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Abstract. We address the problem of estimating intrinsic distances in a manifold from
a finite sample. We prove that the metric space defined by the sample endowed with
a computable metric known as sample Fermat distance converges a.s. in the sense of
Gromov–Hausdorff. The limiting object is the manifold itself endowed with the popu-
lation Fermat distance, an intrinsic metric that accounts for both the geometry of the
manifold and the density that produces the sample. This result is applied to obtain
intrinsic persistence diagrams, which are less sensitive to the particular embedding of
the manifold in the Euclidean space. We show that this approach is robust to outliers
and deduce a method for pattern recognition in signals, with applications in real data.

1. Introduction

1.1. Motivation and problem statement. Let Xn be a set of n sample points with
common density f supported on a smooth compact Riemannian manifoldM embedded in
RD. We are interested in recovering topological features ofM from the sample Xn ⊆ RD
in a setting in which bothM and f are assumed to be unknown. A standard approach to
accomplish this task consists in applying a computational technique known as persistent
homology to Xn. Here, the sample Xn is considered as a metric space endowed with
some computable distance, such as the Euclidean distance or an estimator of the inherited
geodesic distance. Although the topological information carried by M remains the same
when endowed with any Riemannian metric, the output of the application of persistent
homology to Xn strongly depends on the particular distance function employed. In this
article, we consider a computable estimator defined over Xn of a certain Riemannian metric
onM that takes into account the density f , which was called Fermat distance in [35]. We
show that the use of this density based intrinsic metric in the computation of persistent
homology can lead to results that overcome simultaneously certain weaknesses of standard
approaches, such as the sensitivity to outliers and the dependence on the embedding of the
sample in the ambient space.

Persistent homology [9, 25, 27, 51, 61] is a central technique in Topological Data Analysis
(TDA) that allows to infer the homology groups of a space by studying a sample Xn at
all scales of resolution at the same time. As a result, this method yields an object called
persistence diagram associated to the sample. Under mild conditions, the homology groups
of the underlying topological space can be read off the persistence diagram [27]. In [12, 14],
the authors provide a general framework that allows to define persistence diagrams for
infinite metric spaces instead of just finite approximations (samples). Thus, one can view
the persistence diagram associated to a sample of a space as an estimate of a limiting object,
namely, the persistence diagram of the entire space. When the distinction is needed, we
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will call these diagrams sample persistence diagram and population persistence diagram
respectively.

Our main result states that, under reasonable conditions, there is convergence as metric
spaces of the sample Xn endowed with a computable estimator of the Fermat distance
towards the manifold M (equipped with the Fermat distance) in the sense of Gromov–
Hausdorff as the size n grows. This extends and streamlines methods and results from [35,
46]. When combined with the well-known stability theorem [12, 15, 21], this approximation
result as metric spaces allows to deduce the convergence of the corresponding persistence
diagrams. For this purpose, the space of diagrams is naturally equipped with the bottleneck
distance. Approximation results that include convergence rates and confidence regions have
been established when the metric of the target space is known (see [29] where the Euclidean
distance is considered for both the samples and the space and also [16], where a general
metric is used but assumed to be known in advance).

Persistence diagrams are known to be sensitive to the presence of outliers [5, 6, 11, 13].
In [5, 13], the authors propose filtrations of point clouds regarded as empirical measures in
the ambient Euclidean space — called DTM-filtrations — to achieve a robust computation
of ambient persistent homology. This theory was later extended to general metric spaces in
[11]. On the other hand, intrinsic versions of the classical Čech and Vietoris–Rips filtrations
were developed with the aim of capturing topological properties of manifolds sitting in an
Euclidean space which are independent of the embedding. The approach exhibited in this
article handles both difficulties at the same time. Indeed, we show that sample persistence
diagrams computed using the estimator of the (intrinsic) Fermat distance are both robust
to outliers for positive degree and display the correct homology of the manifold for a longer
parameter interval as compared with the use of ambient Euclidean distance.

We refer the reader to [33] for a video containing an introductory exposition of the
contents of this article.

1.2. Contributions. Let (M, ρ) be a smooth d-dimensional Riemannian manifold em-
bedded in RD with density f : M → R>0 and a Riemannian density-based distance ρ
(mainly, it will be the Fermat distance df,p defined below).

For p > 1, the population Fermat distance is defined as

df,p(x, y) = inf
γ

∫
I

1

f(γt)(p−1)/d
|γ̇t|dt.

Here x, y ∈ M, | · | denotes the Euclidean distance and the infimum is taken over all
piecewise smooth curves γ : I = [0, 1] → M with γ(0) = x, and γ(1) = y. In the special
case when f is uniform, the population Fermat distance reduces to (a multiple of) the
inherited Riemannian distance dM from the ambient Euclidean space. When this is not
the case, this distance takes into account the density, which can be advantageous in certain
situations [35, 55]. This metric was also considered in [39, 46].

Given a finite set of points Xn, the sample Fermat distance between x, y is defined as

dXn,p(x, y) = inf
γ

r∑
i=0

|xi+1 − xi|p

where the infimum is taken over all paths γ = (x0, x1, . . . , xr+1) with x0 = x, xr+1 = y
and {x1, x2, . . . , xr} ⊆ Xn.

Our main result states the Gromov–Hausdorff convergence (a.s.) of the sample endowed
with the sample Fermat distance, appropriately re-scaled, to (M, df,p).
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Theorem. Let M be a smooth, closed d-dimensional Riemannian manifold embedded in
RD. Let f : M→ R>0 be a smooth density function. Let Xn = {x1, x2, . . . , xn} ⊆ M be
a set of n independent sample points in M with common density f . Given p > 1, there
exists a constant µ = µ(p, d) such that for every λ ∈

(
(p − 1)/pd, 1/d

)
and ε > 0 there

exist θ > 0 satisfying

P
(
dGH

((
M, df,p

)
,
(
Xn, n

(p−1)/d

µ
dXn,p

))
> ε
)
≤ exp

(
−θn(1−λd)/(d+2p)

)
for n large enough, where dGH stands for the Gromov-Hausdorff distance between metric
spaces.

As a consequence of this result and the stability theorem for persistence diagrams we
deduce the following convergence result.

Corollary. Let ε > 0 and λ ∈
(
(p− 1)/pd, 1/d

)
. There exists a constant θ > 0 such that

P
(
db
(
dgm(Filt(M, df,p)),dgm(Filt(Xn, n

(p−1)/d

µ
dXn,p))

)
> ε
)
≤ exp

(
−θn(1−λd)/(d+2p)

)
for n large enough.

Here Filt(·) denotes either the Vietoris–Rips or Čech filtration, dgm(·) the associated
persistence diagram and db is the bottleneck distance (see Section 3 for precise defini-
tions). Since (M, df,p)) is a Riemannian manifold, its population persistence diagram
dgm(Filt(M, df,p)) displays the correct homology up to the convexity radius conv(M, df,p).
In contrast, for (M, | · |) this is guaranteed only up to the reach τM. It is easy to find
examples of manifolds in which conv(M, df,p) is much larger than τM.

On the other hand, we prove that for a reasonable upper bound r on the filtration
parameter, dgm(Rips<r(Xn, dXn,p)) is robust to outliers for homology degree greater than
0.

Proposition. Let Xn be a sample of M and let Y ⊆ RD rM be a finite set of outliers.
Let δ = min

{
min
y∈Y

dE(y, Y r {y}, dE(Xn, Y )
}
, where dE denotes the Euclidean distance

between sets. For all k > 0 and p > 1,

dgmk(Rips<δp(Xn ∪ Y, dXn∪Y,p)) = dgmk(Rips<δp(Xn, dXn,p)),
where Rips<δp stands for the Rips filtration up to parameter δp and dgmk for the persistent
homology of degree k.

The threshold δp is restrictive if it is below diam(Xn, dXn,p). However, we will show that
under a natural model for the outliers, δp > diam(Xn, dXn,p) for large enough p.

1.3. Applications to signal analysis. The study of time series — specially, derived from
dynamical systems — through the inference of homology groups of a certain associated
space called delay embedding was pioneered in [52, 53]. The construction of the delay
embedding of a time series heavily depends on the dimension or number of independent
variables of the underlying system. It often leads to analyse subspaces of a sufficiently
high dimensional Euclidean space, which makes the inference of topological information
unstable.

In first place, by means of a concrete example involving the Lorenz attractor, we show
that the use of Fermat distance in this method can lead to a more robust inference of
the topological features of delay embeddings. The reason behind this is that the Fermat
distance is less prone, compared to the Euclidean distance, to the effect known as curse
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of dimensionality. We also describe a method to detect change-points in the time series
through the study of the evolution in time of the persistence diagrams of the corresponding
time-delay embeddings. This is applied to discover anomalies in electrocardiogram signals
and different patterns in the song of canaries corresponding to different syllables.

The code to replicate the computational examples and applications can be found at [32].

1.4. Related work. The sample Fermat distance was introduced independently in [35,
55]. The study of approximations of density based metric from samples was suggested in
[60] and developed in [54]. In [19, 20], the authors analyze a general family of metrics that
includes the population Fermat distance and deeply study the case p = 2 of sample Fermat
distance, which was also called power weighted shortest distance in [46]. In [35], it is
proved that it is possible to recover the population Fermat distance df,p for d-dimensional
manifolds which are isometrically embedded (closures of) open sets of Rd in RD as the limit
of the sample Fermat distance. In the related work [39] it was shown that in the same
context, a statistic that is similar to the sample Fermat distance but uses the inherited
Riemannian distance dM between consecutive points in a path instead of the Euclidean
one to measure its cost, also converges almost surely to the Fermat distance. We remark
that this statistic can not be computed from the sample since the inherited distance is not
assumed to be known in advance. In both works, the authors prove uniform convergence
with concrete exponential bounds for all x, y ∈ M which are at least at a fixed distance
b > 0 apart.

The problem of learning geodesic distances from samples for submanifolds of the Eu-
clidean space, specially with the aim of reducing dimensionality and visualizing data, has
a long history (see for instance [47, 58]). On the other hand, the problem of estimating
the persistence diagram of a submanifold of an Euclidean space from a sample has been
studied in [16, 29], where the underlying metric is assumed to be known. In this setting,
both the authors from [16] and [29] were able to prove the following satisfying result: the
persistence diagrams computed using the sample converge almost surely (in the sense of
bottleneck distance) to the persistence diagram of the desired metric space. Moreover, they
gave exponentially small bounds in the size of the sample for the probability of the bot-
tleneck distance between the corresponding persistence diagrams being larger than some
positive number (see [16, Corollary 3] and [29, Lemma 4], where in addition confidence
sets for persistence diagrams are provided). In a different direction, the advantages of
computing persistence diagrams of submanifolds of an Euclidean space using alternative
metrics (more specifically, metrics based on diffusion geometry and random walks) were
explored experimentally in [6].

1.5. Structure of the paper. In Section 2 we prove our main result Theorem 2.5 regard-
ing the Gromov–Hausdorff convergence of metric spaces using, respectively, the sample and
the population Fermat distance. Section 3 includes an introduction to the persistent ho-
mology and is devoted to the study of persistence diagrams of manifolds endowed with
Fermat distance. We deduce in first place the convergence of sample persistence diagrams
to population persistence diagrams. Then, we show that by using these intrinsic metrics
the topological features last longer in the persistence diagrams. Finally, we show that
Fermat-based persistence diagrams are robust to the presence of outliers for positive ho-
mology degree. In Section 4 we present a method for pattern recognition in time series,
which is applied to real data from electrocardiograms and songs of canaries. The closing
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Section 5 contains the proofs of some technical results (Proposition 2.4 and Lemma 2.6),
required as intermediate steps to prove Theorem 2.5.

2. Density-based Distance Learning

In this section we prove the main theorem of the article, which states that the sample Xn,
considered as a metric space with the sample Fermat distance (appropriately re-scaled),
converges almost surely to (M, df,p) in the sense of Gromov–Hausdorff.

We begin by introducing the population Fermat distance for a smooth closed Riemannian
manifold without boundary M of dimension d > 1 with Riemannian metric tensor g
together with a positive C∞ density function f : M → R>0. For p > 1, consider the
deformed metric tensor gp = f2(1−p)/dg given by a conformal transformation of the original
metric g. Since f is smooth, gp is a Riemannian metric tensor. Thus, M has a metric
space structure given by the geodesic distance with respect to gp, denoted by df,p.

Definition 2.1. [35, 39] For p > 1, the population Fermat distance between x, y ∈ M is
defined as

df,p(x, y) = inf
γ

∫
I

1

f(γt)(p−1)/d

√
g(γ̇t, γ̇t)dt

where the infimum is taken over all piecewise smooth curves γ : I →M with γ0 = x, and
γ1 = y.

Notice that geodesics inM respect to the distance df,p are more likely to lie in regions
with high values of f . The name Fermat distance comes from the analogy with optics, in
which df,p is the optical distance as defined by Fermat principle when the refraction index
is given by f−(p−1)/d.

Consider now a set Xn = {x1, x2, . . . , xn} ⊆ M of n sample points inM with common
density f . Suppose that M is embedded in RD and it is endowed with the standard
inherited Riemannian metric. Our aim is to approximate df,p(x, y), assuming no knowledge
about M and the Riemannian distance defined on it. To achieve this, we will define an
estimator for this distance over the sample. We denote by |x − y| the Euclidean distance
between points x, y ∈M.

Definition 2.2. [35, 46] For p > 1, the sample Fermat distance between x, y ∈ M is
defined as

dXn,p(x, y) = inf
γ

r∑
i=0

|xi+1 − xi|p

where the infimum is taken over all paths γ = (x0, x1, . . . , xr+1) of finite length with x0 = x,
xr+1 = y and {x1, x2, . . . , xr} ⊆ Xn.

Since p > 1, geodesics respect to this distance are also likely to lie in regions with high
density of points in Xn. This is due to the fact that paths with short edges are favored
even if they have large total (euclidean) length.

We remark here that, for technical reasons, we adopt a slightly different definition for
the sample Fermat distance than the original one from [35]. Namely, in the original setting,
only paths completely contained in Xn are considered, including the endpoints. Points that
are are not in the sample Xn are projected to the nearest point in Xn. In consequence, our
sample Fermat distance here does not generally induce a pseudometric overM, but only
a metric when restricted to Xn.
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Figure 1. Top: A sample with noise of 2000 points of the eyeglasses dataset and Isomap
projection with k = 5 (similar results are obtained for other values of k). Points are
coloured according to local density. Bottom: MDS embedding in R2 using Fermat dis-
tance for p = 1.5, 2.5, 3.0.

Example 2.3 (Eyeglasses). The effect of taking different values of p for the sample Fermat
distance dXn,p in the geometry of a manifold is illustrated below. Concretely, the eyeglasses
curve in R2 uniformly sampled and perturbed with Gaussian noise is considered (see Figure
1). We compute the sample Fermat distance between each pair of points for a series of
values of p > 1 and embed the sampled points in R2 in such a way that the Euclidean
distance in the embedding reflects the Fermat distance, using the Multidimensional Scaling
algorithm (MDS). As p becomes larger, the geometry of the data overcomes the bottleneck
region and it deforms into a circle. We also compute the Isomap embedding [7] in R2 (that
is, the MDS projection with an estimator of the inherited Riemannian distance based in
the k-NN graph1 as input distances). Due to the noise near the bottleneck region, some
points that are far in the sense of the inherited Riemannian distance become close in the
distance estimated from the k-NN graph. Note that Isomap embedding is sensitive to
noise, while with Fermat distance the points lying in low density regions are mapped to
points that are far from the rest of the sample. The larger the power p, the stronger this
effect. This feature allows Fermat distance to reconstruct the underlying topology of the
manifold in the present case, even with noise.

Our first result, Proposition 2.4, shows that the sample Fermat distance converges to the
population Fermat distance for closed (i.e. compact and without boundary) submanifolds
of RD. A related result was previously proved for isometrically embedded (closures of) open
sets of Rd [35]. Here we extend the class of manifolds to any compact manifold without
boundary embedded in RD. Moreover, Proposition 2.4 states a uniform convergence for

1Given Xn ⊂ RD and k ∈ N, the k nearest neighbors (k-NN) graph Gk is the (undirected) graph whose
vertices are the points of Xn, and with an edge between x and y if x is among the k nearest neighbors
of y or vice-versa, in the sense of the Euclidean distance. The k-NN estimator of the inherited geodesic
distance is computed as dXn,k(x, y) = infγ

∑r
i=0 |xi+1 − xi|, where the infimum is taken over all paths

γ = (x0, x1, . . . , xr+1) in Gk such that x0 = x, xr+1 = y.
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any two points in the manifold (not only pointwise, as stated in [35]). This feature is
essential to study both the manifold and the sample endowed with the (population and
sample respectively) Fermat distance as single objects — metric spaces — and to prove
convergence in the sense of Gromov–Hausdorff.

Let us fix some notations and general hypotheses. Hereafter,M will denote a smooth d-
dimensional closed Riemannian submanifold of RD endowed with the inherited Riemannian
distance dM. We will consider a set Xn ⊆M of n independent random points with common
smooth density f : M→ R>0. We will denote by Mf and mf the maximum and minimum
values attained by f onM, respectively. Observe that 0 < mf < Mf <∞. Finally, given
p > 1 we set α = 1/(d+ 2p).

Proposition 2.4. For every p > 1 and λ ∈
(
(p − 1)/pd, 1/d

)
, given ε > 0 there exist

µ, θ > 0 such that

P
(

sup
x,y

∣∣∣n(p−1)/ddXn,p(x, y)− µdf,p(x, y)
∣∣∣ > ε

)
≤ exp

(
−θn(1−λd)α

)
for n large enough. The supremum is taken over x, y ∈M.

The constant µ depends only on p and d and is defined in [38]. We defer the proof of
Proposition 2.4 to Section 5.

This result will allow us to estimate the Gromov–Hausdorff distance between the met-
ric space Xn with an appropriate re-scaling of the sample Fermat distance dXn,p and M
endowed with the population Fermat distance df,p. Recall that the Gromov-Hausdorff
distance dGH is a metric on the (isometry classes of) compact metric spaces that, roughly
speaking, quantifies how difficult it is to match every point of a metric space (X, ρX) with
some point of another space (Y, ρY). More formally, it is defined as

dGH
(
(X, ρX), (Y, ρY)

)
:= inf{dH(h1(X), h2(Y))},

where the infimum is over all the isometric embeddings h1 : X → W, h2 : Y → W in
a common metric space W and dH stands for the Hausdorff distance. We will employ
the following equivalent characterization of the Gromov-Hausdorff distance, which is often
more convenient:

(1) dGH
(
(X, ρX), (Y, ρY)

)
=

1

2
inf
R

sup
(x,y),(x′,y′)∈R

|ρX(x, x′)− ρY(y, y′)|,

where the infimum is taken over subsets R ⊆ X×Y such that the projections πX(R) = X,
πY(R) = Y.

We are now ready to state our main theorem. For notational convenience, we set dn,p =
n(p−1)/d

µ dXn,p, the re-scaled sample Fermat distance on Xn.

Theorem 2.5. Let ε > 0 and λ ∈
(
(p − 1)/pd, 1/d

)
. There exists a constant θ > 0 such

that
P
(
dGH((M, df,p), (Xn, dn,p)) > ε

)
≤ exp

(
−θn(1−λd)α

)
for n large enough and α = 1/(d+ 2p).

Before presenting the proof of Theorem 2.5, we will need a preliminary lemma which
asserts that, with high probability, no point ofM is too far from the nearest point of the
sample. The argument of this proof is standard, but we include it in Section 5 for the
reader’s convenience.
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Lemma 2.6. For any κ > 0, the event{
sup
x∈M

dM(x,Xn) ≥ n(κ−1)/d
}

holds with probability at most exp(−θnκ) for some constant θ > 0 if n is large enough.

We are now in position to prove Theorem 2.5.

Proof of Theorem 2.5. In order to compute the Gromov–Hausdorff distance between (M, df,p)
and (Xn, dn,p), we consider in (1) the relation

R = {(xi, xi) : xi ∈ Xn} ∪ {(xy, y) : y ∈M, df,p(xy, y) = df,p(Xn, y)}.
By a simple application of the triangle inequality we get that

(2) dGH
(
(M, df,p), (Xn, dn,p)

)
≤ 1

2

(
sup

x,y∈Xn
|df,p(x, y)− dn,p(x, y)|+ 2 sup

y∈M
df,p(Xn, y)

)
Observe that the two terms on the right hand side of the previous inequality can be

bounded above by Proposition 2.4 and Lemma 2.6 respectively.
Given ε > 0, by (2) we have that

P
(
dGH

(
(M, df,p), (Xn, dn,p)

)
> ε/2

)
≤ P

(
sup

x,y∈Xn
|df,p(x, y)− dn,p(x, y)| > ε/2

)
+ P

(
sup
y∈M

df,p(Xn, y) > ε/4

)

To bound the first term, we apply Proposition 2.4 to get

P

(
sup

x,y∈Xn
|df,p(x, y)− dn,p(x, y)| > ε/2

)
≤ exp

(
− θn(1−λd)α

)
for some positive constant θ and n sufficiently large. As for the second term, notice that
since

df,p(x, y) ≤ m−(p−1)/df dM(x, y),

Lemma 2.6 implies

P

(
sup
y∈M

df,p(Xn, y) > n(α−1)/dm
(p−1)/d
f

)
≤ exp(−θnα)

for n large. The proof follows by noticing that the sequence n(α−1)/dm−(p−1)/df converges
to 0 as n goes to infinity. �

3. Fermat-based Persistent Homology

In this section we explore the use of Fermat distance as input in the computation of
the persistence diagram associated to a sample of a manifold. We deduce the almost sure
convergence of persistence diagrams of the sample Xn with the (re-scaled) sample Fermat
distance towards the persistence diagram of (M, df,p). We also show that we expect to
read the correct homology ofM for a longer parameter interval in the diagram associated
to the sample Xn computed with Fermat distance as compared with the use of Euclidean
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distance. Finally, we prove that Fermat-based persistence diagrams are robust to the
presence of outliers for homology degree greater than 0.

3.1. Convergence of persistence diagrams. We start by briefly recalling the main
concepts and results in persistent homology theory and refer the reader to [14, 15] for a
more thorough exposition.

For the computation of the persistent homology of a point cloud, one imagines each
point as a ball (that is, representing a small surrounding region) and builds a combina-
torial model for the space connecting the points according to whether the corresponding
regions intersect. More precisely, for every fixed value of a parameter or scale that controls
the size of the region that each point represents, one gets a simplicial complex (i.e., a higher
dimensional analogue of a graph). This family of simplicial complexes, also known as a
filtration, is the input of the procedure to compute persistent homology. Indeed, the topo-
logical features of this family of complexes change as the scale parameter grows: different
connected components join in one, some loops are filled, new cavities appear, etc. By
analyzing these transitions, we are able to assign a birth and a death value to each of these
features, and the difference between them represents its persistence. The most persistent
features represent topological signatures, whereas the shortest intervals may be considered
as noise. The output of this procedure is summarized in an object called persistence
diagram. We next give the formal definitions.

Given a (possibly infinite) metric space (X, ρ), a filtration over the real numbers Filt(X, ρ) =
(Filtε(X, ρ))ε∈R is a family of simplicial complexes with vertex set X such that Filtε(X) ⊆
Filtε′(X) whenever ε ≤ ε′. For the purposes of this article, we are going to consider
only some natural filtrations that are strongly linked to the metric ρ. The Čech fil-
tration consists of a family of simplicial complexes (Čechε(X))ε∈R where a set of points
[x0, . . . , xk] forms a k-simplex of Čechε(X) if the intersection of the k + 1 closed balls
B̄ρ(xi, ε) is non empty. Equivalently, Čechε(X) is the nerve of the cover {B̄ρ(x, ε) : x ∈ X}.
The Čech complex is the most natural way to build a simplicial complex associated to
a space, since in favourable cases, it allows to recover its homotopy type as a conse-
quence of the Nerve Theorem [36, §4.G]. However, the construction of the Čech complex
is expensive from a computational point of view, since it requires to check for a large
number of intersections. To circumvent this issue, one can instead consider the Vietoris–
Rips filtration (Ripsε(X))ε∈R. The k-simplices of Ripsε(X) are sets [x0, . . . , xk] such that
ρ(xi, xj) ≤ ε for all 0 ≤ i, j ≤ k. If X is a subset of the Euclidean space RD, then one
have Čechε(X) ⊆ Rips2ε(X) ⊆ Čech√

2D/(D+1)ε
(X) (e.g. see Theorem 2.5. in [24]). In this

sense, the Rips complex is a computationally efficient approximation of the Čech complex.
Other filtrations involving lower dimensional simplices, such as the Alpha filtration (see
[26]), can also be considered in our context.

For any filtration as above, it is clear that the topology of the complexes Filtε(X) will
typically change as ε increases. This evolution is appropriately captured by considering
the homology groups (over a field k) of the nested family of simplicial complexes. One gets
in this way a sequence of vector spaces (H•(Filtε(X)))ε∈R, where the inclusions Filtε(X) ⊆
Filtε′(X) induce canonical linear maps H•(Filtε(X)) → H•(Filtε′(X)) in homology. Under
some conditions, such as finiteness of X [27, 61], this sequence can be decomposed as a
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direct sum of intervals I[εb, εd] defined as

0
0−−−→ · · · 0−−−→ 0

0−−−→ k
1−−−→ · · · 1−−−→ k︸ ︷︷ ︸

[εb,εd]

0−−−→ 0
0−−−→ · · · 0−−−→ 0

Every interval is determined by the birth and death parameters εb and εd respectively,
and it can be interpreted as a topological feature of X with an associated lifetime εd − εb
(note that εd may be infinite, in that case the feature has infinite lifetime). The (multi)set
of points (εb, εd) is called the persistence diagram of (X, ρ) and is denoted dgm(Filt(X, ρ))
(or simply dgm(Filt(X)) if ρ is clear from the context). Persistence diagrams are contained
in the half (extended) plane above the diagonal ∆ = {(x, y) : x = y}. For technical reasons,
the diagonal ∆ is considered as part of every persistence diagram with infinite multiplicity.
In [12, 14, 15], the authors prove that, within a more abstract persistent framework, it is
possible to extend the definition of persistence diagrams to some cases where the sequence
might not be interval-decomposable. In particular, it is shown in [15] that if X is a compact
metric space, for every value of ε at most a finite number of new topological features
appear (even though the vector spaces (H•(Filtε(X)))ε∈R may be infinite-dimensional) and
hence dgm(Filt(X)) is well-defined. Notice also that all the definitions can be extended to
filtrations indexed over connected subsets of the real line.

Example 3.1 (Eyeglasses). We compute the persistence diagram associated to the sample
points from Example 2.3, Figure 1. We compare the results obtained with different distance
choices: the Euclidean distance, the k-NN estimator of the inherited Riemannian distance
and the sample Fermat distance for p = 2.5, p = 3 and p = 3.5. The homology of the
eyeglasses curve has one generator of H0 and one generator of H1. However, it can be
noticed that for either Euclidean and k-NN distance for k ≥ 5, the persistence diagram
displays two salient generators for the first homology group H1, which can be attributed
to the small reach of the manifold. As it can be seen in Figure 2, smaller values of k fail
to capture the geometry of the eyeglasses manifold. With the Fermat distance for different
choices of p the diagram shows accurately only one persistent generator for H1. On the
other hand, the number of noticeable connected components increases with p. This effect
is caused by the presence of noisy points in regions of extremely low density, becoming
isolated points (or outliers) as p evolves (cf. Remark 3.9).

Since in our setup we usually only get an approximation of the metric space under
consideration, we will be interested in comparing persistence diagrams built on top of
different metric spaces. In this sense, the bottleneck distance is a frequently used quantity to
measure the difference between two persistence diagrams. Given persistence diagrams dgm1

and dgm2, consider all perfect matchingsM ⊆ dgm1×dgm2 such that every point of dgm1r
∆ and dgm1 r ∆ is paired exactly once in M . The bottleneck distance db(dgm1,dgm2) is
then defined as the infimum, over all such matchingsM as before, of the largest `∞-distance
between matched pairs. That is,

db(dgm1, dgm2) = inf
M

max
(x,y)∈M

|x− y|∞.

The stability theorem [15, 21] ensures continuity (more precisely, Lipschitz continuity)
in the process of computing persistence diagrams for a metric space. This means that small
perturbations in the original metric space (in the sense of Gromov–Hausdorff) will translate
into an at most proportional perturbation in the corresponding persistence diagram (in the
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Figure 2. Persistence diagrams (lifetime) associated to the eyeglasses point cloud with
noise for different distances. Top: Euclidean distance and k-NN distance with k = 4 and
k = 5. Bottom: Fermat distance with p = 2.5 p = 3 and p = 3.5.

sense of the bottleneck distance). Formally, it states that for any two precompact metric
spaces X and Y

(3) db

(
dgm

(
Filt(X, ρX)

)
, dgm

(
Filt(Y, ρY)

))
≤ 2dGH

(
(X, ρX), (Y, ρY)

)
.

This fact is exploited in [16, 29] to establish the almost sure convergence (in the sense
of bottleneck distance) of the persistence diagrams associated to samples of a compact
metric space drawn according to a measure satisfying certain hypotheses to the persistence
diagram of the space. In these works the distance function of the underlying metric space
is assumed to be known, and it is inherited by the sample.

We are able to obtain convergence of persistence diagrams in our context, in which only
an estimator of the underlying metric is available. Concretely, given the metric spaces
(M, df,p) and (Xn, dn,p), from the estimation of its Gromov–Hausdorff distance of Theorem
2.5 and the stability theorem (3) we deduce the following result.

Corollary 3.2. Let ε > 0 and λ ∈
(
(p − 1)/pd, 1/d

)
. There exists a constant θ > 0 such

that

P
(
db
(
dgm(Filt(M, df,p)),dgm(Filt(Xn, dn,p))

)
> ε
)
≤ exp

(
−θn(1−λd)α

)
for n large enough and α = 1/(d+ 2p).
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3.2. Homology inference. The content of Corollary 3.2 is that dgm(Filt(Xn, dn,p)) is
(asymptotically) a good estimator of dgm(Filt(M, df,p)). On the other hand, if we were
to employ the Euclidean distance | · |, it follows from [16] that the sample persistence
diagrams dgm(Filt(Xn, | · |)) converge to dgm(Filt(M, | · |)) under reasonable hypotheses.
We are therefore interested in comparing for how long we may expect to read the correct
homology ofM in each of the diagrams dgm(Filt(M, dn,p)) and dgm(Filt(M, |·|)) in terms
of two natural geometric measures associated to the manifold, namely, the reach and the
convexity radius (see also [17, 37, 41, 51]). In this section we show that the homology of
(M, df,p) can be recovered correctly from its persistence diagram up to the convexity radius
conv(M, df,p), whereas for (M, | · |) this is guaranteed only up to its reach τM. Notice
that the reach of a submanifold of an Euclidean space depends strongly on the particular
embedding, whereas the convexity radius is an intrinsic quantity linked to the geometry of
the manifold. There are simple examples of manifolds in which this distinction is relevant
to correctly recover its homology from a sample (see Examples 2.3 and 3.4).

Recall that given X ⊆ RD a closed subset, the medial axis Med(X) of X is defined as

Med(X) := {y ∈ RD : dE(y,X) = |p− y| for at least two different points p ∈ RD},
where dE(y,X) = infx∈X |y−x|. The reach τX of X, first introduced in [30], is the minimum
distance from X to Med(X), that is,

τX := inf
x∈X

dE(x,Med(X)).

Given a Riemannian manifold (N , g), we will say that a subset S ⊆ N is geodesically
convex if for every two points in S, there is a unique geodesic segment that connects them
and it is completely contained in S. The convexity radius conv(N , x) at a point x ∈ N
is the supremum over those r > 0 for which the ball B(x, r) is geodesically convex. The
convexity radius conv(N ) of the manifold N is defined as

conv(N ) := inf
x∈N

conv(N , x).

Proposition 3.3. LetM be a compact submanifold of RD. Then,

• Čechε(M, | · |) ' M for ε < τM and Ripsε(M, | · |) ' M for ε < 2
√

D+1
2D τM,

and both bounds are optimal, in the sense that there exist examples for which the
homotopy equivalence does not hold for larger values of ε.
• Čechε(M, df,p) 'M and Ripsε(M, df,p) 'M for ε < conv(M, df,p).

Moreover, if df,p coincides up to a constant with dM (i.e. f is uniform), we have the
estimate

conv(M, df,p) = Vol(M, dM)(p−1)/dconv(M, dM) ≥ Vol(M, dM)(p−1)/d
π

2
τM.

Proof. The fact that Čechε(M, |·|) is homotopy equivalent toM for ε < τM is an immediate
consequence of the Nerve Theorem. The same result implies that Čechε(M, df,p) 'M for
ε < conv(M, df,p), since geodesically convex sets are always contractible and the intersec-
tion of geodesically convex sets is again geodesically convex. Regarding the Vietoris–Rips
filtration, the fact that the simplicial complex Ripsε(M, | · |) is homotopy equivalent toM
for ε < 2

√
D+1
2D τM can be deduced from [40, Theorem 20]. Finally, since df,p is a Riemann-

ian distance onM, by [37] there is an explicit homotopy equivalence Ripsε(M, dM) 'M
for ε < conv(M, df,p) (see also [41]).
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The optimality of the bound ε < τM for Čechε(M, | · |) is clear (think of a unit sphere
in RD), and indeed, typically the topology of Čechε(M, | · |) changes when ε attains τM.
A critical example for the Vietoris–Rips complex is the standard 1-dimensional circle S1,
and it can be derived from the main result in [2], similarly as in [40, Example 24].

The last assertion in the statement follows directly from the inequalities

conv(M, dM) ≥ min

{
π

2
√

supK
,
1

2
inj(M, dM)

}
(see [18, §5.14]) and

inj(M, dM) ≥ πτM, K ≤ 1

τ2M

(see [1, Proposition A.1]). Here inj(M, dM) is the injectivity radius of M and K is the
sectional curvature. �

Example 3.4. Consider a planar ellipse ER,ε with minor axis of length ε and major axis
of length R ≥ ε. By letting R → +∞ and/or ε → 0, we see that the convexity radius
of a closed submanifold of R2 can be arbitrarily large while its reach can be arbitrarily
small. A similar example can be constructed in RD, beingM a d-dimensional ellipsoid for
any d < D. The same phenomenon can be achieved by constructing different eyeglasses
curves with arbitrarily large length and constant reach, Figure 3. Its population persistence
diagrams differ as predicted by Theorem 3.3. The persistence diagram computed with the
Euclidean distance captures the right homology only for ε less that the reach. In contrast,
for the Fermat distance the correct homology is captured for radii as large as (a multiple
of) the convexity radius, which can be made large enough by enlarging the bridge between
the glasses.

3.3. Robustness to outliers. Persistence diagrams are highly sensitive to outliers [5, 6,
11, 13]. We will see that the computation of persistence homology using Fermat distance
is robust to the presence of outliers for positive degree. Concretely, given a sample Xn ⊆
M and Y ⊆ RD rM a finite set of points in the complement of M in the ambient
Euclidean space — the outliers — we prove that dgmk(Rips(Xn ∪ Y, dXn∪Y,p)) coincides
with dgmk(Rips(Xn, dXn,p)) for k > 0 up to some reasonable filtration parameter. First we
need a definition.

Definition 3.5. Given a finite set of points S ⊆ RD, define the minimal spacing of S as

κ(S) = min
x∈S

dE(x, S r {x}),

where dE denotes the Euclidean distance between sets.

Proposition 3.6. Let δ = min{κ(Y ), dE(Xn, Y )} and p > 1. Then, for every ε < δp

Ripsε(Xn ∪ Y, dXn∪Y,p) = Ripsε(Xn, dXn,p) ∪ Y.

In particular, for all k > 0

dgmk(Rips<δp(Xn ∪ Y, dXn∪Y,p)) = dgmk(Rips<δp(Xn, dXn,p)),

where Rips<δp(X, ρX) stands for
(
Ripsε(X, ρX)

)
ε<δp

, i.e., the Rips filtration up to parameter
δp of a metric space (X, ρX).
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Figure 3. Left: Eyeglasses curves, uniformly sampled (250 points). In both cases, the
reach is 0.5. Below each curve, we plot a thickening of the samples with Euclidean balls of
radius slightly greater than the reach. Right: Persistence diagrams (lifetime) associated
to the Vietoris–Rips filtration for both the Euclidean distance and the re-scaled Fermat
distance dn,p with p = 2. While H0 is correctly estimated in both cases by reading
the persistence diagrams, the ones computed with the Euclidean distance displays two
salient generators for the first homology group H1, inaccurately suggesting two cycles.
The second cycle’s birth is at the level of twice the reach. For the (re-scaled) Fermat
distance, the diagrams shows correctly only one persistent generator for H1.

Proof. Let us estimate the distance between two given points in Xn ∪ Y with respect to
dXn∪Y,p in terms of δ and dXn,p.

If x ∈ Xn and y ∈ Y ,

dXn∪Y,p(x, y) ≥ dXn∪Y,p(Xn, Y ) = dE(Xn, Y )p ≥ δp.
If y, y′ ∈ Y ,

dXn∪Y,p(y, y
′) ≥ dXn∪Y,p(y, Y r {y}) ≥ δp.

For the second inequality, notice that if ỹ ∈ Y is such that dXn∪Y,p(y, Y r {y}) =
dXn∪Y,p(y, ỹ) = len(γ), the geodesic γ between y and ỹ either involves only points from Y
or there exist some point x ∈ Xn in γ. In the first case dXn∪Y,p(y, ỹ) ≥ κ(Y )p whereas in
the second case dXn∪Y,p(y, ỹ) ≥ 2dE(Xn, Y )p.

Given x, x′ ∈ Xn, let γ be a minimal path between x, x′, so that dXn∪Y,p(x, x′) = len(γ).
If dXn∪Y,p(x, x′) < ε, then γ only involves points in Xn since otherwise ε ≥ len(γ) ≥
2dE(Xn, Y ) ≥ 2δp, which is a contradiction. Hence, dXn∪Y,p(x, x′) = dXn,p(x, x

′). �



INTRINSIC PERSISTENT HOMOLOGY VIA DENSITY-BASED METRIC LEARNING 15

We define now a geometric notion of outliers. Recall that given Xn ⊆ RD, the ε-graph
Gε(Xn) is the undirected graph with the points of Xn as vertices and an edge connecting
xi and xj ∈ Xn whenever |xi − xj | < ε.

Definition 3.7. Let Xn ⊆M be a sample ofM⊆ RD and Y ⊆ RDrM be a finite set of
points. Let ε∗ := min{ε > 0 : Gε(Xn) is connected} and δ = min{κ(Y ), dE(Xn, Y )}. We
say that Y are (geometric) outliers if δ > ε∗.

We show next that for this notion of outliers, the upper bound on the parameter for
the Rips filtration of Proposition 3.6 is not restrictive for sufficiently large p. Indeed, let
diamp(Xn) be the diameter of (Xn, dXn,p). Note that for every ε ≥ diamp(Xn) the simplicial
complex Ripsε(Xn, dXn,p) equals the standard (n− 1)-simplex ∆n−1, with trivial topology
(and hence persistence diagrams are not interesting for scales larger than this threshold).
The next result states that provided that p is large enough, the persistence diagrams of
(Xn, dXn,p) and (Xn ∪ Y, dXn∪Y,p) coincide up to the filtration parameter diamp(Xn).

Corollary 3.8. Given Xn a sample ofM and Y ⊆ RD a finite set of outliers, then for all
k > 0

dgmk(Rips<diamp(Xn)(Xn ∪ Y, dXn∪Y,p)) = dgmk(Rips<diamp(Xn)(Xn, dXn,p)).
for p sufficiently large.

Proof. There is an upper bound diamp(Xn) ≤ nεp∗. Since Y are outliers, ε∗ < δ . Hence(
δ
ε∗

)p
> n for p sufficiently large and consequently, diamp(Xn) < δp. The result now

follows from Proposition 3.6. �

Remark 3.9. In general, the persistence diagram of (Xn ∪Y, dXn∪Y,p) for degree k = 0 does
not coincide with the diagram of the metric space without outliers (Xn, dXn,p). However,
if Y is a set of geometric outliers, it is related to the corresponding persistence diagrams
of Xn and Y through the following formula:

dgm0(Rips(Xn ∪ Y, dXn∪Y,p)) = dgm<∞
0 (Rips(Xn, dXn,p)) ∪ dgm0(Rips(Q, dQ))

Here, dgm<∞ denotes the bounded persistence intervals and Q = (Y ∪ Xn)/Xn is the
quotient metric space endowed with the induced metric dQ, defined as

dQ(q, q′) = inf
γ

{
r∑
i=0

d̃Xn∪Y,p(qi, qi+1)

}
where the infimum is taken over all paths γ = (q0, q2, . . . , qr+1) in Xn ∪ Y such that
q0 = q, qr+1 = q′ and

d̃Xn∪Y,p(qi, qi+1) =

{
0 if qi, qi+1 ∈ Xn,
dXn∪Y,p(qi, qi+1) otherwise.

Example 3.10 (Trefoil). Consider the embedding of a topological circle S1 in R3 given
by the trefoil knot. In particular, it is homeomorphic to S1 and its homology has just one
generator in H0 (one connected component) and one generator in H1 (one 1-dimensional
cycle). Given a (noisy) sample of 1500 points from the trefoil knot with 10 outliers, Figure
4, we compute its persistence diagram for different choices of distances and compare them
with the case without the outliers, Figure 5. For Euclidean distance, the small reach of
the embedding produces a persistence diagram with four persistent generators for H1 in
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both cases, with and without outliers (cf. Example 3.4). For k-NN distances, the presence
of outliers affects the performance of the topological features captured in the persistence
diagram, which presents four salient generators for H1 instead of the single generator
recovered from the sample without outliers. Finally, the persistence diagram computed
with Fermat distance for degree 1 remains unaffected in presence of outliers (Corollary
3.8), and it shows correctly a single salient generator of H1. For degree 0, the diagram is
related to the diagram of the sample without the outliers and the diagram of the outliers
themselves (cf. Remark 3.9).

Figure 4. A sample of 1500 points from the trefoil knot with outliers (red).

4. Applications to signal analysis

In this section we present a method for change-point detection and pattern recognition
in time series through the analysis of topological features. This method is illustrated by
a series of experiments in both synthetic and real data. In the experiments, the use of
Fermat distance (as opposed to Euclidean distance) is observed to lead to more robust
inference of the topology of the underlying space. We remark that in these examples the
data does not necessarily verify the i.i.d. assumption. (see also [45, 52, 53])

We clarify some computational details before presenting the examples. To start with, we
compute the matrix of pairwise sample Fermat distances between points in Xn as the input
of the persistence homology algorithm. This procedure has complexity O(n3) (but can be
reduced to O(n2 log2 n) with high probability) [35]. In any case, the precomputation of
the sample Fermat distance in Xn does not increase the complexity of the total persistent
homology computation, which runs in O

(
n3(k+2)

)
for degree k (see [50]).

The Fermat and the k-NN distance are computed using the library Fermat [31], while
Ripser [59] is employed for the computation of persistence diagrams associated to Vietoris–
Rips filtrations. All the computations are over the field k = Z2. The code for all the
examples and experiments can be found in [32].

4.1. Topological analysis of time series. Time-delay embeddings of scalar time-series
data is a well-known technique to recover the underlying dynamics of a system. Takens’
theorem [57] gives conditions under which a smooth attractor can be reconstructed from
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Figure 5. Persistence diagrams associated to the sample of the trefoil knot for Euclidean
distance, k-NN distance with k = 10, and Fermat distance with p = 3 of the sample
without outliers Xn (left) and the sample with outliers Xn∪Y (right) respectively. When
Fermat distance is used, the persistence diagram of Xn∪Y for degree 1 equals the diagram
of Xn (without outliers). For degree 0, it decomposes as the union of the subdiagram of
finite intervals of Xn, dgm<∞

0 (Rips(Xn, dXn,p)), and the diagram dgm0(Rips(Q, dQ)) of
the quotient space Q = (Y ∪ Xn)/Xn.

a generic observable function, with dimensional bounds related to those of the Whitney
Embedding Theorem. It implies in particular that if X(t) is a real valued signal (which is
assumed to be one of the coordinates of a flow given by a system of differential equations),
then the delay coordinate map

t 7→
(
X(t), X(t+ τ), X(t+ 2τ) . . . , X(t+ (D − 1)τ)

)
is an embedding of an orbit. Here D is the embedding dimension and τ is the time delay.
From a theoretical point of view, D is the number of variables of the original system.
However, in practice the underlying equations describing the dynamical system are not
available — and, indeed, this is one of the main goals of the research in the area —. Thus,
dynamics are often analyzed by studying the topology of their attractors (i.e., invariant
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subsets of the phase space towards which the system tends to evolve) [8, 34, 56]. If the
attractor is a smooth manifoldM of dimension d, under certain conditions Taken’s theorem
[57] implies that the delay embedding of the signal with D ≥ 2d + 1 is diffeomorphic to
M.

We describe now an approach — based on intrinsic persistent diagrams — to study
geometry of attractors and pattern recognition in time series by means of the analysis of
the time evolving topological organization of the embedded flow. Let (x1, x2, . . . , xn) be
a time series, i.e. a finite sample of a signal X : [0, T ] → R such that for evenly spaced
points 0 = t1 < t2 < · · · < tn = T , xi = X(ti) for all 1 ≤ i ≤ n. Given D and τ , compute
the delay embedding of the time series

Xn = {(xi, xi+τ , xi+2τ , . . . , xi+(D−1)τ ) : 1 ≤ i ≤ n− (D − 1)τ} ⊆ RD.
Then, for p > 1, endow Xn with a metric space structure induced by the sample Fermat
distance dXn,p. The persistence diagram of the delay embedding (Xn, dXn,p) quantifies
information about the homology of the attractor associated to the underlying dynamical
system.

Example 4.1 (Reconstruction of Lorenz attractor). The parameters associated to the de-
lay coordinate reconstruction for a time series can be determined following some heuristics
(e.g. false nearest neighbors to determine the embedding dimension). However, in case
of noisy data, the embedding dimension is often over-estimated and it may have a great
impact on the phase space reconstruction. Indeed, in high dimensional spaces, any two
points of a typical large set are at similar Euclidean distance [3]. This phenomenon is part
of what is known as the curse of dimensionality. For this reason, the choice of an intrinsic
distance is crucial to recover the right topological features of a space embedded in high
dimension.

Consider the strange attractor associated to the Lorenz system [44]

(4)


ẋ = σ(y − x),

ẏ = x(ρ− z)− y,
ż = xy − βz

when (σ, ρ, β) = (10, 28, 8/3).
In Figure 6 we take a numerical integration ϕ(t, v0) of (4) with dt = 0.01, satisfying the

initial condition ϕ(0, v0) = v0 with v0 = (1, 1, 1). We inspect the time series corresponding
to the x-coordinate with added Gaussian noise with variance 0.1, and recover topological
information of the attractor from the delay embedding (see also [45]). Notice that in this
case, although the number of variables in the underlying system is 3, the dimension of the
attractor is d = 2 so the embedding dimension estimated by Taken’s theorem is greater
than or equal to 5.

The persistence diagram of the delay embedding reconstruction is computed with time
delay τ = 10 and embedding dimensions D = 3, 4 and 5, Figure 6. The Lorenz attractor
is homotopy equivalent to the eight-space with two holes corresponding to the equilib-
rium points that the trajectory never reaches. As Figure 6 reveals, the use of Fermat
distance leads to robustly capturing the intrinsic two 1-cycles for the different embedding
dimensions, while this is not the case for the Euclidean distance.

In order to identify changes in patterns of time series, we investigate the topological
evolution in time of the delay embedding. For every sample time tj ∈ [0, T ] (1 ≤ j ≤
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Figure 6. From top to bottom: The x-coordinate time series with Gaussian noise (vari-
ance = 0.1) of the Lorenz attractor. The original trajectory and the delay embedding
of the noisy x-coordinate time series with D = 3 and τ = 10. Persistence diagrams
associated to the delay embedding computed with Euclidean and Fermat distances for
embedding dimension D = 3, D = 4 and D = 5 and time delay τ = 10.
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n− (D − 1)τ), consider the delay embedding Xj of the restriction of the time series up to
time tj , with the metric structure inherited from (Xn, dXn,p). That is,

Xj := {(xi, xi+τ , xi+2τ , . . . , xi+(D−1)τ ) : 1 ≤ i ≤ j} ⊆ Xn.
IfM[0, t] is the delay embedding of the restricted signal X|[0,t], the time evolving series of
diagrams {dgm(Rips(Xi)) : 1 ≤ j ≤ n− (D − 1)τ} is a sample of an approximation of the
curve

(5) t 7→ dgm(Rips(M[0, t]))

whereM[0, t] is considered a metric subspace ofM =M[0, T ] endowed with the popula-
tion Fermat distance. Finally, compute

db(dgm(Rips(Xi))− db(dgm(Rips(Xi−1))
ti − ti−1

as an approximate the ‘first order derivative’ of (5). Shifts in patterns in the signal can
be detected from the sample as peaks in the bottleneck distance between consecutive
persistence diagrams.

Some applications of this technique follow below.

Example 4.2 (Anomaly detection in ECG). The purpose of this example is to present
a computational method of automated detection of abnormal heartbeats (arrhythmia)
through the topological analysis of a delay embedding of ECG signals. We consider the
record sel102 of the QT Database from the freely-available repository of medical research
data PhysioNet [49], Figure 7.

Regular heartbeats are characterized by a periodic pattern ([43, Ch.4]). The delay
embedding in R3 of a normal ECG has hence a cyclic topology induced by the periodic
behavior of the time series (see also [28, 52]). However, every time that an irregular heart-
beat occurs, a new cycle arises in the embedding. We compute the associated persistence
diagram for a normal period and for a period that includes an anomalous heartbeat. By
using Fermat distance with p = 2, a second cycle in the irregular period that accounts for
the anomaly is distinctly detected (here, the choice of p is related to the weight we give to
the density when computing Fermat distances, that is, we set p so that the exponent p−1

d
equals 1 where d = 1 is the dimension of the curve). Moreover, the moment immediately
following the occurrence of the anomaly can be detected using persistent homology of time
evolving delay embeddings. Indeed, the bottleneck distance between consecutive diagrams
features a prominent peak when the topology of the embedding changes.

Example 4.3 (Pattern recognition in birdsongs). During song production, canaries use
a set of air sac pressure gestures with characteristic shapes to generate different patterns
of sound (or syllables). Pressure patterns of different syllables constitute a diverse set:
they can be either almost harmonic oscillations, high frequency fluctuations or oscillations
presenting wiggles. The recognition of song syllables from the air sac pressure series is a
well-studied problem in non-linear dynamical systems [4, 48].

We provide a topological method to detect the number of different syllables in a canary
song from the (noisy) record of the fluctuations of its air sac pressure X(t), Figure 8 (data
provided by the Laboratory of Dynamical Systems from the Department of Physics of the
University of Buenos Aires). Given the time delay embedding of the time series X(t) with
τ = 500 and D = 3, its associated persistence diagram computed using Fermat distance
with p = 1.5 shows four prominent generators for the first homology group, which are in
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Figure 7. Top: ECG signal (anomaly in blue). Middle: Bottleneck distance between
consecutive persistence diagrams associated to time evolving embeddings of the ECG
signal. Bottom: Delay embedding in R3 with τ = 15. The associated persistence dia-
grams at degree 1 using Fermat distance with p = 2 for the embedding of the signal in
the periods of time [0, 4000] and [0, 6000].

correspondence with the four different patterns observed in the time series (see Figure 9).
Indeed, the embedding of each syllable is topologically a cycle (see [52, 53]). However,
this decomposition is not available beforehand so the study of the global topology of the
embedding of the entire time series is necessary in order to analyze the complete song.
Here, prior to the computation of the persistence diagram, we down-sampled the original
time series at evenly spaced times with stride t = 100, obtaining a subsample of size ∼ 3000
from the original T ∼ 300000 points.

We can also detect the moments at which changes of syllables take place during the
song. The bottleneck distance between consecutive persistence diagrams associated to the
time evolving delay embeddings presents peaks each time a new pattern arises, Figure 9.

5. Proof of auxiliary results

The purpose of this section is to present formal proofs of Proposition 2.4 and Lemma
2.6. Recall thatM⊆ RD is a closed submanifold of dimension d ≤ D and Xn ⊆M is an
i.i.d. sample of size n with common density f > 0. Given p > 1, we set α = 1/(d+ 2p).

In [39] the authors establish the convergence of an estimator known as the power-weighted
shortest path to the population Fermat distance. For p > 1 and points x, y ∈ M, the



22 E. BORGHINI, X. FERNÁNDEZ, P. GROISMAN, AND G. MINDLIN

Figure 8. Top: Record of the air sac pressure of canary during a song. Bottom: Delay
embedding in R3 with tie delay τ = 500 and its associated persistence diagram using
Fermat distance with p = 1.5.

Figure 9. Top: Bottleneck distance between consecutive persistence diagrams associ-
ated to time evolving embeddings (moving average curve with window of time 500).
Peaks are related to changes in the pattern of the air sac pressure record of the canary
song. Bottom: Delay embedding of each detected syllable.
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power-weighted shortest path between x, y is defined as

LXn,p(x, y) = inf
γ

k∑
i=0

dM(xi+1, xi)
p

where the infimum is taken over all paths γ = (x0, . . . , xk+1) in Xn of finite length with
x0 = x, xk+1 = y.

Theorem 5.1. [39, Theorem 1] Let p > 1 and ε > 0. Suppose that (bn)n≥1 is a sequence
of positive real numbers such that log(n)

nbdn
→ 0 as n goes to infinity. Then, there exists a

constant θ > 0 (which depends on ε) such that

P

 sup
x,y∈M

dM(x,y)≥bn

∣∣∣∣∣n(p−1)/dLXn,p(x, y)

df,p(x, y)
− µ

∣∣∣∣∣ > ε

 ≤ exp(−θ(nbdn)α)

for all sufficiently large n, where the supremum is taken over x, y ∈M with dM(x, y) ≥ bn.

The constant µ = µ(d, p) from the statement is fixed and depends only on p and d. It was
originally defined in [38, Lemma 3]. As explained in the paragraph following Theorem 1 in
[39, p. 2793], the requirement that log(n)

nbdn
→ 0 is necessary in order to obtain a nontrivial

upper bound for the probability.
Note that in Theorem 5.1, the convergence holds for the set of points x, y ∈ M with

dM(x, y) greater than some sequence (bn). However, in order to study Gromov–Hausdorff
convergence of the associated metric spaces, it is necessary to have uniform control of
the convergence of the estimated distance for all points in the manifold. The uniform
convergence with similar rate is one of the main improvements upon Theorem 5.1 we show
in Proposition 2.4. Also, notice that the proposed estimator LXn,p of df,p is based on the
previous knowledge of the inherited Riemannian distance dM. In the general data analysis
setting, only a sample of points in a Euclidean space is given. Under the assumption that
points lie on an (unknown) manifold M, the goal is to find an estimator of the intrinsic
distance df,p that can be completely computed from the sample. In Proposition 2.4, we
prove that sample Fermat distance dXn,p is indeed a good estimator of df,p.

The proof of Proposition 2.4 will take most of this section. The idea of the next results
is to show that any segment that is part of any shortest path with respect to dXn,p will
be arbitrarily small with high probability if n is large enough. This will allow us to prove
that the power-weighted distance is well approximated by the sample Fermat distance.

Proposition 5.2. Given b > 0 and ε > 0, there exists θ > 0 such that

P

(
sup
x,y

(
n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ

)
> ε

)
≤ exp(−θnα)

for n large enough, where the supremum is taken over all x, y ∈M with dM(x, y) ≥ b.

Proof. Given ε > 0 and b > 0, by Theorem 5.1 there exists θ > 0 such that for every
x, y ∈M with dM(x, y) ≥ b

(6)
n(p−1)/dLXn,p(x, y)

df,p(x, y)
− µ > ε
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with probability at most exp(−θnα) (notice that here we set the sequence bn to be con-
stantly b).

Let x, y ∈M and let γ = (x0, . . . , xk+1) be the shortest path between x, y with respect
to LXn,p. That is,

LXn,p(x, y) =
k∑
i=0

dM(xi+1, xi)
p

Since |xi+1 − xi| ≤ dM(xi+1, xi),

LXn,p(x, y) ≥
k∑
i=0

|xi+1 − xi|p ≥ dXn,p(x, y).

Thus, by (6), the inequality

n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ > ε

holds with probability bounded by exp(−θnα). �

Corollary 5.3. Let b0 > 0. Let x, y ∈ M be such that they belong to some minimal path
between points inM respect to dXn,p. Then,

P(|x− y| > b0) ≤ exp(−θnα)

for some constant θ > 0, provided n is large enough.

Proof. Fix ε0 > 0. By Proposition 5.2, there exists a constant θ > 0 such that

P

(
sup
u,v

n(p−1)/ddXn,p(u, v)

df,p(u, v)
> µ+ ε0

)
≤ exp(−θnα)

for all n sufficiently large, where the supremum is taken over u, v ∈M such that dM(u, v) ≥
b0.

On the other hand, note that since M is compact the diameter diamp(M) of M with
respect to the distance df,p is finite. Hence,

df,p(u, v)

n(p−1)/d
(µ+ ε0) ≤

diamp(M)

n(p−1)/d
(µ+ ε0) ≤ bp0

for all u, v ∈M with dM(u, v) ≥ b0 and all n sufficiently large.
Suppose now that x, y ∈ M belong to some shortest path between points of M with

respect to dXn,p, say u and v, but that |x−y| > b0. Then, clearly dXn,p(u, v) ≥ |x−y|p and
dM(u, v) > b0 (since otherwise dXn,p(u, v) ≤ |u − v|p < bp0). We remark here that x and
y do not necessarily belong to the sample Xn. From the previous computations, it follows
that whenever n is large enough, with probability at least 1− exp(−θnα),

|x− y|p ≤ dXn,p(u, v) ≤
df,p(u, v)

n(p−1)/d
(µ+ ε0) ≤ bp0,

as we wanted to show. �

Remark 5.4. (see [7, Corollary 4] or [10, Lemma 3]) Let (M, g) be a smooth compact
Riemannian manifold embedded in RD. Given δ > 0, there exists ε > 0 such that for every
x, y ∈M with |x− y| < ε,

dM(x, y) ≤ (1 + δ)|x− y|.
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We are now able to prove a new version of Theorem 5.1 in which the proposed estimator
of df,p is the sample Fermat distance (rather than the power-weighted shortest path).

Proposition 5.5. Fix ε > 0 and a sequence of positive real numbers (bn)n≥1 satisfying
that log(n)

nbdn
→ 0 when n→∞. Then, for every p > 1, there exists θ > 0 such that

P

(
sup
x,y

∣∣∣∣∣n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ

∣∣∣∣∣ > ε

)
≤ exp

(
−θ(nbdn)α

)
for n large enough, where the supremum is taken over x, y ∈M with dM(x, y) ≥ bn.

Proof. Let δ > 0 be a small number to be fixed later. The strategy of the proof consists
of showing that, with probability exponentially high in (nbdn)α, LXn,p(x, y) and dXn,p(x, y)
coincide up to a factor of (1 + δ)p for all x, y ∈ M with dM(x, y) ≥ bn. Once that is
established, the proof follows readily by applying Theorem 5.1.

Notice in first place that by Remark 5.4, there exists η > 0 such that dM(x, y) ≤
(1 + δ)|x − y| whenever x, y ∈ M, |x − y| < η. By Corollary 5.3, we may assume that
|u− v| < η for every u, v ∈M belonging to a minimal path with probability exponentially
high in nα. Let x, y ∈ M be two points with dM(x, y) ≥ bn. Since by our assumptions
every segment in a shortest path from x to y with respect to dXn,p has Euclidean length
at most η, it is not difficult to see that

(7) dXn,p(x, y) ≤ LXn,p(x, y) ≤ (1 + δ)pdXn,p(x, y).

Now, by Theorem 5.1, the probability that

(8)

∣∣∣∣∣n(p−1)/dLXn,p(x, y)

df,p(x, y)
− µ

∣∣∣∣∣ < ε

2

is exponentially high in (nbdn)α, provided n is large enough. We will check that for δ > 0
sufficiently small, the desired inequality for dXn,p follows if we assume that the event from
(8) occurs. It is clear by (7) and (8) that

n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ < ε

2
.

As for the other inequality, notice that

−ε
2
< (1 + δ)p

(
n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ

)
+ ((1 + δ)p − 1)µ.

Hence, for δ > 0 small enough we have

−ε <
n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ

as desired. �

Finally, we promote the convergence of the sample Fermat distance from Proposition
5.5 to a uniform convergence in probability (that is, for any pair of points x, y ∈ M
regardless of the distance between them). Such uniform convergence may be accomplished
by choosing a sequence (bn)n≥1 which converges to 0 at an adequate rate. This step is
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instrumental in order to prove the Gromov–Hausdorff convergence of the sample metric
spaces (Xn, dn,p) to (M, df,p) (see Theorem 3.2 and its proof).

Proof of Proposition 2.4. Roughly, the strategy of the proof consists in bounding the quan-
tity

|n(p−1)/ddXn,p(x, y)− µdf,p(x, y)|
splitting in two cases according to whether the distance dM(x, y) is greater than or smaller
than some appropriately chosen sequence bn > 0. More precisely, we will set bn = n−λ for
some λ ∈ ((p − 1)/pd, 1/d). Let ε > 0. Since λ < 1/d, clearly the sequence

(
log(n)
nbdn

)
n≥1

converges to 0 as n goes to infinity and hence, by Proposition 5.5 the bound∣∣∣∣∣n(p−1)/ddXn,p(x, y)

df,p(x, y)
− µ

∣∣∣∣∣ > ε′

holds with probability at most exp(−θ(nbdn)α) = exp(−θn(1−λd)α) for some θ > 0 and all
x, y ∈ M with dM(x, y) ≥ n−λ provided n is large enough (here ε′ > 0 is a small number
to be determined). Denote by diam(M) the diameter of M respect to the distance dM.
Since df,p(x, y) ≤ m−(p−1)/df dM(x, y) ≤ m−(p−1)/df diam(M), we see that the event

|n(p−1)/ddXn,p(x, y)− µdf,p(x, y)| > m
−(p−1)/d
f diam(M)ε′

also holds with probability bounded from above by exp(−θn(1−λd)α) for the same θ > 0 as
before, whenever dM(x, y) ≥ n−λ. By setting ε′ = ε(m

−(p−1)/d
f diam(M))−1 we obtain the

desired bound for x, y ∈ M with dM(x, y) ≥ n−λ. For the remaining case, take x, y ∈ M
satisfying dM(x, y) ≤ n−λ and notice in first place that

df,p(x, y) ≤ m−(p−1)/df dM(x, y) ≤ m−(p−1)/df n−λ.

Hence, for n sufficiently large, µdf,p(x, y) ≤ ε/2. On the other hand, since by definition of
dXn,p it is

dXn,p(x, y) ≤ |x− y|p ≤ dM(x, y)p ≤ n−λp,
we see that n(p−1)/ddXn,p(x, y) ≤ n(p−1)/d−λp. The hypothesis on λ implies that the expo-
nent of n in the last inequality is negative and thus n(p−1)/ddXn,p(x, y) ≤ ε/2 provided n
is large. Summing up, we conclude that there exists n0 such that for all x, y ∈ M with
dM(x, y) ≤ n−λ and n ≥ n0,

|n(p−1)/ddXn,p(x, y)− µdf,p(x, y)| ≤ ε,
which completes the proof of the proposition. �

We turn now to the proof of Lemma 2.6, which follows ideas from [23] and [47, Section
5].

Proof of Lemma 2.6. SinceM is compact, its injectivity radius inj(M)2 is strictly positive.
Then, by an inequality of Croke (see [22, Proposition 14]), there exists a constant c = c(d) >

0 such that every metric ball B inM of radius r < inj(M)
2 has volume at least c(d)rd. Since

we can assume that κ < 1 without loss of generality, for all n sufficiently large we have

2Given (N , g) a Riemannian manifold, the injectivity radius inj(N ) is defined as inj(N ) :=
infx∈N inj(N , x), where inj(N , x) is the largest radius for which the exponential map is a diffeomorphism
(see [42, Chapter 5]).
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n(κ−1)/d < inj(M)
2 . From this point, we follow the strategy from the proof of [23, Theorem

3]. Let Pn be the maximum number of disjoint balls of radius n(κ−1)/d

4 contained in M
(this is known as packing number, see for example [51, Section 5]) and take {B1, . . . , BPn}
a set of disjoint balls of radius n(κ−1)/d

4 inM. It is clear then that

Pn ≤
Vol(M)

min1≤j≤Pn Vol(Bj)
≤ Vol(M)4d

c(d)
n1−κ,

for n so large that n(κ−1)/d < inj(M)
2 . Now, suppose that x ∈ M verifies dM(x,Xn) >

n(κ−1)/d. Since the balls 2B1, . . . , 2BPn coverM (where 2Bj stands for the ball with the
same center as Bj but with twice the radius) the distance from x to some center of these
balls is at most n(κ−1)/d

2 and thus there should be no point from the sample in some ball
2Bj . A simple computation reveals that the probability that some random variable xi ∈ Xn
does not belong to 2Bj is at most 1−mf ·Vol(2Bj). By the independence of the random
variables x1, . . . ,xn, if n is large enough

P

(
n⋂
i=1

{xi 6∈ 2Bj}

)
≤
(
1−mf ·Vol(2Bj)

)n ≤ (1−mfc(d)nκ−1
)n
.

We conclude that

P
({

sup
x∈M

dM(x,Xn) ≥ n(κ−1)/d
})
≤

Pn∑
j=1

P

(
n⋂
i=1

{xi 6∈ 2Bj}

)
≤ (1−mfc(d)nκ−1)nPn.

Since Pn grows at most like a polynomial in n, (1−mfc(d)nκ−1)nPn ≤ exp(−θnκ) for an
appropriate θ > 0 and n big enough, as we wanted to show. �
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