreement be-

tween observed and calculated mass-loss rates (see Fig.

9). These results confirm that our methodology delivers

the proper mass-loss rate for the ranges in Teff and log g

given above. Below these thresholds, mass-loss rates

present larger values compared with both: observational

and Vink’s theoretical values. This is probably due to

the fact that the line-force multiplier is not longer a lin-

ear function of t (in the log-log plane, see Fig. 4), and

the line-force parameters are not constant throughout

the wind.

However, it is important to remark that uncertainties

of ∆Teff ∼ ±1 000 K and ∆ log g ∼ ±0.1 dex, produce

uncertainties in the mass-loss rates up to a factor of 2

(see blue error bar in the top panel of Fig. 9), which can

be considered as the upper threshold for the mass-loss

rate. Hence, even though our self-consistent hydrody-

namics gives confident values for Ṁ , these good results

are strongly dependent on the assumed stellar parame-

ters.

7. CONCLUSIONS

In the present work we have presented a treatment

to calculate a self-consistent line-force parameters cou-

pled with the hydrodynamics in the frame of the radia-

tion driven wind theory. Thanks to this procedure, we

achieve a unique well-converged solution that does not

depend on the chosen initial values. This is important

because it reduces the number of free parameters (now

β, v∞ and Ṁ are no more input parameters) to be de-

termined by fitting synthetic spectra against observed

ones.
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Table 8. Resulting self-consistent wind parameters (vSC
∞ and ṀSC) calculated for stars analyzed by Markova et al. (2018). Error

margins presented here for wind parameters are undergone from uncertainties of ±1 000 for Teff and ±0.1 for log g. Last two
columns show the ratio between self-consistent and observed mass-loss rates and the ratio between self-consistent and Vink’s
mass-loss rates.

Field Star Teff log g R∗/R� k α δ vSC
∞ Ṁ ṀSC/Ṁobs ṀSC/ṀVink

[kK] [km s−1] [10−6M� yr−1]

HD 169582 37 3.5 27.2 0.102 0.668 0.063 3 017± 700 7.1±3.6
2.4 1.10 1.26

CD-43 4690 37 3.61 14.1 0.105 0.653 0.058 2 310± 540 1.5±0.9
0.55 1.22 1.16

HD 97848 36.5 3.9 8.2 0.123 0.601 0.034 2 532± 470 0.17±0.09
0.06 0.89 0.95

HD 69464 36 3.51 20.0 0.099 0.664 0.076 2 412± 580 3.2±1.9
1.2 1.14 1.30

HD 302505 34 3.6 14.1 0.092 0.643 0.077 2 331± 460 0.68±0.42
0.26 1.24 0.98

HD 148546 31 3.22 24.4 0.073 0.718 0.243 1 300± 350 5.3±4.7
2.5 0.94 2.24

HD 76968a 31 3.25 21.3 0.071 0.711 0.248 1 212± 300 3.5±3.3
1.7 1.43 2.11

HD 69106 30 3.55 14.2 0.068 0.644 0.149 1 455± 300 0.21±0.16
0.09 1.48 1.78

1.0 1.1 1.2 1.3 1.4 1.5 1.6

2.0

2.5

3.0

3.5

(α/(1-α))0.5

V
∞
/V
es
c

Figure 8. v∞/vesc versus
√
α/(1− α). For each set of log g

values there is a linear dependence for Z�. Slope 2.25 of
Eq. 18 is also displayed. For sub-solar abundance there is
a unique linear relationship (see text for details). Symbol
description is the same as in Fig. 5

Our calculations contemplate the contribution to the

line-force multiplier from more than ∼ 900 000 atomic

transitions, an NLTE radiation flux from the photo-

sphere and a quasi-LTE approximation for the occupa-

tional numbers. We have to notice that for Teff > 30 000

K the line force parameters can be confidently used as

constants throughout the wind.

The set of solutions given in Table 3 differs from previ-

ous line-force parameter calculations performed by Ab-

bott (1982) and Noebauer & Sim (2015). With these

new values, we found a different scale relation for the ter-

minal velocity that is steeper than the usually accepted

one. This new relation might explain the observed scat-

ter found in the terminal velocity from massive stars

located at the hot side of the bistability jump (Markova

& Puls 2008).

Concerning the wind parameters derived from mod-

elling O-type stars with homogeneous winds, our mass-

loss rates are in better agreement with the predicted

ones given by the Vink et al. (2000) formula.

For the calculation of synthetic spectra for O-type

stars (ζ-Puppis, HD 163758 and HD 164794), we con-

clude that our procedure’s values for mass-loss rate

and hydrodynamics reproduce the observed line profiles

when an adequate value for the clumping factor is cho-

sen.

Even knowing the limitations of the m-CAK theory,

this remains an extremely useful framework to get an

approach about the real parameters of stellar winds on

massive stars. In spite of the approximations assumed

under this theory, we obtain reliable values for mass-

loss rates and self-consistent hydrodynamics in a short

period of time with a great CPU time savings (compare

with big efforts made by, e.g., Mokiem et al. 2005 or

Fierro-Santillán et al. 2018).

Our new self-consistent procedure can be used to de-

rive accurate mass-loss rates and: (i) study evolutionary

tracks, where a high precision on terminal velocities is

not required, and (ii) derive trusty clumping factors via

line-profile fittings.
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APPENDIX

A. FASTWIND SPECTRA
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Figure 10. Resulting FASTWIND spectra for ζ-Puppis with Teff = 39 kK, log g = 3.6, R∗/R� = 18.6 and Ṁ = 4.6 × 10−6

M� yr−1. Clumping factors are fcl = 1.0 (red, homogeneous), fcl = 5.0 (blue) and fcl = 9.0 (green).
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Figure 11. Resulting FASTWIND spectra for ζ-Puppis with Teff = 40 kK, log g = 3.64, R∗/R� = 18.6 and Ṁ = 5.2 × 10−6

M� yr−1. Clumping factors are fcl = 1.0 (red, homogeneous), fcl = 5.0 (blue) and fcl = 9.0 (green).
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Figure 12. Resulting FASTWIND spectra for HD 163758 with Teff = 34.5 kK, log g = 3.41, R∗/R� = 21.0 (see Bouret et al.
2012) and Ṁ = 3.3× 10−6 M� yr−1. Clumping factors are fcl = 5.0 (red), fcl = 6.0 (blue) and fcl = 7.0 (green).
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Figure 13. Resulting FASTWIND spectra for HD 164794 with Teff = 43.8 kK, log g = 3.92, R∗/R� = 13.1 (stellar parameters
taken from Krtička et al. 2015) Ṁ = 2.3× 10−6 M� yr−1. Clumping factors are fcl = 5.0 (red), fcl = 2.0 (blue) and fcl = 1.0
(homogeneous, green).


