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23 Abstract

24 Prenatal androgen exposure affects reproductive functions and has been proposed as an 

25 underlying cause of polycystic ovary syndrome (PCOS). In this study, we aimed to 

26 investigate the impact of prenatal androgen exposure on ovarian lipid metabolism and to 

27 deepen our understanding of steroidogenesis regulation during adulthood. Pregnant rats 

28 were hyperandrogenized with testosterone and female offspring were studied when 

29 adult. This treatment leads to two different phenotypes: irregular ovulatory and 

30 anovulatory animals. Our results showed that prenatally hyperandrogenized (PH) animals 

31 displayed altered lipid and hormonal profile together with alterations in steroidogenesis 

32 and ovarian lipid metabolism. Moreover, PH animals showed alterations in the PPARg 

33 system, impaired mRNA levels of cholesterol receptors (Ldl-r and Srb-1) and decreased 

34 expression of the rate-limiting enzyme of de novo cholesterol production (Hmgcr). 

35 Anovulatory PH animals presented an increase of ovarian cholesteryl esters levels and 

36 lipid peroxidation index. Together with alterations in cholesterol metabolism, we found an 

37 impairment of the steroidogenic pathway in PH animals in a phenotype-specific manner. 

38 Regarding fatty acid metabolism, our results showed, in PH animals, an altered expression 

39 of Srebp1 and Atgl, which are involved in fatty acid metabolism and triglycerides 

40 hydrolysis, respectively. In conclusion, fatty acid and cholesterol metabolism, which are 

41 key players in steroidogenesis acting as a source of energy and substrate for steroid 

42 production, were affected in animals exposed to androgens during gestation. These 

43 results suggest that prenatal androgen exposure leads to long-term effects that affect 

44 ovary lipid metabolism and ovarian steroid formation from the very first steps. 
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45 word count: 4972

46 Introduction

47 Prenatal exposure to androgens during fetal development impacts on several tissues and 

48 leads to reproductive and metabolic alterations during puberty and adulthood (Cardoso & 

49 Padmanabhan 2019). It has been widely shown, in several species, that prenatal androgen 

50 excess can program metabolic, endocrine and reproductive disturbances at postnatal life, 

51 and lead to the development of phenotypes that resemble the features of human 

52 Polycystic Ovary Syndrome (PCOS) (Padmanabhan & Veiga-Lopez 2013). The problems 

53 experienced by women with PCOS include ovarian infertility and reproductive 

54 abnormalities such as altered steroidogenesis (Sander et al. 2011) and impaired ovarian 

55 function (Franks et al. 2008).  

56 It has been shown that the ovary is a target organ of fetal programming effects, 

57 particularly in cases of exposure to androgens during gestation (Puttabyatappa & 

58 Padmanabhan 2018). It is also known that fetal programming may have long-lasting 

59 effects on gene expression and physiological deregulations (Padmanabhan et al. 2016). 

60 However, the long-term impact of androgen excess during gestation on the ovary is still a 

61 matter of study.  

62 The main functions of the ovaries are to produce oocytes and to secrete steroid 

63 hormones, thus regulating and supporting reproductive functions. All of these processes 

64 are mainly, but not exclusively, regulated by hormonal actions, including the action of 

65 gonadotropins and steroid hormones. In this regard, it has been suggested that lipids play 

66 a crucial role in reproductive functions (Kim et al. 2017; Dallel et al. 2018). Moreover, it is 
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67 known that alterations in the metabolic status, such as obesity and dyslipidemia, may 

68 have a negative impact on female fertility (Li & Ma 2018; Silvestris et al. 2018). It has been 

69 reported that lipid pathways are susceptible to being programmed in several tissues, 

70 including reproductive ones (Abruzzese et al. 2016; Calabuig-Navarro et al. 2017). 

71 However, whether prenatal androgen excess may affect ovarian functions and steroid 

72 production through lipid metabolism alterations requires further studies. 

73 In the ovaries, lipids play a major role in reproductive and metabolic functions. 

74 Steroidogenesis, intracellular lipid metabolism, oxidative stress, among other processes, 

75 are controlled by the presence and activity of the Peroxisome proliferator-activated 

76 receptors (PPARs) nuclear receptors. It has been reported that the activation of PPARg 

77 (which includes its binding to PPARg co-activator 1 alpha, or PGC1a) modulates the 

78 synthesis of steroid hormones in granulosa cells. Furthermore, it has been shown that the 

79 disruption of this system has been reported to lead to female subfertility (Vélez et al. 

80 2013).

81 During oogenesis and folliculogenesis, there is an accumulation of large amounts of sterols 

82 and triglycerides (TG). These are used as primary sources for ATP production or the 

83 synthesis of other lipid species (Dunning et al. 2014). Triglycerides are a major energy 

84 source and the predominant form of energy storage in several cell types, together with 

85 fatty acids, normally stored as lipid droplets in ovarian cells (Wu et al. 2010). Fatty acid 

86 and glucose oxidation provides energy substrates for oocyte development and 

87 steroidogenesis (Singh et al. 2013). As it is known that failures in energy metabolism may 
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88 lead to reproductive alterations (Dupont et al. 2018), ovarian lipids play a key role in 

89 ovarian energy balance.

90 Other lipids, such as phospholipids and sterols, have important functions as essential 

91 constituents of biological cell membranes, where they are crucial in membrane structural 

92 and physiological properties. Sterols are the main lipid species in the ovaries. They 

93 participate directly in the steroidogenic process, in which cholesterol acts as the limiting 

94 substratum in ovarian steroid synthesis (van Montfoort et al. 2014). 

95 Moreover, regarding steroidogenesis, cholesterol availability is determinant for hormone 

96 synthesis. Steroidogenic cells of the ovary can obtain cholesterol from blood lipoproteins, 

97 suggested as the major sources, or by de novo synthesis. Steroids are involved in follicular 

98 development, ovulation, and pregnancy maintenance, and also participate in the 

99 regulation of gonadotropin secretion in the systemic circulation (Drummond 2006). 

100 Consequently, alterations in ovarian lipid metabolism may lead to infertility and several 

101 reproductive disorders, such as PCOS, among others (Lai et al. 2014). Taking all this 

102 evidence together, we aimed to investigate the effects of prenatal androgen exposure on 

103 ovarian lipid metabolism and steroidogenesis at adult age. 

104

105 Material and methods

106

107 Animals and treatments

108 Virgin female rats of the Sprague Dawley strain were mated with fertile males of the same 

109 strain. Three females and one male were housed in each cage under controlled conditions 
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110 of light (12 h light, 12 h dark) and temperature (22 ºC). Animals were allowed free access 

111 to Purina rat chow (Cooperación SRL, Argentina) and water. Day 0 of pregnancy was 

112 estimated as the morning on which spermatozoa were observed in the vaginal fluid. As 

113 previously described (Abruzzese et al. 2016, 2019a), pregnant rats (N=10) received 

114 subcutaneous injections of 1 mg of free testosterone (T-1500; Sigma, St. Louis, MO, USA) 

115 dissolved in 100 µl corn oil from day 16 to day 19 of pregnancy. This hormonal paradigm 

116 mimics the fetal androgen surge that is observed in male rats when the reproductive axis 

117 in the fetus is established (Wolf 2002; Ramezani Tehrani et al. 2014). Another group 

118 (N=10) received only 100 µl of corn oil. Under the conditions of our animal facilities, 

119 spontaneous term labor occurs on day 22 of gestation. Female offspring were separated 

120 from males at 21 days of age. Those from hyperandrogenized mothers were the prenatally 

121 hyperandrogenized (PH) group and those from mothers injected with corn oil were the 

122 control group. Previous studies of our group have shown that, in this animal model, the 

123 treatment of the PH group leads to human PCOS like features, with impaired follicle count, 

124 ovarian cysts presence, biochemical hyperandrogenism and altered hormonal and 

125 metabolic profile (Abruzzese et al. 2016, 2019a). 

126 Animals were euthanized by decapitation after anesthesia with carbon dioxide during 

127 adult age (three months of age). Ovaries were extracted, trunk blood was collected and 

128 serum was separated and kept at -80°C for further studies. All animals were randomly 

129 assigned for each assay considering their litter precedence. Care was taken when 

130 assigning and equilibrating the number of animals from each littermate to all the assays to 

131 prevent the maternal effect on the results.
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132 All the procedures involving animals were conducted in accordance with the Animal Care 

133 and Use Committee of Consejo Nacional de Investigaciones Científicas y Técnicas 

134 (CONICET) 1996, Argentina. The present study was approved by the Ethics Committee of 

135 the School of Medicine of University of Buenos Aires. 

136

137 Characterization of the estrous cyclicity 

138 Estrous cycles were monitored daily by vaginal smears beginning at 70 days of age and 

139 until decapitation. As previously reported, the control group had regular cycles (4–6 days), 

140 whereas those animals prenatally exposed to androgens displayed mostly altered estrous 

141 cycles. Vaginal smears showed that 49.5% of the PH animals showed prolonged cycles 

142 lasting 7 days or more and were classified as irregular ovulatory animals (PHiov); and that 

143 40.5% of the animals showed no cycles at all and were classified as anovulatory animals 

144 (PHanov) (Abruzzese et al. 2016; Heber et al. 2019). At three months of age, the entire 

145 PHanov group remained in diestrus; for that reason, and to allow comparison among 

146 groups, all animals were euthanized on the first diestrus after 90 days of age.

147

148 Serum determinations

149 Total cholesterol, high-density lipoprotein (HDL) and TG levels were quantified by 

150 colorimetric-enzymatic methods (Weiner Lab). The chromophoric product was measured 

151 at 505 nm for cholesterol, at 600 nm for HDL and at 490 nm for triglycerides. Low-density 

152 protein (LDL) cholesterol was estimated indirectly by the following formula: LDL = Total 

153 cholesterol - (HDL + Triglycerides/5) (Friedewald et al. 1972).
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154 Luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone and 

155 progesterone were quantified using radioimmunoassay (RIA), following the protocols 

156 previously described (Lacau-Mengido et al. 1996; Abruzzese et al. 2019a). The intra- and 

157 inter-assay coefficients were less than 10% and 13% for LH and FSH, respectively. The 

158 utility range of testosterone assay was 25–1600 pg. The intra- and inter-assay variations 

159 were 7.5 and 15.1%, respectively. Progesterone antiserum was highly specific for 

160 progesterone and showed low cross-reactivity. The intra- and inter-assay coefficients of 

161 variation were 10.9 and 12.8%, respectively. Serum estradiol levels were quantified with 

162 Cobase immunoassay analyzers using an Electro Chemiluminescence Immuno Assay 

163 (ECLIA) following the manufacturer’s instructions. The intra- and inter-assay coefficients of 

164 variation were 13.2 and 7.08%.

165

166 Ovarian lipid content

167 Lipid content was analyzed by thin layer chromatography (TLC). Both ovaries per animal 

168 were homogenized in 1 ml phosphate-buffered saline (PBS) and protein content in the 

169 homogenates was measured by the Bradford assay. Tissue lipids were extracted from 500 

170 μl of each homogenate by two rounds of organic extraction in methanol: chloroform (2:1), 

171 following the method of Bligh & Dyer (1959). The lipids extracted were developed by thin 

172 layer chromatography in 0.2 mm silica gel plates (Merck, Darmstadt, Germany), using 

173 hexane: ethyl ether: acetic acid (80:20:2, v:v:v) as the developing solvent mixture, as 

174 previously reported (Kurtz et al. 2010). Samples were developed with known amounts of 

175 lipid standards on the same plate. Lipid species were stained with iodine vapors and the 
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176 plate was scanned for further identification and quantification of the lipid species by 

177 comparison with known amounts of standards. Densitometric analysis of the area 

178 intensity of each spot was performed with the ImageJ software. The lipid content was 

179 expressed as ug lipids/mg protein.

180

181 Gene expression analysis

182 In order to assess lipid metabolism, the expression of Pparg and Pgc1 was analyzed. Fatty 

183 acid metabolism and availability from triglycerides was evaluated by measuring mRNA 

184 levels of Srebp1 and Atgl, respectively. To evaluate cholesterol bioavailability, the mRNA 

185 expression of the cholesterol receptors: Ldl-r and Srb1 was assessed, and de novo 

186 cholesterol synthesis was assessed, by measuring the mRNA expression of its limiting 

187 enzyme, 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr).

188 All mRNA levels were quantified by Real-Time PCR analysis. Briefly, total mRNA from 

189 ovarian tissue was extracted using RNAzol RT (MRC gene, Molecular Research Center, 

190 Cincinnati, OH, USA), following the manufacturer’s instructions. For each sample, cDNA 

191 was synthesized from 1 μg mRNA using random primer hexamers (Invitrogen-Life 

192 Technologies, Buenos Aires, Argentina). Real-time PCR analysis was performed from this 

193 cDNA (2.5 μL) in 10 μL reaction buffer containing a 20 mM dNTPs mix, GoTaq Polymerase 

194 (Promega), Eva Green 20x (Biotium Hayward, CA, USA) and gene-specific primers in a total 

195 volume of 12.5 μL. The qPCR conditions started with a denaturation step at 95ºC for 5 min 

196 and followed by up to 40 cycles of denaturation (95ºC), annealing (see temperature for 

197 each primer in table 1) and primer extension (72ºC). The amplified products were 
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198 quantified by fluorescence, using the Rotor Gene 6000 Corbett, and mRNA abundance was 

199 normalized to the amount of 60s Ribosomal protein L32 (L32) and Proteasome Subunit 

200 Beta 2 (Psmb2) considering the geometric media. Both L32 and Psmb2 were validated as 

201 reference genes as the variance between treatments did not differ.  In order to check for 

202 DNA contamination, for L32, a control without reverse transcription was included to 

203 ensure that amplification was only from mRNA. All of the amplicons for the different 

204 genes were characterized according to their melting temperature and size. Each qPCR run 

205 included a no-template control. The reaction conditions and quantities of cDNA added 

206 were calibrated such that the assay response was linear with respect to the amount of 

207 input cDNA for each pair of primers. Gene expression was quantified using the 2 –ΔΔCt 

208 method (Livak & Schmittgen 2001). Results are expressed as a fold value of the controls. 

209 The primers are shown in Table 1.

210

211 Protein expression analysis

212 Protein expression in ovarian tissue was determined by Western blot analysis. Briefly, 

213 ovarian tissue was lysed for 20 min at 4 ºC in lysis buffer (20 mM Tris-HCl, pH= 8.0, 137 

214 mM NaCl, 1% Nonidet P-40 and 10% glycerol) supplemented with protease inhibitors 

215 (Sigma-Aldrich, St. Louis, MO, USA). The lysate was centrifuged at 4 ºC for 10 min at 

216 10,000 g and the pellet discarded. Protein concentrations in the supernatant were 

217 measured by the Bradford assay (Bio-Rad, Hercules, CA, USA). After boiling for 5 min, 30 

218 μg of each protein was applied to a 12% SDS-polyacrylamide gel and electrophoresis was 

219 performed at 80 Volts for 1.5 h. The separated proteins were transferred onto 
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220 nitrocellulose membranes in transfer buffer (20% methanol, vol/vol; 0.19 M glycine; 0.025 

221 M Tris-Base, pH= 8.3) for 1 h at 400 mA and 4 ºC. Blocking was carried out for 1 h at room 

222 temperature in 5% non-fat milk in PBS and membranes were incubated with the primary 

223 antibody (Table 2), diluted in 1% bovine serum albumin in PBS, overnight at 4 ºC. The 

224 protein bands were visualized by incubating the blots with horseradish peroxidase-

225 conjugated secondary antibody Goat anti-rabbit IgG IgG H&L, HRP (1:1500, #1706515, 

226 BioRad) or anti-mouse IgG HRP (1:5000, ab6728, Abcam) for 1 h, followed by ECL Western 

227 Blotting Substrate (Thermo Scientific, IL, USA). Rainbow-colored protein mass markers 

228 (14.3-200 kDa, Bio-Rad) were applied to samples as molecular weight standards.

229 The consistency of protein loading was evaluated by staining the membranes with 

230 Ponceau-S. The expression of the target proteins was normalized for total protein staining 

231 to adjust for unequal loading. The images were captured in a chemiluminescence imaging 

232 system (GeneGnomeXRQ, Syngene), and the intensities (area x density) of the individual 

233 bands were evaluated with ImageJ software. When quantified, the intensity of each 

234 protein band was normalized to the total protein in individual samples to adjust for 

235 unequal loading and transfer (Roberti et al. 2018). 

236

237 Co-Immunoprecipitation (co-IP) of PPARg and PGC1a

238 To evaluate PPARg interaction with its co-activator PGC1a, a co-immunoprecipitation was 

239 performed. Ovarian tissue (25 mg for each sample) was homogenized in 500ul of non-

240 denaturing lysis buffer (200mM Tris-HCl pH=8, 137 mM NaCl, 10% glycerol, % NP-40, 2nM 

241 EDTA pH=8) supplemented with protease inhibitors (Sigma, USA). Lysate was incubated in 
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242 agitation during 2hs at 4°C. After a centrifugation at 10000g, supernatant was recovered 

243 and 1 ug of anti PPARg1+2 (ab41928,Abcam, UK) was added to the samples, and 

244 incubated overnight in agitation at 4°C. Antibody complexes were precipitated using 

245 Protein G Plus Agarose (Santa Cruz) overnight at 4°C.  Complexes were pelleted and 

246 washed 3 times in modified RIPA buffer (50 mM Tris-HCl pH=8, 150 mM NaCl, 2 mM EDTA 

247 pH=8, 1% NP-40, 0,5% sodium deoxycholate, 0,2% SDS) containing protease inhibitors to 

248 eliminate non-specific interactions. After the last wash, all the samples were resuspended 

249 in 50 ul of 2X Laemli buffer (4% SDS, 20% glycerol, 0,004% bromophenol blue, 0,125M 

250 Tris-Cl pH= 6,8, 10% 2-mercaptoethanol) which was added to the precipitated containing 

251 the beads and bound protein complexes and the beads were denatured by boiling at 95°C 

252 for 7 minutes. Samples were analyzed by Western blot to identify the coprecipitating 

253 effector protein using PGC1a antibody (sc13067, Santa Cruz Biotechnology, USA), as 

254 described above. 

255

256 Lipid peroxidation

257 The amount of malondialdehyde (MDA) formed from the breakdown of polyunsaturated 

258 fatty acids was taken as an index of peroxidation reaction. The method quantifies MDA as 

259 the product of lipid peroxidation that reacts with trichloracetic acid–thiobarbituric acid–

260 HCl (15% (w/v), 0.375% (w/v) and 0.25 M, respectively) yielding a red compound that 

261 absorbs at 535nm (Motta et al. 2001). Homogenates of ovarian tissue were treated with 

262 trichloroacetic acid–thiobarbituric acid–HCl and heated for 15 min in boiling water bath. 

263 After cooling, the flocculent precipitate was removed by centrifugation at 1000 g for 10 
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264 min. The absorbance of samples was determined at 535 nm. Content of thiobarbituric acid 

265 reactants were expressed as nmol MDA formed/g tissue.

266

267 Statistical analysis

268 Data was analyzed by ANOVA with post hoc Tukey test. Data normality was checked using 

269 the Shapiro-Wilks test. The equality of variance was tested using the Levene test. If 

270 required, Log10 transformation was used to normalize the distribution of data and to the 

271 statistical analysis. Data were back-transformed for presentation. Statistical significance 

272 was considered as p<0.05. The sample size for the experimental procedures was 

273 calculated using  G*power 3 (Faul et al. 2007). Statistical analyses were carried out using 

274 the Instat program (GraphPad Software, San Diego, CA, USA). 

275

276 Results

277 Hormonal and metabolic determinations 

278 Prenatal androgenization did not affect the body weight at three months of age, while 

279 ovarian weight was decreased in the PHanov phenotype (Table 3). Similar to our previous 

280 findings (Abruzzese et al. 2019b), lipid profile was altered at adulthood in PH animals, 

281 which showed increased levels of LDL-cholesterol (p<0.01) and TG (p<0.01) as compared 

282 with the control group. Regarding hormonal steroid profile, as previously found (Heber et 

283 al. 2019), prenatal androgenization led to an increase in testosterone levels in the PHanov 

284 group (p<0.01) and a decrease in estradiol levels in both PHiov and PHanov groups 

285 (p<0.05), without alterations in progesterone levels (p>0.05). Moreover, neither of the PH 
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286 groups showed altered levels of the gonadotropins FSH and LH as compared to the control 

287 group (p>0.05).

288

289 Ovary lipid content

290 We found no changes in ovarian TG, fatty acids and phospholipids ovary content in the PH 

291 group as compared to the control group (Fig.1A, B and C, respectively, p>0.05). Regarding 

292 cholesterol content, we found no differences in the PH group as compared to control 

293 group (Fig.1D, p<0.05), but found higher levels of cholesteryl esters in the PHanov 

294 phenotype as compared to the PHiov and control groups (Fig.1E, p<0.05).  

295

296 Ovarian lipid metabolism 

297 Prenatal androgenization affected PPARg and its coactivator (PGC1a) expression and 

298 interaction. We found a decrease in PPARg mRNA (Fig. 2A, p<0.01) and protein levels (Fig. 

299 2B, p<0.05) in the PH phenotypes as compared to the control group. Moreover, PGC1a 

300 mRNA and protein levels (Fig. 2C and D, p<0.05) were decreased in the PHiov phenotype. 

301 Co-immunoprecipitation results showed a decreased interaction between PPARg and 

302 PGC1a in the PH phenotypes as compared to controls (Fig. 2E, p<0.05).

303 Fatty acid metabolism was also impaired by prenatal androgen exposure. We found that 

304 the mRNA levels of the master regulator of fatty acid metabolism Srebp1 were decreased 

305 in both PH phenotypes as compared to the control group (Fig. 3A, p<0.01). Moreover, we 

306 found that the mRNA levels of Atgl, a key enzyme involved in the initial step of 
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307 intracellular hydrolysis of TG, were increased in both PH phenotypes, with the highest 

308 levels in the PHiov phenotype (Fig. 3B, p<0.01).

309 We also found that prenatal androgenization altered ovarian cholesterol pathway. Our 

310 results showed that the cholesterol receptors, LDL-R and SRB1, were altered in the PH 

311 groups. In the case of the PHanov phenotype, the mRNA levels of Ldl-r were increased 

312 (Fig. 4A, p<0.01), while in the PHiov phenotype, the mRNA levels of Srb1 were decreased 

313 (Fig. 4B, p<0.05). Moreover, the mRNA levels of Hmgcr, a key enzyme in cholesterol de 

314 novo synthesis, were lower in the PH group than in the control group (Fig 4C, p<0.01).

315

316 Ovarian lipid peroxidation

317 The lipid peroxidation index was evaluated by the content of ovarian MDA. We found that 

318 lipid peroxidation index was increased in the PHanov phenotype as compared to the 

319 control group (Fig. 5, p<0.05).  

320

321 Ovarian steroidogenesis 

322 Ovarian steroidogenic pathway was evaluated to study the relation between 

323 steroidogenesis and lipid metabolism (Fig 6). The protein levels of StAR were increased in 

324 the PHanov phenotype (p<0.05). The protein levels of 3BHSD and CYP17, limiting enzymes 

325 in progesterone and androgen synthesis, respectively, remained unaltered in the PH 

326 phenotypes (p>0.05). The protein levels of 17BHSD, involved in testosterone synthesis, 

327 were decreased in the PHanov phenotype and showed a tendency to decrease in the 

328 PHiov phenotype (p<0.05). The protein levels of CYP19 (aromatase), involved in estradiol 
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329 synthesis, were increased in the PHiov phenotype and showed a tendency to increase in 

330 the PHanov phenotype (p<0.05).

331 Discussion

332 Reproductive functions depend on hormonal regulation and also on energy storage and 

333 availability. Lipids play important roles in ovarian functions, acting as sources of energy, 

334 and as substrates for several intracellular processes (Dallel et al. 2018). 

335 Prenatal exposure to a suboptimal intrauterine environment could lead to long term 

336 effects affecting reproductive functions. To study the impact of fetal programming of 

337 animals exposed to androgens, we reproduced a rodent model of prenatal androgen 

338 excess widely used (Wolf 2002; Ramezani Tehrani et al. 2014; Abruzzese et al. 2016, 

339 2019a, b; Heber et al. 2019). Here, using this model, we addressed the question of 

340 whether ovarian lipid metabolism and specifically cholesterol metabolism are impaired in 

341 these animals when adults.

342 Prenatal androgen exposure may negatively impact on gonadal development, conditioning 

343 its growth and functions in postnatal life. In this regard, we found a decreased ovarian 

344 weight in the PHanov phenotype, which could account, at least in part, for the more 

345 severe ovarian defects found in this phenotype. 

346 In this animal model, the lipid profile was found altered together with an imbalance in 

347 steroid hormone profile, thus highlighting the effect of steroid hormones on lipid 

348 metabolism (Kakuta et al. 2013; Meng et al. 2015). We found no changes in gonadotropins 

349 levels, as we have previously reported at pubertal age (Abruzzese et al. 2019a). However, 

350 although gonadotropins levels may remain unaltered, defects in their pulsatility are 
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351 possible (Yan et al. 2014). Moreover, it is important to highlight that, together with 

352 gonadotropins, lipids and insulin are also involved in ovarian steroid production. In this 

353 regard, we have previously shown that PH animals show insulin resistance and impaired 

354 ovarian insulin signaling (Heber et al. 2019); and here, we report that ovarian lipid 

355 pathways are also affected. Taking together, these data highlight the role of energetic 

356 ovarian defects, as those given by alterations on lipids and insulin pathways, as 

357 contributing factors to altered steroid production in hyperandrogenic contexts.

358 The master regulator of lipid metabolism PPARg is also involved in female reproductive 

359 functions, and particularly it has been reported that PPARg regulates steroidogenic 

360 enzymes (Vélez et al. 2013). Alterations in PPARg system have already been reported in 

361 PCOS patients and animal models (Chen et al. 2015a; Cao et al. 2019). Here, we found that 

362 the expression of PPARg and its co-activator, PCG-1a, are decreased in PH animals. 

363 Moreover, we found that PPARg activation was decreased in these animals. These results 

364 extend our previous findings about the role of PPARg system in androgenic contexts 

365 (Abruzzese et al. 2019a). This evidence shows that this system's expression pattern could 

366 change across different life stages in PH animals during post-natal life (Abruzzese et al. 

367 2019a), as it has already been suggested in sheep (Ortega et al. 2010). In accordance with 

368 our results, it has been shown that PCOS adult women show a downregulation of PPARg 

369 expression in ovarian granulosa cells (Cao et al. 2019), and that the treatment with 

370 thiazolidinediones (high-affinity ligands for PPARg that lead to its activation) has positive 

371 effects on reproductive function and ovulation rate in these patients (Froment & Touraine 
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372 2006). These results suggest that, in androgenic contexts, PPARg system activation may be 

373 impaired and highlights the crucial role of this system in ovarian functions. 

374 During oogenesis, maturing oocytes accumulate neutral lipids that are essential for both 

375 energy production and synthesis of other lipid molecules. For example, fatty acids are 

376 used as an energy source during oocyte maturation. Here, we showed that although fatty 

377 acid content was not altered in the ovaries of the PH group, fatty acid metabolism was 

378 impaired. Gene expression of Srebp1, which regulates several genes involved in fatty acid 

379 synthesis, was decreased in PH animals. On the other hand, mRNA expression of Atgl, 

380 which participates in the initial steps in triglycerides hydrolysis, was increased in the PH 

381 group. Taken together, these results suggest that although prenatal androgenization 

382 affected fatty acid synthesis, there is compensation between two different pathways for 

383 obtaining fatty acids. 

384 Oxidative stress is associated with decreased female fertility. In particular, fatty acid 

385 peroxidation has been suggested as one of the main sources that can affect gamete 

386 viability, negatively impacting fertility (Agarwal et al. 2012). Ovarian oxidative stress plays 

387 a crucial role in PCOS, ovarian senescence and age-related decline of reproductive 

388 function (Yildirim et al. 2007; Aiken et al. 2013). Moreover, it has been shown that 

389 testosterone has pro-oxidant properties and is able to induce oxidative stress in different 

390 mammalian tissues, as for example, in female placenta (Zhu et al. 1997; Alonso-Alvarez et 

391 al. 2007). In this study, we found that the anovulatory phenotype showed increased levels 

392 of lipid peroxidation. This result shows that increased testosterone exposure during 

393 development and postnatal life could lead to an increased lipid peroxidation, contributing 
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394 to the reproductive alterations and infertility already reported in this phenotype (Ferreira 

395 et al. 2019).

396 Cholesterol is essential for ovarian steroidogenesis (Strauss 2019). Ovarian tissue may 

397 synthesize de novo cholesterol being HMGCR a limiting enzyme in this process. The role of 

398 HMGCR in PCOS pathology has been highlighted in other studies. In this regard, in a 

399 murine model of PCOS, it was shown a repression in the transcription of HMGCR, and 

400 other genes involved in lipid metabolism (Salilew-Wondim et al. 2015). Moreover, in PCOS 

401 patients, it has been described that Hmgcr may act as a modifier gene in PCOS (Xu et al. 

402 2010). Together with these findings, it has been shown that HMGCR expression, at least in 

403 hepatic cells, can be induced by estrogenic action, as the Hmgcr promoter has estrogen 

404 response elements (Meng et al. 2015). Therefore, low levels of estradiol in the PH animals 

405 could account for the decreased expression of Hmgcr that we found.

406 Despite the possibility of de novo cholesterol synthesis, as there is a high demand in 

407 cholesterol bioavailability in steroidogenic cells, it may also be captured from plasma 

408 involving two different receptors: LDL-R and SR-B1 (Wang & Menon 2005; Lai et al. 2014). 

409 In rodents, it has been reported that both receptors are important in cholesterol 

410 trafficking and steroid biosynthesis (Chang et al. 2017). It has been shown that female 

411 mice knockout for Sr-b1 or Ldl-r are infertile (Miettinen et al. 2001) or show alterations in 

412 the estrous cycle, steroidogenesis and folliculogenesis (Guo et al. 2015). In accordance 

413 with these data, our results showed that the PH animals presented an altered expression 

414 of ovarian cholesterol receptors. These results indicate that in both PH phenotypes, 

415 ovarian cholesterol trafficking pathway is altered. In the case of PHanov animals, the 
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416 entering of cholesterol to the cell would be promoted in the PHanov phenotype due to 

417 the increase in Ldl-r mRNA levels. While in the PHiov phenotype, cholesterol entrance is 

418 also altered, showing a decrease in Sr-b1 mRNA levels, but no alterations in Ldl-r 

419 expression, suggesting that LDL cholesterol may be used as a preferential source for 

420 steroidogenesis. It has been reported that knock-out Srb1 female mice are infertile but do 

421 not exhibit estrous cycle defects or altered number of ovulated oocytes  (Trigatti et al. 

422 1999). Moreover, testosterone (Langer et al. 2002) and estradiol (Lopez et al. 2002) can 

423 up-regulate Srb1 expression, and it was shown that some mutations of Srb1 that affect 

424 this gene expression, decreasing it, are associated with low estradiol levels (Strauss 2019). 

425 In agreement with these reports, our PHiov animals showed low expression of Srb1 and 

426 also low levels of estradiol. However, as we have shown in a previous report, these 

427 animals are able to become pregnant but with a lower efficacy than control females, 

428 showing some degree of subfertility (Ferreira et al. 2019). The different expression of Srb1 

429 between PHanov and PHiov animals may be due to the testosterone and estradiol levels, 

430 while both PH groups showed low estradiol levels, PHanov animals showed high 

431 testosterone, which could be acting up-regulating Srb1 expression and therefore 

432 contributing to high cholesterol trafficking in the ovaries of these animals.

433 The quantity of sterol ester stored depends on the availability of cholesterol and the cell's 

434 steroidogenic activity. In steroidogenic cells such as ovary and testis, the formation of lipid 

435 droplets is hormonally regulated (Hu et al. 2010); therefore, alterations in hormone 

436 production or levels could affect cholesterol esterification and lipid droplets depot 

437 (Strauss 2019). In our animal model, we found that PH animals had altered hormonal 
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438 balance together with impaired ovarian steroid production. Particularly, in the PHanov 

439 phenotype, we found an increase in cholesterol esters. This increase in cholesterol 

440 esterification in this phenotype is probably related to the increased intake of cholesterol 

441 through Ldl-r and testosterone synthesis. 

442 All of these derangements in the cholesterol pathway and the PPARg system also affected 

443 steroidogenesis. When we analyzed steroidogenic mediators, we found alterations in 

444 several of them in a phenotype-specific manner. In the PHiov phenotype, little alterations 

445 were found regarding steroidogenesis. However, the fact that the protein expression of 

446 17BHSD tended to decrease is consistent with the lack of increased testosterone levels. 

447 This phenotype also showed low estradiol levels despite increased CYP19 (aromatase) 

448 protein expression. This could be due to defects in aromatase activity, which have been 

449 previously reported in PCOS women (Chen et al. 2015b). Taking all of these together, the 

450 decreased estradiol levels could contribute to an altered hormonal balance that may 

451 influence reproductive functions in this phenotype.  

452 In the PHanov phenotype, we found alterations in StAR, 17BHSD and CYP19 protein 

453 expression. This phenotype exhibited a favoring to high steroid synthesis, as shown by 

454 increased StAR protein expression, consistent with the increased testosterone levels 

455 found. However, unexpectedly, we found a decreased protein expression of 17BHSD. A 

456 possibility is that although enzyme expression is down, its activity may be increased. 

457 Similar to our findings, other authors have also reported this paradoxical result regarding 

458 the decreased expression of enzymes involved in androgen synthesis and increased 

459 androgen production (Ortega et al. 2013; Padmanabhan et al. 2014).
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460 It is important to highlight that although the steroidogenic factors and enzymes were also 

461 altered at early stages of life (Abruzzese et al. 2019a), here, we found that at adulthood, 

462 the pattern is changed as compared with that observed at 60 days of age. These results 

463 suggest that the long term effects of developmental programming by androgen excess 

464 may change through life. These data are consistent with a report from Padmanabhan et al. 

465 (2014) in prenatally androgenized sheep, who also found that steroidogenic mediators are 

466 altered and change in an age-specific manner  (Padmanabhan et al. 2014).    

467 In conclusion, our results show that prenatal androgen excess exerts long-term effects on 

468 ovarian functions affecting ovarian lipid metabolism and particularly affecting the 

469 steroidogenic pathway from the very first steps involving cholesterol availability and 

470 synthesis.
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679 Figure legends

680 Figure 1. Effects of prenatal androgen exposure on lipid concentrations in the ovaries of 

681 prenatally hyperandrogenized (PH) and control groups. A) Triglycerides, B) Free fatty 

682 acids, C) Phospholipids, D) Cholesterol E) Cholesteryl esters. White dots correspond to 

683 animals of the control group (n=6), grey dots to the PHiov phenotype (n=6), and black dots 

684 to the PHanov phenotype (n=6). The horizontal bar represents the mean. Statistical 
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685 analyses were made by ANOVA; different letters mean statistically significant differences 

686 (a vs. b, p<0.05).

687

688 Figure 2. Effects of prenatal androgen exposure on PPARg system in the ovaries of 

689 prenatally hyperandrogenized (PH) and control groups. The graphs correspond to A) 

690 mRNA abundance of Pparg (p < 0.01), B) protein levels of PPARg (p < 0.05), C) mRNA levels 

691 of Pgc1a (p < 0.01), D) protein levels of PGC1a (p < 0.05), and E) Co-immunoprecipitation 

692 of PPARg and PGC1a in ovaries of the prenatally hyperandrogenized (PH) and control 

693 groups. White dots correspond to animals of the control group, grey dots to the PHiov 

694 phenotype, and black dots to the PHanov phenotype. The horizontal bar represents the 

695 mean.  A sample size of 6 animals per group was used for mRNA and protein analysis and 

696 5 animals per group for CO-IP analysis. Statistical analyses were made by ANOVA; different 

697 letters mean statistically significant differences (a vs. b, p < 0.05).

698

699 Figure 3. Effects of prenatal androgenization on fatty acid and triacylglycerol metabolism.  

700 The graphs correspond to A) mRNA abundance of Srebp1 (p<0.01), B) mRNA abundance of 

701 Atgl (p<0.01) of the prenatally hyperandrogenized (PH) and control groups. White dots 

702 correspond to animals of the control group (n=6), grey dots to the PHiov phenotype (n=6), 

703 and black dots to the PHanov phenotype (n=6). The horizontal bar represents the mean. 

704 Statistical analyses were made by ANOVA; different letters mean statistically significant 

705 differences (a vs. b, p<0.05).

706
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707 Figure 4. Prenatal androgenization effects on ovarian cholesterol pathway. The graphs 

708 correspond to A) mRNA abundance of Ldl-r (p<0.01), B) mRNA abundance of Srb1 

709 (p<0.05), C) mRNA abundance of Hmgcr (p<0.01) of the prenatally hyperandrogenized 

710 (PH) and control groups. White dots correspond to animals of the control group (n=6), 

711 grey dots to the PHiov phenotype (n=6), and black dots to the PHanov phenotype (n=6). 

712 The horizontal bar represents the mean. Statistical analyses were made by ANOVA; 

713 different letters mean statistically significant differences (a vs. b, p<0.05).

714

715 Figure 5. Prenatal androgenization effects on ovarian lipid peroxidation. 

716 Lipoperoxidation index using the thiobarbituric acid method (TBARS) through the 

717 evaluation of malondialdehyde (MDA) was measured in the prenatally hyperandrogenized 

718 (PH) and control groups. White dots correspond to animals of the control group (n=7), 

719 grey dots to the PHiov phenotype (n=7), and black dots to the PHanov phenotype (n=7). 

720 The horizontal bar represents the mean. Statistical analyses were made by ANOVA; 

721 different letters mean statistically significant differences (a vs. b, p<0.05).

722

723 Figure 6. Prenatal androgen excess effects on ovarian steroidogenic factors and enzymes. 

724 Protein expression of A) Steroidogenic acute regulator (StAR), B) 3-B-Hydroxysteriod 

725 dehydrogenase (3BHSD), C) cytochrome P450 17a-hydroxylase (CYP17), D) 17β-

726 hydroxysteroid dehydrogenase (17BHSD) and E) cytochrome P450 aromatase (CYP19) in 

727 the ovaries of the prenatally hyperandrogenized (PH) and control animals. White dots 

728 correspond to animals of the control group (n=6), grey dots to the PHiov phenotype (n=6), 
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729 and black dots to the PHanov phenotype (n=6). The horizontal bar represents the mean. 

730 Statistical analyses were made by ANOVA; different letters mean statistically significant 

731 differences (a vs. b, p<0.05).

732

733 Table 1. List of primers used in real-time PCR. F, forward sequence; R, reverse sequence.

734

735 Table 2. List of primary antibodies and dilution used for western blotting.

736

737 Table 3. Metabolic and hormonal parameters at adulthood for the prenatally 

738 hyperandrogenized (PH) and control groups for 7 rats per group. Values represent mean ± 

739 S.D. Statistical analyses were made by ANOVA with post hoc Tukey's test. Different letters 

740 mean statistically significant differences (a vs. b, p<0.05).

741
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Table 1. List of primers used in Real-time PCR 

F, forward sequence; R, reverse sequence

Primers used in Real-time PCR

Gene Primers sequences Temperature of 
annealing (ºC)

Atgl F AACCATCATTCTCGGCTCAC

Atgl R CCCACCAGGAGTAGCATTGT
62

Hmgcr F TGCTGCTTTGGCTGTATGTC

Hmgcr R TGAGCGTGAACAAGAACCAG
62

L32 F TGGTCCACAATGTCAAGG

L32 R CAAAACAGGCACACAAGC
58

Ldl-r F AGACCCAGAGCCATCGTAGT

Ldl-r R ATCAACCCAATAGAGGCGGC
62

Pgc1a F AATGCAGCGGTCTTAGCACT

Pgc1a R GTGTGAGGAGGGTCATCGTT
60

Pparg F TTTTCAAGGGTGCCAGTTTC

Pparg R GAGGCCAGCATGGTGTAGAT
60

Psmb2 F TCGGAGTCGGACCCCTTATC

Psmb2 R TGTAGTAAAGTGCTGGCCCC
62

Srb1 F GGTGCCCATCATTTACCAAC

Srb1 R CCCTACAGCTTGGCTTCTTG
62

Srebp F TAACCTGGCTGAGTGTGCAG

Srebp R ATCCACGAAGAAACGGTGAC
60
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Table 2. List of primary antibodies and dilution used for western blotting.

Antibody Brand Catalogue 
number

Western 
blot dilution

PPARg ABCAM ab19481 1:200

PGC1a Santa Cruz 
Biotechnology

sc13067 1:200

StAR Santa Cruz 
Biotechnology

sc25806 1:200

3BHSD Santa Cruz 
Biotechnology

sc28206 1:200

17BHSD Santa Cruz 
Biotechnology

Sc32872 1:200

CYP17 Santa Cruz 
Biotechnology

Sc66849 1:200

CYP19 Santa Cruz 
Biotechnology

Sc30086 1:200
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Table 3. Metabolic and hormonal characterization at adulthood.

Metabolic and hormonal parameters for the prenatally hyperandrogenized (PH) and Control 

groups for 7 rats per group. Values represent mean ± S.D. Statistical analyses were made by 

ANOVA with post hoc Tukey's test. Different letters mean statistically significant differences (a vs. 

b, p<0.05).

Parameter Control PHiov PHanov
Body weight  at 90 days of age (g) 228.33 ± 19.03a 225.22 ± 21.27 a 229.89 ± 26.78 a

Average Ovarian Weight (mg) 46.3 ± 10.44 a 46.82 ± 8.77 a 36.58 ± 4.75 b

Total Cholesterol (mg/dL) 132.03 ± 23.75 a 136.78 ± 39.69 a 128.94 ± 35.97 a

HDL Cholesterol (mg/dL) 31.72 ± 4.49 a 28.53 ± 5.83 a 32.16 ± 5.06 a

LDL Cholesterol (mg/dL) 58.44 ± 21.99 a 105.20 ± 28.37 b 97.20 ± 38.17 b

Triglycerides (mg/dL) 86.08 ± 31.89 a 119.00 ± 24.59 b 112.42 ± 12.03 b

LH (ng/mL) 0.31 ±0.05 a 0.61 ± 0.29 a 0.45 ± 0.34 a

FSH (ng/mL) 3.54 ± 2.06 a 3.43 ± 1.29 a 4.23 ± 2.61 a

Progesterone (ng/mL) 8.16 ± 5.52 a 17.16 ± 9.72 a 12.86 ± 9.6 a

Testosterone (pg/mL) 75.05 ± 18.29 a 93.59 ± 17.26 a 213.23 ± 11.00 b

Estradiol (pg/mL) 14.28 ± 4.66 a 7.69 ± 3.19 b 7.34 ± 2.56 b
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Figure 1. Effects of prenatal androgen exposure on lipid concentrations in the ovaries of prenatally 
hyperandrogenized (PH) and control groups. A) Triglycerides, B) Free fatty acids, C) Phospholipids, D) 

Cholesterol E) Cholesteryl esters. White dots correspond to animals of the control group (n=6), grey dots to 
the PHiov phenotype (n=6), and black dots to the PHanov phenotype (n=6). The horizontal bar represents 

the mean. Statistical analyses were made by ANOVA; different letters mean statistically significant 
differences (a vs. b, p<0.05). 
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Figure 2. Effects of prenatal androgen exposure on PPARg system in the ovaries of prenatally 
hyperandrogenized (PH) and control groups. The graphs correspond to A) mRNA abundance of Pparg (p < 

0.01), B) protein levels of PPARg (p < 0.05), C) mRNA levels of Pgc1a (p < 0.01), D) protein levels of 
PGC1a (p < 0.05), and E) Co-immunoprecipitation of PPARg and PGC1a in ovaries of the prenatally 

hyperandrogenized (PH) and control groups. White dots correspond to animals of the control group, grey 
dots to the PHiov phenotype, and black dots to the PHanov phenotype. The horizontal bar represents the 
mean.  A sample size of 6 animals per group was used for mRNA and protein analysis and 5 animals per 
group for CO-IP analysis. Statistical analyses were made by ANOVA; different letters mean statistically 

significant differences (a vs. b, p < 0.05). 
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Figure 3. Effects of prenatal androgenization on fatty acid and triacylglycerol metabolism.  The graphs 
correspond to A) mRNA abundance of Srebp1 (p<0.01), B) mRNA abundance of Atgl (p<0.01) of the 

prenatally hyperandrogenized (PH) and control groups. White dots correspond to animals of the control 
group (n=6), grey dots to the PHiov phenotype (n=6), and black dots to the PHanov phenotype (n=6). The 

horizontal bar represents the mean. Statistical analyses were made by ANOVA; different letters mean 
statistically significant differences (a vs. b, p<0.05). 
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Figure 4. Prenatal androgenization effects on ovarian cholesterol pathway. The graphs correspond to A) 
mRNA abundance of Ldl-r (p<0.01), B) mRNA abundance of Srb1 (p<0.05), C) mRNA abundance of Hmgcr 
(p<0.01) of the prenatally hyperandrogenized (PH) and control groups. White dots correspond to animals of 
the control group (n=6), grey dots to the PHiov phenotype (n=6), and black dots to the PHanov phenotype 
(n=6). The horizontal bar represents the mean. Statistical analyses were made by ANOVA; different letters 

mean statistically significant differences (a vs. b, p<0.05). 
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Figure 5. Prenatal androgenization effects on ovarian lipid peroxidation. 
Lipoperoxidation index using the thiobarbituric acid method (TBARS) through the evaluation of 

malondialdehyde (MDA) was measured in the prenatally hyperandrogenized (PH) and control groups. White 
dots correspond to animals of the control group (n=7), grey dots to the PHiov phenotype (n=7), and black 

dots to the PHanov phenotype (n=7). The horizontal bar represents the mean. Statistical analyses were 
made by ANOVA; different letters mean statistically significant differences (a vs. b, p<0.05). 

49x31mm (1200 x 1200 DPI) 

Page 39 of 40

joe@bioscientifica.com

Manuscript submitted for review to Journal of Endocrinology



For Review Only

 

Figure 6. Prenatal androgen excess effects on ovarian steroidogenic factors and enzymes. Protein expression 
of A) Steroidogenic acute regulator (StAR), B) 3-B-Hydroxysteriod dehydrogenase (3BHSD), C) cytochrome 
P450 17a-hydroxylase (CYP17), D) 17β-hydroxysteroid dehydrogenase (17BHSD) and E) cytochrome P450 
aromatase (CYP19) in the ovaries of the prenatally hyperandrogenized (PH) and control animals. White dots 
correspond to animals of the control group (n=6), grey dots to the PHiov phenotype (n=6), and black dots 

to the PHanov phenotype (n=6). The horizontal bar represents the mean. Statistical analyses were made by 
ANOVA; different letters mean statistically significant differences (a vs. b, p<0.05). 
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