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Recombinant DNA technology has, in the last decades, contributed to a vast expansion

of the use of protein drugs as pharmaceutical agents. However, such biological drugs

can lead to the formation of anti-drug antibodies (ADAs) that may result in adverse

effects, including allergic reactions and compromised therapeutic efficacy. Production

of ADAs is most often associated with activation of CD4T cell responses resulting

from proteolysis of the biotherapeutic and loading of drug-specific peptides into major

histocompatibility complex (MHC) class II on professional antigen-presenting cells.

Recently, readouts from MHC-associated peptide proteomics (MAPPs) assays have

been shown to correlate with the presence of CD4T cell epitopes. However, the limited

sensitivity of MAPPs challenges its use as an immunogenicity biomarker. In this work,

MAPPs data was used to construct an artificial neural network (ANN) model for MHC

class II antigen presentation. Using Infliximab and Rituximab as showcase stories, the

model demonstrated an unprecedented performance for predicting MAPPs and CD4T

cell epitopes in the context of protein-drug immunogenicity, complementing results from

MAPPs assays and outperforming conventional prediction models trained on binding

affinity data.

Keywords: MHC-II prediction, machine-learning, protein-drug immunogenicity, artificial neural-networks,

immunopeptidomics, bioinformatics

INTRODUCTION

The advent of recombinant DNA technology in the last decades has boosted the use of protein
drugs as pharmaceutical agents. However, a major potential problem of these—compared to
lower molecular weight pharmaceutical counterparts—is adverse effects associated with protein
immunogenicity. Immunogenicity is generated because the drug is recognized as non-self,
involving an unwanted activation of CD4T cells, and the formation of anti-drug antibodies
(ADAs), potentially producing a hypersensitivity reaction in treated patients.

Protein drug activation of CD4T cells depends on the internalization of the drug into endosomal
compartments in antigen-presenting cells (APCs), where proteolytic enzymes digest the protein
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into smaller peptides (1). According to specific rules, a
small proportion of those peptides are loaded into major
histocompatibility complex class II (MHC-II) molecules. Then,
stable peptide-MHC-II complexes are exported to APCs’ surface
for presentation to CD4T cells, which can initiate, maintain, and
regulate immune responses, including the production of ADAs
(2). As a consequence, finely characterizing the rules of MHC-II
binding and antigen presentation is of high interest to promote
a general understanding of T cell immunogenicity and for the
development of biotherapeutics.

Each MHC-II complex has distinct peptide-binding
preferences predominantly determined by residues in the
MHC binding groove. The MHC binding groove interacts with
a stretch of 9 amino acids termed the peptide core. For every
MHC-II molecule, a few pockets accommodate specific positions
of the peptide core with a narrow or broader specificity for
different residues (3). These pockets and pocket specificities are
dependent on the class II molecule of study. MHC-II in humans
comprises three major gene pairs called HLA-DR, -DP, and
-DQ, all having an α- and a β-chain. The MHC presentation
of peptides is fundamentally determined by the amino acid
sequence of the peptide and the MHC-II alleles expressed by the
host. However, other factors, such as protein internalization or
peptidase cleavage sites, influences which peptides are presented.

Historically, peptide-MHC binding affinity (BA)
measurements have been used to characterize MHC binding
preferences (4), and collections of BA data have been used to
develop methods such as NetMHCII and NetMHCIIpan (5–8)
with the ability to predict peptide binding to different MHC class
II molecules. However, the predictive power of these methods for
CD4T cell epitopes remains limited. Recently, the introduction
of ligandome data as obtained by mass spectrometry (MS)
immunopeptidome assays (9) has improved MHC predictors’
performance substantially (10–14).

Analyzing MS-data has allowed us to learn the rules of
MHC-II peptide presentation beyond peptide-MHC binding,
including peptide cleavage specificities. The incorporation of
such data to MHC-II models has demonstrated to improve
state-of-the-art prediction for “natural binders” (14). Currently,
MHC-associated peptide proteomics (MAPPs) are used to
assess the immunogenicity of protein drugs (15, 16). However,
several factors entangle assay performance and interpretation.
First, most of the peptides detected by MAPPs are of self-
origin, and only a small fraction of the peptides come from
the protein drug of interest. Thus, to increase the sensitivity
toward the given protein of interest, the amount of sample
required is very high, which can lead to aggregation of the
protein drug in vitro, changing the immune response (17, 18).
Second, although MS sensitivity has increased over the past
years, still the comprehensive analysis of the peptide ligandome
is highly challenging, making it necessary to perform several
technical replicates to obtain the maximum amount of peptides
identified (19–21). In addition, variations in MHC alleles dictate
which peptides will be presented in a given MAPPs context,
making necessary the study of several donors with different
alleles, representing the population of interest, to accurately
assess immunogenicity. Because of those reasons, learning the

specific rules of MHC-II presentation in the form of an in-
silico predictor would constitute a definite step forward in the
development of means to assess the immunogenicity of protein
drugs effectively.

Recently, several publications have integrated MS data
into MHC-II predictors applying different machine learning
approaches (22–26). As regular cells can express up to 12 different
HLA alleles including the HLA-DR, -DQ, and -DP genes, a large
challenge of this integration lies in how to assign ligands to their
HLA restriction element.

To tackle this question, different strategies have been
proposed. Abelin et al. (24) used an experimental approach
transfecting cells with modified HLA molecules able to be
independently purified with a biotin-avidin system to perform
“single allele” (SA) mass spectrometry. The peptides derived
from each are then used to train allele-specific prediction
models. The main disadvantage of this method is the limited
set of predictable MHC-II alleles. Chen et al. (26) used a
multimodal recurrent neural network to predict MHC class-
II ligands, integrating binding affinity, mass-spectrometry data,
and RNAseq expression levels. A recurrent neural network was
trained on binding affinity data only to resolve the ligand
HLA restriction. This method however did not show improved
performance over netMHCIIpan, suggesting that Deep neural
networks not necessarily outperform shallow neural networks
in MHC-II prediction. This method was further suggested
optimal for neoepitope discovery, where protein expression is
relevant, a factor that is not applicable for prediction of protein
drug immunogenicity. Finally, MixMHC2pred from Racle et al.
(25) used a probabilistic framework to deconvolute MHC-II
peptidomics to the specific allele, and after used a method based
on scoring matrices for prediction, using a small set of relevant
HLA-DR alleles. None of these recentmethods, however, are pan-
specific nor were conceived or previously used to predict protein
drug immunogenicity.

We have recently developed a neural network framework,
NNAlign_MA, that is able to deconvolute mass spectrometry
data and at the same time train a predictor to learn the
binding preferences of individual MHC molecules (22, 23, 27).
In this work, we have trained an immunogenicity predictor
based on this NNAlign_MA framework integrating ligand
information obtained from in-house Infliximab MAPPs assays,
and binding affinity measurements to build a prediction model
for MHC-II antigen presentation. Using this model as a proxy
for immunogenicity prediction, we showcase its performance
on Infliximab and Rituximab, two well-known protein drug
antibodies used to treat inflammatory diseases and known to
generate an unwanted immune response (10–60% according to
the analyzed disease, and how and when immunogenicity is
screened) (28–30).

MATERIALS AND METHODS

Samples
Donors and Alleles
Peripheral blood mononuclear cells (PBMCs) were isolated
from leukapheresis donated by seven healthy volunteers
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(ethical protocol IXP-004 Belgium; Reg. Nr. B707201629385).
Monocytes were isolated by positive magnetic separation
and cultured for 5 days in DC medium supplemented
with interleukin 4 (IL-4) and granulocyte-macrophage colony-
stimulating factor (GM-CSF). Immature dendritic cells (iDCs)
were pulsed with Infliximab at 50µg/ml and further matured
with Lipopolysaccharide (LPS) for ∼20 h. Mature DCs (mDC)
were collected, counted and washed with Dulbeco’s Phosphate
Buffered Saline (DPBS), and stored at −80◦C as dry pellets
without supernatant.

Allele genotypes of the donors were defined using Sequence-
Based Typing (SBT) and are detailed in Supplementary Table 1.

Proteins and Peptides
Infliximab (Inflectra) was acquired from Hospira R⃝. Peptides
screened for T cell activation were purchased from Mimotopes
and are listed in Supplementary Table 2.

MHC-Associated Peptide Proteomics
(MAPPs) Assay
Cell Lysis
Dendritic cell pellets (1–6 million cells) were lysed in non-
ionic detergents (4% CHAPS and 4% Triton X-100) in the
presence of protease inhibitors (EDTA-free, Roche) and 590 units
of nuclease (US Biologicals) for 45min at 4◦C with rotation.
The cell lysate was clarified by centrifugation at 112,000 g for
30min at 4◦C.

Immuno-isolation of MHC II complexes. An isotype
IgG (Southern Biotech) and the pan anti-MHC II class
monoclonal antibody (L243) (BioXCell) were each coupled
to individual HiTrap NHS-activated HP columns (GE
Healthcare). The two columns were connected in series
with the Isotype IgG column first for the immuno-isolation
process. The cleared lysate was loaded on the immuno-
isolation columns. The Isotype IgG column was removed,
and the MHC II complexes were washed with a buffer and
then eluted from the L243 column with 10% acetic acid. The
MHC II peptides were desalted by solid-phase extraction
using an MCX plate (Waters) into LoBind 96 well plates
(Eppendorf) and then transferred to MS plates (Abgene), and
vacuum evaporated.

Mass Spectrometry Analysis
Peptide samples were re-solubilized with 10 µL solubilization
buffer [96/4 (v/v) water/acetonitrile (CAN) + 0.2% formic acid
+ 25mM TCEP (Tris(2-carboxyethyl)phosphine)]. 7 µL were
injected on a Waters nanoACQUITY UPLC system, and peptide
separation was achieved with a Symmetry C18 trap column (100
Å, 180µm x 20mm, 5µm particle size) and a BEHC18 column
(300 Å, 150µm x 100mm, 1.7µm particle size) coupled to a Q-
Exactive Plus mass spectrometer (Thermo). Peptides were eluted
with an ascending acetonitrile gradient over 105min. MS spectra
were acquired from 400 to 1,800 Da. The MS method consisted
of a full MS scan followed by a dd-MS2 scan of the top 12 ions.
The full MS scan was achieved with a resolution of 70,000 with
an AGC value of 3 × 106 and a maximum IT level of 30ms.
The dd-MS2 scan was performed at a resolution of 17,500 with

an AGC value of 5 × 104 and a maximum IT level of 60ms.
Blank runs of resolubilization-buffer were injected between
each sample.

MS Data Processing and Peptide
Identification
A single custom database of protein sequences relevant to
the experiment was created to include the Human proteome
(Swissprot), common general and Caprion-specific laboratory
contaminants, and Infliximab (Inflectra) sequence.

Peak alignment and extraction of intensity values of peptide
ions and corresponding MS/MS spectra were performed using
Rosetta ElucidatorTM (Rosetta Biosoftware, version 3.3). MS/MS
spectra were then exported for peptide identification in PEAKS
Studio (Bioinformatics Solutions, version 7.5). Search parameters
included the custom database described above, non-tryptic,
oxidation of methionine and deamidation of asparagine as
variable modifications, and error tolerance of 15 ppm for
precursor mass and 0.025 Da for fragment ions. Data were
filtered using a 2% FDR at the peptide level for database
search results.

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE partner
repository (http://www.ebi.ac.uk/pride) with the dataset
identifier PXD018303.

Neural Network Architecture and Datasets
Training Datasets
The NNAlign_MAC model was trained combining
multi-allele (MA), and single-allele (SA) data including
binding affinity (BA) peptide measurements and mass
spectrometry (MS) data.

MA datasets included only self-protein MS eluted ligands
obtained from in-house MAPPs assays. The alleles expressed by
each donor are detailed in Supplementary Table 1. Infliximab
and Rituximab are chimeric antibodies that bear the constant
region from a human antibody. Therefore, it is expected
that some naturally presented peptides share similarities to
the protein-drug antibodies. To avoid a bias in the predictor
when evaluating the protein-drug antibodies, we have excluded
all peptides sharing a common motif of 9 amino acids
(defined by the length of an MHC-II binding core) to both
Infliximab and Rituximab proteins from the training dataset.
This resulted in the removal of 262 peptide sequences from
the mass spectrometry datasets. Additionally, the data were
filtered to only include peptides with lengths 13 to 21 in the
training datasets.

SA data included peptides derived from BA measurements
or MS assays where cells were specifically-homozygous selected
or were artificially and genetically engineered to only express
a single HLA-DR allele. SA data was collected from previous
NetMHCIIpan publications (5, 23), and updated with IEDB to
date 01/28/2019.

Mass spectrometry data consists only of “positive” presented
peptides. Therefore, a set of negative peptides was added to train
artificial neural networks, randomly sampling different length
peptides from human proteins. For eachMA donor-dataset or SA
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allele-dataset, a set of random negatives were included following
a flat distribution of lengths 13–21, taking 5 times the number
of peptides of the most abundant peptide length on the positive
dataset. The flat distribution of the negatives helps the neural
network to learn the natural length preference of the data, while
the selection of 5 times the most abundant length will generate
a ratio of ∼1:10 positive to negatives, which we have previously
benchmarked and found optimal (14). Although this approach
will introduce some noise to the model, as it is possible that by
chance some random peptides will bind to the specific MHC
allele, this probability is very low and at the most will diminish
the model performance.

Five-Fold Partitioning
All the data combined (SA and MA) were clustered into 5
partitions using a Hobohm algorithm with a common motif of 9
amino acids to perform cross-validation as previously described
(27). The artificial neural network architecture consists of an
ensemble of 150 independent networks varying; the seeds for
weight initialization (10), a different number of hidden neurons
in the hidden layer (20, 40, 60), and the 5 different partitions used
for cross-validation. An average of the ensembles is used for the
final predictions.

NNAlign_MAC Architecture
NNAlign_MAC algorithm integrates the basis of NNAlign_MA
(22), an extension of NNAlign (27, 31), with peptide context
information (PCI) (14, 23).

In short, NNAlign_MA (22) is a neural network framework
capable of taking a mixed training dataset composed of SA data
(peptides experimentally tested on a single MHC molecule) and
MA data (peptides experimentally tested in cell lines expressing
multiple MHC alleles), to fully deconvolute the specific MHC
restriction of all MA peptides, while learning the binding
specificity for all the MHCs alleles. The algorithm is trained
in two steps. In a first step or pre-training (set-up here to 20
iterations), the neural networks are trained with SA data. After
these initial iterations, the model manages to learn the first
pattern for all MHC class II alleles. This is possible due to the
pan-specific algorithm used here (that introduces relevant MHC
amino acid positions known to participate in the interaction
with the peptide in the binding groove (8). Based on this initial
learning, the algorithm annotates the MA data according to the
learnt binding rules. In a second step, those newly tagged MA
peptides, now converted into SA with a specific MHC allele
association, are included in a new training cycle of the network.
As more data is included, the binding core for eachMHC-II allele
is revised. After each new training cycle, all the MA peptides are
re-annotated to SA data again. This process is iterated up to 400
training cycles, thus refining the process until convergence (22).

The input neurons of this model were fed with: the peptide
sequence (tagged from different experimental sources, BA or
MS); a binding affinity measurement in the case of BA, or a
binary classification (1-0) for those peptides derived from MS;
the allele information (either single or with all alleles expressed
by the donor-dataset for MA); and the MHC pseudo-sequence
(specific positions of the MHC protein sequence involved in

the MHC-peptide recognition). This training resulted in a pan-
specific model with the power to infer binding specificities also
for the HLA-DR molecules not included in the training datasets.
Additionally, a separate set of input neurons encoded peptide
length and peptide context information (PCI) as described
elsewhere (14). PCI included 3 amino acids from both C and N
peptide termini (previously named peptide flanking regions) and
3 amino acids both from upstream and downstream of the MS
peptide protein sequence.

Cross-Validation Performance
After training both models (with and without PCI), the test sets
were predicted, and an AUC 0.1 calculated for each MA-donor-
dataset and reported in Supplementary Table 3.

NetMHCIIpan version 3.2 (5) prediction algorithm was
employed in this work as a benchmark comparison to the
NNAlign_MAC model. As it was not possible to re-train
NetMHCIIpan with the same partitions used for NNAlign_MAC
to report AUC 0.1, the following scheme was used. Each peptide
in the NNAlign_MAC test set was predicted for all the alleles
expressed by the given donor with NetMHCIIpan, and the lowest
%rank score from all alleles was assigned to each peptide to
perform an AUC 0.1 per donor (Supplementary Table 3).

AUC is a common performance measure for predictive
models, which takes into account the relationship between true
positive rates (TPR) and false positive rates (FPR) for different
prediction thresholds. AUC 0.1 (area under the ROC curve
integrated up to a false positive rate of 10%) is similar to AUC
but focuses on the high specificity range of the ROC curve.

Logos
Sequence logos for binding motifs and context information were
constructed applying the Seg2Logo (32) tool using Kulback-
Leibler logos and excluding sequence weighting. Amino acids
were grouped by negatively charged (red), positively charged
(blue), polar (green), or hydrophobic (black).

Infliximab and Rituximab Performance
Evaluation
MAPPs Profiles
Infliximab in-house MAPPs were gathered together removing
peptide duplicates from the same donor and imposing a filter
of a minimum of 12 amino acids to be an MHC-II binder, to
build a MAPPs cohort. After filtering, 73 peptides were mapped
to Infliximab protein sequences, stacking them, and counting the
number of peptides covering each position. The profiles were
normalized to have a maximum value of 1.

Additional Infliximab and Rituximab MAPPs peptides were
collected from Hamze et al. (15). Filtering and profiles were
generated in the same way as for the in-house MAPPs.

NNAlign_MAC Evaluation
For each HLA molecule present in the MAPPs cohort, 1 ×

105 random peptides—with a flat length distribution of 13–21—
were predicted using NNAlign_MAC, and the N-percentile score
for each estimated. For each N, a score threshold per allele
was defined to select HLA binders from the protein-drug of
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interest to be included in the prediction profile. Subsequently,
all the peptides were stacked in the protein-drug sequence and
the number of peptides overlapping each sequence position was
counted. After that, a so-called “allele promiscuity” calculation
was applied, capping the count per allele to a maximum of 1
per position. For example, a protein sequence position, with
10 peptides mapped to it from 3 different alleles, will have
promiscuity of 3. After max normalization, these values refer to
the “Promiscuity score” in all the profile plots in the manuscript.

From the HLA binding profiles made for Infliximab in
Supplementary Figure 1, and precision and recall curves for
different N values (Supplementary Figure 4A), 1% Rank (N = 1)
was found to be optimal.

MixMHC2pred Evaluation
MixMHC2pred version 1.2 method was downloaded from the
GitHub repository to run locally for all overlapping 13–21mers
from Infliximab protein-drug and all the alleles present in the
MAPPs cohort and covered by the method (HLA-DRB1∗04:03,
HLA-DRB1∗1302, HLA-DRB1∗15:02, HLA-DRB3∗03:01, HLA-
DRB5∗01:02 were excluded). The output column for regular
%Rank was selected. An HLA binding profile was constructed for
MixMHC2pred (Supplementary Figure 2), and 0.5%Rank was
selected to compare with NNAlign_MAC. After the peptides’
selection, the profiles and the Promiscuity Score were generated
in the same manner as for NNAlign_MAC.

NetMHCIIpan Evaluation
To calculate NetMHCIIpan infliximab binding profiles, binding
profiles were constructed for % Ranks values of 1, 2, 5, and 10
(Supplementary Figure 3). The performance of NetMHCIIpan
was consistently found to be very low and close to random for
all % Rank thresholds for both protein chains with only one
example (% Rank of 2, LC) demonstrating a positive correlation
to the MAPPs profile. Given this, a value of %Rank of 2 was
selected for this method. After the peptides’ selection, the profiles
and the Promiscuity Score was generated in the same way as
for NNAlign_MAC.

Performance Measures
Two types of correlations were used to compare predictions
from NNAlign_MAC, MixMHC2pred, and NetMHCIIpan to
experimental MAPPs profiles. First, the Spearman correlation
coefficient (SCC) was used to correlate the profiles’ predictions
to MAPPs per position in the protein sequence. Additionally,
scatter plots were made to confirm the correlation after losing
positional information that could bias our interpretation. The
scatter plot correlation was measured both using SCC and
Pearson’s coefficient correlation (PCC).

Additional measures, PPV and AUC0.1, were used to compare
performance across the methods in Supplementary Figure 4B.
To allow for minor inconsistencies between the predicted and
actual positive peptides, we here adapted a relaxed definition
of positives. This was done by assigning all predicted binders
(as defined by the selected % Rank threshold) with a binding
core that overlapped any of the “original” MAPPs peptides as
positive. This set of peptides is termed the “expanded-core”

MAPPs peptides. Next, this set of expanded-core peptides is
used to calculate AUC0.1 (area under the receiver operator
curve integrated up to a false positive rate of 10%), and PPV
values using the lowest % Rank score predictions over all
the alleles expressed by the donor as prediction values for
each of the peptides. PPV was calculated as the number of
true positive predictions from the number of “expanded-core”
MAPPs in the top N predictions, divided by N, where N is
the number of positives in the “expanded-core” MAPPs dataset
per donor. Precision and recall curves were likewise calculated
using the “core” scheme for each of the different % Rank
(Supplementary Figure 4A).

Bootstrap resampling was used to calculate p-values of the
SCC correlations comparison among methods, or %Rank values.
10 thousand sampling iterations with allowed repetitions were
picked at random for each comparison. The p-value was obtained
by #losses/iterations, where losses reflect the number of times the
SCC was higher for the challenging method over the other.

Evaluation of the CD4-T Cell Response
PBMCs from 6 out of 7 donors were seeded at 2 × 106

cells/well and stimulated with the different test and control
peptides (Supplementary Table 2). For one donor, the number
of cells was not sufficient to perform this assay. The next
day, IL-7 was added. On day 4, part of the medium was
changed and IL-2 and IL-7 were added. On day 7, cells were
harvested, and rested overnight at 37◦C. The next day, cells
were counted and seeded in IFN-y FluoroSpot plates (Mabtech).
Cells were re-stimulated with peptide or left unstimulated
overnight, in duplicates. On day 9, FluoroSpot plates were
developed, according to the manufacturer’s instructions. Data,
spot forming units (SFU), were acquired with a Mabtech IRISTM
FluoroSpot/EliSpotReader. Raw data (SFU) were transferred to
SFU per million, which were then transferred to !SFU per
million. !SFU per million= Average SFU peptide condition/per
million-Average medium condition/per million.

We defined a positive response when the two independent
peptide measurements were 4 standard deviations higher to the
average signal for the control. Raw data, averages and statistical
calculations are included in Supplementary Table 4.

An additional dataset of T cell responses for Infliximab (30
epitopes from 21 donors) and Rituximab (14 epitopes from 16
donors) was collected from Hamze et al. (15).

RESULTS

Here, we aimed to develop a predictor for MHC class II antigen
presentation and assessed its performance for prediction of
protein-drug specific MAPPs readouts and T cell epitopes.

NNAlign_MAC Is Able to Predict
Infliximab-Associated MAPPs in a
Cohort-Based Approach
First, we sought to profile the MHC class II immunopeptidome
of Infliximab (as a biotherapeutic prototype) to predict the
immune response associated with it. For that purpose, we
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pulsed with Infliximab 7-donor monocyte-derived dendritic
cells, expressing the most common world population HLA-
DR alleles (Supplementary Table 1). Next, LC-MS/MS was
performed, identifying 15,240 unique ligands. After removing
ligands with a common motif to Infliximab and Rituximab
protein sequences (see Materials and Methods), the remaining
dataset was combined with single-allele BA andMS data collected
from IEDB, to construct a dataset for training a model for
HLA-DR antigen presentation prediction (Figure 1).

This training was performed using the NNAlign_MAmachine
learning framework allowing for accurate deconvolution of
HLA-DR binding specificities and proper assignment of each
MS ligand to its likely HLA-DR restricting molecule (22).
Earlier work has shown this algorithm to be able to accurately
perform this task, and at the same time to learn the rules
for the MHC-II motifs present in the samples (22, 23). The
algorithm used here was extended to include “peptide context
information” (PCI) from the peptide flanking regions (PFRs)
on both peptide termini, and from the protein sequence
upstream and downstream the MS peptide sequence. The
introduction of PCI was previously shown to significantly
reinforce the learning of the rules of “natural processing” in
the model (14). Evaluating the predictive power of models
trained with and without PCI inclusion, confirmed this earlier
observation (Supplementary Table 3). This benchmark also

confirmed a consistent and very pronounced gain in prediction
performance of the NNAlign_MAmethod compared to the state-
of-the-art method, trained with binding affinity measurements,
NetMHCIIpan, for prediction of MHC eluted ligand data
(Supplementary Table 3). We termed the NNAlign_MA model
including PCI, NNAlign_MAC.

After deconvolution, each MS ligand was annotated to a
specific allele expressed in the sample assessed. As expected,
HLA-DRB1 due to the higher expression of those genes
compared to HLA-DRB3, −4 and −5 (33), was assigned
the highest proportion of ligands (∼90%, Figure 2A). All
the motifs obtained by NNAlign_MAC share a remarkable
overall correspondence across cell samples expressing the same
alleles, and to a lesser degree, also with the NetMHCIIpan
motifs (Figure 2B). The HLA-DRB4∗01:03 allele was shared
by two donors, and the motifs obtained by NNAlign_MAC
in these two, shared highly similar amino acid preferences
(PCC = 0.924). Additionally, for some alleles, such as
HLA-DRB1∗08:01 and HLA-DRB4∗01:03, the motifs from
NetMHCIIpan and NNAlign_MAC, were however discordant
(Figure 2B). Comparing the amino acid composition of the in-
house MS data to that of MS data obtained from IEDB revealed
a high consistency between the two MS datasets (PCC = 0.95)
and a lower consistency to the BA data (PCC= 0.83), supporting
the quality of in-house MS data, and suggesting that MS

FIGURE 1 | Pipeline of protein-drug (Infliximab) immunopeptidome profiling. Infliximab-pulsed DCs were lysed and HLA-DR-peptide complexes were purified with a

pan-specific antibody (L243). Next, LC-MS/MS was performed, identifying 15,240 unique ligands. MAPPs self-proteins were used to train the artificial neural network

model, NNAlign_MAC. Infliximab MAPPs peptides were pooled from different donors and used to compare to the predicted MHC-II hot-spots regions. Finally, T cell

experiments were used to validate regions and select protein-drugs residues prone to introduce modifications in order to avoid immunogenicity.
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A

C

D

B

FIGURE 2 | HLA-DR peptide distribution, binding motifs and amino acid frequencies. (A) MAPPs peptide frequency from all donors combined associated to each

HLA-DR gene (HLA-DRB1, DRB3, DRB4, and DRB5) after NNAlign_MAC deconvolution. Percentages (and absolute numbers) are shown for the peptides assigned to

each allelic variant. (B) Motif deconvolution obtained by NNAlign_MAC per donor. NNAlign_MAC allele logos were built with all peptides from each MS data set

assigned for that particular allele. The number after the allele name reflects the number of peptides found in that dataset for the given allele (Example: DRB3*03:01-7

peptides). NetMHCIIpan motifs were built from top 1% scoring prediction of 100,000 random peptides evaluated using the list of alleles expressed in each donor

sample. Motif logos were build using Seq2Logo with default settings. (C,D) Amino acid frequency comparison of in-house MAPPs and peptides from binding affinity

(BA) assays (C) and mass spectrometry (MS) eluted ligands (D) collected from IEDB. For each comparison, 500 peptides per allele were selected at random per each

allele (DRB1*01:01, DRB1*04:01, DRB1*07:01, DRB1*11:01, and DRB1*15:01) and pooled together before the amino acid frequency was calculated.

data may contain complementary information to BA data
(Figures 2C,D).

Next, all MAPPs peptides unique to infliximab (73 peptides
from 7 donors) were mapped to the heavy and light chains
of the protein-drug and the count of peptides overlapping
each amino acid position in the protein sequence was used
to build a MAPPs profile (normalized to have a maximum
value of 1) (Figure 3A). Later, infliximab sequences were
(in-silico) digested into overlapping 13–21mer peptides, and
the likelihood for MHC presentation predicted for each peptide
using NNAlign_MAC, MixMHC2pred, or NetMHCIIpan
for all the HLA-DR alleles present in the donor cohort
(Supplementary Table 1). To define a threshold defining
positive predicted peptides from each of the models, HLA
binding-profile analyses were performed for different % Rank
thresholds for each of the models (Supplementary Figures 1–3).
Based on these analyses, a Rank threshold of 1% was selected
for NNAlign_MAC, a 0.5% MixMHC2pred, and a value of 2%
for NetMHCIIpan (detailed in Materials and Methods section,
Supplementary Figures 1–3, 4A).

For each predicted HLA molecule, all the peptides with
predicted values below the selected % Rank threshold were
mapped to the Infliximab heavy and light protein sequences.
Next, each position in the protein sequence was assigned a
value of 1 if it was covered by one peptide or more and
zero otherwise. Finally, these allele-specific binary peptide-maps
were stacked constructing a “promiscuity profile” reflecting
how many different alleles presented peptides overlapping a
given protein position (detailed in Methods) (Figures 3A,B).
This mapping was performed for each of the three prediction
methods (Supplementary Figures 2, 3, respectively). Comparing
the predicted profiles and experimental MAPPs demonstrated
an improved power of NNAlign_MAC (SCC = 0.416 and
SCC= 0.643) compared to NetMHCIIpan (SCC= 0.066 p-value
< 10-4 and SCC = −0.034 p-value = 0.0004) for predicting
infliximab MAPPs data. And an improved power compared to
MixMHC2pred for the heavy chain (SCC = 0.498 p-value <

10-4), and a comparable power compared to the light chain
(SCC = 0.422 p-value = 0.802). All regions in Infliximab
covered by MAPPs were identified by NNAlign_MAC and
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A

B

FIGURE 3 | NNAlign_MAC improves Infliximab MAPPs predictions. (A) Infliximab profile predictions were generated with NNAlign_MAC (red), MixMHC2pred (purple),

and NetMHCIIpan (blue), and benchmarked against Infliximab experimental MAPPs (green). Promiscuity profiles were generated for each method, selecting the

protein-drug predicted peptides below a defined %Rank threshold, and stacking the peptides over the protein sequence (see section Materials and Methods). The

correlation of the different profiles to MAPPs data (Spearman correlation coefficient, SCC) is shown in matching colors for each prediction method. Different %Rank

values were selected for each method according to its best predictive power (NNAlign_MAC = 1, MixMHCIIpred = 0.5, and NetMHCIIpan = 2)

(Supplementary Figures 1–3). Complementarity determining regions (CDRs), were calculated with the DomainGapAlign tool of IMGT.org (CDR1-IMGT:27-38;

CDR2-IMGT: 56-65; CDR3-IMGT:105-117), both for infliximab heavy and light chain variable domains (blue rectangles). (B) Scatter plots of the predicted profiles in (A)

for NNAlign_MAC, MixMHC2pred, and NetMHCIIpan vs. MAPPs. Both SCC and PCC are shown for Infliximab heavy (Infliximab_HC, red) and light chain

(Infliximab_LC, blue). The discrete patterns in the x-axis of the plots are explained by the maximum number of alleles predicted for each method (MixMHC2pred is only

available for a limited set of alleles).

MixMHC2pred. In contrast, NetMHCIIpan failed to predict
several of these regions (one prominent example being the region
spanning positions 40–60 in the heavy chain).

Several protein regions, both in the light and heavy chain
were predicted to have MHC-II ligands by NNAlign_MAC even
though no peptides were identified in the MAPPs assays. We
hypothesized that this was due to the sensitivity limitations
of the MAPPs assay. To inspect this conjecture, additional
Infliximab MAPPs data, from 21 and 16 donors covering
the variable heavy and light chain regions of Infliximab,
respectively, were collected from a previous publication (15).
First, we evaluated the correlation of this new MAPPs dataset
to the in-house Infliximab dataset (including only the variable
region of the antibody) and observed in both cases a high
(though lower for the light chain compared to the heavy
chain) correlation between the two datasets (SCC = 0.662

and SCC = 0.842 for the light and heavy chain respectively)
(Figures 4A,B). Given that no HLA-allele information was
available to us for the donors used in this study, we evaluated
the ability of NNAlign_MAC to predict the observed MAPPs
using the alleles included in our in-house cohort, which
have been selected covering the most frequent alleles in
the world population (Supplementary Table 2) including only
the variable regions of the protein (Figure 4A). Next, we
combined the two Infliximab MAPPs datasets and analyzed
the correlation of the NNAlign_MAC predictions to this new
extended infliximab MAPPs dataset (Figures 4C,D). We found a
substantial (p-value = 0.0003, bootstrap) increase in predictive
performance with the SCC increased from 0.266 to 0.53 for
the light chain, while the performance for the heavy chain was
conserved (SCC changed from 0.952 to 0.924, p-value = 0.883)
(Figure 4C) (similar results were obtained for MixMHC2pred).
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FIGURE 4 | NNAlign_MAC Infliximab and Rituximab MAPPs prediction. (A) Infliximab MAPPs peptides were collected from Hamze et al. (15) and compared to

in-house MAPPs profiles. Note that the collected dataset only contained peptides mapped to the variable regions of Infliximab light and heavy chains. NNAlign_MAC

prediction promiscuity profiles and SCC correlation against the two datasets are shown in matching colors (red). (B) Scatter plot of the two MAPPs profiles [In-house

vs. Hamze et al. (15)] for the heavy (red) and light chains (blue) of Infliximab protein-drug. (C) NNAlign_MAC correlation to the combined dataset [In-house + Hamze

et al. (15)]. (D) Scatter plot of the NNAlign_MAC prediction vs the combined Infliximab MAPPs profile. (E) NNAlign_MAC correlation to Rituximab MAPPs data

collected from Hamze et al. (15). (F) Scatter plot of the NNAlign_MAC prediction vs Rituximab MAPPs profile from the same publication.

This observation suggests that the performance values of
NNAlign_MAC reported in Figure 3A are lower bounds and
that—at least some of—the additional peaks predicted by
NNAlign_MAC represent regions with antigen presentation
potential missed by the individual MAPPs assays.

As an additional proof of concept, we analyzed the
correlation of NNAlign_MAC predictions to rituximab,
an additional protein drug with MAPPs data collected
from the above-mentioned publication (Figures 4E,F).
The average SCC correlation considering heavy and light
chains of both protein-drugs to the Hamze et al. (15)

MAPPs data was 0.652 for NNAlign_MAC, showing that
the proposed method was able to predict most of the
MAPPs regions.

NNAlign_MAC Is Able to Predict
Infliximab-CD4T Cell Epitopes
Next, we investigated if the peak regions predicted by
NNAlign_MAC correlated with the location of CD4T cell
epitopes. For that purpose, 6 and 9 peptides respectively from
Infliximab light and heavy chains were designed and assessed
using ELISpot assays for CD4T cell activation (for details refer to
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FIGURE 5 | T cell evaluation of MAPPs and NNAlign_MAC identified hot-spot regions. (A) Schematic with of the location of 6 and 9 ELISpot tested peptides for the

light and heavy chain of Infliximab, respectively. The peptides were identified with a color code covering three regions, (1) regions predicted by NNAlign_MAC where

MAPPs peptides were found (Magenta: LC_1, LC_5, LC_6, HC_2, HC_3, HC_4, HC_6, HC_8, HC_9); (2) regions predicted by NNAlign_MAC, with no MAPPs

peptides (Cyan: LC_2, LC_4); and regions were the methods identified none or very few ligands (Yellow: LC_3, HC_1, HC_5, HC_7). (B) IFN-γ ELISpot test for

Infliximab peptides selected in (A). Each boxplot was constructed from the two-individual donor-response measurement replicas to each peptide assessed. Units in

IFN-γ production are expressed as counts !SFU per million (subtracting the average background for each donor assessment). The fraction number over each peptide

line corresponds to the number of donors with a significant ELISpot response (4 times over the average background for the two independent measurements).

section Methods). These infliximab peptides were selected from
three categories: MAPPs regions—covering regions predicted by
NNAlign_MAC where MAPPs peptides were found (Figure 5A,
Magenta: LC_1, LC_5, LC_6, HC_2, HC_3, HC_4, HC_6,
HC_8, HC_9); NNAlign_MAC regions—regions predicted by
NNAlign_MAC, with no MAPPs peptides (Figure 5A, Cyan:
LC_2, LC_4); and regions were the methods identified none or
very few ligands (Figure 5A, Yellow: LC_3, HC_1, HC_5, HC_7).
In these assays, 67% (6/9) of the peptides spanning MAPPs
positive regions were positive in at least one donor (all except
for LC_5, HC_4 and HC_6, Figure 5B). Similar results were
observed for the NNAlign_MAC region peptides (Figure 5B).
Here, both peptides (LC_2, LC_4) were positive for at least one
donor (Figure 5B). Finally, one of the peptides, HC_7, selected
from the “empty” region (yellow) was found to give a marginal
response in one of the assessed donors (Figures 5A,B). These
findings thus demonstrate a very high correspondence between
the NNAlign_MAC predictions, the location of observed T cell

epitopes, and further suggest that MAPPs potentially can miss
relevant regions leading to immunogenicity.

As a final validation of the predictive power of the proposed
prediction method, a set of CD4T cell epitopes for Infliximab
and Rituximab antibodies were collected from Hamze et al.
(15). In this study, all 15mers spanning the light and heavy
chain of the protein-drugs with an overlap of 10 amino acids
were assessed in 15 healthy, 6 infliximab-treated donor, and 1
rituximab-treated donor, for T cell activation. Epitope profiles
were constructed similarly to how MS profiles were built earlier
by stacking the epitopes data over the light and the heavy
chains of the protein-drugs and counting how many peptides
overlap per each amino acid position. Next, as no complete allele
information was provided for the tested donors, NNAlign_MAC
predictions were made for the alleles present in our in-house
MAPPs dataset, and promiscuity profiles were built for the
light and heavy chain variable regions as described earlier
(Figure 6). Notably, NNAlign_MAC was able to predict most of
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FIGURE 6 | NNAlign_MAC is able to predict Infliximab-and Rituximab CD4T cell epitopes. CD4T cell epitope sequences identified by Hamze et al. (15) mapped to

(A) Infliximab and (C) Rituximab variable regions of the light chain and heavy chain (orange dotted lines). NNAlign_MAC predicted profiles (Materials and Methods,

profile generation) and SCC correlation to MAPPs are displayed in red. Scatter plot of the NNAlign_MAC prediction profiles vs MAPPs for (B) Infliximab and

(D) Rituximab T cell responses from Hamze et al. (15).

the T cell immunogenic regions for Infliximab (Figures 6A,B)
in a comparable fashion to experimental MAPPs. Analyzing
the hotspots regions in 30–45 from the light chain, or 90–105
from the heavy chain, we observe that NNAlign_MAC was able
to predict those regions while the MAPPs experiment missed
it (Figure 6A). In the Rituximab example, while both MAPPs
(SCC = 0.561) and NNAlign_MA correlations (SCC = 0.537)
show high and comparable performance for the light chain
(p-value= 0.81, bootstrap), both approaches demonstrated very
limited predictive power over Rituximab heavy chain epitopes
(Figures 6C,D).

DISCUSSION

Here, we have constructed a predictor, NNAlign_MAC, for
MHC class II antigen presentation trained on in-house MAPPs
and data from the IEDB based on the previously developed
NNAlign_MA machine learning framework (22, 23) integrating
context information and HLA binding promiscuity scores. The
predictor was demonstrated to vastly improve in performance
over NetMHCIIpan for the prediction of MHC antigen
presentation hotspots in protein drugs. Moreover, our findings
strongly suggest that the use of such prediction methods could
effectively serve as a complement toMAPPs assays to improve the
sensitivity for identification of hotspot regions enriched in MHC
ligands and T cell epitopes.

One of the strengths of the NNAlign_MAC algorithm lies
in its ability to leverage information between multiple MAPPs
datasets reducing noise and boosting performance in particular
for alleles characterized by limited data (as exemplified by
the clear motifs identified in the MAPPs data for the weakly
expressed HLA-DR3, 4, 5 alleles). This combined with its
pan-specific power (8) makes NNAlign_MAC less sensitive
to the critical limiting issues often associated with MAPPs
assays including the requirement of a massive amount of
biological material, the need for experimental replicates and
repeated assaying over HLA diverse cohorts, and the non-
trivial task of interpreting/mapping the raw MS spectral data to
genomic templates.

We have here demonstrated the power of NNAlign_MAC
for two protein drugs infliximab and rituximab only. Further
studies covering a broader set of proteins are needed to
fully assess the gain in performance of prediction models
trained on MS data for prediction of antigen presentation
hotspots and T cell epitopes. Likewise, further studies are
needed to assess if the complementary power observed in
this study of in-silico predictions over MAPPs for hotspots
identification remains valid when tested on a broader set of
protein drugs.Moreover, additional methods forMHC-II antigen
presentation prediction trained on MS data have recently been
proposed (24–26). We showed an improved performance of
NNAlign_MAC in predicting Infliximab MAPPS data compared
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to both NetMHCIIpan (5) and MixMHC2pred (25). Other
methods have been recently published integrating MS MHC
ligand data in the training. As for the method developed
by Chen et al., MARIA (26), the comparison does not seem
adequate in this scenario as its predictive power depends
on the availability of protein expression levels, which makes
limited sense in the context of protein-drugs. Another method,
NeonMHC2 (24), only allows for to run max 20 predictions per
day, making it impractical to include in a benchmark. Further
evaluations remain to be conducted to benchmark the predictive
power of these novel tools for the prediction of protein-drug
MHC antigen presentation and immunogenicity. In conclusion,
this work demonstrates that MS data can be used to train
improved predictors for MHC class II antigen presentation, and
showcase how such predictors can be used to effectively assess
protein-drugs for the presence of MHC II hotspot and T cell
epitope regions complementing the use of the conventional cost-
intensive MAPPs assays.
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