
 

Preferential Concentration of Free-Falling Heavy Particles in Turbulence

F. Falkinhoff ,1,3 M. Obligado ,2 M. Bourgoin,3 and P. D. Mininni 1

1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, & IFIBA,
CONICET, Ciudad Universitaria, Buenos Aires 1428, Argentina
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We present a sweep-stick mechanism for heavy particles transported by a turbulent flow under the action
of gravity. Direct numerical simulations show that these particles preferentially explore regions of the flow
with close to zero Lagrangian acceleration. However, the actual Lagrangian acceleration of the fluid
elements where particles accumulate is not zero, and has a dependence on the Stokes number, the gravity
acceleration, and the settling velocity of the particles.
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In spite of its apparent simplicity, the problem of spherical
particles settling in a fluid hides a whole hierarchy of rich
intricate phenomena, some of which are still shrouded in
mystery, and which impacts numerous real situations.
Atmospheric pollutants, cloud droplets, dust in proto-
planetary accretion disks, sprays in engines are just examples
pertaining to the broad class of turbulent flows laden with
particles, which occur inmany industrial and natural systems
[1,2]. In the context of pandemics, a current example of the
importance of particle transport is given by the role of
pollutants and aerosols as vectors of transmission and long
range propagation of viruses [3]. In these situations, the flow
carrying the particles is turbulent. Unveiling the fundamental
mechanisms driving the dynamics of transport and settling is
therefore a crucial issue to improve our capacity tomodel and
predict particle dispersion and deposition.
As surprising as this may seem, our modeling capacity is

so weak that we are still unable to give quantitative answers
to questions as simple as these: Do small (pointlike)
spherical particles in a turbulent environment settle slower,
faster, or at the same speed as in a quiescent fluid? What is,
statistically, the spatial distribution of particles in a turbulent
flow? And how is the distribution modified by gravity? The
reasons are certainly related to the complexity of turbulence,
one of the best known examples of out-of-equilibrium
statistical systems, and to the difficulty added to the problem
when the multiscale and random dynamics of the flow is
coupled to the particles’ dynamics [4,5]. One of the most
striking examples of this complexity is given by the
phenomenon of preferential concentration: whereas turbu-
lence is generally considered as a mixing enhancer, inertial
particles in turbulence tend on the contrary to get unmixed,
and to concentrate in certain regions forming clusters. This
effect impacts a whole range of the particles’ dynamical
features, as it changes their effective mean free path,

impacting on cloud formation, particle aggregation, phase
transitions, and predictions of local hazard thresholds [6,7].
In this Letter, we address the question of the mechanism

driving preferential concentration of inertial particles in
turbulence focusing on the interplay between clustering and
settling. It has been observed in direct numerical simu-
lations (DNSs) and experiments that preferential concen-
tration is stronger when the Stokes number St (the ratio of
the particle relaxation time to the Kolmogorov time) is
close to unity [8,9]. The reason why turbulence affects the
spatial distribution of particles is not completely clear,
although an explanation is based on the centrifugal expul-
sion of heavy particles from turbulent eddies, that would
result in the accumulation of particles in low-vorticity
regions of the carrier flow [10]. A more recent scenario, the
so-called sweep-stick mechanism, was proposed in which
particles cluster instead in regions of null Lagrangian
acceleration [11]. There has been growing evidence that
for particles with St < 1 there is a prevalence of centrifugal
effects and particles cluster in low-vorticity regions,
whereas for St > 1 the sweep-stick mechanism is more
prominent and particles cluster in low Lagrangian accel-
eration points [8,12].
Nevertheless, these accumulation mechanisms do not

take into account the effect of gravity, which is important
when particles are heavy and can settle or precipitate.
Gustavsson and co-workers [7] have shown that clustering
properties may be significantly affected by gravity, pointing
to the strong link between preferential concentration and
settling. In the same context, an extension of the sweep-stick
mechanism has been proposed, suggesting that settling
particles concentrate in regions where the Lagrangian
acceleration of the carrier flow equals that of the gravity
[13], although to our knowledge no experimental or numeri-
cal studies have explored this mechanism yet. More
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generally, the settling of inertial particles has been studied
focusing on the possible enhancement or hindering by
turbulence of the particles’ terminal velocity (see, e.g.,
[14,15] for recent results), but except for a few recent studies
[16–21] the interplay between preferential concentration and
gravity for inertial particles has generally been neglected,
either because it was not considered in simulations,
or because it was negligible in the range of parameters
considered in experiments. This is the casewe focus on in our
study. By studying the dynamics of particles in homo-
geneous and isotropic turbulence, we characterize preferen-
tial concentration, and pay particular attention to the values
of the Lagrangian acceleration at the points where particles
accumulate. We neglect situations in which particles and the
fluid become two-way coupled, which may lead to subtle
collective effects as experimentally observed in [22], and
consider instead one-way coupling regimes in which the
flow transports the particles without being perturbed by
them, and in which accumulation results frommodifications
to the preferential sampling induced by gravity.
Using a pseudospectral code [23] the velocity field in a

three-dimensional periodic domain of length L0 is obtained
from DNSs of homogeneous and isotropic turbulence, by
solving the incompressible Navier-Stokes equation with
5123 grid points and an external mechanical forcing with
random phases. The fluid viscosity ν is chosen so that the
Kolmogorov scale is well resolved. The Taylor-based
Reynolds number is Reλ ≈ 300; in the following, U is a
rms flow velocity and L the flow integral scale [24]. Inertial
particles are modeled using the Maxey-Riley-Gatignol
equation in the limit of point-heavy particles, which for
a particle with velocity v at position xp in a flow with
velocity u is

_vðxp; tÞ ¼ ½uðxp; tÞ − vðxp; tÞ�=τ − gẑ; ð1Þ

where τ is the particle Stokes time and g an effective gravity
that depends on the ratio between the densities of the
particle and the carrier flow. For heavy particles, as the ones
considered here, g is approximately the gravity acceler-
ation. With this equation particles in a fluid at rest reach a
terminal velocity v� ¼ −gτ in a Stokes time.
The system has two dimensionless numbers: the Stokes

number St ¼ τ=τη that compares the particle relaxation
time to the Kolmogorov time, and the Froude number Fr ¼
aη=g ¼ ε3=4=ðgν1=4Þ (with ε the energy injection rate) that
compares the turbulent acceleration at the Kolmogorov
scale aη to the gravitational acceleration. We study the
statistics of inertial particles by injecting multiple sets of
106 particles each into the turbulent flow. Between each set,
τ and g are varied to consider particles with different St and
Fr, resulting in 16 sets of particles, in all cases integrated for
sufficiently long times for the particles to reach their
terminal velocities and a statistical steady state. With the
goal of exploring the validity of the sweep-stick mechanism

in the presence of gravitational forces, only particles with
St ≥ 1 are considered.
In the presence of gravity, particles precipitate at a mean

velocity hvzi but still accumulate in preferential regions.
While for g ¼ 0 clusters are isotropic, for g sufficiently
large particles fall through channels as seen in Fig. 1(a)
(also seen in [7]), facilitating concentration and cluster
formation. For fixed Fr, the width of the channels depends
on St, and for large St channels become wider with a
characteristic width close to the flow integral scale L ≈ L0

as shown in Fig. 1(b) (indeed, for strong drag we observe
that the distribution of particles becomes more homo-
geneous, where the characteristic scale of the channels
hLi is defined as a mean correlation length for the vertically
averaged particle density). Scaling laws for these structures
were studied in detail in [17], but what is the mechanism
behind their formation? Do particles sample regions of the
flow preferentially? And does such sampling have an effect
on particle settling velocities?
In Fig. 2(a) we show the particles’mean vertical velocity

hvzi for different Fr and fixed St; their values are compared
to the Stokes terminal velocity v� in the inset. A discrep-
ancy of about 25% is observed for Fr ¼ 1.36 (see inset),
and particles in average tend to fall faster than v� except for
cases with low Fr which can fall up to 5% slower than v�
(cumulants were studied to ensure the statistical signifi-
cance of these values). Velocity fluctuations of the particles
are also affected by St and Fr. In Fig. 2(b) we show the
probability density functions (PDFs) of velocity increments
δvz ¼ vzðtþ τ=8Þ − vzðtÞ (also a proxy of particles’ ver-
tical acceleration) for Fr ¼ 1.36. As St increases the PDFs
become more Gaussian, as also observed in DNSs of
inertial particles without gravity [26]. This also results
from heavier particles being less affected by fluctuations in
the flow velocity [17].

(a)

(b)

FIG. 1. (a) Particle distribution in an arbitrary xz plane in
simulations with Fr ¼ 0.23 and for different Stokes numbers
St ¼ 3, 8, and 20. Columns form in the direction parallel to
gravity. (b) Column width as a function of St, for Fr ¼ 0.23.
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The analysis so far does not consider that particles
sample preferentially some flow regions. To quantify
clustering we use three-dimensional Voronoï tessellation
[25]. Each cell has an associated particle, and the tessella-
tion allows us to identify clusters with the cells with volume
ν smaller than the mean of all volumes hνi. While other
criteria can be used [12,27], the one used here provides a
simple way to discriminate between particles that are close
together from other particles, as the volume of a Voronoï
cell is inversely proportional to particle concentration. We
can then cross-correlate clustered particles with physical
magnitudes at the particles’ positions.
Figure 3(a) shows the PDF of the Voronoï volumes for

particles with St ¼ 6 and various Fr. In the absence of
gravity a log-normal distribution was reported in experi-
ments and simulations [12]; our results are in agreement
with these studies. As seen in Fig. 3(b), as gravity (or the
Stokes terminal velocity) increases, the variance σ2 of the
PDFs of ν=hνi also increases, indicating particles accumu-
late in smaller clusters and preferential concentration
becomes more dominant according to the criteria in [27]
(see also [24]). This is also confirmed by Fig. 3(c), which
shows that the average Voronoï volume of the clustered
particles (νc) is reduced as gravity increases (note this
mean volume varies only slowly with St, but for fixed St
decreases rapidly as Fr decreases). What regions of the flow
do particles explore then?.

To answer this question we study at what points clusters
are present. Having in mind classical centrifugation and
sweep-stick mechanisms, this is done by computing cross-
correlations betweenVoronoï volumes of clustered particles,
and fluid Lagrangian acceleration and vorticity at Voronoï
cells’ center positions (i.e., at clustered particle’s positions).
As shown in [24], no strong correlation is observed with the
vorticity. Instead, in Fig. 4(a) the joint PDFs of Voronoï
volumes and of vertical Lagrangian accelerations are shown
for cases with St ¼ 6, and Fr ¼ ∞ (i.e., g ¼ 0) and 0.23.
In both cases clusters tend to be in regions of low fluid
Lagrangian acceleration, and as was noted earlier, the
clusters become denser with decreasing Fr (i.e., the maxi-
mum of the PDF moves to smaller values of νc). However,
there is a weak dependence of the mean Lagrangian
acceleration of fluid elements in which particles accumulate
when g ≠ 0, as shown in Fig. 4(b). While horizontal
components of the fluid Lagrangian acceleration at clustered
particles average to zero (not shown), the mean value of the
vertical Lagrangian acceleration preferentially sampled by
particles with small St and large Fr tends to be negative,
while particles with large St and small Fr prefer regions with
small but positive hazi. This is independent of νc, except for
very small or very large clustered cells forwhich fluctuations
appear as a result of small sampling sizes.
Our results indicate that even in the presence of

gravity particles with St > 1 preferentially sample low

(a)

(b)

FIG. 2. (a) Particles’ mean vertical velocity as a function of Fr
for St ¼ 6. Error bars for 95% confidence intervals are shown;
standard deviations of fluctuations of hvzi in time are less than
2%. The inset shows the anomaly hvzi=v�. (b) PDFs of particles’
vertical velocity increments. As St increases, the PDFs are closer
to Gaussian (see the kurtosis Ku in the inset, Ku ¼ 3 is marked as
a reference).

(a)

(b)

(c)

FIG. 3. (a) PDFs of Voronoï volumes for particles with St ¼ 6
and different Fr. (b) Standard deviation of the PDFs of ν=hνi as a
function of the theoretical terminal velocity v�. (c) Mean Voronoï
volumes of clustered particles as a function of St and for
different Fr.
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fluid acceleration regions, with a small positive or negative
vertical bias depending on St and Fr, thus revalidating
the sweep-stick mechanism initially proposed for situations
without gravity. To explain the small but systematic
deviations from accumulation in points with hazi ¼ 0
when g ≠ 0, we now present a simple model that captures
all cases studied. When particles reach a steady regime
(i.e., a terminal velocity), they fulfill hdvz=dti ¼ 0. The
averaged z component of Eq. (1) then reduces to

hvzi=v� ¼ 1þ huzi=v�; ð2Þ

where the average is over particles. In other words, in the
terminal regime, the average slippage velocity between the
particles and the fluid is the Stokes terminal velocity v�. As
shown in Fig. 5(a) for clustered particles, this relation is
indeed satisfied by all cases studied.
Besides, one can relate the average Lagrangian accel-

eration of the carrier flow and its Lagrangian velocity by
making the approximation that hazi ∼ huzi=τL, where
τL ¼ L=U is the eddy turnover time at the flow integral
scale (note clusters and columns have global correlation
length close to L, see Fig. 1 and [24]). Introducing a Stokes
number based on τL, StL ¼ τ=τL, we can estimate the
term huzi=v� in Eq. (2) using huzi=ðgτÞ ∼ hazi=ðgStLÞ. As
StL=St ¼ τηU=L, then

hazi=ðgStÞ ¼ ðτηU=LÞð1 − hvzi=v�Þ: ð3Þ

Figure 5(b) shows that our data is in reasonable agree-
ment with Eq. (3) (with the exception of the case with

St ¼ 1 for which centrifugation and sweep-stick mecha-
nisms may be competing, see also [24]). Note that in both
figures we have a loitering case with hvzi=v� < 1. The
scaling also explains observations in Figs. 2 and 4: Particles
tend to stick to (or to preferentially fall through) fluid
elements with Lagrangian acceleration which is small and
dependent on the ratio hvzi=v�, which from our data seems
to also depend on St and Fr. In fact, Eq. (3) can be rewritten
as hazi=g ¼ StLð1 − hvzi=v�Þ. The range of validity of this
equation is then StL < 1 (as the average lifespan of a zero-
acceleration point is typically of the order of τL [8]) and
St > 1 (for the “stick” mechanism of such points to be
active). For g ¼ 0, Eq. (3) reduces to hazi ¼ 0, as in the
usual sweep-stick mechanism. Finally, note the scaling
in Eq. (3) is stationary: Particles are not accelerated and
reach a terminal velocity hvzi even though they preferen-
tially cross regions of the carrier flow that may be slightly
accelerated.
The results indicate that small and heavy inertial particles

in a turbulent flow with linear drag and gravity accumulate
in isotropic clusters (when g is sufficiently small), or fall
creating columns which result in regions of even stronger
particle accumulation. In the latter case there is a pro-
nounced anisotropy in the distribution of particles in the
direction of gravity. The time that takes particles to reach
their terminal velocity (controlled by the Stokes time
and Froude numbers) affects the formation and width of
these columns. Moreover, the particles’ terminal velocity
presents an anomaly with respect to the Stokes terminal
velocity in a viscous fluid at rest. The study of the joint
statistics of clustered particles and of fluid Lagrangian
acceleration at points of aggregation supports a modified
sweep-stick mechanism in which particles tend to concen-
trate in points of low Lagrangian acceleration, where they
fall with a velocity such that the relative mean slippage

(a)

(b)

FIG. 5. (a) Mean vertical velocity of clustered particles as a
function of the mean vertical velocity of fluid elements at
particle’s locations. Velocities are normalized by v�; as a result
points with hvzi=v� > 1 (most of them) indicate particles falling
faster than the Stokes terminal velocity. The dashed line corre-
sponds to Eq. (2). (b) Same for the Lagrangian acceleration of
fluid elements normalized by Stg as a function of hvzi=v�. The
dashed line corresponds to Eq. (3).

(a)

(b)

FIG. 4. (a) Joint PDFs of the volumes of cells belonging to
clusters νc, and of the vertical Lagrangian acceleration at the
particles’ positions, for St ¼ 6, and for two values of Fr (from left
to right, ∞ and 0.23). (b) Mean value of the vertical Lagrangian
acceleration at the clustered particles’ positions, as a function
of logðνcÞ.
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velocity becomes equal to the Stokes terminal velocity.
This anomaly in the terminal velocity results in the small
deviation from accumulation in zero-acceleration points of
the carrier fluid. In the limit of g ¼ 0 the Stokes terminal
velocity (and hence the slippage) vanishes, and classical
sweep stick is recovered, in which particles are stuck to
actual zero-acceleration points. Such a generalization of the
sweep-stick argument to heavy particles with gravity is in
good agreement with recent experimental data [28], and
opens the door to study other cases in which particles
transported by fluids are subjected to external acceleration
forces as, e.g., in active matter [29,30].
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