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Buoyancy and capillary effects on floating liquid lenses
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We study the equilibrium shape of a liquid drop resting on top of a liquid surface, i.e.,
a floating lens. We consider the surface tension forces in nonwetting situations (negative
spreading factor), as well as the effects of gravity. We obtain analytical expressions for the
drop shape when gravity can be neglected. Perhaps surprisingly, when including gravity
in the analysis, we find two different families of equilibrium solutions for the same set of
physical parameters. These solutions correspond to drops whose center of mass is above
or below the level of the external liquid surface. By means of energetic considerations, we
determine the family that has the smallest energy, and therefore is the most probable to
be found in nature. A detailed explanation of the geometrical differences between the two
types of solutions is provided.
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I. INTRODUCTION

Fluid-fluid interactions between two immiscible liquids are common in nature and in many
industrial processes. Pioneering work goes back at least to Benjamin Franklin [1], but a plethora
of papers have been devoted to the spreading phenomenon of one liquid over another (see, e.g.,
Lord Rayleigh [2], Neumann and Wangerin [3], Hardy [4], Lyons [5], Langmuir [6], Miller [7],
Zisman [8], Seeto et al. [9], and Takamura et al. [10]).

In more recent years, the wettability of liquids over liquids has continued to be studied with a
focus on new features. For example, Wyart et al. [11] studied liquid films dewetting from another
liquid. Burton et al. [12], and more recently Tress et al. [13], analyzed the shape of a liquid lens,
while Chen et al. [14] studied the dependence of the lens size on the contact angle, and McBride
et al. [15], Endoh et al. [16], Levich et al. [17], and Sebilleau et al. [18] have been concerned with
the spreading phenomenon.

Physically, a liquid lens is a drop lying over another immiscible liquid and surrounded by a
gas phase, such as air. At equilibrium, the three phases meet along a circular line, where the
sum of the three tensions must be zero. Neumann’s rule [19,20] is the corresponding version of
the Young equation for a solid substrate, and it provides the balance between the tensions at the
contact line. Recently, several authors have addressed different aspects of floating lenses. The
evaporation process of a liquid lens has been considered in [21] and compared with a theoretical
model constructed assuming a constant contact angle and spherical cap shape. Also, the interaction,
coalescence, and repulsion of floating drops were studied in [22] and [23].

Other authors have studied a similar geometrical configuration, namely a compound drop, where
the liquid lens rests on a larger drop sitting on a solid substrate. In this case, there is not only the
interaction of two liquid phases (lens and drop) with the ambient gas (air), but also the liquid drop
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FIG. 1. Dimensionless scheme of a liquid lens (fluid A) over a deep external liquid (fluid B), surrounded by
air (fluid C). The triple contact line is at r = Rd and z = 0 (Rd � Rwall). The arrows over each curve indicate
the increasing direction of the arclength, s. The length scale is R0 [Eq. (1)].

with the solid. As in the liquid lens case, Neumann’s rule plays an important role, but a larger number
of free parameters is required to analyze all possible static states. An example of this type of study
is that of Zhang et al. [24], where seven parameters were identified, even though they considered a
limit case in which only four were relevant. Several aspects of the compound drop have been studied
in the literature, such as merging of sessile drops [25,26] and its equilibrium shape [27].

To study the dynamic behavior of a liquid lens, it is necessary to achieve a full understanding
of the static case and how the physical parameters affect the shape of the resulting drop. Even
if the liquid lens shape has been studied previously by several authors [12,28–31], we present
here some aspects of the static solutions that have not been fully addressed. In the present work,
we initially follow the guidelines presented by Burton et al. [12] for the partial wetting situation,
and numerically solve the three pairs of coupled differential equations resulting from the pressure
balance on each surface.

In Sec. II, we present the basic formalism and define the appropriate dimensionless parameters
to focus on surface tension effects. We characterize the problem by using certain sets of parameters,
namely a reference Bond number (Bo), the ratios of the three surface tensions, and the dimensionless
spreading factor. Then, we analytically solve the problem without considering gravity effects, and
we obtain expressions for the two spherical caps that constitute an equilibrium floating drop.

In Sec. IV we take into account the gravity effects, and we identify the existence of two families
of solutions for the same set of parameters. To the best of our knowledge, this interesting result
has not been reported previously. Here, we show its existence and give a detailed description. To
decide which type of solution is more likely to be found in nature, we perform an energetic analysis
in Sec. V. We calculate the system energy for the different scenarios and find that one family of
solutions is always lower in energy than the other.

II. DESCRIPTION OF THE PROBLEM AND FORMALISM

A. Governing equations and boundary conditions

We are interested in the shapes of static interfaces that develop when a drop is deposited on a
liquid surface under the effects of both surface tension and gravity. In particular, we consider the
case when a drop (fluid A) floats under partial wetting conditions on the liquid-air interface (fluids
B, C); see Fig. 1. To scale the problem, we use a characteristic length scale given by

R0 =
(

3V0

4π

)1/3

, (1)

where V0 is the volume of the drop.
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In this dimensionless configuration (see Fig. 1), we assume that the drop radius, Rd , is much
smaller than the size of the container (of radius Rwall), and that the thickness of the lower layer,
h f , is always large enough to assure that the drop never touches the bottom regardless of the
drop volume, V = V0/R3

0. The interface curves between each fluid are denoted by numbers. Thus,
curve 1 corresponds to the interface between fluids A and C, curve 2 to A and B, and curve 3 to B
and C. As shown in Fig. 1, the arc length along each curve, s, increases from 0 toward the triple
point, where the three curves meet.

Since surface tension forces are responsible for the Laplace pressure jump across the liquid
interfaces, we can write

pi − p j = σκ, (2)

where pi and p j are the hydrostatic pressures in the bulk of each fluid at both sides of the
corresponding curve of curvature κ , so that i and j stand for A, B, or C. Thus, the equilibrium
equation for each interface can be written

(PC − PA) + gz(ρA − ρC ) = σ1κ1, (3a)

(PA − PB) + gz(ρB − ρA) = σ2κ2, (3b)

(PB − PC ) + gz(ρC − ρB) = σ3κ3, (3c)

where P refers to the reference pressure inside each fluid, and the subscripts in capital letters and
numbers, respectively, correspond to a fluid and the interfaces between them. The dimensionless
form of these equations can be written as

�Pi + Boi zi(s) = κi(s), i = 1, 2, 3, (4)

where all lengths are expressed in units of R0, and we have defined the dimensionless constants

�P1 = R0

σ1
(PC − PA), (5a)

�P2 = R0

σ2
(PA − PB), (5b)

�P3 = R0

σ3
(PB − PC ), (5c)

Bo1 =
(

ρA − ρC

σ1

)
gR2

0, (5d)

Bo2 =
(

ρB − ρA

σ2

)
gR2

0, (5e)

Bo3 =
(

ρC − ρB

σ3

)
gR2

0. (5f)

Assuming axial symmetry for this problem, the dimensionless surface curvature is given by [12]

κi = z′
i(s)

ri(s)[r′
i (s)2 + z′

i(s)2]1/2
+ r′

i (s)z′′
i (s) − z′

i(s)r′′
i (s)

[r′
i (s)2 + z′

i(s)2]3/2
, (6)

where a prime denotes the derivative with respect to s. If Li is the entire arc length of any of the
curves (1, 2, or 3), then we scale the arc length as q = s/Li (0 � q � 1) so that

κi = z′
i(q)

ri(q)Li
+ r′

i (q)z′′
i (q) − z′

i(q)r′′
i (q)

L3
i

, (7)
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where

L2
i = r′

i (q)2 + z′
i(q)2 = const. (8)

This condition allows us to obtain two equations for (ri(q), zi(q)) as

r′′
i (q) = z′

i(q)

[
z′

i(q)

ri(q)
− Liκi

]
, (9a)

z′′
i (q) = −r′

i (q)

[
z′

i(q)

ri(q)
− Liκi

]
. (9b)

By replacing here the curvatures from Eq. (4), we obtain the three pairs of equations for
(ri(q), zi(q)) along each interface (i = 1, 2, 3),

r′′
i (q) = z′

i(q)

[
z′

i(q)

ri(q)
− Li�Pi − LiBoi zi(s)

]
, (10a)

z′′
i (q) = −r′

i (q)

[
z′

i(q)

ri(q)
− Li�Pi − LiBoi zi(s)

]
. (10b)

The integration of all three curves starts with zero slopes at the corresponding q = s/L = 0, and
it ends at the contact point. At the beginning point (q = 0) we have z′

1 = z′
2 = z′

3 = 0, and according
to Eq. (8) it must be r′

1 = L1, r′
2 = L2, and r′

3 = −L3, since r increases along curves 1 and 2 and
decreases along curve 3. The three curves meet at the triple contact point at q = 1, where ri(1) = Rd

and zi(1) = 0. The condition on z is arbitrary since the system is translationally invariant in this
direction, since the gravitational potential is linear in z. Thus, we will use this property to start all
three integrations from z = 0, and we proceed to make the corresponding vertical displacements
a posteriori.

Note that both Li and �Pi are not known a priori in Eqs. (10). These six constants and the drop
radius, Rd , must be determined consistently by solving all six equations plus the conservation of
drop volume. The first three conditions are

r1 = r2 = r3 = Rd (11)

at q = 1. The fourth and fifth constraints are related to the so-called Neumann’s rule, i.e., that surface
tension forces must equilibrate along both r and z directions (see Fig. 2),

σ1 cos α + σ2 cos β − σ3 cos γ = 0, (12a)

σ1 sin α − σ2 sin β + σ3 sin γ = 0, (12b)

at q = 1. The sixth condition is concerned with the evaluation of the reference pressures, Pi. In fact,
by summing up the three equations in Eq. (3) at z = 0,

σ1κ1 + σ2κ2 + σ3κ3 = 0 (13)

at q = 1. Finally, the seventh condition is of the integral type, since it refers to the constraint of a
given drop volume. Thus, we have

V = V0

R3
0

=
∫ 1

0
2πr1(q)r′

1(q)z1(q)dq −
∫ 1

0
2πr2(q)r′

2(q)z2(q)dq = 4π

3
. (14)

Therefore, the seven conditions in Eqs. (11)–(14) determine the shapes of the interfaces as well as
the values of Li, �Pi, and Rd .
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FIG. 2. Contact angle definitions for a liquid lens (fluid A) over a deep liquid substrate (fluid B), surrounded
by air (fluid C).

A detailed analysis of the Neumann equilibrium conditions allows us to find relationships
between the contact angles and the surface tensions. In fact, by using the cosine law in the triangle
depicted in Fig. 2, we have

cos θA = σ 2
3 − σ 2

2 − σ 2
1

2σ1σ2
, (15a)

cos θB = σ 2
1 − σ 2

2 − σ 2
3

2σ2σ3
, (15b)

cos θC = σ 2
2 − σ 2

1 − σ 2
3

2σ1σ3
, (15c)

which led to restrictions on the admissible values of the spreading coefficient,

S = σ3 − σ2 − σ1, (16)

which is also used to describe the contact line motion on solid substrates. For convenience, we also
write Eqs. (15) in terms of contact angles as (see Fig. 2)

α + β = arccos

(
σ 2

3 − σ 2
2 − σ 2

1

2σ1σ2

)
, α + γ = π − arccos

(
σ 2

2 − σ 2
1 − σ 2

3

2σ1σ3

)
. (17)

Note that the knowledge of one angle and the three interfacial tensions automatically determines the
other two.

From the fact that the moduli of Eqs. (15) must be less than 1, we find the following restrictions
for the spreading coefficient:

S < 0, −2σ2 < S, −2σ1 < S, (18)

which can be summarized as

−2 min(σ1, σ2) < S < 0. (19)

Therefore, the condition for partial wetting (i.e., the formation of a static floating drop) is more
restrictive than in the case of partial wetting of a solid substrate, which simply requires S < 0.

B. Nondimensionalization

Since there are many dimensional parameters necessary to determine the final equilibrium
solution, it is useful to define the problem in terms of a smaller number of dimensionless variables.
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FIG. 3. Schematic of drop shapes for a given η as a function of ζ , with σ1 > σ2 (top panel) and σ1 < σ2

(bottom panel). The central dashed area where 0 < ζ < 1 (S∗ < S < 0) corresponds to the partial wetting
scenario studied in this work. For ζ < 0 (S > 0), we have complete wetting, so that the drop spreads
indefinitely. Instead, for ζ > 1 (S < S∗) a nonwetting case occurs, where the drop remains on top or above
the free surface, depending on the relative values of σ1 and σ2.

To develop this description, it is necessary to select reference values for both density and surface
tension, namely ρref and σref, respectively. For convenience we choose these values as ρref = ρA and
σref = min(σ1, σ2), where the latter selection is suggested by the condition in Eq. (19).

If we define the ratio

ζ = S

S∗ , S∗ = −2σref, (20)

where S∗ is the reference spreading coefficient, all possible solutions correspond to the interval
0 � ζ � 1. So, from Eq. (16) we can write

ζ = 1
2 (η1 + η2 − η3), (21)

where

η1 = σ1

σref
, η2 = σ2

σref
, and η3 = σ3

σref
. (22)

Two scenarios are possible within this scheme:
(i) Case A (σ1 < σ2):

η1 = 1, η2 = σ2

σ1
≡ η > 1, η3 = σ3

σ1
, ζ = 1

2
(1 + η − η3), σref = σ1. (23)

(ii) Case B (σ1 > σ2):

η1 = σ1

σ2
≡ η > 1, η2 = 1, η3 = σ3

σ2
, ζ = 1

2
(1 + η − η3), σref = σ2. (24)

In the following, we use variables η > 1 and 0 < ζ < 1 to treat both cases simultaneously, since
these two variables are sufficient to include all possible values of surface tensions.

The different wetting possibilities given by Eq. (19) are schematically shown in Fig. 3 in terms
of the dimensionless parameters η and ζ . The left column in the figure represents S > 0, where the
drop spreads over the liquid surface. Therefore, complete wetting occurs for both case A (σ1 < σ2)
and case B (σ1 > σ2). The right column represents the nonwetting case, where the drop finds an
equilibrium just below the interface for case B and just above for case A. Finally, in the center
column, we have the partial wetting case, which is the scenario studied here.
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By using these definitions, we can rewrite the three equilibrium equations, Eq. (4), in dimension-
less form as

�P1 +
(

Bo

η1

)(
ρA − ρC

ρA

)
z = κ1, (25a)

�P2 +
(

Bo

η2

)(
ρB − ρA

ρA

)
z = κ2, (25b)

�P3 + Bo

η1 + η2 − 2ζ

(
ρC − ρB

ρA

)
z = κ3, (25c)

where

Bo = ρA gR2
0

σref
(26)

is the reference Bond number.

III. ANALYTICAL SOLUTION WITHOUT GRAVITY

As a first attempt to solve this problem, we consider the case without gravity. One feature of
this simplification is that the pressure pi is only determined by the reference pressure in each bulk,
Pi, due to the absence of the buoyancy contribution. This fact implies that the reference pressures
PB and PC must be equal at both sides of curve 3 for all points along this curve, so that, κ3 = 0
and curve 3 is completely flat. With this condition Bo = 0, we have two simplified equations to be
solved on the drop surfaces,

�Pi = κi for i = 1, 2. (27)

Since a flat curve 3 implies γ = 0 (Fig. 2), Eq. (17) allows us to write α and β in terms of the
dimensionless parameters η and ζ as

α = π − arccos

[
η2

2 − η2
1 − (η1 + η2 − 2ζ )2

2η1(η1 + η2 − 2ζ )

]
, (28a)

β = arccos

[
1 + 2ζ (ζ − η1 − η2)

η1η2

]
− α, (28b)

where η1 and η2 must be replaced by the corresponding values according to Eqs. (23) and (24).
Moreover, Eq. (27) shows that κ1 and κ2 are constants, so that the drop is formed by the

intersection of two spherical caps whose radii of curvature are given by

R1 = Rd

sin α
, R2 = Rd

sin β
. (29)

The dimensionless volume contribution of each spherical cap is obtained as a function of Rd and the
corresponding angle α or β as

V1 = π

6
R3

d tan
α

2

(
3 + tan2 α

2

)
,

V2 = π

6
R3

d tan
β

2

(
3 + tan2 β

2

)
. (30)

Considering that V1 + V2 = V = 4π/3, the drop radius is

Rd = 81/3

[
3

(
tan

α

2
+ tan

β

2

)
+

(
tan3 α

2
+ tan3 β

2

)]−1/3

. (31)
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FIG. 4. Solution without gravity: Drop profiles for η = 1.75 and ζ = 0.1, 0.3, 0.5, 0.9 for cases A (σ1 <

σ2) and B (σ1 > σ2). Note that the free surface of the liquid substrate (curve 3) is flat for all ζ .

In summary, for any value of σref, Eqs. (28), (29), and (31) allow a calculation of the final
equilibrium shapes for the entire range of possible values of η and ζ . For example, in Fig. 4 we
show the drop profiles obtained for η = 1.75 and 0.1 < ζ < 1 for case A [σ1 < σ2, Fig. 4(a)] and
case B [σ2 < σ1, Fig. 4(b)]. The drop height hd increases in both cases A and B as ζ increases,
mainly because of an ht (drop elevation) increase in case A and an hb (drop sinking) increase in case
B, as is schematically presented in Fig. 3. This effect is directly related to the spreading property of
the drop given by the spreading factor S. In our present scheme, this feature is taken into account by
the dimensionless parameter ζ [see Eq. (20)].

Interestingly, it can be shown that the lens shape of case A [Fig. 4(a)] corresponds to a reflection
respect z = 0 of case B [Fig. 4(b)], and vice versa. This is equivalent to changing the roles of fluids
B and C (Fig. 2), as can be seen in Eqs. (15), where, by exchanging σ1 and σ2, θA does not change
while both θB and θC change sign. In spite of this result, we still show here the two cases, A and B,
because the inclusion of gravity will break up this symmetry (see Sec. IV).

To further characterize the solution without gravity, we show in Fig. 5 the drop radius, Rd , as a
function of ζ for η = 1.01, 1.25, 1.50, 1.75, and 2.00. We observe that for both cases, Rd decreases

FIG. 5. Solution without gravity: Rd as function of ζ for η = 1.01, 1.25, 1.50, 1.75, and 2.00 for cases A
(σ1 < σ2) and B (σ2 < σ1). The arrows indicate the direction of increasing η.
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FIG. 6. Solution without gravity: Radius of curvature of each surface of the lens as a function of ζ for
η = 1.01, 1.25, 1.50, 1.75, and 2.00. (a) For curve 1 and (b) curve 2 in case A (σ1 < σ2), and (c) for curve 1
and (d) curve 2 in case B (σ2 < σ1). The arrows indicate the direction of increasing η.

from large values at ζ ≈ 0 (which is near a complete wetting scenario) to Rd = 0 at ζ = 1 [which
corresponds to the nonwetting case imposed by the restriction in Eq. (19)]. The η-dependence is
only significant for ζ � 0.8 and for η ≈ 1. In this region, the combination of η in its lower limit
(η → 1) with ζ in its higher limit (ζ → 1) implies η3 → 0 [see Eqs. (21)–(24)], and consequently
σ3 → 0. Thus, this is the limit of miscibility of fluids B and C.

The particular shape of the drop is defined by the radius of curvature of each spherical cap. In
Fig. 6 we show the radii R1 of curve 1 and R2 of curve 2 for 1 < η < 2 and 0 < ζ < 1. In both cases
these radii rapidly increase for ζ → 0 and approach a relatively flat zone as ζ → 1. We observe that
R1 in case A and R2 in case B have the same behavior, while R2 in case A and R1 in case B also
share an analogous behavior with the only difference that the dependence on η occurs in opposite
directions. The reason why R1 in Case A, as well as R2 in Case B reach 1 at ζ = 1, is that the drop
becomes completely spherical [see definition of the length scale in Eq. (1) and Fig. 3].

IV. TWO POSSIBLE SOLUTIONS WITH GRAVITY

Unfortunately, it appears impossible to find an analytical solution of this three-phase problem
with gravity. Therefore, we resort to the numerical solution of Eqs. (25) with the corresponding

073604-9



RAVAZZOLI, GONZÁLEZ, DIEZ, AND STONE

FIG. 7. Example of the two families of solutions with gravity for η = 1.75 and ζ = 0.70. (a) Case A
(σ1 < σ2) and (b) Case B (σ2 < σ1).

dimensionless form of the conditions [Eqs. (10)–(14)]. To perform this task, we develop an iterative
scheme based on seven dimensionless variables, namely (Rd , L1, L2, L3, PA, PB, PC ), and we fix the
length scale by choosing a volume V0 [see Eq. (1)]. To define the values of the reference Bond
number, Bo, and the density factors in Eqs. (25), we choose ρA = 0.97 g/cm3, ρB = 1.0 g/cm3,
ρC = 0.0013 g/cm3, and V0 = 0.02 cm3. With these values, we have Bo = 1.22 and 0.49 for cases
A and B, respectively. We also choose Rwall = 2 cm/R0 = 11.88.

To begin with, a first guess for (L1, L2, L3, Rd ) can be taken from the analytical solution without
gravity as obtained in Sec. III. Thus, R(0)

d is given by Eq. (31), and

L(0)
1 = R1α, L(0)

2 = R2β, L(0)
3 = Rwall − R(0)

d , (32)

where (α, β ) and (R1, R2) are given by Eqs. (28) and (29), respectively.
Since the solution without gravity does not contain reference pressures, we have no available

values to guess for (PA, PB, PC ). Here, we assume that P(0)
A and P(0)

B should be order 1 and of different
signs because of the different orientation of the curvatures of curves 1 and 2. Also, P(0)

C should be
close to zero because we consider air as the surrounding fluid (ρC ≈ 0). However, the signs of these
variables cannot be guessed for given η and ζ based on any plausible argument. We find that any
choice of these variables can lead to one of these three possibilities, namely the solution does not
converge or it may converge to two different types of solutions. An example of them is shown in
Fig. 7 for η = 1.75, ζ = 0.70, and case A [Fig. 7(a)] or case B [Fig. 7(b)]. In Appendix we show
that slight differences in the initial values of the parameters (mainly in the sign of �P3) could lead
to any of these two possibilities. The existence of these two families, which we refer to as Sol 1 and
Sol 2, do not depend on the choice of σref = min(σ1, σ2), since we find that these two families exist
for σ1 < σ2 as well as for σ1 > σ2.

For case A, the definitions in Eq. (23) hold. In Fig. 8 we show examples of the two families of
solutions for η = 1.75 and several ζ ’s. The first family [Sol 1 in Fig. 8(a)] shows that the triple
contact point is always under curve 3, while in the second family [Sol 2 in Fig. 8(b)] it is always
above. Also, the shape of curve 3 near the triple contact point has a different sign of the curvature
for each type of solution. In both cases, the drop radius decreases as ζ increases. It is interesting to
note that as ζ increases, curve 3 increases its curvature.

Case B requires the use of the definitions in Eq. (24). In Fig. 9 we show examples of the two
possible solution families for η = 1.75 and several values of ζ . As before, the drop radius decreases
as ζ increases in both cases. However, there are few differences: in this case it is possible to have β

larger than π/2, and both families converge to only one solution as ζ increases. Since the differences
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FIG. 8. Case A: Two families of solutions with gravity for η = 1.75 and several values of ζ . (a) Solutions
type 1. (b) Solutions type 2. The arrows indicate the direction of increasing ζ .

FIG. 9. Case B: Two families of solutions with gravity for η = 1.75 and several values of ζ . (a) Solutions
type 1 (Bo = 0.49). (b) Solutions type 2 (Bo = 0.49). (c) Solutions type 1 (Bo = 4.32). (d) Solutions type 2
(Bo = 4.32). The arrows indicate the direction of increasing ζ .
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FIG. 10. Case B: (a) Two families of solutions with gravity for η = 1.75, ζ = 0.85, and Bo = 4.32
(practically coincident) compared with the analytical solution without gravity. (b) Evolution of angle γ as a
function of η for both Sol 1 and Sol 2 for two extreme values of ζ and Bo = 0.49. As η increases, γ decreases
toward zero. The convergence to a flat Curve 3 is faster for larger ζ .

between Sol 1 and 2 are not clearly visible in Figs. 9(a) and 9(b), we show them also for a larger
volume in Figs. 9(c) and 9(d), where V0 = 0.5 cm3 (Bo = 4.32).

Moreover, we observe a limiting solution for both Sol 1 and 2 at a certain pair of values (ζ , η) for
which the curve 3 is practically flat, where both solutions become coincident. For the specific case
in Figs. 9(c) and 9(d), these coincident solutions are shown in Fig. 10(a), where they are practically
indistinguishable from one another (the solution without gravity for the same η and ζ is also shown
for comparison). In this case, the corresponding pair is ζ ≈ 0.85 and η = 1.75. Note that the three
solutions have a flat curve 3 and β > π/2, while the no-gravity solution has smaller Rd and larger
hd than the gravitational solutions.

Note also that this convergence of solutions toward a single solution with flat curve 3 corresponds
to γ → 0. The behavior of this angle can be used as a probe to observe the differences between Sol
1 and Sol 2. In fact, in Fig. 10(b) we plot γ as a function of η for two extreme values of ζ as obtained
for Solutions 1 and 2 for Bo = 0.49. Clearly, their convergence occurs faster for larger ζ and
smaller η.

Unfortunately, we do not have mathematical or physical arguments to explain why there are two
different converged solutions for the same physical parameters. Clearly, this topic deserves further
study, but it is beyond the scope of the present work. Therefore, we proceed by calculating the total
energy of each family under the expectation that the one with lower energy is actually the one to be
observed in nature.

V. ENERGY ANALYSIS

To analyze which of the equilibrium solutions identified in the previous section has lower energy,
we calculate the total energy of each family of solutions for the problem with gravity as a function
of η and ζ for a fixed drop volume of V = 0.2 cm3 and the corresponding Bo. We consider a region
of finite size (i.e., a vessel, like in an experimental situation) in order to have finite values of the total
energy, where we include both surface and volumetric (gravity) contributions. Then, we calculate
the difference between the total energy of the solution, E , and that of the system without the drop
in it, E0.

The integration domain is depicted in Fig. 11, which is a cylindrical container of radius Rwall and
height H . The level of fluid B changes from h f to h∗

f as the drop is deposited on its surface, since
no flow is allowed through the vessel walls (VB = const). The total dimensional energy is the sum
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FIG. 11. (a) Initial and (b) final states of the approach used to calculate the system energy: it corresponds
to a finite volume configuration with fixed Vf and variable hf .

of the surface, ES , and gravitational energy, EV . Initially, we have only fluid B in the vessel, so that

E0 = ES,0 + EV,0 = σ3πR2
0R2

wall + π

2
ρBgR4

0h2
f R2

wall, (33)

since we neglect the gravitational energy of fluid C (air). To calculate the final energy,

E = ES + EV , (34)

we consider the surface contributions of the three interfaces plus the gravitational contributions for
liquids A and B:

ES = 2πR2
0

(
σ1L1

∫ 1

0
r1(q)dq + σ2L2

∫ 1

0
r2(q)dq + σ3L3

∫ 1

0
r3(q)dq

)
, (35a)

EV = πρAgR4
0

(∫ 1

0

[
z2

1(q) − z2
tp

]
r1(q)r′

1(q)dq +
∫ 1

0

[
z2

tp − z2
2(q)

]
r2(q)r′

2(q)dq

)

+πρBgR4
0

(∫ 1

0
z2

2(q)r2(q)r′
2(q)dq +

∫ 1

0
z3r3(q)r′

3(q)dq

)
, (35b)

where the integrals inside the parentheses are dimensionless quantities. Here, ztp is the z-coordinate
of the triple point and z = 0 corresponds to the bottom of the control region. The thickness h f is
large enough to assure that the drops do not touch the solid substrate for all of the calculations.

FIG. 12. Case A: Total energy variation for Bo = 1.22, Sol 1 (solid lines) and Sol 2 (dashed lines).
(a) η = 1.01, (b) η = 1.5, (c) η = 2. The curves in (a) do not go beyond ζ ≈ 0.8 because of precision issues
in the numerical scheme appearing when both ξ and η are very close to unity (their respective maximum and
minimum limiting values).
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FIG. 13. Case B: Total energy variation for Bo = 0.49, Sol 1 (solid lines) and Sol 2 (dashed lines). (a) ζ =
0.1, (b) ζ = 0.5, (c) ζ = 0.9.

The variation of the total energy for the two families of solutions is shown for case A in Fig. 12.
We find that Sol 1 always has lower energy than Sol 2 for different combinations of (η, ζ ). The
energy difference between the two solutions increases as both η and ζ increase.

On the other hand, for case B, we find the curves shown in Fig. 13. In this case, Sol 1 also remains
with lower energy than Sol 2 for η ≈ 1, but their difference decreases as η increases. This decrease
occurs faster as ζ is closer to unity. This is consistent with the result that both solutions tend to
converge to a single solution in this case. In summary, the energy analysis shows that Sol 1 is more
likely to occur in nature for both cases A and B, since it is always lower in energy.

With the aim to check that our theoretical results point in the right direction, we perform a
preliminary experiment where we place a silicon oil [polydimethylsiloxane (PDMS)] drop on top of
a water surface. For this configuration we have η = 1.79 and ζ = 0.04, so that it corresponds to a

FIG. 14. (a) Experiment: Silicon oil (PDMS) drop on water (case A with η = 1.79 and ζ = 0.04).
(b) Comparison of drop shape with solutions Sol 1 and Sol 2.
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FIG. 15. Air bubble trapped between two dense immiscible liquids with gravity: ρA = 0.0013 g/cm3 (air),
ρB = 1.00 g/cm3 (water), and ρC = 0.97 g/cm3 (oil). Here, Sol 1 is the black solid line, while Sol 2 is the blue
dashed line.

case near the limit of total spreading [see Fig. 14(a)]. Unfortunately, we are not yet able to optically
obtain an image of curve 3, i.e., the water/air interface. Nevertheless, the comparison of the shapes
of both curve 1 (oil/air interface) and curve 2 (oil/water interface) with the solutions shows that
Sol 1 is closer to the lens shape than Sol 2 [see Fig. 14(b)]. This encouraging comparison with an
experiment supports our conjecture that Sol 1 is most probably found in nature. A more detailed
experimental study is left for future work.

Finally, we briefly investigate the case in which ρA < ρC < ρB, which could correspond to a
bubble trapped between two immiscible liquids. Figure 15 shows that also in this case there exist
two families of solutions with similar characteristics to those seen in previous cases (note that we
use now the same values of η and ζ as in Fig. 7). In this scenario, the energy of Sol 2 is smaller
than that of Sol 1 by ≈30%. Therefore, unlike the case of heavy drops such as that in Fig. 7, Sol.
2 is more probably found in nature. This result suggests a reasonable buoyant behavior of a bubble
when surrounded by more dense media.

VI. SUMMARY AND CONCLUSIONS

Although there are many physical parameters involved in the determination of the shape of a
liquid lens, we present here a dimensionless scheme that embraces all possible physical situations.
The use of the parameters η and ζ [see Eqs. (20)–(22)] allows us to describe the behavior of the
solutions for any combination of the three surface tensions σ1, σ2, and σ3.

Within this framework, we have analytically solved the case without gravity and numerically
analyzed the case with gravity. The no-gravity solution is presented as a tool to obtain the initial
guesses for the numerical analysis performed in the more general case with gravity. A remarkable
fact, not usually mentioned in the literature, is the requirement that the spreading factor S is bounded
from below, i.e., S∗ < S < 0, for equilibrium solutions to exist. This implies 0 < ζ < 1, which is
more restrictive than the usual case for liquid drops on solids.

We have highlighted that the effects of gravity on the solution are far from trivial. For example,
it is possible to obtain two different families of solutions for the same set of physical parameters.
Although some of these solutions have been reported in the literature, this issue has apparently
been unrecognized because the authors have assumed that, regardless of the set of guess values, any
converged solution is valid based on the belief that it is unique. However, we show here that the
solutions can be nonunique, and hence a more rigorous treatment is needed. As mentioned before,
the proof of uniqueness of the solution for the mathematical problem posed by Eqs. (10)–(14) is
beyond the scope of the present work. The main difference between the solution families is the
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shape of the free surface of the liquid B near the lens, where the curvature of curve 3 (see Fig. 7)
adopts a different sign for each family.

To decide which solution is more likely to be found in nature, we also perform an energy analysis
to compare the two families of solutions under two possible scenarios, namely case A (σ1 < σ2) or
case B (σ1 > σ2). This analysis is done considering a finite volume of liquid B (so it is contained
in a vessel). It turns out that in both scenarios Sol 1 is always less energetic than Sol 2, so that it
is most likely to be found in natural situations. Moreover, it is found that the two solution families
converge to a unique one when σ1 > σ2, and both η and ζ are large enough.

ACKNOWLEDGMENTS

The authors gratefully acknowledge suggestions made by the referees. P.D.R., A.G.G., and
J.A.D. acknowledge support from Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET, Argentina) and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT,
Argentina) with Grant PICT 1067/2016. H.A.S. research was partially supported by NSF through
Princeton University’s Materials Research Science and Engineering Center DMR-1420541.

APPENDIX: INITIAL CONFIGURATION OF THE NUMERICAL PROCEDURE

As mentioned in Sec. IV, three possibilities arise from the choice of the guess values in the
numerical scheme: no convergence, or convergence to Sol 1 or Sol 2 families. These two kinds of
solutions were found before (see Fig. 4 in [12]), but with different sets of parameters. So, one set
led to a solution with concave curvature of surface 3 and the other one with convex curvature. Thus,
it was not possible to assert that they belonged to different families, because of the belief that the
solution is unique. Therefore, there was no mention on the possibility of finding them for the same
set of physical parameters.

To clarify this issue, we perform a detailed analysis on the selection of the guess values for
the iteration procedure for the case with ρA = 0.7 g/cm3, ρB = 1.0 g/cm3, σ1 = 25 mN/m, σ2 =
55 mN/m, σ3 = 70 mN/m, and V0 = 0.579 cm3, as presented in Fig. 4(a) in [12].

First, we calculate the corresponding dimensionless parameters η = 2.2 and ζ = 0.2, as well
as the length scale given by Eq. (1). Then, we follow the procedure described in Sec. III
to analytically obtain the solution without gravity. Within this framework, we find Rd =
1.648 11, L1 = 1.816 02, L2 = 1.668 52, R1 = 2.354 93, R2 = 5.180 84, α = 44.4◦, and β = 18.5◦.
With these results and L(0)

3 = Rwall − R(0)
d , we can construct two sets of guess values for G =

(�P(0)
1 ,�P(0)

2 ,�P(0)
3 , L(0)

1 , L(0)
2 , L(0)

3 , R(0)
d ), namely

G1 = (−0.2, 0.5,+0.0001, 1.81602, 1.66852, 4.15407, 1.64811), (A1)

G2 = (−0.2, 0.5,−0.0001, 1.81602, 1.66852, 4.15407, 1.64811), (A2)

where �P(0)
1 and �P(0)

2 were chosen order 1 with different signs between each other, and �P(0)
3 ∼

10−4 has a different sign in each set of parameters. This slight difference in the initial values leads
to the two solution families. The surface profiles obtained with these sets of guess values are shown
in Fig. 16. The resulting values for the solution sets T = (�P1,�P2,�P3, L1, L2, L3, Rd ) are

T1 = (−0.05404, 0.23077,+0.00012, 1.97932, 1.97290, 3.86900, 1.93438), (A3)

T2 = (−0.00888, 0.57527,−0.00049, 1.73873, 1.95947, 4.12058, 1.73836). (A4)

According to our analysis in Sec. V, the Sol 2 family corresponds to a higher energy case, so it is
not likely to be found in nature. Fortunately, Sol 1 was correctly reported in [12].

073604-16



BUOYANCY AND CAPILLARY EFFECTS ON FLOATING …

FIG. 16. Sol 1 (blue, solid) reported in Fig. 4(a) in [12], and Sol 2 (red, dashed) the other possible solution
obtained for the same set of physical parameters (see the text).
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