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Abstract: 24 

Analog modeling of a flat-ramp-flat fault system was performed and its geometry and 25 

displacement field were compared to those of different kinematic models such as classical fault 26 

bend folding, fault parallel flow, incline-shear, curvilinear hinge, and backlimb trishear. To obtain 27 

the displacement vectors of the analog experiment, a Particle Image Velocimetry was performed. 28 

All analyzed kinematic models could explain the general configuration of the fault bend folding. 29 

However, only backlimb trishear could represent the geometry, directions of particle displacements, 30 

and relations between the displacements’ vectors. We propose in this paper that the combination of 31 

different asymmetry angles and different apical angles of the backlimb trishear model for each bend 32 

in a fault bend fold could be a very versatile and general kinematic model for simulating fault bend 33 

folds. Backlimb trishear apical angle can be used to control the shape of the hinges of a fold, while 34 

the asymmetry can be used to convolve the velocity of the particles above the fault. Both apical 35 

angle and asymmetries different from zero imply thickness changes. Fault bend folds with high 36 

inclination forelimbs can be reproduced with high positive asymmetries in the anticline bends of the 37 

fault. 38 

 39 

1. Introduction 40 

Fault bend folding forms as the result of the movement of a fault block along a non-planar 41 

fault surface, which causes the bending of the block and therefore the formation of the fold. This 42 

deformation generally occurs in the hanging wall of the fault (Suppe, 1983; Poblet, 2004; Brandes 43 

and Tanner, 2014). It is one of the main causes of the folding of the rocks in nature and the object of 44 

different types of analog, numerical-mechanical, geometric, and kinematic modeling. Although, 45 

mechanical models (either analog or numerical) allow a better understanding of the dynamics of 46 

deformation, geometric and kinematic models have a practical utility when constructing complex 47 

balanced cross-sections, and that is why they are the target focus of this work. Different geometric 48 

and kinematic models (Figure 1) were proposed to simulate fault bend folding (Suppe, 1983; White 49 
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et al., 1986; Egan et al., 1997; Kane et al., 1997; Cristallini and Allmendinger, 2002), and some of 50 

them were implemented in balance cross-section construction software (Contreras, 2002; Cristallini 51 

et al., 2021). We use an analog model as a basis to analyze the different kinematic models and to 52 

propose variations in the backlimb trishear method (Cristallini and Allmendinger, 2002) that may be 53 

useful to simulate flat-ramp-flat fault systems. 54 

“Insert Figure 1 here” 55 

To produce a fault bend fold in our physical model, appropriate analog materials were used 56 

to simulate the upper crust. We employed a flexible sugar paste, which allows us to generate the 57 

folding. The analysis of a succession of images, using particle-image velocimetry (PIV), provides a 58 

digital visual record of the velocity/displacement vectors during the evolution of the structure. In 59 

this work, the shape obtained and the displacement field measured in the analog model of fault bend 60 

fold are compared with several geometric and kinematic models. Here we show that backlimb 61 

trishear is the model that most faithfully reproduces the geometry, directions of particle 62 

displacements, and relations between the displacements’ vectors in different parts of the fold. We 63 

also prove that this method is well suited to replicate structures with high dipping forelimbs and that 64 

by modifying the asymmetries of the backlimb trishear model, changes in the dipping of the layers 65 

involved during folding can be achieved.  66 

In the following section, we will first review existing geometric and kinematic models. 67 

Next, we will present the analog model performed, and finally, we discuss our overall results. 68 

2. Fault bend folding models 69 

The first quantitative model (here considered as classical fault bend folding model: CFBF) 70 

describing the geometry and kinematics of fault bend folds was proposed by Suppe (1983) based on 71 

conservation of area and thickness of beds during deformation (Figure 1a). Suppe (1983) 72 

formulated the equations that determine both the geometry and kinematics for a fold developed over 73 

a fault with a single step or break, as well as for more complex folds formed on ramps with different 74 

angles, sheared folds, and hybrid structures (Poblet, 2004; Brandes and Tanner, 2014). The initial 75 
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assumptions applied for the simplest case are that area is conserved and the thickness of the layers 76 

is preserved throughout the evolution of the fold (Suppe, 1983). Therefore, the model ensures that 77 

bed length in the slip direction remains constant during deformation. The layers are deformed by 78 

flexural slip and axial surfaces are always bisectors of bed bendings (Figure 1a). According to this 79 

model, the characteristic shape of a fault bend fold consists of a frontal limb with a greater dip than 80 

the backlimb, which remains parallel to the fault's ramp. The evolution of simple step fault bend 81 

folds corresponds to two perfectly differentiated stages (Suppe, 1983; Poblet, 2004) known as the 82 

lifting of the crest and widening of the crest. It is important to notice that, during the first stage, the 83 

slip applied to the hanging wall is not all transmitted forward. In Figure 1a, applied slip is indicated 84 

as S0 and transmitted slip as S1, so in this model S0 > S1. Suppe (1983) CFBF conserve area (in 85 

cross-sections), thickness, and line length during deformation. 86 

The kinematic field that is associated with the model of kink band migration (Suppe, 1983) 87 

was presented by Johnson and Berger (1989). The model proposes that within a simple step 88 

structure, 3 velocity domains can be defined based on the fault’s geometry. Discontinuities separate 89 

these domains and are equivalent to the active axial surfaces previously characterized by Suppe 90 

(1983). Vectors are parallel to the lower fault plane in the first domain, then parallel to the ramp in 91 

the second domain, and in the third domain, they are parallel to the top fault plane. Hardy (1995) 92 

contributes to the development of the kinematic analysis of fault bend folds, describing the 93 

horizontal and vertical components of the velocity vectors relying on trigonometric relationships 94 

that consider the ramp’s dip. Just as in the kink band model the most important operating 95 

mechanism is flexural slip (Suppe, 1983; Medwedeff and Suppe, 1997), other models rely on 96 

different mechanisms for folding.  97 

One of the most commonly used is the fault parallel flow (FPF in this work) proposed by 98 

Egan et al. (1997) and Kane et al. (1997). This model (Figure 1b) is based on migration parallel to 99 

the fault of the materials of the hanging wall, using axial surface bisectors of fault bends as limits 100 

between different velocities. This method states that all particles within the hanging wall move 101 

Jo
urn

al 
Pre-

pro
of



parallel to the fault surface, along virtual flow paths (Ziesch et al., 2014). Subsequent studies on 102 

FPF allow calculating the associated deformation in different areas of the structure (Ziesch et al., 103 

2014). Figure 1b shows that slip applied to the hanging wall (S0) is completely transmitted forward: 104 

S0 = S1. This model conserves only area (in cross-sections) during deformation; thickness and line 105 

length are not preserved (see for example thinning of the forelimb in Figure 1b). 106 

Another mechanism that can operate in kinematic reconstructions of fault bend folding is the 107 

simple shear (Gibbs 1983; 1984) and its derivations (White et al., 1986; White, 1992; Yamada and 108 

McClay, 2003). Initially, the method assumed that the hanging wall is deformed by simple shear in 109 

vertical planes (Gibbs 1983; 1984). As the angle of shear is vertical, the model is referred to as 110 

vertical-shear (Figure 1c). Modifications were subsequently developed and the assumption about 111 

the inclination of the shear planes to the vertical is removed (White et al., 1986); this is why the 112 

model is commonly known as incline-shear (ISh in this work), where vertical-shear is a special 113 

case. The direction of simple shear within the hanging wall block is constant and has a very strong 114 

influence on the shape of the resulting fold (White et al., 1986; White, 1992). The slip applied to the 115 

hanging wall could be amplified, conserved, or reduced depending on the shear angle. If the shear 116 

angle is vertical, the slip is conserved along a complete simple step structure (Figure 1c). This 117 

model conserves only area (in cross-sections) during deformation; thickness and line length are not 118 

preserved (see for example thinning of backlimb and forelimb in Figure 1c). 119 

The theory initially formulated by Suppe (1983) covers exclusively folds formed from faults 120 

composed of straight segments with angular breaks, so the modeled examples fail to mimic the 121 

traits observed in natural cases. They fail to reconstruct the curved geometry seen in many of the 122 

main faults from which the anticlines are generated (Medwedeff and Suppe, 1997). To achieve this 123 

feature, Medwedeff and Suppe (1997) propose a model where the main fault has several segments. 124 

The length of each segment is reduced, so the fault can be recreated with curved geometry. In this 125 

way, the resulting hinge is no longer sharp; on the contrary, it is rounded, which is more consistent 126 

with observations from field examples. In turn, each bend generates new axial surfaces that interfere 127 
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with each other, bringing greater complexity to the structure (Medwedeff and Suppe, 1997). This 128 

same idea can also be applied, and simpler, to fault parallel flow and incline-shear models, and is 129 

usually used in software cross-section construction. Another modification of the Suppe (1983) 130 

CFBF includes the application of basal shear to be able to explain fault bend folds in which 131 

backlimb inclination is less than fault dipping (Suppe et al., 2004).  132 

Cristallini and Allmendinger (2002) have pointed out that in several analog and mechanical 133 

models of fault bend folding formed above faults composed of straight segments with angular 134 

breaks, the resulting fold has rounded hinges. These results cannot be explained by classical fault 135 

bend folding, neither by fault parallel flow nor incline-shear. To explain these cases, they propose 136 

the backlimb trishear model (BLT in this work; Figure 1e, f, and g; Figure 2) where the fold hinge 137 

describes soft curvatures in the upper strata while those layers near the fault zone show strong 138 

angular breaks (Cristallini and Allmendinger, 2002). This model conserves only area (in cross-139 

sections) during deformation; thickness and line length are not preserved.  140 

To explain a similar situation, Tavani et al. (2005) replace axial surfaces represented with 141 

straight lines by circular zones that generate the curved geometry seen in fold’s layers (Figure 1d). 142 

This curvilinear hinge model (CH in this paper) conserves area (in cross-sections), thickness, and 143 

line length during deformation, and transmits some shear forward. Tavani et al. (2005) model 144 

explains rounded anticline hinges, however, cannot explain rounded syncline hinges.  145 

“Insert Figure 2 here” 146 

The backlimb trishear model (Cristallini and Allmendinger, 2002) is conceptually analogous 147 

to forelimb trishear (Erslev, 1991, Allmendinger, 1998), and presupposes incompressible flow in 148 

triangular zones focused on the fault bends. It uses equations of area conservation, similar to those 149 

derived for forelimb trishear by Zehnder and Allmendinger (2000), but in these cases applied to the 150 

material above a fault bend. Cristallini and Allmendinger (2002) focused their paper on the 151 

backlimb of a fold and named their model as “backlimb trishear” (Figure 2). However, the idea (and 152 

of course the equations) can be applied to any bend in a fault and can be used to explain syncline 153 
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and anticline hinges (Figure 1 e, f, and g). The backlimb trishear, in addition to hanging wall slip 154 

and fault bend angle, has basically two variables, the backlimb trishear apical angle, and the 155 

asymmetry. The second is measured with respect to the fault bend bisector and is positive forward 156 

and negative backward. Cristallini and Allmendinger (2002) showed that a symmetrical backlimb 157 

trishear zone does not produce the variation of the applied slip versus the transmitted slip. However, 158 

asymmetrical zones produce slip variations. Changing the backlimb trishear asymmetry, the model 159 

can satisfy the slip variations of classical fault bend folding (Figure 1e), fault parallel flow (Figure 160 

1f), or incline-shear (Figure 1g). 161 

3. Analog model methodology 162 

Intending to analyze and test different kinematic models of fault bend folding, we perform 163 

an analog model to obtain the displacement field during the formation of simple step fault bend 164 

folds. In this way, it is possible to evaluate and compare the displacement field and the resulting 165 

geometries with those of the investigated kinematic models. The experiment focuses on evaluating 166 

the vectors for the first stage of fold growth, where lifting of the crest occurs.  167 

The analog model technique is practical and simple for obtaining displacement fields during 168 

deformation. Vectors of displacement are obtained by particle image velocimetry (Sveen, 2004), a 169 

methodology widely used in geological process studies (Kincaid and Griffiths, 2003; Boutelier and 170 

Cruden, 2013; Strak and Schellart, 2014; Schellart and Strak, 2016) performed with PIVlab-171 

MATLAB program (Thielicke and Stamhuis, 2014). The results obtained were compared with the 172 

previously analyzed kinematic models (Figure 1). The technique of analog modeling is useful since 173 

it allows the incorporation of a mechanical framework into the kinematic method.  174 

3.1. Analog model setup 175 

To simulate the stage of the lifting of the crest in a simple step fault bend fold, we used an 176 

experimental setup consisting of a footwall represented by a rigid, non-deformable wedge and a 177 

deformable hanging wall represented by a layered plastic material (Figure 3). To meet the 178 

objectives of this experiment, a material that would not fracture or fail was needed. Cohesionless 179 
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materials as sand, traditionally used in experiments of deformation of the upper crust (Cristallini et 180 

al., 2009; Ritter et al., 2016; Marshak et al., 2019), do not meet these characteristics. The models 181 

required a cohesive material being able to simulate the strata that constitute a sedimentary cover 182 

involved in the folding, where no fractures are desired. For this reason, we used sheets of sugar 183 

paste to model the hanging wall. The preparation has a density of 1.27 g/cm3 and a viscosity equal 184 

to 2.2 x 107 Pa s, being this value similar to plasticines widely used as analog materials for 185 

experimental setups (Schöpfer and Zulauf, 2002; Zulauf and Zulauf, 2004). The sheets are separated 186 

from the bottom of the box, the metal wedge, and between them by low friction surfaces. To avoid 187 

the formation of voids and to approach the challenging scaling conditions, all the experiment is run 188 

inside a biaxial loading cell like that proposed by Bazalgette and Petit (2007). To fill the spaces 189 

above the layers of sugar paste, dough made with salt, flour, and water (density � 1.29 g/cm3 & 190 

viscosity � 1.2 x 105 Pa s) was used. This mass was placed at the top reaching 9 cm in height, 191 

separated by a plastic film that acts as a moisture barrier. The dough is used to compress the entire 192 

model, increasing vertical pressure over the sugar sheets (Bazalgette and Petit, 2007), and causing 193 

the layers of sugar paste to accommodate by folding to the movement of the rigid wedge. As the 194 

box is closed, this material allows an increase in the confining stress and thus inhibits the separation 195 

of the sugar paste from the fault block.  196 

“Insert Figure 3 here” 197 

To ensure that the deformation occur on top of the wedge, it was decided not to move the 198 

hanging wall, as in a classical fault bend fold, but move the footwall wedge instead. The sugar paste 199 

layers were cut with different lengths to be in close contact with the ramp of the metal wedge to 200 

simulate the fault. However, they cannot be extended to the right side of the experiment because a 201 

classical fault bend fold transmits part of the applied slip forward by the upper plane. To simulate 202 

this situation, the layers of sugar paste are constructed shorter than the box, and the space that is not 203 

occupied by them is filled by a colorless silicone with non-Newtonian behavior with a density of 204 

0.97 g/cm3 and a viscosity of 5 x 104 Pa s at 20° C (Weijermars, 1986). This idea is similar to that 205 
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used by Chester et al. (1991) in the apparatus to simulate a fault bend fold and is needed to 206 

represent this type of structure. 207 

Plane strain condition of the experiment was ensured with continuous observation. The 208 

model was photographed on both sides of the deformation box, mounted with two opposite acrylic 209 

walls for this purpose. The apparatus also has a motor-driven piston to compress the materials 210 

arranged inside. The experiment carried out was 47 cm long by 15 cm wide and 19 cm high (Figure 211 

3). Inside it and in contact with the piston, a rigid wedge of 30° was placed. The wedge is 22 cm 212 

long at its base and 14 cm on the upper fault flat and its ramp is 9 cm long. This device simulates 213 

the motion of the hanging wall past the fault bends (Zanon and Gomes, 2019). At the base of the 214 

experiment, only 25 cm of sugar paste was placed while at the top were placed 37 cm and 10 cm of 215 

transparent silicone in contact with the piston (Figure 3). Above the sugar paste and the silicon, the 216 

dough was used to fill the box and increase vertical load over the experiment. 217 

The model was compressed for 67 minutes, at 10 cm/hour, reaching a total of 11 cm of 218 

shortening and forming a fault bend fold. As the structure is generated, photographs were taken 219 

perpendicular to the direction of motion of the piston on both sides of the model to follow the 220 

evolution of the fold. Previous trials concluded that the deformation observed through the sidewalls 221 

of the box is representative of the internal deformation within the models and plane strain can be 222 

assumed. A total of 67 images were obtained, one per minute. These photographs were 223 

subsequently processed using the Irfanview TM (Skiljan, 2012) software to crop the area of interest 224 

and generate the serial images. These images were analyzed with the PIVlab-MATLAB program 225 

(Thielicke and Stamhuis, 2014) to obtain the kinematic vectors that illustrate the displacement field 226 

of particles that generate the fold and the evolution during the lifting of the crest.  227 

This experiment is a qualitative analog for a two bend fault bend fold system; it is not an 228 

accurately scaled physical model (Hubbert, 1937). It is intended to compare shapes and relative 229 

displacement and velocity relations with kinematics models. In this work, we focused on the 230 
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different domains of the displacement field during the evolution of a fault bend fold rather than the 231 

absolute values of the displacement vectors. 232 

3.2. Particle image velocimetry: 233 

There are numerous programs to carry out a particle image velocimetry (Adam et al. 2002, 234 

Adam et al., 2005; Schellart and Strak, 2016), but we selected software PIVlab-MATLAB 235 

(Thielicke and Stamhuis, 2014) because it is easy to implement and enables complex graphics of 236 

both the displacement vectors and their corresponding PIV-derived parameters like the magnitude 237 

of displacement velocity (Krýza et al., 2019). 238 

To calculate the vectors this tool divides each of the images into user-defined areas, of a 239 

certain number of pixels to be analyzed. The image should be calibrated indicating both the actual 240 

distance (in mm) between two points in the photo and the time interval (in ms) between 2 241 

successive photos. In this experiment, each pixel in the photographs represents 0.02 mm of the 242 

analog model and the time interval was equal to 60 s. In each defined area, the program compares 243 

the pixels for two successive images, detecting differences that are attributable to the movement and 244 

plotting the vectors. The presented displacement vectors are calculated on the basis of redistribution 245 

of the pixels between the photographs taken 60 s apart, representing the total displacement over that 246 

interval. After processing, validation of the vectors is performed, crossing out outliers considering 247 

that maximum velocity is the one of the motor-driven piston.  248 

To concentrate the deformation just over the basal ramp, in this experiment the aluminum 249 

wedge that represents the footwall of the fault bend fold, worked as a piston, and the hanging wall 250 

was passively deformed. Therefore, to compare the results of these experiments with classical fault 251 

bend folds, the uniform displacement of the aluminum wedge was subtracted from the obtained 252 

vector field. The resultant field was analyzed and plotted in figures 6, 7, and 8. 253 

4. Geometric and kinematic analog model results 254 

4.1. Comparing fold shape 255 
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We use the final stage of the analog model to compare the resulting fold shape with those of 256 

different kinematic models (Figure 4). The best fit (blue line in Figure 4) was visually made on the 257 

yellow highlighted layer of the experiment. Figure 4a compares the analog model with classical 258 

fault bend folding (CFBF; Suppe, 1983), Figure 4b with the fault parallel flow model (FPF; Egan et 259 

al., 1997; Kane et al., 1997), Figure 4c with a special case of vertically incline-shear, where the 260 

inclination of the shear planes is vertical (ISh; White et al., 1986), Figure 4d with curvilinear hinge 261 

model (CH; Tavani et al., 2005) and Figure 4e with a special case of backlimb trishear (BLT; 262 

Cristallini and Allmendinger, 2002). In a quick view, all the models explain the general geometry of 263 

the fold of the analog experiment. However, there are differences, and some models explain better 264 

some features than others. For example, CFBF, FPF, and ISh fail to explain the curvilinear shape of 265 

the fold, while CH and BLT represent very well this feature for the anticline, but CH does not copy 266 

the curvilinear shape of the synclines. ISh model fits very well the area covered by the fold, 267 

however, like CFBC, FPF, and CH, it does not fit the slip over the footwall ramp with that of the 268 

analog model. 269 

“Insert Figure 4 here” 270 

To analyze backlimb trishear fitting, we tested different trishear apical angles and 271 

asymmetries (Figure 5). In the initial code of Cristallini and Allmendinger (2002) both parameters 272 

had to be the same for all the fault bendings. In Figure 5 we show the results of different 273 

asymmetries, using 30° as trishear apical angle. If we compare the resulting curves with the yellow 274 

highlighted bed, we can see that -10° asymmetry works better for the backlimb while +8° 275 

asymmetry works better for the forelimb. For this work, we use the development version of Andino 276 

3D software (Cristallini et al., 2020) to modify the original code of Cristallini and Allmendinger 277 

(2002) to allow the use of different asymmetries and apical angles for each bend in the fault. In this 278 

way, we can produce a better fitting of the yellow highlighted bed using asymmetries of -10° for the 279 

backlimb bend and +8° for the forelimb bend (Figure 4e). 280 

“Insert Figure 5 here” 281 
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Natural anticlines with flat-ramp-flat geometry, those in which the fault ramp did not 282 

broaden to the top but developed an upper flat in the middle of the stratigraphic column can be 283 

comparable with our analog model, in particular, if the sedimentary cover involved in the folding 284 

does not develop major secondary faults.  285 

4.2. Comparing displacements and velocities 286 

To trace the movement of the particles in the experiment, we use PIVlab-MATLAB 287 

(Thielicke and Stamhuis, 2014). The results can be seen in Figure 6 for three steps with 1.25, 2.5 288 

cm, and 4.8 cm of applied slip. The blue vectors in figures 6a, b and c show the incremental 289 

displacement field calculated by the PIV. According to the kinematic field, two domains of rotation 290 

defining triangular geometries can be recognized, and the movement of particles is concentrated 291 

inside them. Figures 6d, e, and f are color maps of the slip vectors direction for the corresponding 292 

displacement field; a progressive rotation along the fault bending zone is outlined. The yellow 293 

dashed lines of Figure 6 represent the backlimb trishear zones adjusted to the analog model. These 294 

triangular zones fit very well the distortion zones seen in the displacement field (Figure 6). The 295 

displacement vectors are initially composed of a single horizontal component, Vx. When particles 296 

reach the backlimb rotation zone, the vertical component of the displacement vectors increases as 297 

the experiment progresses (Figures 6d, e, and f). After that, the displacement vectors remain rather 298 

parallel to the surface of the ramp (metal wedge), until particles enter the forelimb rotation zone 299 

where they progressively lose the vertical component Vy. Finally, displacement vectors are 300 

composed once again by horizontal vectors. The displacement vectors above the ramp are rather 301 

parallel to it (Figures 6a and 6b). In advanced stages of the model, the displacement vectors are not 302 

completely parallel to the fault, having an angle slightly bigger (Figure 6c). This happens perhaps, 303 

because in the final stage of the experiment, the resulting structure, moves a little away from a 304 

theoretical fault bend fold, and a smooth lift-off is beginning. Because of this, we considered that 305 

the stages represented in figures 6a and b are the most appropriate to make a detailed comparison 306 

with a kinematic model. 307 
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Figure 7 shows a comparison between the displacement vectors calculated by PIV in the 308 

experiment (blue arrows) and those calculated by the backlimb kinematic model using -10° and +8° 309 

asymmetries of backlimb and forelimb respectively and an apical angle of 30° (same model as 310 

Figure 6b and 6e). There is a very good agreement between both displacement fields, even in the 311 

rotation zones above the fault bendings (Figure 7). 312 

“Insert Figure 6 here” 313 

“Insert Figure 7 here” 314 

To compare the mean velocity vectors, three windows of the experiment section were 315 

selected to calculate the average velocity magnitudes outside of the triangular areas where vector 316 

rotations take place (Figure 8): one over the basal plane (A), one over the ramp (B), and one over 317 

the upper plane (C; Figure 8). The average velocities are 6.8 cm/h, 6.19 cm/h and 5.61 cm/h, 318 

respectively. In the same figure, a table shows the predicted velocities for the analyzed kinematic 319 

models. The decrease in velocity of B with respect to A can only be explained by the backlimb 320 

trishear model (BLT) using the same asymmetries as in figures 4e and 7 (backlimb asymmetry -10). 321 

The decrease in velocity of C with respect to B can be explained by classical fault bend folding 322 

(CFBF), curvilinear hinge model (CH), and backlimb trishear (BLT with +8° of forelimb 323 

asymmetry). However, the BLT shows the best fit between the velocity magnitudes. 324 

“Insert Figure 8 here” 325 

To accurately compare the analog model to the different theoretical kinematic models, in 326 

Figure 9, we plotted the subtraction of kinematic models velocities to the analog model velocities. 327 

Backlimb trishear (BLT) model is the one with the least differences with respect to the analog 328 

model, for both the horizontal and vertical components of the velocity vectors (Vx and Vy). 329 

“Insert Figure 9 here” 330 

To facilitate the application of the equation proposed by Cristallini and Allmendinger (2002) 331 

to calculate velocity changes across fault bends, we develop the nomogram in Figure 10, where the 332 

resultant velocity after a bend can be calculated with respect to a normalized to 1 input velocity 333 
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(velocity applied before the bend), the angle between both sections of the fault (φ) and the 334 

asymmetry of the backlimb trishear zone (α). The blue curves are for syncline bending of the fault 335 

(positives φ), while the orange curves are for anticlinal bendings (negatives φ). The curves for φ = 336 

+30° and φ = -30° shown in black are those used for the example of this paper. The blue point 337 

corresponds to α = -10° asymmetry of the backlimb adjusted to the experimental fold (Figures 4e 338 

and 8) and the red point to the α = +8° asymmetry adjusted to the forelimb (Figures 4e and 8). The 339 

resultant velocity V1 is calculated as fractions of the input velocity normalized to 1 (V0 = 1). This 340 

means that an output velocity of V1 = 1 implies that there is no change in velocities. Values of V1 < 341 

1 implies a reduction of velocity and V1 > 1 implies an increase. This graph allows sustaining that 342 

the BLT model fits the experiment well. 343 

“Insert Figure 10 here” 344 

5. Discussion 345 

The analog simulation described in this work does not represent the generality of the fault 346 

bend folds, but it serves to analyze and compare the different kinematic models. We find that all the 347 

analyzed kinematic models can broadly explain the fold geometry developed in the experiment 348 

(Figure 4). However, backlimb trishear (BLT) is the only one that can mimic accurately the 349 

geometry (Figure 4e), directions of particle displacements (Figure 7), and relations between the 350 

modulus of the velocity vectors (Figure 8). This is because BLT is the most flexible of the analyzed 351 

kinematic models. With the trishear apical angle, the sharpness of the deformation zones above the 352 

fault bends can be controlled, while the asymmetries variations can achieve different inclinations of 353 

the forelimb and changes in thickness. Moreover, when plotting the slip vectors directions in Figure 354 

6, the change in their angle is gradual and occurs along a triangular shaped rotation zone. These 355 

results fit well with the backlimb trishear model (BLT). 356 

Furthermore, by subtracting the vertical and horizontal components of the velocity vector 357 

from the fields proposed in theoretical kinematic models from the field obtained for the analog 358 

model, the backlimb trishear model (BLT) is the one that presents the smallest differences. 359 
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Therefore, it is possible to state that this model is the one that most accurately represents the fold 360 

generated in the laboratory and its kinematic evolution. It is postulated that this may be due to the 361 

flexibility of the backlimb trishear model (BLT), where a wide range of geometries can be 362 

represented from modifications in the aforementioned parameters. The nature of the materials used 363 

for the analog model support this conclusion: the sugar paste does not break during deformation, but 364 

distributes along the rotation zone presented in BLT model. The same could happen with other 365 

cohesive materials such as clay, while coarser granular materials such as dry sand do not develop 366 

progressive rotation zones, being probably best represented with other theoretical models. 367 

Cristallini and Allmendinger (2002) focused their work on explaining the geometry of the 368 

backlimb in a fault bend fold. However, as we pointed before, their equations are more flexible and 369 

can be applied to any bend in the fault surface. We modify their original code to enable the use of 370 

independent backlimb trishear apical angles and asymmetries for each bend in the fault. In 371 

Cristallini and Allmendinger (2002), the authors compare the BLT model with one of the 372 

experiments of Chester et al. (1991). However, they only could compare the backlimb of the fold, 373 

because of the limitations of the code. Now, we can show a complete comparison of the same fold 374 

(Figure 11). There is a very good fit using a backlimb trishear apical angle of 30° and asymmetries 375 

of -10° and +35° for backlimb and forelimb respectively (Figure 11).  376 

“Insert Figure 11 here” 377 

One of the restrictions of geometric and kinematic models of fault bend folding is their 378 

ability to represent highly dipping forelimbs. However, this can be solved by adjusting the 379 

asymmetry parameter of the BLT model. Figure 12 represents the comparison of one of the models 380 

of Chester et al. (1991) with a BLT simulation. In this case, with a forelimb asymmetry of +50, 381 

forelimb dipping of 80° can be achieved. 382 

“Insert Figure 12 here”  383 

Finally, based on the analyzes carried out in this work and on cited references, it is clearly 384 

observed that most of the described fault bend models (CFBF, FPF, and ISh) imply velocity vectors 385 
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parallel to the fault, where the only differences are the boundary between domains and the 386 

magnitude of the velocity vectors. If we consider the simple step structure as a system of a backlimb 387 

fold and a forelimb fold, all these models can be visualized as incline-shear cases, where the field 388 

boundaries are in the direction of shear. When the boundary is established symmetrically 389 

concerning the fault bend (as a bisector) the velocity magnitudes are conserved. If the boundary is 390 

not the bisector of fault bend, the velocity is not preserved on either side of the axial surface. With 391 

positive asymmetries, the velocity is incremented after the boundary in a syncline bend and 392 

decremented in an anticline bend, while with negative asymmetry the opposite occurs. Fault parallel 393 

flow models (FPF) give rise to a symmetrical position of field boundaries with respect to the fault 394 

bends and therefore velocities magnitudes are conserved above each fault bend (Figure 1b). In 395 

contrast, in the first stage of a classical fault bend folding (CFBF), the axial surfaces are oriented to 396 

preserve bedding thickness, and therefore the forward active axial surface does not bisect the fault 397 

bend, causing velocity not to be preserved (Figure 1a). For the incline-shear model (ISh), the 398 

velocity magnitudes are generally not conserved for each fault bend, and they are incremented or 399 

decreased depending on the asymmetry. In the special case of vertical-shear, although the slip is not 400 

conserved for each fault bend, it is conserved for the complete system of a simple step structure 401 

(Figure 1c). Backlimb trishear (BLT) can be applied to all the previous models (FPF, CFBF, or ISh) 402 

just to add progressive rotation to the limbs and to increase the curvilinear geometry of the folds, 403 

distributing deformation within a triangular shape shear zone. 404 

Although in this article we were able to simulate a fault bend fold using the BLT model, 405 

more work still needs to be done to determine which are the mechanical conditions that control 406 

asymmetry and apical angle. Although the discrete-elements model of Hardy and Finch (2007) and 407 

the analog models of Bazalgette and Petit (2007) were not made to analyze the BLT, they may 408 

suggest that the apical angle depends on the mechanical stratigraphy and friction between beds. 409 

With a strongly layered mechanical stratigraphy or very low friction between beds, a parallel layer 410 

mechanism is favored and consequently low apical angles in the BLT model. Contrary, the high 411 

Jo
urn

al 
Pre-

pro
of



coupling between beds or a weakly layered mechanical stratigraphy could favor high BLT apical 412 

angles. However, these relations need to be demonstrated, and others have to be found concerning 413 

the asymmetry. For example, in our experience, the folding above most syncline bends of faults can 414 

be described with negative asymmetries in the BLT model, but we have no conclusion about the 415 

mechanical causes of this. 416 

6. Conclusions 417 

An analog model made in the laboratory is described and processed to derive a particle 418 

image velocimetry. The generated displacement vectors illustrate the migration of materials as a 419 

fault bend fold evolves. We use this example as a trigger to analyze different geometric and 420 

kinematic models: CFBF (classical fault bed folding), FPF (fault parallel flow), ISh (incline-shear), 421 

CH (curvilinear hinge model), and BLT (backlimb trishear). All models can explain the bulk 422 

displacements of fault bend folding. However, only BLT can represent the geometry (Figure 4e), 423 

directions of particle displacements (Figure 7), and relations between the velocity vector fields 424 

(Figure 8). 425 

We propose that the combination of different asymmetry angles and different apical angles 426 

of BLT model for each bend in a fault bend fold could be a very versatile and general kinematic 427 

model for describing these types of structures. BLT apical angle can be used to control the shape of 428 

the hinges of a fold, while the asymmetry can be used to convolve the velocity of the particles 429 

above the fault. Both apical angle and asymmetries different from zero imply thickness changes. 430 

BLT mode ensures the conservation of area (in a section) during deformation, even when the 431 

asymmetry and apical angle are variable for the different bends of the fault. Fault bend folds with 432 

high inclination forelimbs can be reproduced with high positive asymmetries in the anticline bends 433 

of the fault.  434 
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Figure Captions: 558 

Figure 1: Different geometric-kinematic models for a single step fault bend fold. a. Suppe 559 

(1983) fault bend folding model (classical fault bend model in this work: CFBF). b. Fault parallel 560 

flow model (FPF) from Egan et al. (1997). c. Incline-shear model (ISh) based on White et al. 561 

(1986). In this case, vertical shear indicates that the shear angle of incline-shear model is vertical. d. 562 

Curvilinear hinge model (CH) from Tavani et al. (2005). e., f. and g. Backlimb trishear (BLT) from 563 

Cristallini and Allmendinger (2002) with asymmetries that satisfy those of CFBF, FPF, and ISh 564 

respectively.  565 

Figure 2: a. Backlimb trishear (BLT) implies progressive rotation of the beds over an 566 

angular fault bend. The angle 2φ represents the apical angle and V0 and V1 the velocities on either 567 

side of the triangular zone. θ is the dip angle for the fault. b. Definition of the asymmetry angle (α); 568 

in (a) triangular zone is symmetric (α=0). Modified from Cristallini and Allmendinger (2002). 569 

Figure 3: Sketch of the experiment pointing out the materials used. The wedge has 30°, 570 

simulating the ramp. The dough consists of salt, flour and water. The black arrows indicate the 571 

direction and velocity of the moving piston. 572 

Figure 4: Final stage of the hanging wall in the analog model compared to different 573 

kinematic models. The best fit (blue line) was visually made on the yellow highlighted layer of the 574 

experiment a. Suppe (1983) fault bend folding model (CFBF). b. Fault parallel flow model (FPF) 575 

from Egan et al. (1997). c. Incline-shear model (ISh) based on White et al. (1986). d. Curvilinear 576 

hinge model (CH) from Tavani et al. (2005). e. Backlimb trishear (BLT) from Cristallini and 577 

Allmendinger (2005). The curvilinear shape of the fold can be only obtained using the curvilinear 578 

hinge model or backlimb trishear. 579 
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Figure 5: Curves obtained from applying backlimb trishear, using 30° as apical angle and 580 

different asymmetries (see figure inset color code). Comparing with the fold shape of the analog 581 

model (using the yellow highlighted bed as reference), -10° asymmetry works better for backlimb 582 

while +8° asymmetry works better for forelimb. 583 

Figure 6: Total component of the displacement field represented with blue vectors. a. 584 

Photograph of the experiment with 1.25 cm of applied slip. b. Photograph of the experiment with 585 

2.5 cm of applied slip. c. Photograph of the experiment with 4.8 cm of applied slip. d., e., and f. 586 

Color map graphics of slip vectors direction measured anticlockwise from the x-axis. Yellow 587 

dashed lines represent the backlimb trishear zones adjusted to the analog model. 588 

Figure 7: Comparison between displacement vectors obtain from the PIV analysis (blue 589 

arrows) performed from the serial images of the analog model and those obtained after applying 590 

backlimb kinematic model (black arrows) using -10° and +8° asymmetries for backlimb and 591 

forelimb, respectively, and an apical angle of 30°. The black dashed lines represent the trishear 592 

zones for the backlimb trishear model. Total component of the displacement field represented with 593 

blue vectors corresponds to 2.5 cm of applied slip. 594 

Figure 8: a. Table presenting different kinematic models and their velocities for the 595 

following regions: A. above basal plane. B. above plane over the ramp and C. above the upper 596 

plane. Kinematic models used are: classical fault bend folding (CFBF), fault parallel flow (FPF), 597 

vertical shear (ISh), curvilinear hinge model (CH) and backlimb trishear (BLT). b. Photograph of 598 

the experiment with 2.5 cm of applied slip and the total component of the displacement field 599 

represented with blue vectors. Yellow dashed lines represent the backlimb trishear zones. White 600 

rectangles illustrate the sectors from which the average velocity is calculated. 601 

Figure 9: Resultant from the subtraction of kinematic models velocities to the analog model 602 

velocities. Kinematic models used are: classical fault bend folding (CFBF), fault parallel flow 603 

(FPF), vertical shear (ISh), and backlimb trishear (BLT) using -10° and +8° asymmetries for 604 

backlimb and forelimb, respectively, and an apical angle of 30°. The left column shows the 605 

Jo
urn

al 
Pre-

pro
of



subtraction of horizontal velocity components (Vx) and the right column, the subtraction of vertical 606 

velocity components (Vy). Note that the BLT model is the one with the least differences with 607 

respect to the analog model. 608 

Figure 10: a. Scheme showing resultant velocity (V1) after a fault bend, calculated with 609 

respect to a normalized to 1 input velocity (V0), the angle between both sections of the fault (φ) and 610 

the asymmetry of the backlimb trishear zone (α). V0 and V1 are the velocities on either side of the 611 

triangular zone. φ is the angle between both sections of the fault. α is the angle of asymmetry of the 612 

backlimb trishear zone - the angle between the bisector of the fault bend angle (in a fine black 613 

straight line) and the bisector of the apical angle of backlimb trishear (BLT axial line, dashed). 1. 614 

Syncline bending of the fault (positives φ). 2. Anticlinal bending (negatives φ) (Modified from 615 

Cristallini and Allmendinger 2002). b. Curves showing resolution for Cristallini and Allmendinger 616 

(2002) velocity variation equation. Blue curves are for syncline bending of the fault (positives φ), 617 

while the orange curves are for anticlinal bendings (negatives φ). In the analog model, the angle of 618 

the fault was 30° (black curves). Blue point corresponds to α = -10° asymmetry of the backlimb 619 

adjusted to the experiment fold (Figures 4e and 7). Red point corresponds to the α = +8° asymmetry 620 

of the forelimb adjusted to the experiment fold (Figures 4e and 7).  621 

Figure 11: Comparison between analog model from Chester et al. 1991 and a backlimb 622 

trishear with 30° of apical angle, α = -10° asymmetry for the backlimb and α = +35° asymmetry for 623 

the forelimb. 624 

Figure 12: Backlimb trishear model reconstruction using ANDINO 3D software. The 625 

geometry obtained in the analog model with a high dipping forelimb can be reproduced. a. 626 

Backlimb trishear model with 40° of apical angle, α = -20° asymmetry for the backlimb and α = 627 

+50° asymmetry for the forelimb. b. Analog model from Chester et al. 1991. 628 
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Figure 1: Different geometric-kinematic models for a single step fault bend fold. a. Suppe (1983) fault 

bend folding model (classical fault bend model in this work: CFBF). b. Fault parallel flow model (FPF) from 

Egan et al. (1997). c. Incline-shear model (ISh) based on White et al. (1986). In this case, vertical shear 

indicates that the shear angle of incline-shear model is vertical. d. Curvilinear hinge model (CH) from Tavani et 

al. (2005). e., f. and g. Backlimb trishear (BLT) from Cristallini and Allmendinger (2002) with asymmetries that 

satisfy those of CFBF, FPF, and ISh respectively.  
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Figure 2: a. Backlimb trishear (BLT) implies progressive rotation of the beds over an angular fault 

bend. The angle 2φ represents the apical angle and V0 and V1 the velocities on either side of the triangular zone. 

θ is the dip angle for the fault. b. Definition of the asymmetry angle (α); in (a) triangular zone is symmetric 

(α=0). Modified from Cristallini and Allmendinger (2002). 
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Figure 3: Sketch of the experiment pointing out the materials used. The wedge has 30°, simulating the 

ramp. The dough consists of salt, flour and water. The black arrows indicate the direction and velocity of the 

moving piston. 
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Figure 4: Final stage of the hanging wall in the analog model compared to different kinematic models. 

The best fit (blue line) was visually made on the yellow highlighted layer of the experiment a. Suppe (1983) 

fault bend folding model (CFBF). b. Fault parallel flow model (FPF) from Egan et al. (1997). c. Incline-shear 

model (ISh) based on White et al. (1986). d. Curvilinear hinge model (CH) from Tavani et al. (2005). e. 

Backlimb trishear (BLT) from Cristallini and Allmendinger (2005). The curvilinear shape of the fold can be 

only obtained using the curvilinear hinge model or backlimb trishear. 

  

Jo
urn

al 
Pre-

pro
of



 

Figure 5: Curves obtained from applying backlimb trishear, using 30° as apical angle and different 

asymmetries (see figure inset color code). Comparing with the fold shape of the analog model (using the yellow 

highlighted bed as reference), -10° asymmetry works better for backlimb while +8° asymmetry works better for 

forelimb. 

  

Jo
urn

al 
Pre-

pro
of



 
 Figure 6: Total component of the displacement field represented with blue vectors. a. Photograph of the 

experiment with 1.25 cm of applied slip. b. Photograph of the experiment with 2.5 cm of applied slip. c. 

Photograph of the experiment with 4.8 cm of applied slip. d., e., and f. Color map graphics of slip vectors 

direction measured anticlockwise from the x-axis. Yellow dashed lines represent the backlimb trishear zones 

adjusted to the analog model. 
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Figure 7: Comparison between displacement vectors obtain from the PIV analysis (blue arrows) 

performed from the serial images of the analog model and those obtained after applying backlimb kinematic 

model (black arrows) using -10° and +8° asymmetries for backlimb and forelimb, respectively, and an apical 

angle of 30°. The black dashed lines represent the trishear zones for the backlimb trishear model. Total 

component of the displacement field represented with blue vectors corresponds to 2.5 cm of applied slip. 

  

Jo
urn

al 
Pre-

pro
of



 
 

Figure 8: a. Table presenting different kinematic models and their velocities for the following regions: 

A. above basal plane. B. above plane over the ramp and C. above the upper plane. Kinematic models used are: 

classical fault bend folding (CFBF), fault parallel flow (FPF), vertical shear (ISh), curvilinear hinge model (CH) 

and backlimb trishear (BLT). b. Photograph of the experiment with 2.5 cm of applied slip and the total 

component of the displacement field represented with blue vectors. Yellow dashed lines represent the backlimb 

trishear zones. White rectangles illustrate the sectors from which the average velocity is calculated. 
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Figure 9: Resultant from the subtraction of kinematic models velocities to the analog model velocities. 

Kinematic models used are: classical fault bend folding (CFBF), fault parallel flow (FPF), vertical shear (ISh), 

and backlimb trishear (BLT) using -10° and +8° asymmetries for backlimb and forelimb, respectively, and an 

apical angle of 30°. The left column shows the subtraction of horizontal velocity components (Vx) and the right 

column, the subtraction of vertical velocity components (Vy). Note that the BLT model is the one with the least 

differences with respect to the analog model. 
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Figure 10: a. Scheme showing resultant velocity (V1) after a fault bend, calculated with respect to a 

normalized to 1 input velocity (V0), the angle between both sections of the fault (φ) and the asymmetry of the 

backlimb trishear zone (α). V0 and V1 are the velocities on either side of the triangular zone. φ is the angle 

between both sections of the fault. α is the angle of asymmetry of the backlimb trishear zone - the angle 

between the bisector of the fault bend angle (in a fine black straight line) and the bisector of the apical angle of 

backlimb trishear (BLT axial line, dashed). 1. Syncline bending of the fault (positives φ). 2. Anticlinal bending 

(negatives φ) (Modified from Cristallini and Allmendinger 2002). b. Curves showing resolution for Cristallini 

and Allmendinger (2002) velocity variation equation. Blue curves are for syncline bending of the fault 

(positives φ), while the orange curves are for anticlinal bendings (negatives φ). In the analog model, the angle 

of the fault was 30° (black curves). Blue point corresponds to α = -10° asymmetry of the backlimb adjusted to 

the experiment fold (Figures 4e and 7). Red point corresponds to the α = +8° asymmetry of the forelimb 

adjusted to the experiment fold (Figures 4e and 7).   
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Figure 11: Comparison between analog model from Chester et al. 1991 and a backlimb trishear with 30° 

of apical angle, α = -10° asymmetry for the backlimb and α = +35° asymmetry for the forelimb. 
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Figure 12: Backlimb trishear model reconstruction using ANDINO 3D software. The geometry 

obtained in the analog model with a high dipping forelimb can be reproduced. a. Backlimb trishear model with 

40° of apical angle, α = -20° asymmetry for the backlimb and α = +50° asymmetry for the forelimb. b. Analog 

model from Chester et al. 1991. 
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Black and white versions: 

Figure 1 
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Figure 3 
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Figure 4 
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Figure 5 

  

Jo
urn

al 
Pre-

pro
of



Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Highlights: 

Analogue model was performed to obtain the velocity field during deformation.  

Documentation of velocity vectors comes from particle image velocimetry. 

Backlimb trishear can represent the geometry and directions of particles velocities. 

Steeper-dipping forelimbs can be reproduced using high positive asymmetries. 

Backlimb trishear apical angle can be used to control the shape of the hinges. 
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