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Aerial Multi-Camera Robotic Jib Crane
Patricio Moreno1, Juan F. Presenza2, Ignacio Mas3, and Juan I. Giribet4

Abstract—A formulation based on a team of unmanned aerial
vehicles operating as a fully articulated multi-camera jib crane
is proposed for the application of aerial cinematography. An
optimization-based controller commands the formation to follow
an artistic trajectory defined by the director of photography,
while actively avoiding collisions and cameras’ mutual visibility.
The proposed scheme, based on the cluster-space formulation,
presents an intuitive way of maneuvering the virtual camera
fixture while automatically adjusting the motions by imposing
artistic and safety constraints, facilitating the operator task.

Index Terms—Aerial videography, autonomous cinematogra-
phy, aerial robotics, multi-robot systems, cluster-space control

I. INTRODUCTION

EVERY day there are more applications in which un-
manned aerial vehicles (UAVs) are used for filming.

Examples of these uses can be found in the film industry,
news coverage, sporting events, etc., where UAVs are used to
replace camera systems, such as helicopter-mounted cameras,
cable-suspended cameras, dollies, and cranes. The use of UAVs
reduces costs, allows a rapid relocation of the system to
different types of shots, while it adds a new universe of shot
types that are not suitable for the aforementioned camera
systems. However, the use of UAVs in professional filming
requires expert and qualified pilots for its use, and safety
systems in the event of failures of a UAV. Progress is being
made towards autonomous filming systems, such as the use of
mobile robotic systems.

Multi-agent systems is one of the fields within robotics
that autonomous cinematography can benefit from. Formation
control strategies, where spatial constraints are defined among
agents, are a powerful tool in cooperative aerial missions, as
surveyed by [1]. Leader-follower configurations are one of the
most common techniques found in multi-robot applications.
This configuration defines one robot to be the leader, which
follows a control objective, and one or more follower robots
whose trajectory depends on that of the leader. An alternative
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Fig. 1: Cameras mounted on two UAVs tracking a target (green
circle) as they follow a trajectory that considers both artistic
and collision constraints.

approach, the cluster-space formulation [2] is an application
oriented strategy where the formation represents a virtual entity
described by state variables. Typically, this can be thought as
an articulated mechanism that can be rotated, scaled, reshaped,
and moved over time.

In the aerial cinematography field, UAVs are typically given
the task of following a trajectory as close as possible, in
order to produce a desired scene. Different trajectories may
be defined for particular types of shots, and although it is not
required, they might be specified in terms of a Point of Interest
(POI), which can be a moving object or person to be filmed.
Additionally, with the video feedback naturally available by the
task, the director of photography (DOP) may want to adjust
the trajectory in-flight, directly commanding the vehicles. We
call this trajectory “artistic” in the sense that it is generated
from artistic guidelines, as described in [3]. If multiple UAVs
are being simultaneously used, the resulting trajectories must
avoid collisions and mutual visibility, i.e., UAVs appearing on
another UAV camera’s field-of-view (FOV). To accomplish this
without any aid of the control system, the camera operators
would have to coordinate their commands while taking into
consideration the surroundings, which is a difficult task in
dynamic environments. In order to make this possible, a control
system must guarantee these requirements.

Several methods exist for single UAV trajectory generation
[3]–[8]. A common approach is to generate position trajectories
offline and control inputs in 3D euclidean space, which are
then fed to an online controller. To accomplish this planning
strategy, multiple inputs and constraints must be taken into
account —typically as an optimization problem.

In [3], [7], the trajectory generation considers artistic prin-
ciples (e. g. shot scale, screen position, and viewpoint angle),
as well as obstacle and mutual visibility avoidance policies. In
particular, [3] implements an unconstrained optimization prob-
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lem for online trajectory generation over long time horizons,
so as to update the generated reference, which is then fed into
a PID controller.

The work by Nägeli et al. [9] solves multiple optimiza-
tion problems online for multiple UAVs following artistic
principles, adding a cost to avoid mutual visibility of the
cameras, and a constraint to avoid collisions. Marques et al.
[10], consider a moving target tracking problem, with multiple
UAVs, and solve offline for trajectory and command input
generation, and online for command input only.

Some approaches to reduce the dimensionality of the opti-
mization problem assume an independent controller for the
camera [3], [10], which solves the aiming problem, or to
consider less degrees of freedom (DOF) for the UAV or the
camera [7], [9].

Unlike the aforementioned literature, in this work, a for-
mation of UAVs is imagined as an articulated jib crane with
multiple cameras, which can be remotely controlled by one
or more operators, in a similar way as it is done nowadays
with cranes of one camera (Fig. 1). Consequently, we propose
a cluster-space formulation as the coordination technique for
the camera-carrying UAVs. It has been shown that this strategy
allows a single pilot to successfully command a UAV formation
[11]. Moreover, the cluster-space formulation is versatile in the
sense that the states definition can be changed depending on the
task, for example, on the type of shot desired. Thus, a proper
cluster state definition allows to work directly with application-
oriented parameters for both specification and control. For
example, typical formation trajectories can be specified with
minimum amount of parameters. Following from the camera
motion types defined in [12], it is easy to see that an orbital
motion of the cameras—the UAVs circling around a point—
can be specified solely with a rotation of the jib crane around
its center. Two possible cluster state definitions for aerial
filming are presented in section IV to illustrate this approach.

To generate compensation actions to guide the crane mo-
tion we propose a closed-loop control strategy based on an
optimization problem. Due to the nature of the application,
this scheme is appropriate since it can deal with compromises
between trajectory tracking, multiple constraints, and different
filming objectives. The proposed optimization problem, devel-
oped in section III, benefits from the cluster-space technique,
as variables natural to the problem may be chosen for the
articulated virtual crane, leading to a straightforward formula-
tion. Moreover, the problem is solved simultaneously for the
formation of UAVs equipped with actuated gimbals, giving a
locally optimal solution for all the trajectory parameters, from
a cinematographic perspective.

Our contributions rely on a technique that simplifies specifi-
cation and control of multiple robots in aerial cinematography,
giving the optimization problem for a multi-robot system as
a jib crane. The proposed scheme presents an intuitive way,
for crane operators, to maneuver multiple cameras using a
virtual entity that is natural to the application, controlling the
system states with variables defined for the cinematography
task, rather than the vehicles positions. Moreover, both col-
lision and artistic constraints are automatically contemplated,
a functionality that provides safety and helps reducing scene

re-shooting, further simplifying the operator’s tasks.
The proposed method is validated on simulations. For

this, the controller was implemented in ROS using the PX4
firmware and simulated in Gazebo. The results are discussed
in Section V, and Section VI concludes this work with a
discussion and future work.

II. CLUSTER-SPACE FORMULATION

The cluster space approach [2] considers a group of robots
as a single entity, a cluster, defined by state variables that
capture relevant information for the application. Consider an
n-robot cluster where, without loss of generality, each robot
has p degrees of freedom, then the robot-space state vector
is r ∈ Rm, where m = np. Let c ∈ Rm be a state
vector corresponding to the cluster variables. These states are
related to the robot space states through m forward kinematic
transformations fwdk(r), with k = 1, . . . ,m. The m inverse
position kinematic transformations, denoted invk(c), relate the
k-th robot state parameter to the cluster parameters. These
equations can be written as

c = FWD(r) =
[
fwd1(r) · · · fwdm(r)

]
, (1)

r = INV(c) =
[
inv1(c) · · · invm(c)

]
. (2)

Now, let J(r) be the jacobian matrix obtained from (1), and
J−1(c), the jacobian matrix obtained from (2), the mappings
between the velocities are, ċ = J(r)ṙ and ṙ = J−1(c)ċ ,
respectively.

III. CLUSTER-BASED AUTONOMOUS FILMING
OPTIMIZATION

Consider an n-robot cluster C = {0, . . . , n − 1}, and let
ck ∈ Rm be the cluster state vector at time tk. The state vector
components will depend on the number of UAVs used and on
the specific definition for the type of shot desired, however the
formulation that follows is valid for any cluster state vector.
Also, the artistic trajectory input, cak ∈ Rm, indicates the
desired cameras viewpoint as a result of combining the shot
specifications, usually defined offline, and run-time maneuvers
commanded by the operator to modify the shot. Additionally,
the system considers the time-varying POI’s position sk ∈ R3

and velocity ṡk.
A control strategy is proposed to generate compensation

actions uk to guide the crane motion while autonomously
contemplating the application’s constraints. This scheme is
based on the optimization problem stated in (3) where the
function to be minimized is defined as the sum of three costs.

The cost Ja penalizes deviations from the artistic intention
of the DOP, Jaim weights the error of all agents aiming at
the POI, and Ju quantifies the control signal magnitude and
smoothness. Also, the cluster state and control action are
restricted to admissible sets, with functions to account for
collision and mutual visibility avoidance as well as avoiding
the saturation of the actuators. Cost functions and constraints
are detailed in the following sections, where time dependence
will be omitted unless necessary.
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The following optimization problem is solved, at each tk,
for a receding horizon {tk,h}N−1h=0 , where tk,h = tk + h∆t,
with time step ∆t and length N .

min
uk

N−1∑
h=0

Ja(ck,h, ċk,h, c
a
k,h, ċ

a
k,h)

+ Jaim(ck,h, sk,h) + Ju(uk)

(3)

s. t. umin ≤ uk ≤ umax (admissible effort)
ck,h+1 = f(ck,h,uk) (cluster dynamics)
cak,h+1 = f(cak,h, ċ

a
k,h) (artistic trajectory)

sk,h+1 = g(sk,h, ṡk,h) (POI expected path)
Fca(ck,h, sk,h) > 0 (collision avoidance)
Fmva(ck,h, γ) > 0 (mutual visibility avoidance)

The optimal solution, u?, is a compensation signal that op-
erates in the different degrees of freedom of the jib crane, and
through the cluster space control formalism can be transformed
into commands for the stabilized UAVs and their actuated
gimbals. The loop is closed by feeding the controller at tk
with the cluster state ck,0 = ck and velocity ċk,0 = ċk.

A. Artistic-based cost functions

The cost Ja defined in (4), used to penalize divergence from
the desired artistic trajectory, contains two terms.

Ja(c, ċ, ca, ċa) = ‖c− ca‖2Qc
+ ‖ċ− ċa‖2Qv

. (4)

The first term quantifies the divergence between cluster state
c and that specified by the desired viewpoint, expressed by
vector ca. The second one measures the difference between
the input velocity ċa and the cluster velocity ċ, by means of
a quadratic function. These distances are induced by positive
definite matrices Qc,Qv ∈ Rm×m, typically diagonal.

The cost Jaim(c, s), is used to maintain a framing objective.
Let p̂is, be the unit vector in R3 that point from the i-th camera
to the POI, we want to align p̂is with n̂i, the unit vector of
the image plane of camera i. The deviation from the desired
aiming can be penalized simultaneously for all cameras, with
the cost

Jaim(c, s) =
∑
i∈C

qi ‖n̂i − p̂is‖2 , (5)

which is greater than zero, except when every n̂i and p̂is
are aligned (Jaim = 0). The weight parameter qi > 0 can be
modified in order to adjust the relative importance of aiming
for each vehicle.

B. Smoothness and control effort cost function

In order to generate smooth trajectories we penalize the
norm of the control vector uk, and D derivatives of the
predicted cluster trajectory, c̃(uk), for the horizon. Therefore,
dropping the dependence of c̃ on uk, we define the cost

Ju
(
uk, c̃

)
= ‖uk‖Qu

+

D∑
d=1

‖Dd(c̃)‖Qd
(6)

where Dd(·) is the d discrete difference operator, and Qd is
a positive definite matrix. This cost can also be written in
alternative forms as in [13, Appendix A].

C. Model-based motion prediction

We propose evolution models for the dynamical systems
involved in (3), i.e. those regarding the functions f and g.

These models are used, at each instant tk, to update the
expected formation and artistic trajectory and POI’s expected
path, which are used to predict corresponding costs and con-
straints. A cluster dynamic model, is developed in section IV-A
due to its dependence on the cluster state choice. This model
also is used to estimate future desired states of the artistic
trajectory. Regarding the POI, our approach predicts its motion
to instruct the cameras’ aiming. Based on position and velocity
measurements of a subject at time tk, and assuming constant
velocity, a function g can be derived as follows. If the POI
position s is defined with its coordinates referred to inertial
reference frame, then g it is an integrator. But if it’s chosen
w.r.t. a moving reference frame, or in spherical coordinates, it
is necessary to perform the corresponding time derivatives in
a similar way as it s done in section IV-A.

D. Collision avoidance

Let fij(c) : Rm → R and fis(c, s) : Rm × R3 → R be
inter-robot and robot-to-subject collision avoidance functions,
respectively, where i, j ∈ C and j > i. These functions are
defined as

fij(c) = ‖pij‖ −Rs, fis(c) = ‖pis‖ −Rs, (7)

where pij is the vector pointing from i-th to the j-th robot.
Then, the collision avoidance constraints for the cluster are
written as Fca(c, s) > 0, where this function comprises all
inter-robot collisions and all robot-to-subject collisions. The
cluster-space approach may simplify the expressions of these
functions, however, it will depend on the cluster definition, as
shown in section IV.

E. Mutual visibility avoidance

The controller must avoid situations where any vehicle
enters into another vehicle’s field of view (FOV). Let γ be an
angle equal to half of the FOV (Fig. 2), then we define mutual
visibility constraints gij(c, γ) representing the condition where
vehicle j is in the FOV of vehicle i, for each vehicle. Fig. 2
shows a schematic top view of UAVi with a camera and UAVj

near its field of view.
To ensure that mutual visibility is avoided, the angle between

the unitary vectors p̂ij and n̂i must be greater than the angle
γ̃ = γ + ε, for some small ε > 0. This condition is equivalent
to

gij(c, γ̃) = cos (γ̃)− n̂T
i p̂ij > 0. (8)

The ε angle is included to take into account uncertainties, such
as in the UAVs positions or in the cameras orientations.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

field of view

α
ijγ γ

d

n̂i

p̂ijUAVi
UAVj

Captured
image γ

γ2

γ3

d

Fig. 2: The camera’s FOV is represented as a right cone with
apex at the camera’s image plane center and its axis aligned
with the normal of the image plane (n̂i).

IV. CLUSTER DEFINITION FOR AUTONOMOUS FILMING

In this letter, it is assumed that the formation consists of
stabilized UAVs with four degrees of freedom: three corre-
sponding to position (xi, yi, zi) and one to the yaw angle (ψi),
which is assumed to remain constant, since we control the pan
angle of the camera. Each vehicle is equipped with a camera
mounted on an actuated 3-axis gimbal, bearing a stabilized
pan-tilt (ρi, θi) camera, where the roll angle stays leveled at
all times.

Depending on the task required and on the number of
UAVs employed, distinct cluster state choices are possible,
allowing different interpretations of the formation parameters.
This abstraction provides the DOP and camera operators with
a natural way of commanding the group of robots as an
articulated virtual mechanism. For a small number of UAVs,
it can be useful to choose geometric figures to represent the
team, such as a segment (n = 2) or a triangle (n = 3), as
described in section IV-B. For teams with a large number
of UAVs, a cluster space definition based on leader-follower
formation control might be more appropriate, as shown in the
following section. Schematic views of the aerial jib crane for
two cluster-space definitions are shown in Fig. 3a.

UAV-1
UAV-2

UAV-3 VL
POI

UAV-1

UAV-2

(xc, yc, zc)

dc

ψc

ϕc

θ1

φ1′

θ2

φ2′

(a) Cluster Space state representations.

̂n1

̂n2

̂p12

̂p21

̂p1s

̂p2s POI

(b) Aiming.

Fig. 3: Schematic views of the formation and the POI.

A. Formation definition for n agents

A cluster definition for autonomous filming using an ar-
rangement of n vehicles can be specified as a multi-camera
jib with its arms linked by a central pivot that we call virtual
leader (VL) that can move and rotate. For many vehicles, it
is natural to describe the position of the vehicles in spherical

coordinates with respect to a reference frame fixed to the VL
(VLRF). This allows to translate and rotate the formation as a
virtual rigid mechanism with simple and intuitive commands
(translations and rotations of the VL).

Let pL, ξL in R3 be the position and orientation of the
VLRF, with respect to an earth-fixed, global reference frame.
Each UAV state can be specified, in the robot space, with its
cartesian position pi along with camera’s zoom, tilt and pan
angles as in ξi = (ζi, θi, ρi)

T . A convenient definition of the
cluster space state consists of each UAV’s position in spherical
coordinates with respect to VLRF, i.e. distance to the VL,
elevation and azimuth angles represented by qi = (di, εi, αi)

T ;
and n vectors ηi ∈ R3 where each represents the i-th camera’s
aiming expressed in the VLRF. The relationship between the
robot and cluster space states is given by

ci =

[
qi
ηi

]
= fwdi(r) =

[
φ
(
RT

L(pi − pL)
)

RT
Lφ
−1 (ξi)

]
,

ri =

[
pi
ξi

]
= invi(c) =

[
RLφ

−1(qi) + pL
φ (RLηi)

]
,

(9)

where φ is the mapping from Cartesian to spherical coordi-
nates, and RL = R(ξL) is the SO(3) matrix that represents
the orientation of the VLRF. Individual vectors for each UAV
(and for the leader as well) can be generated by defining
ri = (pTi , ξ

T
i )T and ci = (qTi ,η

T
i )T , that can also be put

together into the formation vectors

c = FWD(r) =
[
rTL , · · · cTi , · · ·

]T ∈ R6(n+1),

r = INV(c) =
[
rTL , · · · rTi , · · ·

]T ∈ R6(n+1).

The dynamics of the cluster space state, can be obtained by
taking the derivatives of (9). Denoting Jφ and Jφ−1 the 3× 3
jacobian matrices of φ and φ−1, and let S(·) be the cross-
product matrix1, then the relationship ċi = J(ri)ṙi is in the
form

q̇i = JφR
T
L [(ṗi − vL)− S(ωL)(pi − pL)] ,

η̇i = RT
L

[
Jφ−1 ξ̇i − S(ωL)φ−1(ξi)

]
.

(10)

Note that these expressions are in terms of the linear and
angular velocity of the VL, namely vL and ωL, which are
assumed to be known. To derive a dynamic model in the cluster
space of the form ċi = fi(ci,ui) we first need to consider
the dynamics of vector ri. For stabilized UAVs, they can be
modeled as a simple integrator, so that ṗi and ξ̇i represent
the control input in the robot space. The relationship between
these variables and ui is presented through the jacobian matrix

ui =

[
JφR

T
L 0

0 RT
LJφ−1

] [
ṗi
ξ̇i

]
.

Using (9), expressions in (10) can be restated as

ċi = ui −
[
JφR

T
LvL + JφS(RT

LωL)φ−1(qi)
S(RT

LωL)ηi

]
.

1S : R3 → R3×3 is a function that assigns to a vector x in R3 a unique
skew-symmetric matrix such that S(x)y = x× y, for every y ∈ R3.
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Then, compiling the control inputs in the vector u =
(· · · ,uT

i , · · · )T ∈ R6n, the cluster state dynamics can be
expressed in the compact form

ċ = f(c,u,vL,ωL).

B. Formation definition for two agents
Using the same definitions as before the formation state

vector in the robot space r ∈ R10 can be defined as

r = (x1, y1, z1, ρ1, θ1, x2, y2, z2, ρ2, θ2)
T
. (11)

In this case, we define the cluster state variables to represent
the cluster’s centroid (xc, yc, zc) and orientation (ψc, φc), the
half distance between agents (dc) and each camera orientation
(ϕ1, θ1, ϕ2, θ2). Now, the formation state vector in the cluster
space c ∈ R10 is

c = (xc, yc, zc, ψc, φc, dc, ϕ1, θ1, ϕ2, θ2)
T
, (12)

where

xc =
x1 + x2

2
, yc =

y1 + y2
2

, zc =
z1 + z2

2
, (centroid)

ψc = atan ((x2 − x1)/(y1 − y2)) , (yaw angle)

φc = atan

(
z1 − z2√

(x1 − x2)2 + (y1 − y2)2

)
, (roll angle)

dc =
√

(x1 − xc)2 + (y1 − yc)2 + (z1 − zc)2, (half dist.)
ϕ1 = ρ1 − ψc, (heading)
ϕ2 = ρ2 − ψc. (heading)

(13)

For this cluster, the unitary vectors p̂12, p̂21 that point
between the agents (Fig. 3b) are given by

p̂12 =−Rz(ψc)Rx(φc)

0
1
0

=
 cos(φc) sin(ψc)
− cos(φc) cos(ψc)
− sin(φc)

 , (14)

and p̂21 = −p̂12. With these definitions, we can obtain the
vectors that point from each camera to the POI as follows

pis = s− (pc + dcp̂ji), (15)

where i, j ∈ {1, 2} and pc is the cluster centroid. Then, n̂i,
the normal vector of the image plane for camera i is written
in terms of the cluster state parameters as

n̂i =Rz(ψc+ϕi)Ry(θi)

1
0
0

=
cos(ψc + ϕi) cos(θi)

sin(ψc + ϕi) cos(θi)
− sin(θi)

 . (16)

Next, we derive the formation model equation, the collision
avoidance constraints, and mutual visibility avoidance con-
straint for this cluster definition.

1) Formation model: We model the UAV and gimbal as first
order systems and, considering the equations from section II,
it follows that ċ = u.

2) Collision avoidance constraints: Here we follow the
constraints definitions from section III-D. The inter-vehicle
collision avoidance is straight forward, as ‖pij‖ = dc and
is part of the cluster definition. The robot-to-subject collision
constraint uses pis, which was obtained in equation (15), for
the aiming cost.

3) Mutual visibility avoidance: Although eq. (8) does not
change it is worth noting that, using simple trigonometric iden-
tities, it can be seen that in cluster- space coordinates eq. (8) is
independent of the cluster’s center position (xc, yc, zc) and the
yaw angle (ψc). The remaining variables (φc, ϕ1, ϕ2, θ1, θ2)
capture the cameras’ relative aiming information and are
sufficient to satisfy this cinematographic restriction.

V. VALIDATION

To validate the proposed method, we present simulation
results for the described cluster definitions, using an Orbital
shot, which is a typical shot defined for one or more camera-
equipped UAVs [14].

The simulation testbed consists of a small quadrotor that acts
as a POI, and a cluster of hexacopters with pan-tilt cameras
with a FOV of 120° but configured in the controller as of 60°.
The reduced FOV allows us to see on video the behaviour of
the UAVs as they approach other’s FOV. For all these vehicles,
the stabilizing controller is a POSIX version of PX4 stack
v1.11.0, which runs within a ROS Kinetic environment and
is simulated in Gazebo 7, using the sitl_gazebo package
from PX4. The proposed controller, implemented using SciPy’s
optimize SLSQP method, runs on a ground station computer,
which communicates with the vehicles using a Mavlink inter-
face, provided by the mavros package. The system runs inside
a container within the OpenUAV Simulation Testbed [15]. Ex-
ample videos can be found in https://youtu.be/ OZ zi9vtF8/.

A. Formation definition for two agents

During the orbital shot, the cluster rotates around a point
in space —for this test in particular, (0 m, 0 m, 10 m) ∈ R3—
while the moving target performs an ascending maneuver from
z = 0 m to z = 20 m going through the center of the cluster. In
this case, while tracking the target vehicle, the motions force
the cameras to aim at each other when all the vehicles are at
the same height, stressing the MVA constraint.

Fig. 4 shows the angles between n̂i and p̂ij or pis, that is
α12, α1s, α21, α2s. For the mutual visibility constraint to hold,
α12 and α21 must be greater than half the extended FOV (γ̃),
while α1s and α2s move closer to zero the better aimed is
the subject. Snapshots of the FPV from the UAVs between
t = 300 s and t = 325 s are shown in Fig. 5.

225 250 275 300 325 350 375 400
time [s]

0.0

0.5

1.0

1.5

ra
d

α1s
α2s
α12
α21

̃γ

Fig. 4: Angles between the normal of each camera and the
possible actors or objects of the scene (the other UAV and the
POI) for the orbital shot.

https://youtu.be/_OZ_zi9vtF8/
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Fig. 5: Approximate trajectory and FPV for t ∈ (300, 325)s.

B. Formation definition for n agents

Similar to the above results, with this cluster state definition,
4 UAVs perform an orbiting motion describing a circle of
radius 14.14 m, while aiming a static object 30 m away from
the VL. Despite this motion is easily commanded (only a
rotation command in the z-axis of the VLRF), it is a compro-
mising scenario in which every UAV has to repeatedly deviate
from the artistic trajectory, in order to satisfy the MVA con-
straint. Two simulations where performed at different angular
velocities, which translates into two tangential velocities of
v1 = 2.2 m s−1 and v2 = 4.4 m s−1. The angles αij and αis

for i, j = 1, 2, 3, 4 are shown in Fig. 6.
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Fig. 6: Angles between the normal of each camera and the
possible actors or objects of the scene (other UAVs and the
POI). Above: v1 = 2.2 m s−1, Below: v2 = 4.4 m s−1.

VI. CONCLUSIONS

This work presented an autonomous filming setup based
on the cluster-space control formulation. With this scheme,
a multi UAV system with pan-tilt cameras is envisioned as
an aerial multi-camera robotic jib crane, which can follow
offline generated trajectories as well as run-time maneuvers
commanded by the operator that alter the specified offline
trajectory, while keeping a POI framed. As the cluster state
variables are defined based on the application, the controlled

parameters —which are the same as those that a ground
operator would change for run-time trajectory modifications—
are intuitive for the application, this can be seen for the chase
or fly-by shots, where the operator moves the cluster’s centroid
or virtual leader, instead of commanding n vehicles. Moreover,
the system guarantees that mutual visibility and collisions
are avoided for each UAV, at the cost of deviating from the
predefined trajectory, the operator’s commands, or POI aiming.

The system was tested first using a pure python approach,
then extended to ROS, Gazebo and the PX4 tools. This valida-
tion through results using common simulation tools which are
known to work for a model continuity development approach,
in our experience, has proven in the past to closely relate to
the experimental validation of similar setups.
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