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We conduct force-free simulations of a single neutron star undergoing orbital motion in flat spacetime,
mimicking the trajectory of the star about the center of mass on a compact binary system. Our attention is
focused on the kinetic energy being extracted from the orbit by the acceleration of the magnetic dipole
moment of the neutron star and, particularly, on how this energy gets distributed within its surrounding
magnetosphere. A detailed study of the resulting magnetospheric configurations in our setting is presented,
incorporating as well the effects due to neutron star spin and the misalignment of the magnetic and orbital
axes. We find many features resembling those of pulsar magnetospheres for the orbiting neutron star—even
in the absence of spin-of particular interest being the development of a spiral current sheet that extends
beyond the light cylinder. Then, we use recent advances in pulsar theory to estimate electromagnetic
emissions produced at the reconnection regions of such current sheets.
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I. INTRODUCTION

Aneweraofmultimessenger astronomyhas startedwith the
detection of gravitational waves (GW) from a binary neutron
star merger (GW170817) by advanced LIGO/advanced Virgo
[1,2], followed by broadband electromagnetic (EM) observa-
tions [3]. Binary systems involving a neutron star (NS) are the
most likely sources for such simultaneous detections of GW
and EM signals. In this context, EM emissions from the
relatively cleaner environment preceding the merger could
provide crucial information about the merger process, sky
localization of the source, and the physical parameters of the
system, which cannot be accurately obtained only by the
gravitational wave observation.
The NS in the binary is generally expected to possess an

approximately dipolar magnetic field, and they are likely to
be surrounded by a force-free magnetosphere. The source
for the precursor EM counterparts comes fundamentally
from the orbital and rotational energy of the binary and
its individual constituents. This kinetic energy is first
electromagnetically extracted from each compact object,
by means of the surrounding plasma, and later reprocessed

within the magnetosphere to produce the observable emis-
sions. Starting from the pioneering work of Goldreich and
Julian [4] and Blandford and Znajek [5], the mechanisms to
tap rotational energy from a compact object (immersed in a
tenuous plasma) were unveiled: while a NS admits a
classical electrodynamics interpretation as a Faraday disk,
for a spinning black hole (BH), the energy is instead
extracted in a form of generalized Penrose process, widely
known as the Blandford-Znajek mechanism. For the orbital
motion, on the other hand, there are two such extraction
mechanisms identified. The first one is associated with a
purely classical effect, produced by the acceleration of a
magnetic (e.g., dipole) moment [6]. The EM energy loss rate
from the motion of a single NS with a dipole magnetic field,
as well as for two NSs in a binary, has been estimated
(assuming vacuum) in Ref. [7]. The second mechanism is
known as unipolar induction, which essentially captures the
transfer of linear momentum into EM energy, due to the
motion of a conductor (or compact object) through a
magnetized medium. This effect was studied a long time
ago for moving conductors such as satellites (see, e.g.,
Refs. [8,9]), later extended to NS binaries [10–13], and also
generalized for BHs, relying on ideas from the membrane
paradigm [14] to build a circuit model in black hole–neutron
star (BHNS) binaries [11,12,15,16].
For a BHNS binary, one might associate the moving

magnetic dipole (MD) effect with orbital energy being
extracted from the NS, while the unipolar induction (UI)
mechanism would operate to remove energy from the BH
as it moves across the magnetic field of the NS. In a neutron
star–neutron star (NSNS) system, on the other hand, both
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mechanisms are expected to operate together at each NS,
with intensities depending mainly on their relative mag-
netizations. That is, each star could produce the MD effect
due to the orbital motion of its own magnetic moment, and
could operate as UI as it moves across the magnetic field
of its companion. Of course, this is only schematic, and
nontrivial superposition of these two mechanisms, along
with other possible effects (like, e.g., magnetospheric flares
[17]), would complicate the picture. The relative orienta-
tions of the magnetic moments (with respect to the orbital
plane, and among them in the case of NSNS) and the role
played by the spin of each compact object complicates
things even further.
Simulations of compact NS binaries in full general

relativity, paying attention to precursor EM signals, have
been carried out (see, e.g., Ref. [18] for a review). Late-time
inspiral phases of NSNS were considered in Refs. [19–21]
using general relativistic force-free (GRFF) simulations,
broadly matching ideal magnetohydrodynamics stellar
interiors with an exterior force-free magnetosphere. Also,
BHNS binary systems at fixed orbital separation—with and
without BH spin—were studied in Ref. [22], relying on a
similar GRFF numerical approach. Overall, the EM lumi-
nosity found was consistent with estimations from the UI
model,1 and the Poynting flux distributions were analyzed
in both scenarios. Even though the MD mechanism has
been mentioned in these articles as contributing to the total
computed luminosity, typically less attention has been
devoted to this effect in the literature as compared to the
UI mechanism. For NSNS binaries, further magnetospheric
properties such as the formation of current sheets (CSs)
were reported [19–21], considering different relative mag-
netic strengths and orientations. However, in these previous
studies, the details of the magnetosphere and the EM
signals associated with its structure have not been consid-
ered in great depth.
One of the most challenging aspects of the problem is

how—and how much of—the available energy transferred
to the plasma produces the emissions on the different EM
bands. Even for pulsars, for which the attempts to under-
stand the principal magnetospheric properties has been
done for many decades (e.g., Refs. [23–26]), an ultimate
answer to this question still remains elusive, although, of
course, a lot can be learned from the development of pulsar
theory in this respect (e.g., Refs. [27,28]). In recent years,
there has been significant progress on particle-in-cell (PIC)
simulations, which self-consistently model the regions of
plasma production and particle acceleration (see, e.g.,
Refs. [29–31]).
In this paper, we aim to further clarify the properties

of the magnetosphere around a NS in a compact binary

system. We consider a single NS with dipolar magnetic
fields and surrounded by a force-free plasma, in orbital
motion. Our NS follows a trajectory, in flat spacetime,
which mimics that of a NS about the center-of-mass (CoM)
on a particular binary system. This way, we pay our
attention to the MD energy extraction process and how
this EM energy gets distributed within the magnetosphere,
in a sense, decoupling it from the UI mechanism (or other
curvature effects) involved in the binary. Such a simplified
setting allows us to conduct rather inexpensive, very
accurate, numerical simulations for a detailed study of
these systems. In particular, we investigate their magneto-
spheric features in close analogy to those of pulsars. And
then, we use recent results of pulsar theory to infer possible
EM signals from our numerical results. We see the expected
γ and x rays luminosities estimated from the orbiting NS are
rather weak, rendering their possible detections by current
and near future facilities quite unlikely. And thus, as
observed in Ref. [32], the best chance to detect EM
precursor signals from the inspiral phase of compact binary
systems is from magnetospheric pulsarlike configurations
producing coherent radio emission.
The code used here to evolve the equations of force-free

electrodynamics was first described in Ref. [33] and later
extended in Ref. [34], where a careful treatment to handle
the boundary conditions on the NS surface was presented,
in contrast to the matching procedure used in previous
GRFF simulations.2 Since then, our code has been further
tested and employed in other astrophysical scenarios
[35,36], as well.
The paper is organized as follows. In Sec. II, we set up

the problem and describe our numerical implementation.
The results are presented in Sec. III, first focusing on the
magnetospheric properties of a NS in circular orbits
and then following inspiral trajectories associated with
BHNS and NSNS binaries. Then, possible observational
implications of our results are discussed. We summarize
and conclude in Sec. IV. Throughout this paper, G and c
denote the gravitational constant and the speed of light,
respectively.

II. SETUP

A. General setting

The purpose of this paper is to clarify the magnetosphere
around a NS in a compact binary system. Here, we suppose
that only the NS has a strong magnetic field and the
magnetic field of its companion is much weaker. This is
trivial for the BHNS case and would be a good approxi-
mation for the NSNS case because the first born NS in
NSNS systems is likely to be weakly magnetized [37].

1This holds only prior to the last few orbits before the merger
in Refs. [19–21], in which the dynamics becomes more violent
and nonlinear.

2It is not clear whether such matching employed in the GRFF
simulations can accurately represent the (approximately) per-
fectly conducting NS surface, which is the key condition for
describing the magnetosphere around the NS.
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We shall also assume that the spacetime is flat and that the
NS moves on a given trajectory centered around the origin
of a Cartesian coordinate system xa ¼ ft; x; y; zg, which
would represent the CoM of the binary system. The line
element in this coordinates reads

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2; ð1Þ

thus, with α ¼ 1, βi ¼ 0, and γij ¼ δij representing the
lapse, shift, and spatial metric, respectively. The trajectory
is defined here by the radial distance RoðtÞ and the phase
φoðtÞ [with ΩoðtÞ≡ _φoðtÞ being the associated angular
velocity]. However, our numerical domain will be centered
on the NS instead, thus describing the dynamics from an
adapted foliation with coordinates x̂a ¼ ft̂; x̂; ŷ; ẑg (see
Fig. 1). The coordinates transformation into this “comov-
ing” foliation is defined by

t ¼ t̂; z ¼ ẑ;

x ¼ x̂þ Roðt̂Þ cosðφoðt̂ÞÞ;
y ¼ ŷþ Roðt̂Þ sinðφoðt̂ÞÞ; ð2Þ

and thus

dt ¼ dt̂; dz ¼ dẑ;

dx ¼ dx̂þ ½ _Roðt̂Þ cosðφoðt̂ÞÞ − Roðt̂ÞΩoðt̂Þ sinðφoðt̂ÞÞ�dt̂;
dy ¼ dŷþ ½ _Roðt̂Þ sinðφoðt̂ÞÞ þ Roðt̂ÞΩoðt̂Þ cosðφoðt̂ÞÞ�dt̂:

Therefore, the line element (1) in the new coordinates is

dŝ2 ¼ ðβ̂2 − α̂2Þdt̂2 þ 2β̂idx̂idt̂þ γ̂ijdx̂ix̂j; ð3Þ

where again α̂ ¼ 1 and γ̂ij ¼ δij. However, there is now a
nonvanishing shift vector accounting for the difference
among the NS worldline tangent t̂a and the hypersurface
normal n̂a in this foliation. That is,

β̂i ¼ f _Ro cosφo − vo sinφo; _Ro sinφo þ vo cosφo; 0g;

where we have dropped all time dependencies and defined
vo ≔ RoΩo to simplify the notation. We will consider
essentially two types of trajectories in this work: (i) a
purely circular motion at a constant radius Ro and orbital
frequency Ωo and (ii) quasicircular inspiral orbits which
mimic those of a NS in a binary system close to merger.
The boundary condition at the stellar surface is derived

by assuming the perfectly conducting condition,

0 ¼ Fabt̂a ¼ Fabðα̂n̂a þ β̂aÞ; ð4Þ

which can be easily generalized to incorporate the NS spin
at frequency Ω� by

Fabðt̂a þ Ω�ϕ̂
aÞ ¼ 0; ð5Þ

where ϕ̂a ≡ ð∂ϕ̂Þa. Thus, the resulting condition on the
electric field measured by a fiducial observer in this
adapted foliation (i.e., Êa ≔ Fabn̂a), can be written

Êi ¼ ϵijkðβ̂j þ Ω�ϕ̂
jÞB̂k: ð6Þ

The initial configuration is taken to be a magnetic dipolar
field (of dipole-moment μ) and vanishing electric field. The
NS is gradually set in motion (at fixed Ro;0) until it reaches
the desired initial orbital frequency Ωo;0 after some time
t ¼ t0; from then on, the system follows its prescribed
trajectory. We focus primarily on the cases where the
magnetic axis is aligned with the orbital angular momen-
tum, but other scenarios in which these two axis are not
aligned are considered as well. In our setup, the z axis is
always perpendicular to the orbital plane, so the misalign-
ment is attained by just tilting the magnetic moment by an
angle χ along the x-z plane.

B. Numerical implementation

We evolve a particular version of force-free electrody-
namics derived in Ref. [38], which has some improved
properties in terms of well-posed-ness and involves the full
force-free current density. More concretely, we shall con-
sider the evolution system given by Eqs. (8)–(10) in
Ref. [34]. Our numerical scheme to solve these equations
is based on the multiblock approach [39–42], in which the
numerical domain is built from several nonoverlapping
grids where only grid points at their boundaries are sheared.

FIG. 1. Foliations and coordinates. The two sets of coordinates
are illustrated, together with the worldlines of the NS (in red) and
CoM (in black).
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The equations are discretized at each individual subdomain
by using difference operators constructed to satisfy summa-
tion by parts. In particular, we employ difference operators
which are eighth-order accurate on the interior and fourth-
order accurate at the boundaries. Numerical dissipation is
incorporated through the use of adapted Kreiss-Oliger
operators. These compatible difference and dissipation
operators were both taken from Ref. [43]. A fourth-order
Runge-Kutta method is used for time integration.
We solve the force-free equations in a region between an

interior sphere at radius r̂ ¼ R� that represents the NS
surface (i.e., R� denotes the NS radius) and an exterior
spherical surface located at r̂ ∼ 75R�. The domain is
covered by a total of 6 × 12 subdomains, with 6 patches
to cover for the angular directions and 12 being the number
of spherical shells expanding in radius. These spherical
shells do not cover regions of identical radial extension,
having more resolution near the inner boundary than in
the asymptotic region; from layer to layer, the radial
resolution is decreased by a factor 1.3. Typically, we adopt
a resolution with total grid numbers of Nθ̂ × Nϕ̂ × Nr̂ with

Nϕ̂ ¼ 2Nθ̂ ¼ 240, while Nr̂ is taken so as to satisfy Δr̂≲
0.7r̂Δθ̂ everywhere in the domain. Here, Δr̂ and Δθ̂ denote
the grid spacing for r̂ and θ̂, respectively.
As already mentioned, the stellar surface is assumed to

behave as an idealized perfect conductor. Thus, the normal
component of the magnetic field is set to its dipole value
assumed from the stellar interior, and the electric field is
prescribed according to Eq. (6) in order to represent its
orbital motion and spin. The electric field components are
imposed, by means of the penalty method [40–42], fixing
the incoming physical modes to a particular combination of
outgoing modes. At the outer boundary, on the other hand,
we set maximally dissipative (no-incoming) conditions to
allow all perturbations to propagate away. The numerical
implementation of such boundary conditions has been
detailed in Ref. [34] (in particular, Sec. II C and the
Appendix), so we recommend the interested readers to
refer there for further details. In order to handle CSs, for
which the force-free approximation breaks down, we use a
standard approach in which the electric field is effectively
dissipated to maintain the condition that the plasma is
magnetically dominated (i.e., B2 − E2 > 0), as discussed in
Ref. [33] (see also Ref. [44]).

C. Analysis quantities

We would like to monitor the EM energy and its
associated fluxes. In force-free electrodynamics, the four-
momentum, pa ¼ −Tab

EMtb, is conserved (i.e., ∇apa ¼ 0)3

in the stationary spacetime. In the comoving coordinates
fx̂ag, it reads

pa0 ¼ −Ta0b0
EM tb0 ¼ −Ta0b0

EM n̂b0

¼ 1

2
ðÊ2 þ B̂2Þn̂a0 − Ŝa

0
: ð7Þ

Hence, we measure

Eðt̂Þ ≔
Z
Σt̂

Ê
ffiffiffî
γ

p
d3x̂; Lðt̂; r̂Þ ≔

I
r̂
F̂E

ffiffiffiffiffiffi
−ĝ

p
d2x̂;

where the Poynting luminosity L is integrated on spherical
surfaces of radius r̂ around the NS and

Ê ≔ −pa0 n̂a0 ¼
1

2
ðÊ2 þ B̂2Þ; ð8Þ

F̂E ≔ pa0 ðdr̂Þa0 ¼ −
1

2
ðÊ2 þ B̂2Þβ̂r̂ − Ŝr̂; ð9Þ

with Ŝi ≔ ϵijkÊjB̂k being the spatial Poynting vector.
We are also interested in monitoring the charge distri-

bution and electric currents present during the dynamics.
Thus, we shall look at the force-free current density along
the magnetic field, as seen by a fiducial observer n̂a,

ĵk ¼ ðB̂kβ̂
kÞρ̂c þ B̂kDjHkj þ ÊkDjGkj; ð10Þ

where we denoted Djð·Þ ≔ 1ffiffî
γ

p ∂jð
ffiffiffî
γ

p
·Þ and

Hij ≔ Êiβ̂j − Êjβ̂i þ ϵijkB̂k; ð11Þ

Gij ≔ B̂iβ̂j − B̂jβ̂i − ϵijkÊk; ð12Þ

with ρ̂ ¼ DjÊ
j being the charge seen by this observer.

Actually, it is worth mentioning at this point that since in
this case na and n̂a represent exactly the same vector field,
the splitting of the electromagnetic tensor in its magnetic
and electric components is the same. Hence, the switch
from one description to the other in terms of the electric and
magnetic fields is quite direct. Since the vector trans-
formation for the spatial index is trivial, one is only left with
the appropriate displacement of the point where the field is
evaluated. Therefore, although we employ the NS frame
fx̂ag to evolve the fields, we use the “CoM” coordinates
fxag to plot all the relevant quantities and describe our
results.
We also consider the Lorentz invariant quantity,

ϱ ≔ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jρ2c2 − j2j

q
; ð13Þ

where the sign is chosen plus for timelike and minus for
spacelike currents, as in Ref. [27]. Counterstreaming of
different signs of charge is required at regions having
negative values of this quantity, which may lead to plasma
instabilities and dissipation (see, e.g., Refs. [27,45,46]).

3This equation is satisfied except for CSs, where dissipation
occurs.
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III. RESULTS

Our interest in this work is centered on the last few orbits
of a NS on a compact binary system, until the orbit reaches
an innermost stable circular orbit or the NS gets tidally
disrupted. Thus, we start by a detailed study of the
magnetospheric properties of the NS in a circular orbit,
choosing parameters in a relevant range: i.e., Ro ∼ ð2–6ÞR�
and vo ≔ RoΩo ¼ ð0.1–0.4Þc. We first focus on the case
in which the magnetic moment is aligned to the orbital
angular momentum (i.e., χ ¼ 0) and the NS is not spinning
(i.e., Ω� ¼ 0). Our simulations always relax to stationary
states presenting similar features to those of pulsar mag-
netospheres, with strong equatorial CSs. We analyze the
electric charge/current distributions of the surrounding
plasma, along with the resulting Poynting flux luminosity
inside the orbital light cylinder. A comparison with vacuum
magnetospheres, within the same setting, is also included
here. Then, both the NS spin and the misalignment of the
magnetic axis are incorporated into the picture. We vary
these parameters (i.e., Ω� and χ) independently, and
observe their impact on the solutions. Later, we consider
representative quasicircular inspiral orbits, taking relevant
values for the parameters in the contexts of BHNS and
NSNS binaries, and connecting with our previous lumi-
nosity estimations. Finally, we elaborate on the implication
of our results to EM observations.

A. Circular orbits with no spin

First, we consider the case in which the NS is in a
circular orbit with no spin. In numerical computation, the

NS is set into circular orbital motion by gradually bringing
the angular frequency to its final value Ωo. The motion
generates disturbances on the EM field that propagates into
the surrounding plasma; when these waves return to the NS
surface, they are reflected due to the perfectly conducting
boundary condition. After an initial transient of about two
orbits, these perturbations—-continuously injected from
(and reflected at) the stellar surface—equilibrate within the
magnetosphere and lead to a quasistationary solution. Such
configuration is illustrated by the three-dimensional plots in
Fig. 2, where several representative magnetic field lines are
shown. The injected Alfven waves twist the magnetic field
lines, as the nonspinning NS follows the circular orbit,
producing a pattern of alternate signs on their toroidal
components, like the one depicted in the right panel of
Fig. 2. Waves launched from magnetic footprints in
opposite hemispheres of the star meet at the dipole equator,
inducing sharp discontinuities on the toroidal field across
the orbital plane. These discontinuities form an spiral CS,
which is represented by the contour plots in the figures.
Electric field is being effectively dissipated at these regions,
in order to locally maintain a state in which B2 − E2 ≳ 0.
This is a rather standard strategy employed in force-
free electrodynamics simulations to avoid violations of
themagnetic dominance conditionB2−E2>0 (see Ref. [44]
for a physical justification). Thus, a small value of this
Lorentz invariant quantity is a convenient indicator to
illustrate CSs in this context (right panel). On the other
hand, left panel of Fig. 2 shows that intense charge density
(exceeding the Goldreich-Julian value) develops at the CS,
possessing two main components of opposite sign over the

FIG. 2. Magnetosphere for a circular orbit with RoΩo ¼ 0.25c and Ro ¼ 2.5R� (χ ¼ 0, Ω� ¼ 0) after three periods. Left panel:
representative magnetic field lines (with the colors indicating its magnitude in logarithmic scale), along with two contours of the electric
charge density, normalized by the Goldreich-Julian value ΩoB=2πc. Right panel: normalized toroidal component of the magnetic field,
Bϕ=B, at the y ¼ 0 plane; together with a contour of B2 − E2 ∼ 0.04B2 (in gray), signaling the presence of a spiral CS over the orbital
plane. Same representative magnetic field lines are also indicated in the figure (in solid black).
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spiral arms. As can be noticed, magnetic reconnection takes
place near the transition from negative to positive charge,
producing and ejecting closed magnetic loops outward.
The spiral structure of themagnetic field, clearly manifest

on the equatorial CS, is also found for other relevant
quantities such as electric charge/currents and Poynting
flux density distributions; thus, reflecting the helical sym-
metry of the problem in this particular setting. The EM
solution looks essentially static from a corotating frame.
As we shall see in more detail later, these configurations

resemble in many aspects those of pulsar magnetospheres,
with CS outside the wave zone ∼c=Ωo, and energy being
extracted (in this case, kinetic energy from the orbital
motion) and carried away by the surrounding plasma.
Figure 3 shows the topology of the magnetic field lines
after 2.5 orbits on the y ¼ 0 plane (i.e., the one containing
both the NS and CoM). Vacuum and force-free solutions

are included for a comparison. We remark that, even though
the driving mechanism is the same (i.e., the effect of a
moving MD moment) and both systems produce compa-
rable radial Poynting flux intensities (shown in the color
scale in the figure), the presence of the plasma changes the
topology of the magnetic field and the form in which
the EM energy is distributed and transported. In particular,
the force-free plasma is an essential ingredient for CS
formation.
We further analyze the Poynting flux distribution of the

force-free solutions over spherical surfaces located in the
outer wave zone. One such EM flux density, after 2.5 orbits
at a sphere of radius r̂ ∼ 60R�, is shown in Fig. 4. As can be
seen from the plot, the flux is concentrated along a broad
beam of approximately 60°–75° in the azimuthal direction
and within approximately 60° from the orbital plane. There
is a visible feature in the distribution at θ̂ ∼ 90°, reflecting
the magnetic reconnections occurring at the equatorial CS.
Once the magnetosphere has settled, these structures in
the Poynting flux become stationary, just corotating with
the orbit. And thus, the flow of EM energy produces a
lighthouse effect at orbital frequency. Besides the specific
details of the distribution presented here, our results are in
good qualitative agreement with the ones obtained from
GRFF simulations of binary systems involving a non-
spinning BH companion [22], and also for a weakly
magnetized NS companion in Refs. [19,20].
We integrate the luminosity for the late time solutions at

different radius and normalize them with the EM luminos-
ity by the MD radiation formula (see, e.g., Ref. [7]),

L0 ¼
4

15c5
μ2R2

oΩ6
o: ð14Þ

FIG. 3. Electromagnetic energy fluxes for a circular orbit with
RoΩo ¼ 0.25c and Ro ¼ 2.5R� (χ ¼ 0, Ω� ¼ 0). Radial Poynt-
ing flux distribution (color scale) and magnetic field topology
(solid lines) after 2.5 periods for vacuum (top panel) and force-
free (bottom panel) magnetospheres are shown on the y ¼ 0
plane. The NS is located at x ¼ −Ro and z ¼ 0. (Note that R in
the figures denotes R�).

FIG. 4. Angular distribution of the electromagnetic flux for a
circular orbit with RoΩo ¼ 0.25c and Ro ¼ 2.5R� (χ ¼ 0,
Ω� ¼ 0). The radial Poynting flux density after 2.5 orbits is
plotted on a spherical surface at radius r̂ ∼ 60R� (i.e., in the wave
zone). The flux is normalized with its peak value.
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A typical radial distribution of the luminosity can be seen in
Fig. 5, where we plot integrated Poynting flux through
concentric spheres around the NS, as a function of radius.
As in pulsars, the luminosity is constant up to the light
cylinder RLC ≡ c=Ωo, where dissipation at the CS begins.
Different numerical resolutions were considered in order to
test its convergence. Throughout this work, we have
employed the intermediate resolution Nθ ¼ 120 for all
the simulations, which is practically converging (it differs
in less than 4% with respect to the higher resolution one).
We note that such a resolution required in the present
orbital setting is larger than the one we typically needed for
pulsars (see Fig. 2 in Ref. [34]), where Nθ ¼ 80 was
enough to resolve even for the misaligned configurations.
Notice that dissipation taking place in the region r̂ ∼
ð1–4ÞRLC represents here 65% of the luminosity. These
are the typical percentages that we get for most of the
circular orbits explored, while the values obtained for
pulsars were instead closer to 40% (within the same
region).4 We have also tested our outer boundary con-
ditions, by considering different radial locations for the
outer surface of the computational domain. The solutions
found at the overlapping regions are essentially identical,
both qualitatively and quantitatively.
The scaling of the total luminosity as a function of the

orbital velocity is analyzed and summarized in Fig. 6. For
the vacuum magnetosphere, we find that L=L0 ≈ γ11o
(where γo ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ðvo=cÞ2
p is the Lorentz factor of the orbital

velocity) approximates the numerical results quite well
(perhaps “accidentally”). On the other hand, the following
expression is used as a guideline for the luminosity in the
force-free simulations:

L
L0

≈ 1þ 28

�
vo
c

�
2

þ 93

�
vo
c

�
4

− 1135

�
vo
c

�
6

þ 4814

�
vo
c

�
8

: ð15Þ

The error bars in the force-free data indicate certain
dispersion found in the values of Lwithin the light cylinder.
These errors become more significant at lower values of
vo—as can be expected due to the enlargement of the
wave zone—for which a higher resolution (than the one
employed here for all the runs) would be needed.
We note that the luminosity does not depend on the other

dimensionless parameter of the problem, i.e., Ro=R�.
Within our numerical error, we could not find significant
deviations on the ratio L=L0, when taking different values
of this parameter at fixed vo.
The magnetospheric structure after 2.5 orbital periods is

displayed in Fig. 7, in which relevant aspects of the solution
are represented on the y ¼ 0 plane (the plane containing
both the NS and the CoM). There, electric charge and
current distributions are displayed (left and middle panels),
as is the Lorentz invariant quantity ϱ from Eq. (13).
Magnetic field lines projected onto the plane are also
shown in all these plots for a reference.
First, we notice that, similarly to aligned pulsar solutions,

there are strong current layers that form a Y-point with the
equatorial CS (see middle panel). The magnetic field lines

FIG. 5. Convergence of the luminosity. Normalized luminosity,
for a circular orbit, as a function of integration radius for three
different numerical resolutions, Nθ ¼ f80; 120; 160g.

FIG. 6. Luminosity for circular orbits in force-free and vacuum
cases. The luminosity normalized by L0 ≔ 4

15
μ2R2

oΩ6
o as a

function of vo ≔ RoΩo is shown. The black dots show the
numerical force-free values, accompanied by a guideline [see
Eq. (15)] in dashed red. The black crosses refer to numerical
data from vacuum solutions, with a reference curve, γ11o , in gray
(γo, being the Lorentz factor).

4Here, we must emphasize that the amount of dissipation
depends on the numerical prescription to deal with CSs, where
the force-free approximation breaks down. So, this values should
only be taken as an indication of how strong these CSs are, and
not as quantitative astrophysical numbers. For the quantitative
study of the amount of dissipation, a different approach like, e.g.,
PIC simulations would be needed.
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beyond this region are not necessarily open, since the
equatorial CSs do not extend continuously outside, but
instead posses a spiral structure (as previously seen in
Fig. 2). In contrast to a spinning NS, we find here that
the orbitalmotion induces a pattern of alternating signs in the
charges and parallel currents inside the light cylinder. This is
qualitatively consistent with the current distributions shown
in Fig. 12 of Ref. [20], especially for the case of a weakly
magnetized NS companion “U=u” where we can interpret
this alternate pattern as arising from the orbit (MD) effect
and the strong currents connecting the two NSs as repre-
senting theUImechanism.A similar pattern is also found for
the quantity ϱ (right panel), meaning that the four-current
alternates character from timelike to spacelike, the later
being the regions where counterstreaming of charged
particles would be expected. Finally, and arguably the most
relevant difference of the orbital case with respect to pulsar
magnetosphere solutions is the fact that there are almost no
charges present nor currents flowing along the magnetic
field lines in the polar region of the NS.

B. Spin effects

In order to understand the impact of the NS spin, we shall
fix a set of representative parameters for the orbital motion
and consider different values for Ω�. In particular, we pick
up an orbit with frequency Ωo ¼ 0.25c=Ro and separation
Ro ¼ 2.5R�, and set the spin to Ω� ¼ κΩo, varying κ from
−1 to 1. Note that choosing negative values of κ corre-
sponds to antialigned orbital and spin angular momenta.
We measure the luminosity and normalize it with Lorb,
which corresponds to its value for a purely circular orbit at
angular velocity Ωo (i.e., χ ¼ 0, Ω� ¼ 0). Figure 8 shows
the results, together with a curve (dashed black) that
represents an estimation from the simple addition of the
orbital and spin contributions (i.e., Lorb þ Lspin), and a
fitting (red solid line) of the form

L ≈ c−5μ2Ω4
o½w0 þ w1κ þ w2κ

2 þ w3κ
3 þ κ4�; ð16Þ

where w0 ¼ 4
15
ðvo=cÞ2fðvo=cÞ ≈ 0.042 comes from the

pure orbital part, while the last term represents the pure
spin contribution. The other coefficients are fitted from
the numerical data, giving w1 ∼ 0.06, w2 ∼ 0.35, and
w3 ∼ 0.23. They account for the nontrivial superposition
of the two dynamical effects. We note that for the case in
which the spin and orbital angular momenta are antia-
ligned, the resulting luminosity is very close to the direct
sum of each contribution, whereas for aligned cases, there
is an extra enhancement. Also, it is worth mentioning that
the orbital motion produces typically much weaker lumi-
nosity than the NS spin alone (i.e., pulsars), for this
particular setting being approximately 5% of the pulsar

FIG. 7. Several quantities for a circular orbit with RoΩo ¼ 0.25c and Ro ¼ 2.5R� (χ ¼ 0, Ω� ¼ 0). Numerical solution at t ¼ 2.5
periods on the y ¼ 0 plane. Black lines in all the plots describe the magnetic field component along the plane. Charge density
distribution (left panel) and electric currents along magnetic lines (middle panel) are normalized byΩoB=2πc andΩoB=2π, respectively.
Right panel: parameter ϱ from Eq. (13) (multiplied by r2 to improve the contrast), showing timelike (blue) and spacelike (red) currents.

FIG. 8. Effects of neutron star spin, Ω�, on the luminosity.
Luminosity normalized by L0 is shown for different values of
Ω�=Ωo. The dashed black curve represents a simple superposition
of the orbital and spin contributions, while the red solid line is a
fitting of the numerical values, capturing the asymmetry due to
the aligned/antialigned character in angular momenta.
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spindown luminosity. The reason for this is that the
luminosity by the orbital motion is ðvo=cÞ2 smaller than
that by the spin motion from the post-Newtonian viewpoint.
On the other hand, we also notice that when the orbit and
spin are synchronized, then the pulsar luminosity can be
significantly enhanced (for this case, on about 70%).
In Fig. 9,we display the charge and current distributions—

like the previous plots in Fig. 7—for the case in which the
spin is synchronized with the orbit (Ω� ¼ Ωo). As seen
before, for the synchronized motion, the spin effect tends
to “dominate” over the orbital one, thus resulting in a
magnetospheric configuration very similar to that of pulsars.
Both electric charge and parallel current distributions are
consistent with typical aligned pulsar results (see, e.g.,
Refs. [27,47]): strong current layers manifest as a local
enhancement of the parallel current components jk (middle
panel), with further currents (of opposite signs for each
hemisphere) flowing along the magnetic field lines at the
polar regions. The intensity of these currents is approxi-
mately twice stronger than those in the pure spinning setting,
in line with the luminosity being also about two times the
pulsar spin-down luminosity. Another significant difference
is again the location of the Y-point at each side of the NS,
which we find to be approximately given by r̂ ≈ c=Ωo � Ro.
Spacelike currents are present (in red color, right panel) along
the current layers, surrounding the equatorial CS and also
within a small region inside the polar cap.

C. Misalignment effects

We focus now on the cases in which the magnetic axis is
not aligned with the orbital angular momentum. To get the
main aspects of the influence of this angle,without exploring
thewhole parameter space, we shall fix the same parameters
Ωo and Ro as in Sec. III B, and consider several angles χ ¼
f0°; 30°; 60°; 90°g for two NS spins, Ω�¼f0;Ωog. These
two limiting cases display very different behaviors, as shown
in Fig. 10: for the synchronized motion with Ω� ¼ Ωo

FIG. 9. Several quantities for synchronized orbital motion, with Ωo ¼ Ω� ¼ 0.25c=Ro and Ro ¼ 2.5R�. Stationary solution after
t ¼ 2.5 periods, on the y ¼ 0 plane. Charge density distribution (left panel) and electric currents along magnetic lines (middle panel) are
normalized by ΩoB=2πc and ΩoB=2π, respectively. Right panel: Lorentz invariant parameter ϱ from Eq. (13) (multiplied by r2 to
improve the contrast). Black lines show some representative magnetic field lines along the plane.

FIG. 10. Effects of misalignment χ on the luminosity. The two
limiting cases, Ω� ¼ 0 and Ω� ¼ Ωo, are considered. Top panel
(Ω� ¼ 0): luminosity computed at a given radius (inside the wave
zone), as a function of time. Luminosity is normalized with Ln ≔
Lðχ ¼ 0Þð1þ 0.5 sin2 χÞ. Symbols represent the numerical values,
while the solid curves corresponds to a fitting: L=Ln ≈ ð1−
0.93 sin2ðΩotÞ sin2 χÞ.Bottompanel (Ω� ¼ Ωo): comparison of the
constant luminosity inside the light cylinder at different misalign-
ments, showing a pulsar behavior:L=Lðχ ¼ 0Þ≈ ð1þ 0.95 sin2 χÞ.
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(bottom panel), the spin effect completely dominates—-as
expected from the previous section results—and thus, the
resulting luminosity resembles that of an oblique pulsar, i.e.,
L ≈ Lðχ ¼ 0Þð1þ sin2 χÞ (see, e.g., Ref. [26]). On the other
hand, in the pure orbital setting, Ω� ¼ 0 (top panel), the
luminosity at a given radius exhibits a strong phase depend-
ency.5 Inside the region given by r̂≲ c=Ωo, this can be
modeled quite well with L ≈ Lðχ ¼ 0Þð1þ 0.5 sin2 χÞ×
ð1 − 0.93 sin2ðΩotÞ sin2 χÞ.
Figure 11 illustrates the magnetosphere withΩ� ¼ 0, after

2.5 orbits, for three misalignment angles. Although the
configurations are intrinsically three dimensional, some
insight can begained fromconsidering themat the co-orbiting
plane (defined by the orbital axis and thevector pointing to the
NS from the CoM, in this case, the y ¼ 0 plane). In color, we
represent the electric current component along the magnetic
field, together with some representative magnetic field lines
projected to the plane. Alternate patterns on the currents can
be seen again inside the close zone, like in the aligned setting.
Such currents become particularly intense (jk ∼ 4ΩoB=2π) at
the CS, that oscillates here about the dipole equator. These
shapes are reminiscent of those of oblique pulsars, although
there the CSs oscillate about the rotational equator instead.
Finally, we notice that for the orthogonal case (i.e., χ ¼ 90°),
the CS looks steady and smooth, in contrast to the inter-
mediate inclinations for which there are signs of magnetic
reconnection activity and plasmoids.6

D. Inspiral orbits

In this section, we analyze the evolution of the lumi-
nosity during the late stages of an inspiral orbit. Even
though in this paper we are not including curvature

effects, we shall mimic the inspiral phase of a binary
system by taking relevant astrophysical parameters to set
the NS trajectory around the CoM. To that end, we consider
parameters similar to those used in Ref. [22]. Specifically,
we take the mass ratio of the BHNS binary to be
q ¼ MBH=MNS ¼ 3, with MNS ¼ 1.4 M⊙ and stellar com-
pactness, C≡GMNS=c2R� ¼ 0.2. The total mass is thus
given by M ¼ 5.6 M⊙. Instead, for the BNS trajectory, we
take an equal mass system, i.e., q ¼ 1, and hence,
M ¼ 2.8 M⊙. Assuming quasicircular inspiral orbits, the
angular frequency evolves approximately according to
Ref. [48],

ΩoðtÞ ¼
�
Ω−8=3

o;0 −
256

5

G3

c5
qM5=3

ð1þ qÞ2 ðt − t0Þ
�−3=8

; ð17Þ

with Ωo;0 being the initial orbital frequency at t ¼ t0. Our
orbital radius then reads

RoðtÞ ¼
q

1þ q

�
GM

ðΩoðtÞÞ2
�

1=3
; ð18Þ

where we used Ωo ¼
ffiffiffiffiffiffi
GM
a3

q
with the orbital separation,

a, through Ro ≡ q
1þq a. We start from a quasistationary

initial configuration with Ro;0 ≃ 5.5R� (and its correspond-
ing Ωo;0) at t ¼ t0, following the inspiral evolution
from that moment on, until reaching a final radius
Ro ∼ 2R�. The expected disruption radius in our setting
would be Rdis

o ≃ 2.4R�, as estimated [18] from adis ≃
3MBHðC=0.2Þ−1ðq=7Þ−2=3.
The evolution of the luminosity during the trajectory for

several extraction radii is shown in Fig. 12 (top panel),
where time is presented in physical units and relative to td,
the time for which the estimated disruption radius Rdis

o is
attained. The luminosity is given in physical units, as well,
for a typical magnetic field strength at the stellar pole of
1012 G. Since luminosity scales exactly as B2 in force-free

FIG. 11. Effects of misalignment on the magnetosphere withΩ� ¼ 0. Parallel electric currents, 2πjk=ΩoB, on the y ¼ 0 plane after 2.5
orbits are shown in color scale, for angles χ ¼ 30° (left panel), χ ¼ 60° (middle panel), and χ ¼ 90° (right panel). Black lines show some
representative magnetic field lines along the plane.

5Note that such phase modulations also appear in the analytic
estimations for vacuum magnetospheres, arising from a term
proportional to ðμ⃗ · _a⃗Þ2 (see the second term of Eq. (A6) in
Ref. [7]).

6This fact should be taken with some caution, since it may be
indicating a lack of numerical resolution/dissipation.
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electrodynamics, their values can be rescaled by
B2
12 ≡ ð B

1012 GÞ2, as indicated in the plot. From the initiation
of the inspiral motion, the luminosity is no longer constant
inside the light cylinder approximately c=ΩoðtÞ, since the
rising of the luminosity initiates at the star and it takes some
time to propagate outward. This is clearly seen from
different curves representing integration of the flux at
several spheres enclosing the NS. Note that the luminosity
measured at r̂ ¼ 50R� departs from the other values from
the very beginning, reflecting the fact that a significant
fraction of the Poynting flux gets dissipated at the CS. Such
a difference is further enhanced later, reaching approxi-
mately 2 orders of magnitude (with respect to the value at
r̂ ¼ 5R�), by the time-delay effect already mentioned. The
extra (black dashed) curve, included in the plot, depicts the
predicted/estimated values from our previous results of
stationary circular orbits [see Eq. (15)]. It can be noted that
such estimated curves match with the dynamical results
quite well (especially when the comparison is made taking
the values at the integration radius close to approximately
c=ΩoðtÞ), suggesting that the timescale of the magneto-
spheric response is comparable to the inspiral one during
the whole evolution.
In Fig. 13, we illustrate the three-dimensional (radial)

Poynting flux density along the inspiral BHNS trajectory.
The values have been normalized with L0ðtÞ=4πr2, for
better visualization and to facilitate the comparison among
the different snapshots. We find that—as in the stationary
circular orbits—the flux distribution through a sphere of
radius r ¼ c=ΩoðtÞ remains broadly unchanged, only
rotating at the orbital frequency ΩoðtÞ. The outgoing fluxes
outside the “instantaneous light cylinder,” i.e., c=ΩoðtÞ,
form spiral structures over the x-y plane(s), producing the
equatorial CS (with magnetic reconnections) as these
Alfven fronts propagate outward.

FIG. 12. Evolution of the luminosity for inspiral quasicircular
orbits along two inspiral trajectories. The luminosity is measured at
representative spheres enclosing the NS, at radius r̂¼f5;10;20;
50gR�. Theparameters defining the orbits are amass ratioq ¼ 3 and
total mass M ¼ 5.6 M⊙ for the BHNS trajectory (top panel); and
q ¼ 1 with M ¼ 2.8 M⊙ for the BNS case (bottom panel).

FIG. 13. Poynting flux for inspiral quasicircular orbit of a BHNS binary with mass ratio q ¼ 3 and total mass M ¼ 5.6 M⊙.
Snapshots of the Poynting flux normalized by L0ðtÞ=4πr2 at three stages, t− td ¼f−12.7;−4.1;−0.1gms, during the inspiral trajectory
are presented. Projections on several slices (i.e., x ¼ 0, y ¼ 0, z ¼ −c=ΩoðtÞ, and r ¼ c=ΩoðtÞ) are displayed, to illustrate its three-
dimensional distribution. The state of the system at each snapshot can be described as follows: a ∼ 6.6R�, vo ∼ 0.26c, and c=Ωo ∼ 19R�
(left panel); a ∼ 5.1R�, vo ∼ 0.3c, and c=Ωo ∼ 12.9R� (middle panel); a ∼ 3.3R�, vo ∼ 0.37c, and c=Ωo ∼ 6.7R� (right panel).
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We now estimate how the inclusion of curvature (asso-
ciated to both the NS and the BH) can impact on the
luminosity. To that end, we shall pick up a state at an orbital
separation of a ≈ 6.6R� (represented in the middle panel of
Fig. 13) and compare its luminosity with the results
reported in Ref. [22] for essentially the same parameters.
Our results show L ≈ 2.4 × 1039B2

12 erg=s, which should
be associated in our case exclusively to the MD accel-
eration mechanism. On the other hand, they obtained
L ≈ 6.2 × 1040B2

12 erg=s, for the case where both compact
objects were nonspinning. Hence, taken at face value, one
might say that the luminosity is enhanced by a factor
approximately 25 due to curvature effects. However, a few
important considerations are necessary. First, in Ref. [22],
the luminosity is measured at large distances, r≳ 90R�,
and not inside the light cylinder where we compute it. As
we found dissipation at CSs outside the light cylinder, the
comparison is not direct, and perhaps even slightly larger
luminosity could be expected at the light cylinder when
curvature is accounted for. On the other hand, it is not very
clear how to disentangle from different curvature effects
like unipolar induction, estimated in this context to give
LUI ≈ 6.4 × 1039B2

12 erg=s [22].
Similarly to the BHNS binary scenario, we also follow

the evolution of the luminosity for an equal mass BNS
system (see the bottom panel of Fig. 12). The trajectory is
evolved from an orbital separation ai ∼ 6R� up to a final
one af ∼ 3R� (which sets the reference time tf). Thus, we
consider a complementary dynamical range with respect
to the one studied in Refs. [19–21], where the simulations
begin at about our final orbital separation and proceed
though the late-inspiral phase until (and after) the merger.
Although a comparison of the luminosity here is not as
direct as before, we can estimate from their case “U=u” of a
weakly magnetized companion, L≈1042B2

12 erg=s at orbital
separation a ∼ 3R�, whereas we obtain L ≈ 1041B2

12 erg=s.
Therefore, the enhancement attributed to the effects of
curvature is again approximately an order of magnitude.

E. Implication to observation

Here, we briefly discuss the implications of our numeri-
cal results. As shown in Sec. III A, CSs are always
developed in the local wave zone, near the radius c=Ωo,
for orbiting NSs. This feature is shared with the pulsar
magnetosphere, for which CSs are also developed just
outside the light cylinder at radius. This suggests that some
EM signals similar to the ones in pulsars are likely to be
emitted from the orbiting NSs, even in the absence of NS
spin. In the following, we estimate the luminosity of the
EM signals referring to the latest studies of magnetospheric
emissions from pulsars.
Before going ahead, we show approximately how much

EM energy can be emitted in total during the inspiral phase.
For this estimate, we simply employ Eq. (14) with the

orbital evolution determined by the Newtonian gravity plus
gravitational radiation reaction via quadrupole formula as
(e.g., Ref. [48])

_a ¼ −
64G3M3η

5a3c5
; ð19Þ

where η is the symmetric mass ratio, i.e., the ratio of the
reduced mass to the total mass, M, of a binary and written
as q=ð1þ qÞ2. Then, the maximum total energy dissipated
in EM waves is calculated as

Z
tf

ti

L0dt ¼ −
Z

af

ai

L0

5a3c5

64G3M3η
da ¼ B2R3�q

64

�
R�
af

�
3

≈ 2 × 1039 erg

�
B

1012 G

�
2
�

R�
12 km

�
6

×

�
af

42 km

�
−3
�
q
3

�
; ð20Þ

where B is the magnetic field strength at the pole (i.e.,
B ¼ μ=2R3�); ai and af denote the initial orbital radius at
t ¼ ti and the orbital radius at the onset of merger at t ¼ tf,
respectively; and we assume that ai ≫ af. In this equation,
we suppose that MBH ≈ 4.2 M⊙, MNS ≈ 1.4 M⊙, and
af ≈ 5M. As we have shown in this paper, the luminosity
is enhanced in the close binary orbits, and hence, the total
energy emitted could be larger by a factor of several than
Eq. (20). Nevertheless, Eq. (20) indicates that for the
typical magnetic field strength at the NS pole of
B ¼ 1012 G, the available energy for the EM signals is
at most approximately 1040 erg, and thus, for the obser-
vation being possible, the presence of an efficient emission
mechanism or unusually high magnetic field strength
would be necessary.
The latest PIC simulations (e.g., Ref. [30]) show that

near the so-called Y-point at the light cylinder of the pulsar
magnetosphere, CSs are developed, and as a result, the
reconnection of magnetic field lines is enhanced. In such a
region, the magnetic field strength and number density of
the electron-positron pair are significantly increased. High-
energy electrons and positrons accelerated in the strong
magnetic field become the sources of the synchrotron and
inverse Compton radiations. Because the particle energy is
high, the energy can be extended to the MeV and GeV
gamma-ray bands. Such an emission is consistent with the
presence of the gamma-ray pulsars observed by the Fermi
satellite for the isolated pulsar case [49]. The luminosity of
the gamma-ray pulsars could be 1%–100% of the spindown
luminosity of the pulsars. In the present context, the
spindown luminosity should be replaced by the total
luminosity of the orbiting NS, which is L≲ 1042 erg=s
for typical magnetic field strength of order 1012 G at the
poles. Thus, it is reasonable to consider that the gamma-ray
luminosity would be at most approximately 1042 erg=s, for
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which the duration is ≲10 ms. It would be quite difficult to
detect such a low-luminosity gamma-ray source with very
short duration using the current and near-future gamma-ray
telescopes, if we suppose that the typical distance to the
source is ≳100 Mpc. This would be also the case for the
observation of x rays. If the magnetic field strength is as
high as that of magnetars, approximately 1014 G at its pole,
the luminosity could be enhanced, and the gamma-ray
signals may be observable. However, such high magnetic
fields may not be very likely for inspiraling NSs, as the
observational results of NSNS in our Galaxy indicates [50].
As discussed in Sec. III D, Ref. [22] suggests a signifi-

cant enhancement of the EM luminosity if curvature
effects, i.e., interaction of the magnetic field with the
BH, are included: at least an order of magnitude seems
possible. Although it is not clear how this extra luminosity
is distributed in terms of the magnetospheric configuration,
that is, how to disentangle from the unipolar induction
mechanism, in which the two compact objects are con-
nected through a twisted bundle of magnetic field lines and
thus a dc circuit established in the near zone, localized
plasma winds in between the two compact objects are
expected to produce curvature radiation dominating in the
γ-rays band, and synchrotron emissions in the hard x-rays
and soft γ-rays bands [15]. It was also suggested that a
fraction of this flux within the bundle, carried in the form of
plasma kinetic energy, will reach the primary NS surface
and form a hot spot emitting thermal energy as x rays [15].
This flux-tube UI configuration was further proposed to
model fast radio bursts arising from coherent curvature
radiation in the late-inspiral phase (but, prior to the last few
orbits) in NSNS binaries [51]. All these speculations
encourage us to perform force-free simulations including
general relativistic effects, and also to model this radiation
along the lines of Ref. [27] to obtain light curves from our
solutions.
The latest work also shows that in the reconnection

region, radio waves may be emitted by coalescence of
magnetic islands in the CS that produces magnetic pertur-
bations propagating away [28,31,52]. For this process, the
predicted spectral flux density of the radio waves with the
frequency ν is

Sν ∼
B2
L

8π
ðΓlÞ3ðπD2Þ−1ðτνÞ−1; ð21Þ

where BL denotes the magnetic field strength for the
reconnection region, Γ and l are the bulk Lorentz factor
and characteristic scale of the magnetic islands, D is the
distance to the source, and τ ∼ 10=ωp with ωp the plasma
frequency. Here, l is determined by the force balance and
energy conservation in the magnetic islands, and Γ is
inferred as 10–100 [28,52]. In the present context, we
obtain a quite small flux for orbits close to the innermost
stable circular orbit,

Sν ∼ 2 × 10−8 Jy

�
BL

4 × 107 G

�
2

×

�
Γ

100Þ
�

3
�

l
10 cm

�
3
�

D
100 Mpc

�
−2
: ð22Þ

Here, we suppose that the total mass of the system is
5.6 M⊙, a ≈ 100 km, and the magnetic field strength at the
NS pole is B ¼ 1012 G. We also simply set τν ¼ 1. The
expected value of l in the reconnection region of the pulsar
magnetosphere is about ten times larger than the thickness
of the CS, which is proportional to B−3=2

L as [28,52]

∼0.1 cm

�
BL

108 G

�
−3=2

: ð23Þ

This is the reason why, for the strong magnetic fields in the
reconnection region, the intensity of this type of the radio
waves is low (i.e., in this scenario, the luminosity decreases
with the decrease of the orbital separation, a). If the
magnetic field strength for the late-inspiral stage of NS
binaries is B ≈ 1010 G, the luminosity would be 105 times
lager than that of Eq. (22) because the width of the
magnetic islands becomes larger. However, the flux is still
approximately 1 mJy.
Since the size of each magnetic island is likely to be quite

small for the strong magnetic field case, a large number of
the magnetic islands may be simultaneously generated. As
discussed in Ref. [52], fast waves from many merging
magnetic islands may nonlinearly interact and transfer the
energy into the plasma. If this happens and the emission
occurs in an optimistically coherent way, the predicted
luminosity is written as [52]

Ln ∼
Ωo

2πν
L ¼ 3 × 1035 erg=s

�
Ωo

2000 rad=s

�

×

�
ν

1 GHz

�
−1
�

L
1042 erg=s

�
; ð24Þ

which approximately leads to the following flux density:

Sν ∼ 0.1 mJy

�
Ωo

2000 rad=s

��
ν

1 GHz

�−2

×
�

L
1042 erg=s

��
D

100 Mpc

�
−2
: ð25Þ

Thus, a much higher flux than Eq. (22) can be predicted,
although the flux is still low for the detection by the current
wide-field-of-view radio telescopes like CHIME [53] and
OVRO-LWA [54]. We note that in a small fraction of
pulsars [55], a substantial fraction of the dissipation energy
of order 10−4 is emitted in the radio band. If the orbiting
NSs can have such a high efficiency for the radio emission,
the radio waves may be observable.
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As indicated above, it will not be very easy to detect an
EM precursor of NS mergers. However, the following point
should be kept in mind: in the absence of tidal disruption in
the system of BHNS binaries, no EM counterparts are
expected after the merger. Even in such cases, a precursor
associated with the moving NS with magnetic fields can be
emitted as an EM counterpart of the merger of BHNS
binaries. Distinguishing a BHNS binary with a fairly large
chirp mass from binary black holes is not an easy task only
in the detection of gravitational waves, because the gravi-
tational waveforms for two cases are quite similar. The
precursor for BHNS binaries is likely to be emitted always
if the magnetic field strength of the NS in binaries is as
strong as that for the typical isolated NSs. The observation
of the precursor for the BHNS binaries will play an
important role for surely identifying the BHNS binaries.
It is also worth mentioning that if a precursor is

detected for NS binaries, the magnetic field strength of
the NS could be estimated. This will provide us important
information for the evolution of the magnetic fields
in an old NS that has not experienced significant mass
accretion.

IV. CONCLUSIONS

In this paper, we have considered force-free magneto-
sphere induced by a NS orbiting in a binary system, aiming
at capturing the EM effects produced by the orbital motion
about the CoM of the binary (BHNS or NSNS) system,
in a sense, isolating the role played by the acceleration of
the MD moment of the NS, from the effects of curvature.
The inclusion of curvature—more specifically a BH
companion—has been deferred for a subsequent work.
Our present approach, however, has allowed a detailed and
systematic study of the magnetospheric properties of these
systems in close analogy to pulsars. In particular, the
existence of strong return current layers and CS enabled
us to connect with known EM emission mechanisms from
pulsar theory.
Before considering realistic inspiral orbits associatedwith

the binaries, we first analyzed the properties of circular
orbits, noticing—-as later confirmed—that the stationary
configurations attained here are reliable approximations of
the system’s states throughout the inspiral. The results can be
summarized as follows. For the aligned and nonspinning
scenario, a strong spiral CS develops along the orbital
plane, beginning at approximately c=Ωo. An alternate
pattern of charges/currents is found in the near zone of
the NS, enclosed by thin return current layers that form
a Y-point with the equatorial CS. In contrast to pulsars,
there is almost no charge flowing over the polar region
of the NS. The luminosity can be well described by
L≈ 4

15c5
μ2R2

oΩ6
ofðvo=cÞ, where f ∼ ð1–7Þ represents rela-

tivistic corrections in vo=c, to the analytic formula (14). The
orbital effect on the luminosity is much weaker than the one
produced by the NS spin (comparing at a given angular

frequency), although it can produce a considerable enhance-
ment (factor approximately 2) on the pulsar spindown
luminosity if the motion is synchronized. Finally, for the
case that the magnetic and orbital axis are not aligned
(i.e., χ ≠ 0), the magnetosphere resembles that of oblique
pulsars, with a strong CS fluctuating about the dipole
equator (instead of the rotational equator, as in misaligned
pulsars [26]). Interestingly, in the nonspinning case, the total
luminosity acquires an orbital-phase dependency.
We consider inspiral binary trajectories using relevant

parameters for both BHNS and NSNS scenarios, finding
that the evolution of the luminosity follows quasiadiabati-
cally from our previous estimations based on the circular
orbits configurations. The Poynting fluxes emanating from
the orbiting NS form spiral structures orthogonal to the
orbital axis and produce magnetic reconnections inside
theCS as theseAlfven fronts propagate outward.Overall, the
radial Poynting flux distribution in thewave zone establishes
a lighthouse effect, rotating at orbital frequency ΩoðtÞ and
peaking around the orbital plane, which is in qualitative
agreement with previous GRFF studies for the cases where
the companion to the primary NS is either a weakly
magnetized NS [19,20] or a BH [22]. This suggests that
the EM flows beyond the light cylinder approximately
c=ΩoðtÞ are dominated by the MD effect, while UI occurs
almost exclusively between the two compact objects in the
near region. One might interpret these two mechanisms
as constituting two approximately independent sources of
EM energy for the plasma (albeit both mined from the
kinetic energy of the orbital motion). However, by the
interaction of the magnetic field with the curvature of
the companion (if curvature is included), the field strength
can be amplified by further twisting, resulting in enhanced
luminosity of the MD effect—valued here to represent 1
order of magnitude–.
Furthermore, the contribution from each of these two

mechanisms (i.e., MD/UI) will be channeled into separate
processes within the magnetosphere, which then derive in
the actual EM emissions. In particular, we have devoted our
attention to the existence of strong CSs induced by the NS’s
orbital motion alone. These CSs were not reported before,
in the BHNS scenario of Ref. [22], this may be due to the
fact that reflection symmetry about the orbital plane was
imposed in their simulations, whereas for the weakly
magnetized NS companion case studied in Refs. [19,20],
we see evidence of such CSs forming (last panel of Fig. 10
in Ref. [20]), although it was omitted in their discussions.7

We argue these CSs are very important due to their role in
explaining radio emissions in pulsars, where recent studies
[28,31,52] have shown that the coalescence of magnetic
islands (or plasmoids) in the reconnection regions can

7Only a trailing dissipation region, making a CS tail behind
the weakly magnetized NS companion, was described in these
works.
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produce radio waves, as a coherent superposition of many
such individual pulses. We have borrowed these ideas and
applied them to get concrete estimations of spectral flux
densities of radio waves in our context. The predicted
fluxes are not large enough to be detected by the current
wide-field-of-view radio telescopes like CHIME [53] and
OVRO-LWA [54]. We conclude that only if a substantial
fraction of the luminosity (e.g., ≳10−4) is emitted in the
radio band, as in some pulsars [55], then radio waves may
be observable.
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