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ABSTRACT. We describe equivalence classes of exact indecomposable
module categories over a finite graded tensor category. When applied
to a pointed fusion category, our results coincide with the ones obtained
in [11].

1. INTRODUCTION

Let C be a finite tensor category. A C-module category consists of an
abelian category M equipped with an action functor C x M — M, satisfy-
ing certain associativity and unit axioms. The theory of representations of
tensor categories has proven to be a powerful tool. In [5], the authors intro-
duce the notion of exact module category, and as an intereseting problem,
the classification of indecomposable exact module categories over a fixed
finite tensor category.

Let G be a finite group, and D = @©4eqCy be a G-graded tensor category.
This family of tensor categories has been studied in [4]. In [10] and [7] the
authors classify semisimple indecomposable modules over a semisimple G-
graded tensor category D in terms of semisimple indecomposable modules
over C; and certain cohomological data. This paper is devoted to explain
this classification, in the non-semisimple setting, using a different approach,
inspired on results of [10, Section 8]. Our classification, when applied to a
pointed fusion category, recovers the results obtained in [11]. Although very
few results in this paper are new, we believe that the presentation of the
results is our main contribution. We tried to be as self-contained as possible.

The contents of the paper are the following. In Section 2 we give an
account of all the necessary preliminaries on finite tensor categories and
their representations. We recall the notion of internal Hom as an important
tool in the study of module categories. In Section 3 we recall the definition
of graded tensor category, and some results concerning the restriction and
induction of module categories. In Section 4 we start with the classification
of exact indecomposable module categories over a fixed G-graded tensor
category D = @yeaCy.
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We aim to recover results from [10, Section 8]. We show that indecom-

posable exact module categories over D = ®4cqC, are parametrized by
collections (H,{Ag}geH, 3) where

e H C (G is a subgroup;

A = Aisan algebra in C = C; such that C4 is exact indecomposable;
Ay, is an invertible A-bimodule in Cp,, for any h € H;

for any f,h € H there are bimodule isomorphisms A;® Ay, ~ Ayp;

B : H x H— k* is a normalized 2-cochain such that 1 = dBw?.
A

Here w* is a 3-cocycle for H associated to the module category C4. We also
prove that two collections (H,{Ag}gen, ), (F,{Bs}rer,7) give equivalent
module categories if and only if there exists g € G, and an invertible (B, A)-
bimodule C' € p(Cy) 4 such that
o F=gHg™";
® By 1@pC =~ C@aAy, for all h € H;
e the class of B_lﬂglfyg is trivial in H2(H,k>).
Here Q‘g“ : G x G — k* is a certain 2-cochain associated to the module
category C4. The 2-cochain Qg‘ does not appear in the results of [10, Section
6] when the authors study equivalence classes of certain cohomological data
classifying module categories.
When D is a pointed fusion category, the classification coincide with the
results obtained in [11, Theorem 1.1]. This is explained in Section 4.3.
Finally, we briefly explain results from [10, Section 8|, reconciling our
approach with the results presented in [10, Theorem 2].

1.1. Preliminaries and Notation. We shall work over an algebraically
closed field k of characteristic 0. All vector spaces are assumed to be over
k. If C,D, A, & are categories, F;G:C - D, H:D — A, J:E — C are
functors, and n : F' — G is a natural transformation, we shall denote by
Hn:HoF - HoG,and nJ : FoJ — G o J, the natural transformations
defined by

(Hn)x = H(nx), (mJ)y =nsy), forany X €C,Y € £.

2. REPRESENTATIONS OF TENSOR CATEGORIES

For basic notions on finite tensor categories we refer to [3], [5]. Let C be a
finite tensor category over k. A (left) module over C is a finite k-linear abelian
category M together with a k-bilinear bifunctor ® : C x M — M, exact in
each variable, endowed with natural associativity and unit isomorphisms

MXY,M : (X®Y)®M — X@(Y@M), O : 1QM — M.
These isomorphisms are subject to the following conditions:

(2.1) mxy zen Mxev.zm = (iddx @ my,zn) mxyezm(axy,z®id i),
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for any X,Y,Z € C,M € M. Here « is the associativity constraint of C.
Sometimes we shall also say that M is a C-module or a C-module category.
In a similar way, one can define right modules and bimodules. See for
example [9)].

Let M and M’ be a pair of C-modules. We say that a functor F : M —
M’ is a module functor if it is equipped with natural isomorphisms

exar i F(X®M) — XSF(M),
X €C, M € M, such that for any X, Y € C, M € M:

(2.3) (id x®cy,m)ex yauF(mx y,m) = mxy,r(n) CXoy,M
(2.4) L cam = F(ly).

There is a composition of module functors: if M” is another C-module
and (G, d) : M" — M”" is another module functor then the composition

(2.5) (GoF,e) : M —>MH, exX M :dX,F(M)OG(C)QM),
is also a module functor.

We denote by Fung (M, M) the category whose objects are module func-
tors (F, ¢) from M to M’. A morphism between module functors (F,c) and
(G,d) € Fung(M, M) is a natural module transformation, that is, a natural
transformation « : F' — G such that for any X € C, M € M:

(2.6) dX,MaX@M = (idx®OéM)CX,M.

Two module functors F,G are equivalent if there exists a natural module
isomorphism « : F' — G.

Two C-modules M and M’ are equivalent if there exist module functors
F:M—= M,G: M — M, and natural module isomorphisms Id r; —
FoG,Idyy - GoF.

A module is indecomposable if it is not equivalent to a direct sum of two
non trivial modules. Recall from [5], that a module M is ezact if M for any
projective object P € C the object PQM is projective in M, for all M € M.
Right module categories and bimodule categories are defined similarly. See
for example [9]. If M, N are C-bimodule categories, we denote by M X N
the balanced tensor product over C. See [8].

The next result seems to be well-known.

Lemma 2.1. Let M be a C-module category. If X € C,M € M are non
zero objects, then XQM # 0.

Proof. Let us assume that X®@M = 0. The map

mxx X M

(X@X)EM XXM X B (XBM) = 0,

l — coevx®id
M 25 19M ———
is the zero morphism. Since the coevaluation coevy is a monomorphism,
and ® is bi-exact, then coevx®id p; is a monomorphism. Thus, the above
composition is also a monomorphism. Hence M = 0. (|
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2.1. The internal Hom. Let C be a finite tensor category and M be a C-
module. For any pair of objects N, M € M, the internal Hom is an object
Hom,(N, M) € C representing the functor Homa(—®N, M) : C — vecty.
That is, there are natural isomorphisms

(2.7) Home (X, Hom (N, M)) ~ Hompm (X®N, M), for all X € C.

Proposition 2.2. [5, Thm. 3.17] For each object 0 # M € M the internal
Hom A = Hom,(M, M) is an algebra in C. If N is a subobject of M then
Hom,(M, N) is a right ideal of A. Moreover Hom,(M,—) : M — C4 is a
C-module functor. If M is exact indecomposable, the functor

Hom,(M,—): M —Ca
is an equivalence of C-module categories. O
Using the above Proposition, when dealing with exact indecomposable

module categories, we can restricts ourself only with those of the form Cg4,
for some algebra A € C. The next result was given in [5].

Proposition 2.3. Let A, B € C algebras such that the module categories
Ca,Cp are exact indecomposable. There exists an equivalence of categories

Fune(Ca,Cp) ~ aCy .

O

3. GRADED TENSOR CATEGORIES

An important family of examples of tensor categories come from group
extensions. Given a finite group G, a (faithful) G-grading on a finite tensor
category D is a decomposition D = @4ecaCy, where C, are non-zero full
abelian subcategories of D such that

® :Cy x Cp, — Cyp, for all g,h € G.

In this case, we say that D is a G-extension of C := C;. These extensions
were studied and classified in [4] in terms of the Brauer-Picard group of the
category C and certain cohomological data.

Example 3.1. Let G be a finite group and w € H?(G,k*) 3-cocycle. The
category C(G,w) has objects finite dimensional G-graded vector spaces, with
associativity constraint defined by

axy,z(z®y)®z) = w(g, h, f) 20(yRz),

for any X,Y,Z € C(G,w), and any homogeneous elements z € X4,y €
Yn,z € Zy. The tensor category C(G,w) is an example of a G-extension
of the category of finite dimensional vector spaces vect. More precisely,
C(G,w) = @®gegvect 4, where vect, denotes the category of finite dimen-
sional vector spaces supported in the component g.

We list some important properties of these categories.
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Proposition 3.2. Assume D = ®4ecCy is a G-graded extension of C. The
following statements hold.

1. For any g,h € G, the tensor product of D induces an equivalence of
C-bimodule categories
Mg,h : ngcch — Cgh7 Mg’h(X X Y) = X®Y.

2. The associativity constraints of D induce natural C-bimodule isomor-
phisms

afgh s Mpgn(Myg®elde,) = Mygn(lde, ®e M),
for any f,g,h € G, such that

(3.1)
My gnr(Id ¢, Meag n k) oasgnk(Ide, Me My nMelde, Jo Mg k(cf,gnMcld ;)
= afgnk(Ide, X Ide, Mo My ) 0 aggn i (Myg Me Ide, e Ide,).

Proof. 1t follows, mutatis mutandis, from the proof of [4, Theorem 6.1], in
the non-semisimple case. See also Equation (51) of [4]. O

For any f,g € GG, we can choose C-bimodule equivalences
(3.2) Mﬁg : Cfg — Cfgccg
such that My, o Mﬁg =lId¢,,.

If D = @geg(?g is another G-graded tensor category, a graded tensor
functor (F,€) : D — D is a tensor functor such that F(Cy) C 59, for any g €
G. This means that there are natural isomorphisms {xy : F(X)®F(Y) —
F(X®Y) such that
(3.3)

Exvez(d pxn®8y,z)arx),rv),Fz) = Flaxy,z)éxey,z(Exy®id pz))-
Here o, @ denote the associativity constraint of the tensor categories D, D.
If we denote by F, : C; — C~g the restriction of the functor F' and by
Nig - C~f X 59 — C~fg the restriction of the tensor product of 5, then the
tensoriality of the functor F' implies that there are natural isomorphisms
Erg  Npg(Fy R Fy) — FygMy, (these are the restrictions of the natural
isomorphisms £ to the category Cy x Cg4), and equation (3.3) implies that
(3.4)

(.n 01 1q ma, ) (id Ny g 0 (id f B 1)) g g (Fy B Fy W F) =

=(Frgnarsgn) (ranoidy, m1q,) (id g, o (§r.98id ).

Here, for any g € G, we denote Id, : C; — C4 the identity functor, and
id4 : Fy — F} the identity natural transformation.

Remark 3.3. For any G-graded tensor category D there exists a skeletal G-
graded tensor category D and a graded tensor equivalence (F,§) : D — D.
Hence, we can always work over a skeletal graded tensor category.
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3.1. Induction and restriction of module categories. Let D be a ten-
sor category, and let C be a tensor subcategory of D. Assume that N is a
C-module. We shall denote by IndZ(N) := DXeN the induced D-module,
where the D-action is induced by the tensor product of D [6, Proposition
2.13]. Let M be a D-module, we shall denote by Res5 M the restricted
C-module.

The following result seems to be well-known. We include the proof for
completeness’ sake. Part of it is contained in [10, Corollary 9], see also [6,
Proposition 3.7].

Lemma 3.4. Assume that we have a decomposition D = C ® C' as abelian
categories, such that C is a tensor subcategory. Let M be an exact inde-
composable D-module category such that it decomposes as M = @} M,
where M; are exact indecomposable C-modules. Assume also that every
time we choose non zero objects X € C', N € My, then XQN ¢ M. Take
0# M e My, and A = Homp (M, M). Then A € C, My =~ C4, and there
is an equivalence of D-modules

M ~IndZ(Ca).
Proof. Take arbitrary V € C'. Then by (2.7)
Homyp(V, A) ~ Homy(VRM, M).

Since V@M ¢ M, then Homp(V, A) =0, and A € C. If X € C, there are
isomorphisms

Home (X, Home (M, M)) ~ Hompg, (X@M, M),

Homp (X, Homp (M, M)) ~ Homa (XS M, M).
Since Homp, (X®M, M) = Homam (X ®M, M), then

Home (X, Home (M, M)) ~ Homp (X, A) ~ Home (X, A).

Whence, A = Hom,(M,M), and M; ~ C4 as C-modules. Since M is

indecomposable, the action DX M1 — M, XKV — X®V is an equivalence
of D-modules. O

In the following Lemma we include some properties of the induced and
restricted modules categories.

Lemma 3.5. Assume D = ©4ecCy s a G-graded extension of C = C1. Let
N be a C-module and M a D-module. The following statements hold.
1. M is an exact D-module, if and only if, Res?./\/l is an exact C-
module.
2. If N is exact (indecomposable) then Ind 5 (N) is exact (indecompos-
able).

Proof. 1. Since C C D is a tensor subcategory, then it follows from [2,
Corollary 2.5], that if Res g./\/l is exact C-module, then M is exact as a D-
module. Now, assume that M is exact. Let be P € C a projective object
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and X € Res ?M. Since P € D is projective, then PRX is projective in
Res?/\/{, hence Resg./\/l is exact.

2. To prove the exactness of Ind gj\/' we follow the argument of [1, Prop.
2.10]. Since IndEZN = ®gecCy Mo N, then IndZN is an exact D-module
if and only if C; W¢ N is an exact C-module category for any g € G. It
follows from [5, Lemma 3.30] that C4 K¢ N is an exact End¢(Cy)-module
category. Using [4, Prop. 4.2], since C4 is an invertible C-bimodule category,
End¢(Cy) ~ C. Hence C; X N is an exact C-module category.

Assume that A is an indecomposable C-module category, and we can
decompose Ind ?/\/ = M@ Msy as D-modules. By restriction N ~ 1X:N =
Ni @ N3 as C-modules, then N7 = 0 or Ny = 0. Suppose Ny = 0, thus
N C Mj. Take a non-zero object 0 # M € Msy. We can assume that
M € Cy®¥cN, for some g € G. Take 0 # Y € C,-1, then, by Lemma 2.1
0 # Y®M € N is a non-zero object. Since the restriction of the tensor
product maps Cy-1 x C; — C, then Y®M € N3, which contradicts our
assumption. O

4. MODULE CATEGORIES OVER (G-GRADED TENSOR CATEGORIES

Let G be a finite group and D = @©4eccCy be a G-graded extension of
C = Cy. In [10], [6], [7] the authors, independently, classify semisimple
indecomposable modules over D in terms of exact C-modules and certain
cohomological data. We shall recall these results dropping the semisimplicity
condition and using instead the exactness hypothesis.

We shall assume that D is a skeletal graded tensor category. See remark
3.3.

For any subset ' C G, we define Cr = ©4crCy. In case F' is a subgroup,
Cr is a tensor subcategory of D. If N is a C-module, we say that A is
F-equivariant if C;ReN ~ N as left C-module categories, for any f € F.

Lemma 4.1. Assume A € C be an algebra such that C4 is an exact inde-
composable C-module category. The following holds:

1. For any g € G, Cg W Cy4 is an exact indecomposable C-module.

2. The tensor product of D induces an equivalence of left D-module
categories (Cg)a =~ CyXe Ca.

3. The natural module isomorphism

O‘fyg,h&id

Mygn(Mysg™Melde,) Mlde, My gn(Ide, We My ) W1de,,

are determined by scalars wﬁg’h e k*, for any f,g,h € G.

4. wA € Z3(G,kX) is a 3-cocycle. Its cohomology class does not change

if we change the monoidal equivalence class of D. If Cp ~ Cx are

equivalent as C-modules, then w? = w?B.
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Proof. 1. This statement was proved in (the proof of) Lemma 3.5 (2).

2. The proof follows, mutatis mutandis, from the proof of [10, Lemma 24|
in the non-semisimple case.

3. For any finite tensor category D, and any exact indecomposable D-
module M, the identity functor Id o4 is a simple object in Endp(M). Since
the C-module category Cy M¢ Cy e Cp, Me Cy4 is equivalent to (Crgn)a, then
there is an equivalence of categories

(4.1) Fune ((Crgn)a, (Crgn)a) = a(Crgn)y

The later category being skeletal, since D is skeletal. The module functors
Mygn(Myg™elde,)X1de,, Mﬂgh(Idcf Xe My ) XIde, correspond, under
equivalence (4.1), to invertible objects. Since (Cfgn)a is indecomposable,
the identity functor is simple, then any invertible object is simple. Thus,
natural transformations oy 45 Xid correspond to wﬁ g}hid.

4. Tt follows from (3.1) that w” is a 3-cocycle and from (3.4) that the
cohomology class of w? does not change if we replace D by another skeletal
graded tensor category monoidally equivalent to D.

Assume that ® : C4 — Cp, ¥ : Cg — C4 are C-module equivalences, and
let be n: oV — Id¢, a natural module isomorphism. For any f,¢,h € G,
let us denote

Fygn=Msgn(MygWelde,), and Gygpn = Mygn(Ide, Mo Mg,p).
The commutativity of diagram

(Id ®Pow) (axid )

(4.2) FronRdoW GronR®oW

ild Xn id Ian
Fron®lde, — @ g Ride,

implies that w? = w?.

O

Remark 4.2. Let G be a finite group, w € H3(G,k*) be a 3-cocycle, and
C(G,w) be the fusion category described in Example 3.1. For any algebra
A € C(G,w) such that the module category C(G,w)4 is exact indecompos-
able, one can verify that w? = w.

Definition 4.3. Assume A € C be an algebra such that C4 is an exact in-
decomposable C-module category. A type-A datum for the module category
C4 is a collection (H,{Ap}nem,3) where

e H C (G is a subgroup;
A1 == A;
Ay, is an invertible A-bimodule in Cj, that is Ay € 4(Cp)a, for any
h e H;
there are A-bimodule isomorphisms Ay®4 Ay, ~ Ay, for any f,h €
H;



EQUIVALENCE CLASSES OF EXACT MODULE CATEGORIES 9

e 5: H x H — k* is a 2-cochain such that for any f,g9,h € H
(4.3) Bra=1=Pus. BreBron = BonBranhgn-

Let B € C be another algebra, such that Cp is an exact indecomposable C-
module category. A type-A datum (F,{By}tcr,~) for the module category
Cpg, is equivalent to the type-A datum (H,{Ap}nem, ) for Ca if

o '=H;
e there exists an invertible (B, A)-bimodule C' € pCy4 together with
(B, A)-bimodule isomorphisms

B,RpC ~ C®R4Ay, for any h € H;
e there are scalars 73, € k* such that
TlThTfﬁl’th = ,BhJ, for l,h e G.

Remark 4.4. If (H,{Ag}gen.p) and (H,{Byf}ser,7) are equivalent, then
the functor —®p C : Cg — C4 is a C-module equivalence, and using Lemma
4.1 (4), we get that the class of By~ is trivial in H2(H,k>).

Remark 4.5. The idea of the definition of the type-A datum is taken from
[10, Section 8.

Lemma 4.6. The existence of a type-A datum (H,{Ag}gecH,B) for a C-
module category C4 implies that C4 is H-equivariant.

Proof. Indeed, for any h € H, the functors
Wy, :CpWe Cy — Cy, \I/h(X@V):(X@)V)@AAhA,
are well-defined C-module equivalences. O

Now, we shall explain the classification of indecomposable exact D-module
categories obtained in [7] and [10]. This classification will be done in two
steps. In the first step will associate to any indecomposable exact D-module
category a pair (H,N), where H C G is a subgroup, and A\ is an exact inde-
composable Cy-module category such that the restriction Reng N remains
indecomposable as a C-module. In the second step, using Proprosition 4.11,
we shall associate, to any such pair (H, ) a type-A datum for RengN.

4.1. First step. Let H be a subgroup of G, and let A/ be an indecomposable
exact Cr-module category such that M = Reng N is an exact indecompos-
able C-module category. Under these assumptions, we shall call (H,N) a
type-1 pair.

Note that if (H,N) is a type-1 pair, then, for any g € G, the category
Cyrr We,; N has an action of Cyrg-1, such that

Resggﬂff1 (CgH X, J\f) ~ Cy e M.

By Lemma 4.1 (1) Cy K¢ Cy4 is indecomposable, then (¢gHg !, Cyn K, N)
is again a type-1 pair.
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Definition 4.7. Two type-1 pairs (H,N), (F,N') are equivalent if there
exists g € G such that

e H=gFg!, and

e there is an equivalence N ~ Cyp Me,, N' of Cy-module categories.

It follows from Lemma 3.5 (2), that if (H,N\) is a type-1 pair, then
Ind gHN is an exact indecomposable D-module category. We shall see that
this establishes a bijective correspondence between equivalence classes of ex-
act indecomposable D-module categories and equivalence classes of type-1
pairs.

Let’s start with an exact D-module category N. It follows from Lemma
3.5 (1) that ResPN is exact. Then, we can decompose it as ResEN =
@ | N;, into a direct sum of exact indecomposable C-module categories.
Denoted by N; the equivalence class of the C-module A;, and by Xy =
{Ni:i=1...n}.

The group G acts on the set Xy. Namely, g - N; = Nj, if C;XeN; ~ N
as C-modules. This action is transitive since N is indecomposable as a D-
module. The next result is well-known.

Lemma 4.8. If N', M are equivalent D-module categories, then X ~ X
as G-sets. If H = Stab(N1) == {f € G|f - N1 = M1}, then Xy ~ G/H as
G-sets. O

Proposition 4.9. [7, Proposition 4.6] Let (H,N') and (F, M) be two type-1
pairs. The following statements are equivalent.

1. There exists an equivalence of D-module categories
(4.4) Ind? N ~IndZ M.
2. The type-1 pairs (H,N), (F, M) are equivalent.

Proof. (1) = (2) If Ind ?H./\/' ,Ind CDFM are equivalent as C-modules, then, by
Lemma 4.8(1), XInd?HN ~ XInd?FM as G-sets.

Decompose Res? (Ind ?H./\/' ) into a direct sum & ;A; of indecomposable
C-module categories. Since the module category Reng/\/ is included in
ResE (Ind ?HN ), and it remains indecomposable as C-module, we can assume

that Ay ~ RengN. It is not difficult to see that Stab(Reng/\/') = H. By
Lemma 4.8, G/H ~ G/F, thus, there exist g € G such that H = gFg~!.
The restriction of the equivalence (4.4), gives an equivalence of Cg-modules

CorMe, M ~ Cule, N ~ N,

where the Cy-action over Cyp is induced by the tensor product of C, and is
well defined since Hg = gF.



EQUIVALENCE CLASSES OF EXACT MODULE CATEGORIES 11

(2) = (1) Let g € G such that H = gFg~! and CypXc,M ~ N as
Cr-modules. For any a € G, there are equivalences of right Cp-modules

(4.5)
CaH|Z’CHCgF >~ (Ca&CcH)chch ~ Cagc(cchHCgF) ~ Cagccgp ~ CagF,

where the right Cp-module structrure is given by tensor product.

Let {t1,...,t,} be a set of representative of the cosets of G/F, thus
{tig™',...,tng™'} is a set of representative of the cosets of G/H. Using
(4.5), we have D-module equivalences

D&cFM ~ @?:1CtiF&CFM ~ @?:1(Ctig*1H&CHCgF)®CFM
~ @;1Cp g1 u¥ey (CorMe, M)
= @?:16152.971[_]&511/\/’ ~ D&cH./\/’.

Now, we shall prove that the map
(H,N)+— IndZ N

gives a first step to classify exact indecomposable D-module categories. The
proof of the following Theorem follows the same steps as the proof of [10,
Proposition 12] in the semisimple case.

Theorem 4.10. [10, Proposition 12| There exists a bijection between

o cquivalence classes of exact indecomposable D-modules, and
e cquivalence classes of type-1 pairs (H,N).

Proof. Take a type-1 pair (H,N'). Then Ind EHN' is an exact indecomposable
D-module. By Proposition 4.9, the equivalence class of this module category
does not depend on the equivalence class of the pair (H,N'). The type-1
pair associated to Ind gHN is (H,N). This follow from the first part of the
proof of Proposition 4.9.

Let M be an exact indecomposable D-module. We shall construct a
type-1 pair (H, ) such that M ~ Ind?H./\/'. Let Res?./\/l =@ M; be a
decomposition, where M; is an exact indecomposable C-module. Consider
the action of G over the X 4 as described before.

Let H := Stab(My) = {f € G : C;KcM; ~ M; as C-modules}. Set
N := M. The action @ : D x M — M restricts to an action @ : Cg X N —
N, inducing a structure of Cx-module over N. N is an exact Cy-module
category since M is an exact C-module. N is an indecomposable Cy-module
since NV is indecomposable as a C-module. Hence, we obtain a type-1 pair
(H,N). 1t follows from Lemma 3.4 that M ~ Ind7, N as D-modules. [

4.2. Second step. To any type-1 pair, we shall associate a type-A datum.
We shall introduce a new equivalence relation of type-A data, such that
there exists a bijection between equivalence classes of type-1 pairs and type-
A data.
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Proposition 4.11. Let A € C be an algebra such that C4 is an exact in-
decomposable C-module category, and H C G be a subgroup. The following
statements are equivalent.

1. There emists an exact indecomposable Cr-module category N such
that Reng./\f ~Cy4.

2. There are C-module equivalences ¥4 : C4XcCaq — Ca, g € H, together
with natural C-module transformations

(4.6) mgq 2\Iffg(Mf7ggIch) %\Pf(ldcfgll’g)
f,g9 € H, such that V1 is the tensor product, and

(A7) (myg(lde, WIde, ®W,)) 0 (mygn(Mpg®ide, Mide,))
= (Uy(ide, Bmgp)) o (mygn(d e, BM, ,R1dc,)) o (¥ gn(ar,nRide,)),

forany f,g,h € H.
3. There exists a type-A datum (H,{Ag}ger, ) for the module C4.

Proof. 1) = 2). For any g € H, define ¥, the restriction to C4 of the action
of Cy to C4, that is

\I/g:Cg&(;CA—)CA, \I/9<X@V):X®V,

for any X € C;,V € Ca. V¥, is a C-module functor since the action is
associative, and it is an equivalence since C4 is indecomposable. If m denotes
the associativity of the Cy-module N, then, for any f,g € H, X € C;,Y €
Cq, V € N define

(msg)xyy =mxyy.
The associativity axiom (2.1) implies (4.7).

2) = 3). Using Lemma 4.1 (2), there are C-module functors W, : (Cg)a —
Ca. Here, we are abusing of the notation denoting also by ¥, the composi-
tion of the functors ¥, with the equivalences (Cy)a ~ C4yXC4 of Lemma 4.1
(2). By [5, Prop. 3.11] any module functor between exact module categories
is exact, then there exists an object Ay, € 4(Cp)4 such that

U, = _®AAh—1-

Bimodule A, is invertible since ¥, is an equivalence, for any h € H. As
the functors Wy, (M, MIdc,), V(Idc, K Wy) are equivalent, then there are
bimodule isomorphisms A;® 1Ay ~ Ayy, for any f,h € H.

Since W, is the identity functor, then A; = A. As C-module Reng/\/' is
indecomposable, then the identity functor Id s is a simple object. Arguing as
in Lemma 4.1 (3), we obtain that, for any f,g € H the natural isomorphisms
my4 are determined by scalars 3y, € k*. Equation (4.7) implies (4.3).
Thus, (H,{Ag}4ecH, B) is a type-A datum for C4.

3) = 1). We define an action of Cy on C4 as follows:

X8V = (X@V)@4As1 € Ca,
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forany f € H, X € Cy, V € Ca. The associativity is defined as follows. For
any f,he H, X €Cy, Y € Cy, V € Cy define

mxyy = ﬁf,h (id X®Y®V®¢f*17h*1) : (X®Y)@V — X@(Y@V%

where ¢y : A, — Ap®aAy are the A-bimodule isomorphisms. Here, for
simplicity, we are omitting the associativity isomorphisms of D. ([

In conditions of Proposition 4.11, shall say that (H,{Ag}gecH, B) is the
associated type-A datum to the type-1 pair (H,N). We have to explain
now, what happens with the type-A data, if we change the equivalence class
of the Cy-module category N.

Proposition 4.12. Assume (H,N), and (H,N") are two type-1 pairs. As-
sume that RengN ~ Cy, and Reng./\/" ~ Cp, for some algebras A, B €
C. Then, the associated type-A data (H,{Ag}ger,B), (H,{Bf}fcu,v) are
equivalent if and only if N~ N" as Cy-module categories.

Proof. Assume that (®,¢) : Cp — C4 is an equivalence of Cy-module cate-
gories. Then, there exists an object C' € gC4 such that ® = —®pgC. Since
® is a Cy-module functor, then the existence of natural isomorphisms

exy (X@V)@pB,-1)@pC — (XQ(VRpC))®aA,-1,

for any h € H, X € Cp,, implies that Bo,RpC ~ C® A}, for any h € H and
the isomorphisms cx, are determined by scalars 7,. Equation (2.3) implies
that the type-A data (H,{Ag}een, B), (H,{Bf}ter,7) are equivalent. [0

Now, we will show how the type-A datum is modified if we change the
module category N by Cyi Me,, N. For this, we must understand how the
associativity isomorphisms m¢ j, described in (4.6), are modified.

Let be (H,N) a type-1 pair, and g € G. Assume that RengN ~ Cyu,
for some algebra A € C. For any h € H, let Uy : Cp, X C4 — C4 be the
restrictions of the action of Cy on . The category CypXc,, N has an action
of Cyprg-1, such that

(Cp—
Resy?™" (Corr ey N) == Cy R Ca.

Let \Tlh : Cgng—1 M Cg XM Ca — Cy Me Ca be the restrictions of the action of
C

gHg—1 on the category Cy e C4. Explicitly, for any h € H
(4.8) Wy = (Id g W) (Mg p(Id g B My-1 ,) (Mg g1 K1d g) KId pg).
Here we denote M = Cy4, and for any f € G, Idy = Id¢,. Recall the
definition given in (3.2) of functors Mg,h- For any f,h € H let

ﬁlﬁh : \fIVth(Mgfgfl’ghgfl X IngIECM) — \AI;f(Idcghfl X @h),

be the natural isomorphisms obtained from the associativity of the module
category Comr We, N as in (4.6). Since M is an indecomposable C-module
category, there exists a 2-cochain v : gHg™ ! x gHg~' — k* such that
men =7(9fg~ 1, ghg™1)id, for any f,h € H.
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From now on, for any f, g € G we shall denote f9 = gfg~'. If n: GxG —
k* is a 2-cochain, we denote n9(f, h) = n(f9,h9).

Lemma 4.13. Under the above assumptions, there exists a 2-cochain Qg‘ :
G x G = k*, that depends on the Morita class of A, such that

(4.9) ~9 Q‘; = f.

Proof. We are going to abuse of the notation and use the monoidal equiva-
lence

Fune((Cr)a, (Cg)a) = a(Cp-14)7%-
So that composition of functors in the first category correspond to the

monoidal product in the second category. Note that, our assumption that
D is skeletal implies that 4(Cy-1,)% is skeletal.

If f,h € H, then, using (4.8), we get that the functor \Tlfh(Mfg,hg X1Id aq)
equals

= (1d g B p) (Mg, pn(1d gpn B My ) (Mg g1 B1d o) Mo o R1d p1)
=711 h)((dg R W) (1dg BT p By, )(Id g & M )
(Mg pn(Id gpn & My—1 ) (M gypp g-1 BId o) Mpo po R Id pq).

Here, the second equality follows from Proposition 4.11, where the natural
isomorphisms my, are equal to 3(f,h)id, hence

B(f,h) Wyg(MyyXlde,) = Wy(Ide, K Wy).
On the other hand, the functor ¥ r(Id o X U3,) equals
= ([dgRWUs) (Mg p(Id gy R My ) (M1 KId g)(Id pg K1d o K W)
(Id po Mg p,)(Id o K 1d gp B M, j—1)(Id go B M gp, ,—1) KId oq)
= ([dgRWUs)((IdgXId R ¥y) (Mg RIdy)(Id g K M,-1 , K1Idp,)
(M1 RId g RId ) (Id g9 B8 Mg 5)(Id g0 BRId gy, M -1 )
(Id g X M, y—1) K 1d pg)-
Since for any f,h € H, we have that
U (Id o ®Wy) = (9, 19) U g1 (Mpo pa K 1d ),
we deduce that

(4.10)
(Mo o ®1d ) (Id 0 ® My, o1 R1d o) (Id g0 ) My, K1d ;-1 K 1d )

(Mg g1 XIdyXId, XId -1 KId ) (Mg, X1d Cg_lgcggchgcg_lgcg)
(IdgXId X ng’g X Idc;ﬁcg,l&cg)(ldg XMy, XId Cgilgcg)

_ - h
(Mg pn®Ide iwe,)(Mgppg-1 W1dg) K1d o = Mldc

(9, h9) R

gfhg
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The left hand side of equality (4.10) is equal to a scalar multiple of the
identity. We denote this scalar by Qg‘, hence we obtain the desired result. [

Remark 4.14. If G = Cs is the cyclic group of 2 elements, one can verify
that the functor on the left part of (4.10) equals the identity, thus Qg‘ =1.

Definition 4.15. Two type-A data (H,{An}nen,B), (F,{Bf}fer,v) are
G-equivalent if there exists g € G, and an invertible (B, A)-bimodule C' €
B(Cy) 4 such that

o F=gHg™ !
® By 1@pC ~ CRaAy, for all h € H;
e the class of 5*19‘9479 is trivial in H2(H,k*).

Remark 4.16. If (H,{Ag}4cn, B) and (H,{By} rer,7) are G-equivalent, then
Ca, Cp are equivalent C-module categories.

Combining Theorem 4.10, Proposition 4.11 and Lemma 4.13 we get the
next result.

Theorem 4.17. There exists a bijection between

o equivalence classes of exact indecomposable D-modules,
o G-equivalence classes type-A datum, and
o equivalence classes of type-1 pairs. [l

4.3. Pointed fusion categories. Let us show that our results, when ap-
plied to a pointed fusion category, agree with the results obtained in [11].

Assume G is a finite group, and w € H3(G,k*) is a 3-cocycle. If D =
C(G,w), then D is a G-extension of the category vect i of finite-dimensional
vector spaces.

Theorem 4.17 implies, in this case, that exact indecomposable D-module
categories are parametrized by pairs (H, ), where H C G is a group, and
B € C%*(H,k*) is a 2-cochain such that d3w = 1. This parametrization
coincides with the one given in [5].

For such pair (H, /3), denote My(H, () the associated exact indecompos-
able D-module category. As abelian categories Mo(H, 8) = C(G,w)k,u-

The equivalence classes of such module categories agrees with the one
described in [11]. In [11, Thm 1.1], the author proves the following result.

Theorem 4.18. Assume L,H C G are two groups, and 3 € C?*(H,k*),
¢ € C?(L,kX) are 2-cochains such that d3 = w™! = d¢. There erists an
equivalence of module categories between Mo(H, 3), Mo(L,&) if and only if
there exists g € G such that H = gLg™', and the class of 5_1,8999 lLxr s
trivial in H?(L,k*). O

In the above theorem €2, : G x G — k is defined by

w(f9,9,h)
(f9,h9,9)w(g, f,h)’

(f.h) = -



16 MEJIA CASTANO AND MOMBELLI

for any f,h € G. Note that there is a difference between this definition of
)y and the one presented in [11]. The difference comes from the fact that
in loc. cit the author uses w™! instead of w.

To prove that our classification agrees with the one in [11], we shall prove
that the 2-cochain QH; is cohomologous to €, for any g € G. Here k is
the algebra representing the unique (equivalence class) exact indecompos-
able module category over vecty. To this end, lets compute explicitly QH;.
Calculating the functor of the left hand side of (4.10), we get that

k _ w(fgv.ga h)w(fg7gh‘agil)
Aol h) == o o hwlofg 1 9)

for any f,h € G. Using the 3-cocycle condition, we obtain that
W(f9,gh, g™ (9,0, 9)w(gh, g~ 9) = w(gfh,g™", g).

Hence
w(f?,g,h)w(gfh,g',9)
w(g, f,hw(gf, g7t g)w(f9,h9, g)w(gh, g7, g)
w(gfh,g7 1, 9)
w(gf, g7t g)w(gh, g7t 9)

This implies that €2, and Qﬂg are cohomologous.

= Qg(fv h)

Remark 4.19. Assume D = TY(A, x,7) is a Tambara-Yamagami tensor
category, see [12] for its definition. It follows easily that the functor of the
left hand side of (4.10) is the identity. Thus, the equivalence classes of
indecomposable exact module categories over TY(A, x, ) obtained in [10]
remains the same as our case.

4.4. On the results obtained by Meir-Musicantov. In [10] the authors
classify indecomposable semisimple module categories over a G-graded fu-
sion category, in terms of certain cohomological data. In [10, Section 8] it
is explained how to obtain from a type-A datum these cohomological data.
We shall briefly recall this correspondence.

Let M be an exact indecomposable H-equivariant C-module category.
This means that, for any h € H, we have C-module equivalences

¢h:ch®cM—>M.

Since M is exact, there exists an algebra A € C, such that M ~ C4 as
module categories. Also, exactness of M implies that functors 1, are exact.
Using the equivalence Cj, M C4 ~ (Cp)a, the functors ¢ : (Ch)a — Ca
are given by ¢, = —®4D),-1, where, for any h € H, Dy € A(Cp)4 is an
invertible A-bimodule.

Let I" be the group of isomorphism classes of invertible A-bimodules in
C, and let A be the group of isomorphism classes of invertible A-bimodules
in Cy. Any invertible invertible A-bimodules in Czy must be supported in a
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unique category Cp, for some h € H. Thus, we have an exact sequence of
groups

(4.11) 1-TS5AS H -1

Here, 7 is the map assigning an invertible bimodule the element h where
it is supported, and ¢ is the inclusion. Surjectivity of 7 follows from the
existence of the bimodules Dy,.

Remark 4.20. The group I' is isomorphic to the group of equivalence classes
of C-module autoequivalences of C4, and the group A is isomorphic to the
group of equivalence classes of C-module autoequivalences of (Cg) 4.

Associated to M there is a group morphism p : H — Out ("), given by
p(h)(a) = DyaDy L,
for any @ € I'. Define also Y : H x H — T,
Yh7f = thDjlegl.

Denote by p : Aut(I') — Out (I') the canonical projection. If there is a
lifting ® : H — Aut (T') of p, that is, a morphism that satisfies p = p @, then
the element Y}, y belongs to the center of I' and it is a 2-cocycle with action
given by .

Definition 4.21. A MM-datum is a collection (M, H, ®, v, 3), where

H C G is a subgroup;

M is an exact indecomposable H-equivariant C-module category;
®: H — Aut () is a lifting of p;

v:H — Z(T') is a 1-cochain such that dv =Y

e 3:H x H— kX is a 2-cochain such that w™dg = 1.

The existence of the pair (®,v) is equivalent to the fact that the exact
sequence (4.11) splits. If (H,{Ag}4en, f) is a type-A datum for the module
category M =~ Cy4, then there is a splitting of (4.11) given by

s:H— A, s(h)= Ay, forany h € H.

In [10, Thm. 2] the authors classify semisimple indecomposable module
categories over a fusion G-graded category in terms of MM-data.
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