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ABSTRACT
The conformational space of the ribose-phosphate backbone is very complex as
it is defined in terms of six torsional angles. To help delimit the RNA backbone
conformational preferences, 46 rotamers have been defined in terms of these torsional
angles. In the presentwork, we use the ribose experimental and theoretical 13C′ chemical
shifts data and machine learning methods to classify RNA backbone conformations
into rotamers and families of rotamers. We show to what extent the experimental 13C′

chemical shifts can be used to identify rotamers and discuss some problem with the
theoretical computations of 13C′ chemical shifts.

Subjects Biochemistry, Bioinformatics, Computational Biology
Keywords RNA, Rotamers, Machine learning, Chemical shifts, DFT

INTRODUCTION
Nucleic acids are central macromolecules for the storing, flow and regulation of genetic
and epigenetic information in cellular organisms. RNA can adopt a wide variety of 3D
structural conformations and this structural variability explains themultiplicity of roles that
RNA performs on cells (Wan et al., 2011; Eddy, 2001). The classification of RNA backbone
conformations into rotamers is a very useful way to delimit the conformational space of
RNA structures. Rotamers are defined in terms of the backbone torsional angles namely
α, β, γ , δ, ε and ζ (as shown in Fig. 1). This classification was proposed by Richardson
et al. (2008), and has been achieved after the attempts of different research groups to find a
consensus RNA backbone structural classification. There are 55 backbone rotamers, from
which 46 are rotamers with well defined torsional angles distributions, and the remaining
nine rotamers were proposed as wannabe rotamers. The ‘suite’ is the basic subunit used
for rotamer classification. The suite is defined from sugar-to-sugar (or from the δ torsional
angle of residue i-1 to the δ torsional angle of residue i), and it is contained within the
dinucleotide (DN) subunit (see Fig. 1). 13C′ chemical shifts (CS) have been successfully
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Figure 1 RNADN template with sequence AA, obtained from a random PDB structure. C, H, O, N and
P nuclei are colored in green, white, magenta, blue and yellow, respectively. Torsional angles of RNA back-
bone are named on Greek characters (α, β, γ , δ, ε, ζ ). Suite (from δi−1 to δi), DN and nucleotide subunits
are indicated.

Full-size DOI: 10.7717/peerj.7904/fig-1

used by our and other groups for proteins and glycans structural determination, validation
and refinement (Shen & Bax, 2010; Martin et al., 2013; Frank et al., 2015; Garay & Vila,
2018). 1H CS have been successfully used by Sripakdeevong et al. (2014) for structure
determination and prediction of noncanonical RNA motifs. Methods incorporating 13C
CS for RNA structure determination, validation and refinement are also available (Frank,
Stelzer & Bae, 2013; Frank, Law & Brooks, 2014; Brown, Summers & Johnson, 2015) but, to
our knowledge, none of them include the explicit use of backbone rotamers. In this work,
we study how to use 13C′ CS to classify RNA backbone conformations into rotamers with
machine learning models. Overall, a complete understanding of the molecular basis of the
biological processes in which RNA molecules are involved entails an accurate knowledge
of their 3D structure. In this regard, it is well known that the computation of the 13C′

chemical shifts (CS) for RNA, at DFT-level of theory, is very sensitive to the backbone
conformation of the molecule. Thus, among other potential application of our work is to
build, for any possible combination of RNA backbone torsional-angles conformations, a
detailed 13C CS look-up table. Hence, given a 13C CS value the corresponding set of RNA
backbone torsional angles can be quickly determined, and vice versa, making the look-up
table a very valuable tool with which determine, validate and refine RNA conformations.
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Figure 2 Flowchart of the general work-flow followed in this work. The experimental data retrieval
process and the theoretical data generation steps are indicated inside the green and the blue boxes, respec-
tively. The classification step using machine learning models is indicated with an orange box. The term ro-
tamers could indicate the original backbone rotamers or redefined rotamer families.

Full-size DOI: 10.7717/peerj.7904/fig-2

METHODS
In order to provide a clear understanding of the methodology implemented in this work,
a flowchart with the overall work-flow is shown in Fig. 2. A theoretical dataset of RNA
backbone rotamers with 13C′ CS values is necessary to train the machine learning models
to classify RNA experimental suites into rotamers. In the following two sections we explain
how we obtained both datasets.

Experimental dataset
Experimental 13C′ CS data for RNA molecules was retrieved from the BioMagResBank
(BMRB; http://www.bmrb.wisc.edu) (Ulrich et al., 2008), along with their corresponding
structures from the Protein Data Bank (PDB; https://www.rcsb.org/) (Berman et al., 2000).
As it is fundamental to count on reliable experimental 13C′ CS values for an accurate
structural analysis, data curation was carried out using 13Check_RNA (Icazatti et al., 2018)
a Python module to correct RNA 13C′ CS systematic errors, recently developed in our
group. The obtained dataset (see Table S1) contains 26 RNA structures with 13C′ CS for
the five ribose carbon nuclei (C1′, C2′, C3′, C4′ and C5′), providing a total of 391 suite
subunits and 391 sets of 13C′ CS. As there are at least 8 models in the NMR ensembles
for each RNA molecule (up to 20 in some cases), the complete database contains 7,612
conformations. Given that we needed a one-to-one correspondence between the sets of
CS and the rotamer suites, only the first structure from each NMR ensemble was used,
considering that the first model listed in the PDB files is usually reported as the structure
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with the lowest energy scoring. This choice has a negligible average effect on the results of
our analysis (see Figs. S10 and S11).

For every PDB entry, the 3D coordinates of the first model were extracted in order to
compute the backbone torsional angles (δi−1, εi−1, ζi−1, αi, βi, γi, δi) of the suites. Then,
these torsional angles were used to assign the RNA suites to their corresponding rotamer
names. From the 46 original rotamers, only 38 are represented in the final experimental
dataset.

Theoretical dataset
In order to have a complete dataset with the 46 RNA backbone rotamers and their
corresponding 13C′ CS, a theoretical dataset was also constructed. A template for each
of the 16 possible combinations of DN (A, C, U and G) sequences was obtained from
RNA structures found in the PDB. A Monte-Carlo conformational sampling was carried
out by rotating the backbone torsional angles of the corresponding suite contained
in each DN, while keeping the bond-lengths and bond-angles fixed (rigid geometry
approximation). To perform such rotations, the torsional angle distributions for each of
the 46 RNA backbone rotamer suites (Richardson et al., 2008) were used. A function which
eliminates conformers with atom clashes was implemented as part of the routine. As a
result, 10,340,852 conformations were generated. Quantum-theory level computation of
CS is very time-consuming. Therefore, to reduce the number of calculations, a smaller
number of conformations was selected. Aiming to keep most of the variability of the
originally generated conformations, we computed the Shannon entropy S (see Eq. (1)) of
the distribution of torsional angles. Here, Pi is the probability of the i conformation taken
from a histogram with a bin size of 5 degrees. The entropy was computed for different
subsets of conformations and sample sizes (from 5 to 100) (see Fig. 3). We decided to use
the 80% of the maximum entropy as a cutoff, which implies a sample size of around 40
conformations per rotamer. As we also considered the 16 combinations of DN sequences,
the total number of conformations computed at the DFT level of theory was 30,530.

S=−
∑
i

Pi lnPi (1)

Details of the quantum-chemical calculations of the 13C′ shieldings
Previous to the DFT calculations of the obtained dataset, a test was performed over
a subset of 41 rotamers of sequence AA. A similar approach as described below for
mononucleotides was used, except that the templates were methyl-blocked DNs:
Me−O3′i−2−Ai−1−Ai−O5′i+1−Me. Subsequent comparison of the obtained 13C′

CS for these DNs with those obtained from the corresponding mononucleotides, gave
the same result within 10−2 ppm while the total computation time was approximately
half the total time for computing the complete DNs. Thus, the DN conformations from
the final dataset were split in their corresponding mononucleotide subunits. Nucleotide
subunits were treated as terminally-blocked mononucleotides with methyl groups (Me)
in both termini (Me−O3′i−1−Xi−O5′i+1−Me). Phosphate groups of the backbone
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Figure 3 Percentage of entropy of the sample against sample size for a given DN sequence and ro-
tamer, UU and 1a, respectively, in this case. The red line and the blue bars represent the mean and the
range of percentage of entropy for a given sample size, respectively.

Full-size DOI: 10.7717/peerj.7904/fig-3

were treated as neutral, because we assume that all backbone charges are shielded during
the quantum-chemical calculations. Results based on the analysis of 139 conformations
of ubiquitin at pH 6.5 (Vila & Scheraga, 2008), indicate that use of neutral, rather than
charged, aminoacids is a significantly better approximation of the observed 13Cα CS in
solution for the acidic groups, and a slightly better representation, though significantly less
expensive in computational time, for the basic groups. Considering that the phosphate
group in RNA is close to the nucleus of interest (as it happens with the acidic groups) we
can assume, without losing generality, that neutral rather than charged phosphate group
is a better approximation for the computation of the 13C′ CS in the RNA suites. This
approach was also adopted because under physiological conditions, the phosphate groups
are completely ionized and neutralized by positive charges (Lehninger Nelson & Cox, 2000).
A 6–311+G(2d,p) locally dense basis set (Chesnut & Moore, 1989) was used for calculation
of backbone 13C′ CS and their nearest neighbor nuclei, at the DFT level of approximation
(see Fig. 4 for details). The remaining nuclei were treated with a 3-21G basis set. The OB98
density functional was used because good results were previously observed for proteins and
glycans in our group (Vila & Scheraga, 2009; Garay et al., 2014). All DFT computations
were done using the Gaussian package (Frisch et al., 2004). Summarizing, the adopted
strategies make the computed 13C′ CS frommononucleotides suitable for comparison with
the 13C′ CS observed from complete RNA molecules.

Families of rotamers
The original 46 RNA backbone rotamers were grouped in families based on their δi−1, δi, α
and γ torsional angles values. Only these four (out of seven) backbone torsional angles in
the suite subunit were chosen to group the rotamers because their distributions of observed
values are bimodal (δi−1 and δi) and trimodal (γ and α), with clearly separated peaks (see
Fig. 5). This selection allowed us to group rotamers based on the torsional angle values
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Figure 4 Example of a methyl blockedmononucleotide used for DFT calculations. The locally-dense
basis-set approach is indicated by the different colors: the nuclei in magenta were treated with the ex-
tended 6-311+G(2d,p) basis set and the nuclei in green were treated with the smaller 3-21G basis set.

Full-size DOI: 10.7717/peerj.7904/fig-4

within the different peaks. As summarized in Table 1, four families were found when both
δi−1 and δi torsional angles in the suite were used (see Table 2), seven families for the αγ
combination, 10 families for δi−1δiα, and δi−1δiγ , and 22 families for δi−1δiαγ . In order
to evaluate the classification performance of the RNA A–form helix conformations, the
rotamers were also grouped as: (i) A_noA families, where the 46 rotamers were separated
in A–form helix (1a) vs. no A–form helix rotamers, and (ii) A*_noA* families, where the
46 rotamers were separated in rotamers related to A–form helix (1a, 3d, 3b, 5d, 0a, 6b and
4b rotamers) vs. the remaining rotamers.

Classification
A series of machine learning methods were used to classify RNA suites as rotamers (or
families of rotamers) based on their ribose 13C′ CS values. The following classification
methods from the scikit-learn Python library (Pedregosa et al., 2011) were trained: K-
Nearest Neighbors (NN), Decision Tree (DT), Random Forest (RF), Support Vector
Machine (SVM) and a class of neural network called Multi-Layer Perceptron (MLP).
Different model parameters were tried out (see Table S3). A random sampling algorithm
was also used as a control, where suites were classified randomly. The sequence of the
suite was considered for classification, because we found that the performance increased
compared to a sequence–independent classification (see Fig. S10). The classification
performance was assessed with four measures: weighted accuracy, precision, recall and F1
score (Van Rijsbergen, 1979). The weighted accuracy was used in order to recalibrate the
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A B

C D
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Figure 5 Distribution plots for the six RNA backbone torsional angles α, β, γ , δ, ε and ζ in (A), (B),
(C), (D), (E) and (F), respectively. Torsional angles values were obtained from the RNA09 database used
in Murray LW. 2007. RNA Backbone Rotamers and Chiropraxis. Doctoral Dissertation, Dept. of Bio-
chemistry, Duke University, Durham, NC, USA.

Full-size DOI: 10.7717/peerj.7904/fig-5

contribution of the different rotamers, because the observed frequency of the rotamers
is highly uneven (see Fig. S1). The weights used in the weighted accuracy were obtained
from a substitution matrix (ROSUM, for ROtamers SUbstitution Matrix). The definition
of the ROSUM matrix was inspired by the BLOSUM matrix used for protein sequence
alignment (Henikoff & Henikoff, 1992). The matrix is used to weight the match or no
match, between the true rotamer and the predicted rotamer, as a function of the euclidean
distance between rotamers (in the seven-dimensional space of the suite backbone torsional
angles) and the observed frequency of each rotamer. The torsional angles values and the
observed frequencies are extracted from the rotamers table (Richardson et al., 2008). A
ROSUM matrix was obtained for each of the rotamer families described in the previous
section. Further details on the construction of the ROSUM matrices are provided in Data
Section S4. The precision and recall were used because they gave a general overview of the
performance of the method. In particular, they allowed us to assess the fraction of classified
items that were correctly identified and the sensitivity of the method. The F1 score was also
used as a performance measure because it is the harmonic mean of precision and recall
and as such, it gives more realistic measure of the classifier’s performance.

Experimental vs. theoretical
The classificationmodels trainedwith theoretical data were used to classify the experimental
suites. The result of the theoretical calculations (described in a previous section) are
theoretical NMR isotropic shieldings (σ ). The theoretical shieldings (σcomp) must be
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Table 1 The 46 RNA backbone rotamers were arranged in 22, 10, 10, 7 and 4 families of rotamers
based on the observed distributions of δi−1δiαγ , δi−1δiα, δi−1δiγ , αγ and δi−1δi torsional angles values,
respectively. Additionally, the 46 rotamers were separated in RNA A–form helix vs. no A–form helix
rotamers in two ways: (i) RNA A-form helix rotamer 1a vs. the remaining no A–form helix rotamers
(A_noA families) and (ii) rotamers related to A–form helix (i.e., 1a, 3d, 3b, 5d, 0a, 6b, 4b) vs. the
remaining rotamers (A*_noA* families).

46
rotamers

22 families
δi−1δiαγ

10 families
δi−1δiα

10 families
δi−1δiγ

7 families
αγ

4 families
δi−1δi

2 families
A_noAi

2 families
A*_noA*ii

&a e a a e a b b
#a q c c e c b b
0a q c c e c b a
0b t d d e d b b
0i o g g b c b b
1[ l b b e b b b
1a e a a e a a a
1b l b b e b b b
1c d e e d a b b
1e f e e f a b b
1f d e e d a b b
1g c a a c a b b
1L e a a e a b b
1m e a a e a b b
1o m i i g b b b
1t k f f d b b b
1z j b b c b b b
2[ t d d e d b b
2a q c c e c b b
2h r g g f c b b
2o v j j g d b b
3a e a a e a b b
3b l b b e b b a
3d a a a a a b a
4a q c c e c b b
4b t d d e d b a
4d n c c a c b b
4g p c c c c b b
4n o g g b c b b
4p s d d a d b b
4s u h h f d b b
5d a a a a a b a
5j b e e b a b b
5q h f f b b b b
5z j b b c b b b
6d n c c a c b a

(continued on next page)
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Table 1 (continued)

46
rotamers

22 families
δi−1δiαγ

10 families
δi−1δiα

10 families
δi−1δiγ

7 families
αγ

4 families
δi−1δi

2 families
A_noAi

2 families
A*_noA*ii

6g p c c c c b b
6j o g g b c b b
6n o g g b c b b
6p s d d a d b b
7a e a a e a b b
7d a a a a a b b
7p g b b a b b b
7r i i i c b b b
8d n c c a c b b
9a e a a e a b b

Table 2 Mean torsional angles values of the representative (i.e., most frequent) rotamers from the four
δi−1δi families. Values were extracted from the rotamer table of Richardson et al. (2008).

δi−1δi families 46 rotamers δ(i−1) ε(i−1) ζ(i−1) α(i) β(i) γ(i) δ(i)

a 1a 81 212 289 295 174 54 81
b 1b 84 215 289 300 177 58 145
c 2a 145 260 289 288 193 53 84
d 2[ 146 259 291 292 210 54 148

subtracted from a reference shielding value (σref ) to be transformed into theoretical CS
(δcomp) (see Eq. (2)) which can then be compared with the experimental CS (δexp). A
simple reference value of σref = 185.00 ppm was used, which is very close to the theoretical
isotropic shielding for TMS (σTMS,th) (Vila & Scheraga, 2009), and it is consistent with
the reference value previously defined for proteins and glycans. Alternatively, a set of
effective references were obtained as a function of: (i) the nitrogenous base sequence, (ii)
the combinations of ribose puckering states in the four families of rotamers obtained from
δi−1δi torsional angles distributions, (iii) the five carbon nuclei 13C′ CS mean values and
(iv) a linear regression between theoretical and experimental ribose 13C′ CS values for a set
of suites (see Table S2).

δcomp= σref −σcomp. (2)

Theoretical vs. theoretical
The classification models trained with theoretical data were also used to classify the
theoretical suites. In this case, classification was assessed through a leave-one-out cross-
validation (LOO-CV). In LOO-CV, the dataset is split into a test set and training set in a
one-folded manner, which means that at every iteration a unique suite is taken apart from
the dataset and the remaining suites are used for training. This process continues until
every suite from the theoretical dataset is evaluated.
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Experimental vs. experimental
A LOO-CV was also used to classify the experimental suites.

RESULTS AND DISCUSSION
For experimental vs. theoretical classification (Fig. 6) the 46 rotamers can be classified by
means of backbone 13C′ CS with a maximal F1 score of 0.34 (see Table S5). When the 46
rotamers are grouped in families based on their torsional angles distributions, the highest
scores correspond to the use of δ(i−1) and δ(i) torsional angles, where all the classifiers
gave maximal scores above 0.65. This result is in agreement with the fact that backbone
13C′ CS are highly sensitive to ribose puckering states (Giessner-Prettre & Pullman, 1987),
since the δ torsional angle keeps a direct relation with the ribose puckering (Gelbin et al.,
1996). The δi−1δiγ , δi−1δiα, δi−1δiαγ and αγ families also show improved scores over the
classification of the 46 rotamers. The A*_noA* and A_noA families show low classification
scores relative to their random choice classification scores, whichmeans that backbone 13C′

CS cannot distinguish between A–form helix and no A–form helix rotamers. In general the
use of more complex classifier models such as Neural Networks, Support Vector Machine,
Decision Tree and Random Forest does not assure a better performance for the current
task, thus the simpler Nearest Neighbor model can be chosen for classification into RNA
rotamers. In both the theoretical vs. theoretical and the experimental vs. experimental
classifications (see Figs. 7 and 8, respectively), the performances increase for every group
of families, compared to the experimental vs. theoretical classification. In the theoretical
vs theoretical classification the performance values are very close to 1.0 for δi−1δi families
and A–form helix vs. no A–form helix rotamers (A_noA). In the theoretical vs. theoretical
classification, the performance value ranges are particularly narrow, except for MLP and
SVM classifiers.

The high scores obtained for the theoretical vs. theoretical classification indicates that
13C′ CS are in fact very sensitive to changes of the torsional angles, the only variable
we changed for the construction of the theoretical dataset. At the same time the lower
performance obtained in the experimental vs. theoretical classification, is signalling that
the atomistic model used for the DFT computations is not good enough to reproduce the
experimental observations.

One reason the theoretical vs. theoretical classification gives better results compared to
both the experimental vs. experimental and the experimental vs. theoretical classifications,
could be that the experimental database is very sparse and the theoretical dataset is instead
dense, or in other words the coverage of the theoretical dataset is much better than the
experimental one. To explore if this is in fact a reasonable explanation, we removed
elements from the theoretical dataset to mimic the sparsity of the experimental dataset (see
Fig. S13). We found that while the weighted accuracy decreased (on average 0.09 points)
this is not enough to explain the lower performance of the experimental vs. theoretical (on
average 0.31 points lower) or experimental vs. experimental (on average 0.16 points lower)
classifications. In another experiment, noise on the order of the expected error (1.47 ppm)
between experimental and theoretical 13C′ CS for those rotamers correctly classified, was
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Figure 6 Box-plots with the weighted accuracy and F1 score for the experimental vs. theoretical clas-
sification of rotamers and families of rotamers, using Nearest Neighbor (NN), Decision Tree (DT),
Random Forest (RF), Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM) classifiers.
A random-choice (RAND) algorithm was used as a baseline reference. Classification results for the 46,
δi−1δiαγ , δi−1δiα, δi−1δiγ , αγ and δi−1δi, A*_noA* and A_noA rotamer families are shown in (A), (B), (C),
(D), (E), (F), (G) and (H) respectively. The highest values of weighted accuracy and F1 score, for the ex-
perimental vs. theoretical classification along with parameters of the classifiers are provided in Tables S4
and Fig. S1. Precision and recall are shown in Fig. S12.

Full-size DOI: 10.7717/peerj.7904/fig-6
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Figure 7 Box-plots with the weighted accuracy and F1 score for the theoretical vs. theoretical clas-
sification of rotamers and families of rotamers, using Nearest Neighbor (NN), Decision Tree (DT),
Random Forest (RF), Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM) classifiers.
A random-choice (RAND) algorithm was used as a baseline reference. Classification results for the 46,
δi−1δiαγ , δi−1δiα, δi−1δiγ , αγ and δi−1δi, A*_noA* and A_noA rotamer families are shown in (A), (B), (C),
(D), (E), (F), (G) and (H) respectively.
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Figure 8 Box-plots with the weighted accuracy and F1 score for the experimental vs. experimental
classification of rotamers and families of rotamers, using Nearest Neighbor (NN), Decision Tree (DT),
Random Forest (RF), Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM) classifiers.
A random-choice (RAND) algorithm was used as a baseline reference. Classification results for the 46,
δi−1δiαγ , δi−1δiα, δi−1δiγ , αγ and δi−1δi, A*_noA* and A_noA rotamer families are shown in (A), (B), (C),
(D), (E), (F), (G) and (H) respectively.
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added to the theoretical 13C′ CS and then a theoretical vs. theoretical + noise classification
was performed (see Fig. S14). Both tests reinforce the idea discussed in the previous
paragraph, i.e., we need a better model for the theoretical DFT computations. These
experiments also provide indirect evidence indicating that the accuracy of the experimental
vs. experimental classification will be improved as more RNA conformations are deposited
in databases giving another incentive to determine and deposit RNA structures and 13C′

CS data.

CONCLUSION
In this work, we explored the use of RNA backbone 13C′ CS to classify backbone
conformations into rotamers and families of rotamers. In general, our study led us to
the following conclusions: (1) the classification of the rotamer families defined by the δ
torsional angles (see Table 2), which are directly related to the ribose puckering states, gives
the best performances, in line with the results previously described by other authors; (2)
classification of A-form helix and no A-form helix rotamers using 13C′ CS is not better than
a random classification; (3) the performance achieved using the simple Nearest-Neighbor
method is on a par with more complex classifiers such as Neural Networks, Support
Vector Machine, Decision Tree and Random Forest; (4) 13C′ CS values are able to sense
changes in torsional angles, but they are also affected by other factors, thus future DFT
computations of RNA 13C′ CS should use more complex models than the one used in this
work; (5) experimental 13C′ CS can be useful to identify RNA rotamers, if the rotamers
are re-grouped in smaller families as the 46 rotamers seems to be a too fine description
for accurate discrimination in terms of 13C′ CS; (6) the usefulness of 13C′ CS for rotamers
identification should improve as more RNA structures and experimental 13C′ CS become
available.
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