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Abstract: There has been renewed interest in the path-integral computation of the par-

tition function of AdS3 gravity, both in the metric and Chern-Simons formulations. The

one-loop partition function around Euclidean AdS3 turns out to be given by the vacuum

character of Virasoro group. This stems from the work of Brown and Henneaux (BH) who

showed that, in AdS3 gravity with sensible asymptotic boundary conditions, an infinite

group of (improper) diffeomorphisms arises which acts canonically on phase space as two

independent Virasoro symmetries. The gauge group turns out to be composed of so-called

“proper” diffeomorphisms which approach the identity at infinity fast enough. However,

it is sometimes far from evident to identify where BH boundary conditions enter in the

path integral, and much more difficult to see how the improper diffeomorphisms are left

out of the gauge group. In particular, in the metric formulation, Giombi, Maloney and Yin

obtained the one-loop partition function around thermal AdS3 resorting to the heat kernel

method to compute the determinants coming from the path integral. Here we identify how

BH boundary conditions follow naturally from the usual requirement of square-integrability

of the metric perturbations. Also, and equally relevant, we clarify how the quotient by only

proper diffeomorphisms is implemented, promoting the improper diffeomorphisms to sym-

metries in the path integral. Our strategy is general enough to apply to other approaches

where square integrability is assumed. Finally, we show that square integrability implies

that the asymptotic symmetries in higher dimensional AdS gravity are just isometries.
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1 Introduction

Three dimensional pure gravity with negative cosmological constant has been widely used

as a toy model for addressing problems of quantum gravity (see for example [1–4]). One

important step towards the understanding of the quantum description of AdS3 gravity was

taken in [3], where it was computed the partition function,

Z(β, θ) = Tr
(
e−βH−iθJ

)
, (1.1)

with H and J the Hamiltonian and angular momentum operators respectively, as a func-

tional integral over Euclidean 3 dimensional geometries with conformal boundary a two-

torus with modular parameter τ = θ + iβ. The symmetry group of the classical space of

solutions played a prominent role in that work, as we shall explain.

In 3 dimensional gravity there are no local degrees of freedom, and then it could be

expected there is a trivial phase space formed just by AdS3 (for negative cosmological

constant, which we assume henceforth). However it is known that there are interesting

solutions like black holes [5, 6], which are locally but not globally AdS3, and accordingly

in [3] the partition function was decomposed as a sum over different saddle points. Brown

and Henneaux [7] showed that the asymptotic boundary conditions and related asymptotic

symmetry group are responsible for a rich phase space of solutions, even in the sector

of small perturbations around AdS3. The asymptotic symmetry group is given by two

copies of Diff(S1), that however are centrally extended when realized through the algebra

of charges, giving two copies of the Virasoro group with equal central charges c = 3`/2G [7].

[3] relied heavily on this result. Such enhancement of symmetries does not occur in higher

dimensions where the asymptotic symmetry group coincides with the isometry group.1 The

1This can be understood from the fact that the asymptotic symmetry group is the same as the conformal

symmetry group of the boundary metric. For D > 3 it is the finite dimensional group SO(D − 1, 2) in

Lorentzian signature or SO(D, 1) in Euclidean signature. The D = 4 case can be explicitly seen in [8].
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asymptotic symmetries of AdS are nowadays understood, in the context of AdS/CFT [9],

as the local conformal group of the boundary theory.

The setting of [7] is such that i) the asymptotic boundary conditions on the metric en-

sure having conserved charges that are finite, and ii) any diffeomorphism that approaches

the identity at infinity fast enough not to change any conserved charge, is considered a

redundancy and must be gauged away; these are the so-called “proper” diffeomorphisms

(diff). The remaining diffeomorphisms, modulo proper diffeomorphisms, are called “im-

proper” and modify conserved charges. These improper diffs generate the so-called bound-

ary gravitons and are symmetries of phase space acting through the coadjoint action of the

Virasoro group (see [10, 11] and references therein).

Taking into account the aforementioned structure of the classical phase space around

(global) AdS3 space, it was argued in [3] that the Hilbert space of the quantum the-

ory is bigger than just the vacuum state Ω. The corresponding Hilbert space H0 is the

Verma module of the vacuum, i.e. the irreducible representation of the Virasoro algebra

constructed by acting with the Virasoro generators L−n on Ω. This can be thought as

acting with Virasoro generators on the state associated with the AdS3 solution. Taking

into account that L0 + L̄0 is the energy and L0 − L̄0 the angular momentum, the torus

partition function coincides then with the vacuum character of two copies of the Virasoro

group TrH0(qL0 q̄L̄0):

Z(β, θ)|AdS3 sector = |q|c/12
∏
n>1

1

|1− qn|2
, (1.2)

where q = e2πiτ with τ = θ + iβ (both parameters are real and represent the angular

potential and the inverse temperature). Expanding the character as a sum of powers of q

and q̄, one can identify the contribution of the vacuum as |q|c/12, and all the other terms

are contributions of the Virasoro descendants. The effective action Seff = −log(Z) is of the

form c(S0 + 1
cS1), where S0 is just the Einstein-Hilbert action evaluated in Euclidean AdS3.

Since 1/c plays the role of ~ in QFT, the previous result shows that the effective action

does not have higher order contributions; for that reason, a QFT direct computation must

give a 1-loop exact result.

The one-loop partition function can be formulated in terms of an Euclidean path

integral where the action is perturbed around AdS3 up to second order (we will expand

below). The final expression is then expressed as a quotient of determinants of some

operators. This holds both in the metric as well as in the Chern-Simons formulations

of AdS3 gravity [1, 12]. In the latter case, the partition function has been extensively

studied recently in [13]. Here we are interested in the metric formulation of gravity where

the determinants correspond to Laplace operators on fields of integer spin 0, 1 and 2.

They have been computed to obtain the 1-loop partition function, by means of a heat

kernel procedure in [14] (see also [15]), and by using a quasi-normal mode method in [16]

which can be related to scattering poles through the Selberg zeta function (see [17] and

references therein).

Let us be more precise. Consider the action of General Relativity with negative cosmo-

logical constant and expand around AdS3 as g = gAdS+h, keeping terms up to second order
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in the perturbation h. Since local diffeomorphisms are gauge symmetries, a gauge-fixing is

required together with auxiliary ghost fields. The metric perturbation h can be described

by two fields on AdS3, a scalar field (its trace) and a traceless symmetric rank-two field,

while the ghosts are vector fields. Since the action is Gaussian in the fields, the result is

a ratio of determinants, one for each field. In [14] these are computed by the heat kernel

method, with a prescribed regularization. The thermal feature of the geometries2 is taken

into account in the path integral by means of the method of images, therefore obtaining

the heat kernels of thermal AdS3. Having these, the last step is to gather all together and

the Virasoro character (1.2) is obtained.

A natural question that arises is: where are implemented the following two important

ingredients of the classical phase space in the heat kernel computation?

• The imposition of asymptotic boundary conditions of Brown-Henneaux.

• The promotion of improper diffeomorphisms to symmetries as opposed to gauge re-

dundancies.

This is the question that we will answer. Let us recall that the last point was responsible

for the rich structure of the Hilbert space leading to the expression (1.2) in terms of

Virasoro characters.

Recently, in [18] it was remarked that the square integrability of the fields together

with appropriate boundary conditions are crucial to describe Euclidean gravity as an elliptic

boundary value problem [19]. In the present context of AdS3 gravity, we will see in the

next sections that the square integrability of the fields, assumed in the computations of the

heat kernels, will lead both to the (Euclidean) asymptotic conditions of Brown-Henneaux

and will automatically exclude the improper diffeomorphisms from the quotient by gauge

redundancies, for which the ghost field are introduced. In this way, the square integrability

condition turns out to be the root of the emergence of Virasoro group as symmetries in the

QFT computation in [14]. An important observation is that our presentation is actually not

restricted to the heat kernel method, but actually holds for any method used to calculate

determinants within a space of square-integrable fields.

Finally, we will apply the same reasoning for Euclidean AdSD gravity, with D > 3, and

we will obtain that the asymptotic symmetry group is nothing but the group of isometries,

in agreement with [8].

2 Metric perturbations

We are interested in understanding the phase space of metric perturbations that is relevant

for the computation of the one-loop partition function of AdS3 gravity. The partition func-

tion of gravity is roughly of the form
∫
Dg e−

∫
d3x
√
g(R+2). The integrand in the exponent

should be expanded around the hyperbolic metric up to second order and this gives an

2This means that Euclidean time is identified with a translation given by 2πβ while the angular coordi-

nate is rotated by 2πθ. An elegant way of seeing such geometry is by considering the quotient H3/Γ, where

Γ is the Fuchsian group generated by diag(q1/2, q−1/2) ∈ SL(2,C).
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action of the form
∫
hLh with L a non-elliptic second order differential operator (see [18]

for more details). We henceforth call h to the metric perturbation around AdS, so we have

δg = h and from now on g := gAdS is the hyperbolic metric. We also use the notation

H3 for Euclidean AdS3 or hyperbolic space and set the AdS radius to one. The functional

integral should sum over all those h that satisfy a sensible boundary condition and be-

long to some judicious gauge choice. We will scrutinize these requirements in this and the

following section.

A natural space where the operator L acts is the space of square integrable rank 2

symmetric tensors. So we consider that this is the space to which h belongs. The inner

product on metric perturbations is

〈h | h′〉 =

∫
H3

d3x
√
g h̄µνh′µν =

∫
H3

d3x
√
g gµαgνβh̄µνh

′
αβ . (2.1)

If we use Poincaré coordinates where ds2 = dx2+dy2+dz2

z2
, the norm of h is,

〈h|h〉 =

∫
H3

dx dy dz z
[
h2
xx + h2

yy + h2
zz + 2h2

xy + 2h2
xz + 2h2

yz

]
, (2.2)

from where we conclude3 that hµν ∼ zε−1, ε > 0, for z → 0. This fall-off behavior coincides

with the boundary conditions of Brown and Henneaux, with the exception of the compo-

nents hxz and hyz which here are of order O(1) versus O(z) of [7]. We will show that these

components are actually pure gauge.

Some of the perturbations come from diffeomorphisms, namely h = Lξg, with ξ some

vector field. Naively one is tempted to mod out by all of these perturbations, however

that would not be correct, as we shall see. Let us call V the space of vectors that generate

square-integrable perturbations, namely

V = {ξ ∈ Vect(H3) | Lξg ∈ L2} . (2.3)

Then, it can be shown that the most general vector field in V can be written

ξx = U(x, y)− z2

2
∂2
xxU(x, y) +O(z3) ,

ξy = V (x, y)− z2

2
∂2
yyV (x, y) +O(z3) ,

ξz =
z

2
(∂xU(x, y) + ∂yV (x, y)) +O(z3) ,

(2.4)

with the Cauchy-Riemann conditions ∂xU = ∂yV , ∂yU = −∂xV . Of course, these equations

imply that we can form holomorphic and anti-holomirphic functions. Defining the complex

coordinate w = x+ iy the vectors read

ξw = f(w)− z2

2
∂̄2f̄ +O(z3) ,

ξw̄ = f̄(w̄)− z2

2
∂2f +O(z3) ,

ξz =
z

2

(
∂f + ∂̄f̄

)
+O(z3) .

(2.5)

3We are neglecting analyzing the dependence of h on the boundary coordinates, since we are implicitly

assuming the boundary is the Riemann sphere or a quotient of it.
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These are the usual Brown-Henneaux asymptotic vector fields, with the exception of a

milder fall-off condition O(z3) instead of O(z4) in the non-radial components. The vectors

with f = 0 and f̄ = 0 are called “proper” diffeomorphims and generate a pure gauge defor-

mation of the background metric, since they do not modify the conserved charges [7] (we

will further discuss this point in the next section). The so-called “improper” diffeomor-

phisms are the vectors (2.5) modulo the proper ones. The components hwz and hw̄z are only

affected by the proper vectors, therefore can be considered as pure gauge as we mentioned

before. The asymptotic vector fields (2.5) are in agreement with those of [20], and this

guarantees both finite conserved charges and finite central charge (in the Lorentzian case).

We should emphasize that in order to obtain the Virasoro symmetry what it really

matters is how the algebra of vectors is represented on the space of metrics, and not the

precise form of the vectors or the metric components. The algebra formed by these vectors

is best displayed by passing to a mode decomposition. We define Lm as the vector with

(f = −wm+1, f̄ = 0), and L̄m the vector with (f = 0, f̄ = −w̄m+1). Then we have two

copies of the Witt algebra,
[Lm, Ln] = (m− n)Lm+n ,[
L̄m, Ln

]
= 0 ,[

L̄m, L̄n
]

= (m− n)L̄m+n .

(2.6)

As is well-known, the way these vector fields act on the hyperbolic metric is by the shift

hww = 0 7→ hww = −1

2
∂3f , (2.7)

and analogously for its complex conjugate. This indicates that the vectors act with the

coadjoint representation of the Virasoro algebra.

3 Ghosts and asymptotic vector fields

We shall now analyze in more detail vectors (2.5). The reader should keep in mind that

ghost fields generate gauge symmetries and will eventually be introduced with their corre-

sponding action in the path integral, so they need to be square-integrable too. The first

thing to note is that only the proper diffs are square integrable. This follows from the inner

product on vector fields,

〈ξ|ξ′〉 =

∫
H3

d3x
√
g ξ̄µξ′µ =

∫
H3

d3x
√
g ξ̄µξ′νgµν . (3.1)

On the contrary, the leading and sub-leading terms in (2.5) are not square integrable.

Thus, we arrive to an important result: the ghosts in the path integral are precisely the

square-integrable part of (2.5) which coincide with proper diffeomorphisms. This implies

that perturbations of the metric Lξg, with ξ generating an improper diff, will not be gauged

away. This leaves out of the gauge redundancies the improper diffs, and then they survive

as symmetries and contribute to the partition function.

So far we have not mentioned a specific gauge choice. However, it is crucial to under-

stand the role that a gauge choice plays in this analysis: given that an improper diff does

– 5 –
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not generate a gauge redundancy it should not break the gauge choice. On the contrary,

when ξ is a generator of a proper diff then it should break the gauge. Let us call VP
and VI the subspaces of generators of proper and improper diffeomorphisms. Notice that4

VI = V/VP .

In order to study the problem just raised, let us use the de Donder gauge fixing

condition: T (h) := ∇νhµν − 1
2∂µTrh = 0. This is a good gauge-fixing condition, since

to any perturbation hµν with T (h) 6= 0 we can add Lξg, such that h′ = h + Lξg now

satisfies T (h′) = 0. This is granted by the existence of a unique solution to P (ξ) = T (h),

where P (ξ)µ := −∇2ξµ − Rµνξν is an invertible operator [18]. Note, however, that P is

an invertible operator only within a fixed space of vectors, which for simplicity we take to

be the square-integrable vectors.5 We will show soon that there are non-square-integrable

vector fields in the kernel of P .

Now, the usual BRST procedure is to add a gauge-fixing action and a ghost action

(see for example [14]). The latter, calling η the ghost fields, is

Sghost =
1

32πG

∫
d3x
√
g η̄ν

(
−gµν∇2 −Rµν

)
ην =

1

32πG

∫
d3x
√
g η̄νP (η)ν . (3.2)

These η vectors implement the gauge transformation Lηg, and should be square-integrable

since are to be integrated in the action. They are then the elements in VP . What should

be checked is that P (VP) 6= 0, which is straightforward to show (it is also guaranteed by

the invertibility of P ). Physically this means that generators of proper diffs change the

gauge condition. On the other hand, it is a fact that the representative ξ ∈ VI which is

written as in (2.5) with no O(z3) satisfies P (ξ) = 0. Namely, that improper vector fields do

not change the gauge fixing condition, and thus can be safely considered symmetries. Note

that we are not contradicting the claim that P is invertible, since this holds for square-

integrable vector fields (or may be a technically broader space), but elements of VI are not

square integrable.

4 Square integrability in higher dimensions

In order to explore in higher dimensions which is the asymptotic symmetry group coming

from square integrability, let us repeat what we have done in section 2. The inner product

is now,

〈h | h′〉 =

∫
HD

dDx
√
g h̄µνh′µν =

∫
HD

dDx
√
g gµαgνβh̄µνh

′
αβ . (4.1)

This implies that in Poincaré coordinates, the norm of h is,

〈h|h〉 =

∫
HD

ddx dz z3−d

h2
zz +

d∑
i

(
h2
ii + 2h2

iz

)
+

d∑
i,j=1

h2
ij

 , (4.2)

4They are expressed in a coordinate system that leaves out the region z =∞, should this point be added

to perform a compactification.
5For a more technical study we suggest [19].
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where we have defined d = D−1. From this expression we conclude that hµν ∼ zε−2+d/2, ε >

0, for z → 0. Then the most general vector field in the higher-dimensional analog of V is

of the form,

ξz =
z

d

(
∂x1U

1(x) + · · ·+ ∂xdU
d(x)

)
+O

(
zb

d+4
2
c
)
,

ξi = U i(x)− z2

2

∂2U i

∂xi∂xi
+O

(
zb

d+4
2
c
)
,

(4.3)

where bac is the integer part. The U i are functions of the boundary coordinates which we

collectively denote x. They must satisfy Cauchy-Riemann equations pair-wise: ∂iU
i = ∂jU

j

and ∂jU
i = −∂iU j , with i 6= j. No summation over repeated indexes is meant in this

section. It is straightforward to see, in an identical fashion as in the previous section, that

O
(
zb

d+4
2
c
)

is the square-integrable part which coincides with the generators of proper

diffeomorphisms and then everything goes along the same lines as before.

However, in contrast with the d = 2 case, for d > 2 we can show that ∂3
klmU

j = 0 for all

j, k, l,m (not necessarily different). In order to see this, first notice that Cauchy-Riemann

equations imply that ∂3
i U

i = −∂3
jU

j . Then, grouping into threesomes U i, U j , Uk with i 6=
j 6= k, we get ∂3

i U
i = −∂3

jU
j = ∂3

kU
k = −∂3

i U
i = 0. Hence, the U i functions are quadratic

functions of the xi variable. Even more, by further using the Cauchy-Riemann equations

it is possible to show that U i are at most quadratic in any variable: ∂2
j ∂kU

k = ∂2
j ∂iU

i =

−∂3
i U

i = 0. Also we have the following two identities: ∂2
k∂jU

k = −∂3
jU

k = ∂2
j ∂kU

j =

−∂2
i ∂kU

j and ∂2
k∂jU

k = −∂2
i ∂jU

k = ∂2
i ∂kU

j which combined imply that ∂2
k∂jU

k = 0 and

then also ∂3
jU

k = 0. Vector fields generating improper diffs with functions U i at most

quadratic in the boundary coordinates are precisely the isometries of hyperbolic space.

This completes the proof that the square integrability condition of metric perturbations

imply that the asymptotic symmetry group is just the isometry group of hyperbolic space

for d > 2, which coincides with what is expected from the boundary conformal symmetries.

5 Summary

We have shown where are hidden in the one-loop partition function computation [14] both

the imposition of Brown-Henneaux boundary conditions and the quotient by only proper

diffeomorphisms; the latter directly implying that improper diffs are symmetries which are

exhibited in the final result as a character of the Virasoro group.

Let us describe now what we have found. First, the square-integrability of the metric

perturbations demands that they fall off at infinity satisfying Brown-Henneaux asymptotic

boundary conditions. Second, the asymptotic vector fields that generate the allowed metric

perturbations naturally split in two sets,

VP : The set of square integrable vector fields. They have the same form as the

generators of proper diffs in [7] but with a slightly milder fall off compatible with

the more general analysis of [20]. They generate gauge symmetries in the BRST

formalism, and we checked that indeed they are adequate to implement the gauge

condition on a metric perturbation.
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VI : The set of asymptotic vector fields modulo the set of square-integrable asymptotic

vector fields. This is the vector space of generators of improper diffs in [7]. We checked

that these vectors generate true symmetries in the sense that they keep perturbations

in the chosen gauge, while they are not generated by ghost fields.

Then, it is clear that by applying the BRST formalism together with a square-integrable

heat kernel, the determinants involved in the one-loop partition function are taking into

account both the Brown-Henneaux boundary conditions for metric perturbations and the

quotient by only proper diffeomorphisms. Improper diffeomorphisms generate metric per-

turbations that remain contributing to the partition function. This is the reason why

the Virasoro symmetry appears in the heat kernel computation. Actually, our presen-

tation was motivated by the heat kernel method in [14], but only relied on the fact of

considering a space of square-integrable fields. Thus, the present manuscript permits to

gain a deeper understanding of the computation of the gravity 1-loop partition function,

such as in [17], where determinants are obtained using a different method that assumes

square-integrability.

In the last section we extended the analysis to higher dimensions. We found that the

square-integrability also accounts for the fact that in D > 3 the asymptotic symmetry

group is given by the isometry group in agreement with [8].

We will dedicate a future work to extend the present approach to the case of pure

gravity without cosmological constant [21].
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[5] M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time,

Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

– 8 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(88)90143-5
https://doi.org/10.1016/0550-3213(88)90143-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB311%2C46%22
https://arxiv.org/abs/0706.3359
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0706.3359
https://doi.org/10.1007/JHEP02(2010)029
https://arxiv.org/abs/0712.0155
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0712.0155
https://doi.org/10.1007/JHEP10(2015)096
https://arxiv.org/abs/1508.03638
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.03638
https://doi.org/10.1103/PhysRevLett.69.1849
https://arxiv.org/abs/hep-th/9204099
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9204099


J
H
E
P
0
6
(
2
0
2
0
)
1
7
2
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