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Abstract:

Analog modeling of a flat-ramp-flat fault system svperformed and its geometry and
displacement field were compared to those of difierkinematic models such as classical fault
bend folding, fault parallel flow, incline-sheayreilinear hinge, and backlimb trishear. To obtain
the displacement vectors of the analog experimgemarticle Image Velocimetry was performed.
All analyzed kinematic models could explain the gyah configuration of the fault bend folding.
However, only backlimb trishear could representgaemetry, directions of particle displacements,
and relations between the displacements’ vectoespyipose in this paper that the combination of
different asymmetry angles and different apicallengf the backlimb trishear model for each bend
in a fault bend fold could be a very versatile gederal kinematic model for simulating fault bend
folds. Backlimb trishear apical angle can be usedontrol the shape of the hinges of a fold, while
the asymmetry can be used to convolve the velafditthe particles above the fault. Both apical
angle and asymmetries different from zero implyckhess changes. Fault bend folds with high
inclination forelimbs can be reproduced with higisgive asymmetries in the anticline bends of the

fault.

1. Introduction

Fault bend folding forms as the result of the mogetof a fault block along a non-planar
fault surface, which causes the bending of thekobotd therefore the formation of the fold. This
deformation generally occurs in the hanging walthef fault (Suppe, 1983; Poblet, 2004; Brandes
and Tanner, 2014). It is one of the main causekeofolding of the rocks in nature and the objdct o
different types of analog, numerical-mechanicalprgetric, and kinematic modeling. Although,
mechanical models (either analog or numerical)waléobetter understanding of the dynamics of
deformation, geometric and kinematic models hayeaatical utility when constructing complex
balanced cross-sections, and that is why theyharearget focus of this work. Different geometric

and kinematic models (Figure 1) were proposedrukite fault bend folding (Suppe, 1983; White
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et al., 1986; Egan et al., 1997; Kane et al., 199¥tallini and Allmendinger, 2002), and some of
them were implemented in balance cross-sectiontieanti®n software (Contreras, 2002; Cristallini
et al., 2021). We use an analog model as a basisdlyze the different kinematic models and to
propose variations in the backlimb trishear met{@stallini and Allmendinger, 2002) that may be
useful to simulate flat-ramp-flat fault systems.

“Insert Figure 1 here”

To produce a fault bend fold in our physical mo@dglpropriate analog materials were used
to simulate the upper crust. We employed a flexthlgar paste, which allows us to generate the
folding. The analysis of a succession of imagesigugarticle-image velocimetry (PIV), provides a
digital visual record of the velocity/displacemesactors during the evolution of the structure. In
this work, the shape obtained and the displacefireddtmeasured in the analog model of fault bend
fold are compared with several geometric and kitenraodels. Here we show that backlimb
trishear is the model that most faithfully reproesicthe geometry, directions of particle
displacements, and relations between the displaasimeectors in different parts of the fold. We
also prove that this method is well suited to ik structures with high dipping forelimbs and tha
by modifying the asymmetries of the backlimb trsheodel, changes in the dipping of the layers
involved during folding can be achieved.

In the following section, we will first review exisg geometric and kinematic models.
Next, we will present the analog model performend #nally, we discuss our overall results.

2. Fault bend folding models

The first quantitative model (here considered assital fault bend folding model: CFBF)
describing the geometry and kinematics of faultdoferds was proposed by Suppe (1983) based on
conservation of area and thickness of beds duriafprohation (Figure 1a). Suppe (1983)
formulated the equations that determine both tlwerggry and kinematics for a fold developed over
a fault with a single step or break, as well asfiore complex folds formed on ramps with different

angles, sheared folds, and hybrid structures (Rob0®4; Brandes and Tanner, 2014). The initial
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assumptions applied for the simplest case areatieat is conserved and the thickness of the layers
is preserved throughout the evolution of the f@difpe, 1983). Therefore, the model ensures that
bed length in the slip direction remains constamird) deformation. The layers are deformed by
flexural slip and axial surfaces are always bisactd bed bendings (Figure 1a). According to this
model, the characteristic shape of a fault bend ¢oinsists of a frontal limb with a greater diprtha
the backlimb, which remains parallel to the fauldmp. The evolution of simple step fault bend
folds corresponds to two perfectly differentiatédges (Suppe, 1983; Poblet, 2004) known as the
lifting of the crest and widening of the crestislimportant to notice that, during the first stathe

slip applied to the hanging wall is not all tranted forward. In Figure 1a, applied slip is indexht

as SO and transmitted slip as S1, so in this m8@et S1. Suppe (1983) CFBF conserve area (in
cross-sections), thickness, and line length dwlfgrmation.

The kinematic field that is associated with the elaaf kink band migration (Suppe, 1983)
was presented by Johnson and Berger (1989). Theslnppdposes that within a simple step
structure, 3 velocity domains can be defined basethe fault's geometry. Discontinuities separate
these domains and are equivalent to the activd axidaces previously characterized by Suppe
(1983). Vectors are parallel to the lower faultn@an the first domain, then parallel to the ramp i
the second domain, and in the third domain, theyparallel to the top fault plane. Hardy (1995)
contributes to the development of the kinematiclymma of fault bend folds, describing the
horizontal and vertical components of the veloesiggtors relying on trigopnometric relationships
that consider the ramp’s dip. Just as in the kiakdb model the most important operating
mechanism is flexural slip (Suppe, 1983; Medwedeftl Suppe, 1997), other models rely on
different mechanisms for folding.

One of the most commonly used is the fault pardiéel (FPF in this work) proposed by
Egan et al. (1997) and Kane et al. (1997). Thiseh@gigure 1b) is based on migration parallel to
the fault of the materials of the hanging wall,ngsaxial surface bisectors of fault bends as limits

between different velocities. This method statest #ill particles within the hanging wall move
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parallel to the fault surface, along virtual flowatps (Ziesch et al., 2014). Subsequent studies on
FPF allow calculating the associated deformatiodifferent areas of the structure (Ziesch et al.,
2014). Figure 1b shows that slip applied to thegiamwall () is completely transmitted forward:
S0 = Sl1. This model conserves only area (in cross-segtionsng deformation; thickness and line
length are not preserved (see for example thinairige forelimb in Figure 1b).

Another mechanism that can operate in kinemationsttuctions of fault bend folding is the
simple shear (Gibbs 1983; 1984) and its derivat{®dkite et al., 1986; White, 1992; Yamada and
McClay, 2003). Initially, the method assumed thet hanging wall is deformed by simple shear in
vertical planes (Gibbs 1983; 1984). As the anglelodar is vertical, the model is referred to as
vertical-shear (Figure 1c). Modifications were sdpgently developed and the assumption about
the inclination of the shear planes to the vertisalemoved (White et al., 1986); this is why the
model is commonly known as incline-shear (ISh iis tvork), where vertical-shear is a special
case. The direction of simple shear within the hampgvall block is constant and has a very strong
influence on the shape of the resulting fold (Wiitel., 1986; White, 1992). The slip applied te th
hanging wall could be amplified, conserved, or mldepending on the shear angle. If the shear
angle is vertical, the slip is conserved along mgete simple step structure (Figure 1c). This
model conserves only area (in cross-sections) gut@formation; thickness and line length are not

preserved (see for example thinning of backlimb fanelimb in Figure 1c).

The theory initially formulated by Suppe (1983) e exclusively folds formed from faults
composed of straight segments with angular bresd&xg¢he modeled examples fail to mimic the
traits observed in natural cases. They fail to metrmict the curved geometry seen in many of the
main faults from which the anticlines are genergdddwedeff and Suppe, 1997). To achieve this
feature, Medwedeff and Suppe (1997) propose a mekete the main fault has several segments.
The length of each segment is reduced, so the ¢aunlte recreated with curved geometry. In this
way, the resulting hinge is no longer sharp; ondirary, it is rounded, which is more consistent

with observations from field examples. In turn,le@dend generates new axial surfaces that interfere
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with each other, bringing greater complexity to #teicture (Medwedeff and Suppe, 1997). This
same idea can also be applied, and simpler, to pauéllel flow and incline-shear models, and is
usually used in software cross-section constructimother modification of the Suppe (1983)
CFBF includes the application of basal shear toabke to explain fault bend folds in which

backlimb inclination is less than fault dipping (fpe et al., 2004).

Cristallini and Allmendinger (2002) have pointed that in several analog and mechanical
models of fault bend folding formed above faultsnpmsed of straight segments with angular
breaks, the resulting fold has rounded hinges. @ mesults cannot be explained by classical fault
bend folding, neither by fault parallel flow norcime-shear. To explain these cases, they propose
the backlimb trishear model (BLT in this work; Figule, f, and g; Figure 2) where the fold hinge
describes soft curvatures in the upper strata whibse layers near the fault zone show strong
angular breaks (Cristallini and Allmendinger, 2Q0Zhis model conserves only area (in cross-
sections) during deformation; thickness and limgtk are not preserved.

To explain a similar situation, Tavani et al. (2D@&place axial surfaces represented with
straight lines by circular zones that generatectireed geometry seen in fold’s layers (Figure 1d).
This curvilinear hinge model (CH in this paper) serves area (in cross-sections), thickness, and
line length during deformation, and transmits soshear forward. Tavani et al. (2005) model
explains rounded anticline hinges, however, caerptain rounded syncline hinges.

“Insert Figure 2 here”

The backlimb trishear model (Cristallini and Allnggnger, 2002) is conceptually analogous
to forelimb trishear (Erslev, 1991, Allmendingef98), and presupposes incompressible flow in
triangular zones focused on the fault bends. I @spiations of area conservation, similar to those
derived for forelimb trishear by Zehnder and Allrdarger (2000), but in these cases applied to the
material above a fault bend. Cristallini and Allrdemger (2002) focused their paper on the
backlimb of a fold and named their model as “banklitrishear” (Figure 2). However, the idea (and

of course the equations) can be applied to any readfault and can be used to explain syncline
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and anticline hinges (Figure 1 e, f, and g). Thekbab trishear, in addition to hanging wall slip
and fault bend angle, has basically two variabths, backlimb trishear apical angle, and the
asymmetry. The second is measured with respetietéault bend bisector and is positive forward
and negative backward. Cristallini and Allmendin¢2002) showed that a symmetrical backlimb
trishear zone does not produce the variation oafigied slip versus the transmitted slip. However,
asymmetrical zones produce slip variations. Chantiwe backlimb trishear asymmetry, the model
can satisfy the slip variations of classical fdadnhd folding (Figure 1e), fault parallel flow (Figu

1f), or incline-shear (Figure 19).

3. Analog model methodology

Intending to analyze and test different kinematwdels of fault bend folding, we perform
an analog model to obtain the displacement fieldnduthe formation of simple step fault bend
folds. In this way, it is possible to evaluate amnpare the displacement field and the resulting
geometries with those of the investigated kinemiatadels. The experiment focuses on evaluating
the vectors for the first stage of fold growth, wnfting of the crest occurs.

The analog model technique is practical and sirfggl®btaining displacement fields during
deformation. Vectors of displacement are obtainggadrticle image velocimetry (Sveen, 2004), a
methodology widely used in geological process ssidKincaid and Griffiths, 2003; Boutelier and
Cruden, 2013; Strak and Schellart, 2014; Schebad Strak, 2016) performed with PIViab-
MATLAB program (Thielicke and Stamhuis, 2014). Tiesults obtained were compared with the
previously analyzed kinematic models (Figure 1)e Téchnique of analog modeling is useful since
it allows the incorporation of a mechanical framekvaito the kinematic method.

3.1. Analog model setup

To simulate the stage of the lifting of the cresaisimple step fault bend fold, we used an
experimental setup consisting of a footwall repnésg by a rigid, non-deformable wedge and a
deformable hanging wall represented by a layereastiol material (Figure 3). To meet the

objectives of this experiment, a material that wionbt fracture or fail was needed. Cohesionless
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materials as sand, traditionally used in experisi@htdeformation of the upper crust (Cristallini et
al., 2009; Ritter et al., 2016; Marshak et al., 20Hdo not meet these characteristics. The models
required a cohesive material being able to simulaestrata that constitute a sedimentary cover
involved in the folding, where no fractures areid®bs For this reason, we used sheets of sugar
paste to model the hanging wall. The preparatianehdensity of 1.27 g/chand a viscosity equal

to 2.2 x 10 Pa s, being this value similar to plasticines Widesed as analog materials for
experimental setups (Schopfer and Zulauf, 2002auiudnd Zulauf, 2004). The sheets are separated
from the bottom of the box, the metal wedge, artsveen them by low friction surfaces. To avoid
the formation of voids and to approach the challegpgcaling conditions, all the experiment is run
inside a biaxial loading cell like that proposed Bgzalgette and Petit (2007). To fill the spaces
above the layers of sugar paste, dough made withfisair, and water (density! 1.29 g/cn &
viscosity (] 1.2 x 16 Pa s) was used. This mass was placed at the tohimga9 cm in height,
separated by a plastic film that acts as a moidiarger. The dough is used to compress the entire
model, increasing vertical pressure over the sgbaets (Bazalgette and Petit, 2007), and causing
the layers of sugar paste to accommodate by folthnifpe movement of the rigid wedge. As the
box is closed, this material allows an increast@confining stress and thus inhibits the sepamati

of the sugar paste from the fault block.

“Insert Figure 3 here”

To ensure that the deformation occur on top ofvieege, it was decided not to move the
hanging wall, as in a classical fault bend fold;, imove the footwall wedge instead. The sugar paste
layers were cut with different lengths to be inselacontact with the ramp of the metal wedge to
simulate the fault. However, they cannot be extdridethe right side of the experiment because a
classical fault bend fold transmits part of the legapslip forward by the upper plane. To simulate
this situation, the layers of sugar paste are cocigtd shorter than the box, and the space thmatis
occupied by them is filled by a colorless silicomgh non-Newtonian behavior with a density of

0.97 g/cni and a viscosity of 5 x f@Pa s at 20° C (Weijermars, 1986). This idea islamo that
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used by Chester et al. (1991) in the apparatusntolate a fault bend fold and is needed to

represent this type of structure.

Plane strain condition of the experiment was erswvéh continuous observation. The
model was photographed on both sides of the detawmbaox, mounted with two opposite acrylic
walls for this purpose. The apparatus also has maoiven piston to compress the materials
arranged inside. The experiment carried out wasdTong by 15 cm wide and 19 cm high (Figure
3). Inside it and in contact with the piston, adigredge of 30° was placed. The wedge is 22 cm
long at its base and 14 cm on the upper faultdiat its ramp is 9 cm long. This device simulates
the motion of the hanging wall past the fault be(@snon and Gomes, 2019). At the base of the
experiment, only 25 cm of sugar paste was placdattwahthe top were placed 37 cm and 10 cm of
transparent silicone in contact with the pistorg(ife 3). Above the sugar paste and the silicon, the

dough was used to fill the box and increase vériea over the experiment.

The model was compressed for 67 minutgs10 cm/hour, reaching a total of 11 cm of
shortening and forming a fault bend fold. As theiaure is generated, photographs were taken
perpendicular to the direction of motion of thetmson both sides of the model to follow the
evolution of the fold. Previous trials concludedttthe deformation observed through the sidewalls
of the box is representative of the internal defatron within the models and plane strain can be
assumed. A total of 67 images were obtained, one mpmute. These photographs were
subsequently processed using the Irfanview TM [@kil2012) software to crop the area of interest
and generate the serial images. These images walgzad with the PIVIab-MATLAB program
(Thielicke and Stamhuis, 2014) to obtain the kingeneectors that illustrate the displacement field
of particles that generate the fold and the evofutiuring the lifting of the crest.

This experiment is a qualitative analog for a tvemdb fault bend fold system; it is not an
accurately scaled physical model (Hubbert, 1937)s intended to compare shapes and relative

displacement and velocity relations with kinematmsdels. In this work, we focused on the
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different domains of the displacement field durthg evolution of a fault bend fold rather than the
absolute values of the displacement vectors.
3.2. Particle image velocimetry:

There are numerous programs to carry out a paititdge velocimetry (Adam et al. 2002,
Adam et al., 2005; Schellart and Strak, 2016), imat selected software PIVIab-MATLAB
(Thielicke and Stamhuis, 2014) because it is eagynplement and enables complex graphics of
both the displacement vectors and their correspgnBilV-derived parameters like the magnitude
of displacement velocity (Kryza et al., 2019).

To calculate the vectors this tool divides eachihaf images into user-defined areas, of a
certain number of pixels to be analyzed. The imstgeuld be calibrated indicating both the actual
distance (in mm) between two points in the photd #me time interval (in ms) between 2
successive photos. In this experiment, each pixehe photographs represents 0.02 mm of the
analog model and the time interval was equal t@.680 each defined area, the program compares
the pixels for two successive images, detectinigiihces that are attributable to the movement and
plotting the vectors. The presented displacemectove are calculated on the basis of redistribution
of the pixels between the photographs taken 6@d,agpresenting the total displacement over that
interval. After processing, validation of the vestes performed, crossing out outliers considering
that maximum velocity is the one of the motor-dniyeston.

To concentrate the deformation just over the besmal, in this experiment the aluminum
wedge that represents the footwall of the faultdofatd, worked as a piston, and the hanging wall
was passively deformed. Therefore, to comparedbelts of these experiments with classical fault
bend folds, the uniform displacement of the aluminwedge was subtracted from the obtained

vector field. The resultant field was analyzed phadted in figures 6, 7, and 8.

4. Geometric and kinematic analog model results

4.1. Comparing fold shape



256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

We use the final stage of the analog model to coentiee resulting fold shape with those of
different kinematic models (Figure 4). The bes{lfiue line in Figure 4) was visually made on the
yellow highlighted layer of the experiment. Figuta compares the analog model with classical
fault bend folding (CFBF; Suppe, 1983), Figure 4thvwhe fault parallel flow model (FPF; Egan et
al., 1997; Kane et al., 1997), Figure 4c with acggdecase of vertically incline-shear, where the
inclination of the shear planes is vertical (IShhi¥¥ et al., 1986), Figure 4d with curvilinear heng
model (CH; Tavani et al., 2005) and Figure 4e vatispecial case of backlimb trishear (BLT;
Cristallini and Allmendinger, 2002). In a quick wigall the models explain the general geometry of
the fold of the analog experiment. However, theeedifferences, and some models explain better
some features than others. For example, CFBF, &RF|Sh fail to explain the curvilinear shape of
the fold, while CH and BLT represent very well thesture for the anticline, but CH does not copy
the curvilinear shape of the synclines. ISh modlsl very well the area covered by the fold,
however, like CFBC, FPF, and CH, it does not f& #lip over the footwall ramp with that of the
analog model.

“Insert Figure 4 here”

To analyze backlimb trishear fitting, we testedfadiént trishear apical angles and
asymmetries (Figure 5). In the initial code of @ikini and Allmendinger (2002) both parameters
had to be the same for all the fault bendings. igufe 5 we show the results of different
asymmetries, using 30° as trishear apical angheltompare the resulting curves with the yellow
highlighted bed, we can see that -10° asymmetryksvdyetter for the backlimb while +8°
asymmetry works better for the forelimb. For thisrly we use the development version of Andino
3D software (Cristallini et al., 2020) to modifyettoriginal code of Cristallini and Allmendinger
(2002) to allow the use of different asymmetried apical angles for each bend in the fault. In this
way, we can produce a better fitting of the yelloighlighted bed using asymmetries of -10° for the

backlimb bend and +8° for the forelimb bend (Figdieg.

“Insert Figure 5 here”
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Natural anticlines with flat-ramp-flat geometry,ofie in which the fault ramp did not
broaden to the top but developed an upper flaheriddle of the stratigraphic column can be
comparable with our analog model, in particularthé# sedimentary cover involved in the folding
does not develop major secondary faults.

4.2. Comparing displacements and velocities

To trace the movement of the particles in the arpamt, we use PIVIab-MATLAB
(Thielicke and Stamhuis, 2014). The results casden in Figure 6 for three steps with 1.25, 2.5
cm, and 4.8 cm of applied slip. The blue vectordigures 6a, b and ¢ show the incremental
displacement field calculated by the PIV. Accordiaghe kinematic field, two domains of rotation
defining triangular geometries can be recognized, the movement of particles is concentrated
inside them. Figures 6d, e, and f are color maphefslip vectors direction for the corresponding
displacement field; a progressive rotation along tault bending zone is outlined. The yellow
dashed lines of Figure 6 represent the backlinghéar zones adjusted to the analog model. These
triangular zones fit very well the distortion zore=en in the displacement field (Figure 6). The
displacement vectors are initially composed ofraylsi horizontal component, Vx. When patrticles
reach the backlimb rotation zone, the vertical congmt of the displacement vectors increases as
the experiment progresses (Figures 6d, e, andft®r &at, the displacement vectors remain rather
parallel to the surface of the ramp (metal wedgaejil particles enter the forelimb rotation zone
where they progressively lose the vertical componéy. Finally, displacement vectors are
composed once again by horizontal vectors. Thelatisment vectors above the ramp are rather
parallel to it (Figures 6a and 6b). In advancedesaof the model, the displacement vectors are not
completely parallel to the fault, having an andlghgly bigger (Figure 6c¢). This happens perhaps,
because in the final stage of the experiment, #@selting structure, moves a little away from a
theoretical fault bend fold, and a smooth lift-effbeginning. Because of this, we considered that
the stages represented in figures 6a and b amndisé appropriate to make a detailed comparison

with a kinematic model.
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Figure 7 shows a comparison between the displadewssmtors calculated by PIV in the
experiment (blue arrows) and those calculated bybttklimb kinematic model using -10° and +8°
asymmetries of backlimb and forelimb respectivetyl @n apical angle of 30° (same model as
Figure 6b and 6e). There is a very good agreememieen both displacement fields, even in the

rotation zones above the fault bendings (Figure 7).
“Insert Figure 6 here”
“Insert Figure 7 here”

To compare the mean velocity vectors, three windaivdhe experiment section were
selected to calculate the average velocity mageg#uzlitside of the triangular areas where vector
rotations take place (Figure 8): one over the bpkade (A), one over the ramp (B), and one over
the upper plane (C; Figure 8). The average ve&xidre 6.8 cm/h, 6.19 cm/h and 5.61 cm/h,
respectively. In the same figure, a table showsptieelicted velocities for the analyzed kinematic
models. The decrease in velocity of B with resgecA can only be explained by the backlimb
trishear model (BLT) using the same asymmetries igures 4e and 7 (backlimb asymmetry -10).
The decrease in velocity of C with respect to B banexplained by classical fault bend folding
(CFBF), curvilinear hinge model (CH), and backlintishear (BLT with +8° of forelimb
asymmetry). However, the BLT shows the best fiheetin the velocity magnitudes.

“Insert Figure 8 here”

To accurately compare the analog model to the réiffetheoretical kinematic models, in
Figure 9, we plotted the subtraction of kinematiodels velocities to the analog model velocities.
Backlimb trishear (BLT) model is the one with treas$t differences with respect to the analog
model, for both the horizontal and vertical compusef the velocity vectors (Vx and Vy).

“Insert Figure 9 here”

To facilitate the application of the equation prepo by Cristallini and Allmendinger (2002)
to calculate velocity changes across fault bendsgdewvelop the nomogram in Figure 10, where the

resultant velocity after a bend can be calculatéti vespect to a normalized to 1 input velocity
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(velocity applied before the bend), the angle betwéoth sections of the faulp)( and the
asymmetry of the backlimb trishear zong. (The blue curves are for syncline bending offthét
(positivese), while the orange curves are for anticlinal begdi (negatives). The curves fop =
+30° ande = -30° shown in black are those used for the exampthis paper. The blue point
corresponds ta = -10° asymmetry of the backlimb adjusted to thpeeimental fold (Figures 4e
and 8) and the red point to the= +8° asymmetry adjusted to the forelimb (Figutesand 8). The
resultant velocity V1 is calculated as fractiongle# input velocity normalized to 1 (VO = 1). This
means that an output velocity of V1 = 1 implies tie@re is no change in velocities. Values of V1 <
1 implies a reduction of velocity and V1 > 1 imglian increase. This graph allows sustaining that

the BLT model fits the experiment well.
“Insert Figure 10 here”

5. Discussion

The analog simulation described in this work doesrapresent the generality of the fault
bend folds, but it serves to analyze and compar elifferent kinematic models. We find that all the
analyzed kinematic models can broadly explain tild ieometry developed in the experiment
(Figure 4). However, backlimb trishear (BLT) is tloaly one that can mimic accurately the
geometry (Figure 4e), directions of particle displments (Figure 7), and relations between the
modulus of the velocity vectors (Figure 8). Thibecause BLT is the most flexible of the analyzed
kinematic models. With the trishear apical andhe, sharpness of the deformation zones above the
fault bends can be controlled, while the asymmeteaiations can achieve different inclinations of
the forelimb and changes in thickness. Moreoveempblotting the slip vectors directions in Figure
6, the change in their angle is gradual and ocalosg a triangular shaped rotation zone. These
results fit well with the backlimb trishear modBIL(T).

Furthermore, by subtracting the vertical and hariabcomponents of the velocity vector
from the fields proposed in theoretical kinematiodels from the field obtained for the analog

model, the backlimb trishear model (BLT) is the oimat presents the smallest differences.
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Therefore, it is possible to state that this magdehe one that most accurately represents the fold
generated in the laboratory and its kinematic ewatu It is postulated that this may be due to the
flexibility of the backlimb trishear model (BLT), were a wide range of geometries can be
represented from modifications in the aforementibparameters. The nature of the materials used
for the analog model support this conclusion: tngas paste does not break during deformation, but
distributes along the rotation zone presented i Bhodel. The same could happen with other
cohesive materials such as clay, while coarserujmamaterials such as dry sand do not develop

progressive rotation zones, being probably besesgmted with other theoretical models.

Cristallini and Allmendinger (2002) focused theionk on explaining the geometry of the
backlimb in a fault bend fold. However, as we pethbefore, their equations are more flexible and
can be applied to any bend in the fault surface.n@eify their original code to enable the use of
independent backlimb trishear apical angles andnawmtries for each bend in the fault. In
Cristallini and Allmendinger (2002), the authorsmymare the BLT model with one of the
experiments of Chester et al. (1991). However, th@ly could compare the backlimb of the fold,
because of the limitations of the code. Now, we slaow a complete comparison of the same fold
(Figure 11). There is a very good fit using a bewkltrishear apical angle of 30° and asymmetries
of -10° and +35° for backlimb and forelimb respeely (Figure 11).

“Insert Figure 11 here”

One of the restrictions of geometric and kinematiodels of fault bend folding is their
ability to represent highly dipping forelimbs. Howves, this can be solved by adjusting the
asymmetry parameter of the BLT model. Figure 12asgnts the comparison of one of the models
of Chester et al. (1991) with a BLT simulation.tms case, with a forelimb asymmetry of +50,
forelimb dipping of 80° can be achieved.

“Insert Figure 12 here”

Finally, based on the analyzes carried out inWosk and on cited references, it is clearly

observed that most of the described fault bend led@¥BF, FPF, and ISh) imply velocity vectors
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parallel to the fault, where the only differencag d@he boundary between domains and the
magnitude of the velocity vectors. If we consider simple step structure as a system of a backlimb
fold and a forelimb fold, all these models can ialized as incline-shear cases, where the field
boundaries are in the direction of shear. When hlendary is established symmetrically
concerning the fault bend (as a bisector) the wglasagnitudes are conserved. If the boundary is
not the bisector of fault bend, the velocity is patserved on either side of the axial surfacehWit
positive asymmetries, the velocity is incrementdgrathe boundary in a syncline bend and
decremented in an anticline bend, while with negasisymmetry the opposite occurs. Fault parallel
flow models (FPF) give rise to a symmetrical paositof field boundaries with respect to the fault
bends and therefore velocities magnitudes are coedeabove each fault bend (Figure 1b). In
contrast, in the first stage of a classical faehd folding (CFBF), the axial surfaces are oriented
preserve bedding thickness, and therefore the fonaetive axial surface does not bisect the fault
bend, causing velocity not to be preserved (Figlage For the incline-shear model (ISh), the
velocity magnitudes are generally not conservedetarh fault bend, and they are incremented or
decreased depending on the asymmetry. In the $pasia of vertical-shear, although the slip is not
conserved for each fault bend, it is conservedttiercomplete system of a simple step structure
(Figure 1c). Backlimb trishear (BLT) can be appliedill the previous models (FPF, CFBF, or ISh)
just to add progressive rotation to the limbs amihtrease the curvilinear geometry of the folds,
distributing deformation within a triangular shagieear zone.

Although in this article we were able to simulatéaalt bend fold using the BLT model,
more work still needs to be done to determine whioh the mechanical conditions that control
asymmetry and apical angle. Although the discré&ments model of Hardy and Finch (2007) and
the analog models of Bazalgette and Petit (2007 wet made to analyze the BLT, they may
suggest that the apical angle depends on the mieahatratigraphy and friction between beds.
With a strongly layered mechanical stratigraphyeny low friction between beds, a parallel layer

mechanism is favored and consequently low apicgleanin the BLT model. Contrary, the high



412 coupling between beds or a weakly layered mechbsicatigraphy could favor high BLT apical

413 angles. However, these relations need to be denatedt and others have to be found concerning
414 the asymmetry. For example, in our experiencefdligng above most syncline bends of faults can
415 be described with negative asymmetries in the Bladeh but we have no conclusion about the

416 mechanical causes of this.

417 6. Conclusions

418 An analog model made in the laboratory is descriaed processed to derive a particle
419 image velocimetry. The generated displacement v®dlioistrate the migration of materials as a
420 fault bend fold evolves. We use this example asiggdr to analyze different geometric and
421 kinematic models: CFBF (classical fault bed foldingPF (fault parallel flow), ISh (incline-shear),
422 CH (curvilinear hinge model), and BLT (backlimbstiear). All models can explain the bulk
423 displacements of fault bend folding. However, oBlyT can represent the geometry (Figure 4e),
424 directions of particle displacements (Figure 7)d amlations between the velocity vector fields
425 (Figure 8).

426 We propose that the combination of different asymnyangles and different apical angles
427 of BLT model for each bend in a fault bend fold lcbhe a very versatile and general kinematic
428 model for describing these types of structures. Bbical angle can be used to control the shape of
429 the hinges of a fold, while the asymmetry can bedu® convolve the velocity of the particles
430 above the fault. Both apical angle and asymmettig#erent from zero imply thickness changes.
431 BLT mode ensures the conservation of area (in @iosgcduring deformation, even when the
432 asymmetry and apical angle are variable for thiewhht bends of the fault. Fault bend folds with
433  high inclination forelimbs can be reproduced withhhpositive asymmetries in the anticline bends

434  of the fault.
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Figure Captions:

Figure 1: Different geometric-kinematic models for a singtep fault bend folda. Suppe
(1983) fault bend folding model (classical faulhbdemodel in this work: CFBF). Fault parallel
flow model (FPF) from Egan et al. (199%. Incline-shear model (ISh) based on White et al.
(1986). In this case, vertical shear indicates tiratshear angle of incline-shear model is vertatal
Curvilinear hinge model (CH) from Tavani et al. (&). e, f. andg. Backlimb trishear (BLT) from
Cristallini and Allmendinger (2002) with asymmegri¢hat satisfy those of CFBF, FPF, and ISh

respectively.

Figure 2: a. Backlimb trishear (BLT) implies progressive rotatiof the beds over an
angular fault bend. The angle 2epresents the apical angle anglavid \4 the velocities on either
side of the triangular zone@.is the dip angle for the faulh. Definition of the asymmetry angle){

in (a) triangular zone is symmetrie<0). Modified from Cristallini and Allmendinger (2Q).

Figure 3. Sketch of the experiment pointing out the materizgded. The wedge has 30°,
simulating the ramp. The dough consists of sadrfland water. The black arrows indicate the

direction and velocity of the moving piston.

Figure 4: Final stage of the hanging wall in the analog mocemnpared to different
kinematic models. The best fit (blue line) was gibumade on the yellow highlighted layer of the
experimenta. Suppe (1983) fault bend folding model (CFBB).Fault parallel flow model (FPF)
from Egan et al. (1997k. Incline-shear model (ISh) based on White et al8@)9d. Curvilinear
hinge model (CH) from Tavani et al. (200%. Backlimb trishear (BLT) from Cristallini and
Allmendinger (2005). The curvilinear shape of tb&dfcan be only obtained using the curvilinear

hinge model or backlimb trishear.
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Figure 5: Curves obtained from applying backlimb trisheaings30° as apical angle and
different asymmetries (see figure inset color co@mparing with the fold shape of the analog
model (using the yellow highlighted bed as refeegnel0° asymmetry works better for backlimb

while +8° asymmetry works better for forelimb.

Figure 6: Total component of the displacement field represgnwith blue vectorsa.
Photograph of the experiment with 1.25 cm of agpbép. b. Photograph of the experiment with
2.5 cm of applied slipc. Photograph of the experiment with 4.8 cm of agpkép. d., e, andf.
Color map graphics of slip vectors direction meaduanticlockwise from the x-axis. Yellow

dashed lines represent the backlimb trishear zadested to the analog model.

Figure 7: Comparison between displacement vectors obtain fiteenPIV analysis (blue
arrows) performed from the serial images of thelananodel and those obtained after applying
backlimb kinematic model (black arrows) using -1&id +8° asymmetries for backlimb and
forelimb, respectively, and an apical angle of 3Dfie black dashed lines represent the trishear
zones for the backlimb trishear model. Total congmbrof the displacement field represented with

blue vectors corresponds to 2.5 cm of applied slip.

Figure 8: a. Table presenting different kinematic models andirtivelocities for the
following regions: A. above basal plane. B. abolene over the ramp and C. above the upper
plane. Kinematic models used are: classical fagitdbfolding (CFBF), fault parallel flow (FPF),
vertical shear (ISh), curvilinear hinge model (Cihd backlimb trishear (BLT)h. Photograph of
the experiment with 2.5 cm of applied slip and tb&al component of the displacement field
represented with blue vectors. Yellow dashed lirgggesent the backlimb trishear zones. White
rectangles illustrate the sectors from which therage velocity is calculated.

Figure 9: Resultant from the subtraction of kinematic model®cities to the analog model
velocities. Kinematic models used are: classicaltf@end folding (CFBF), fault parallel flow
(FPF), vertical shear (ISh), and backlimb trish@LT) using -10° and +8° asymmetries for

backlimb and forelimb, respectively, and an apiaagle of 30°. The left column shows the
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subtraction of horizontal velocity components (\ax)d the right column, the subtraction of vertical
velocity components (Vy). Note that the BLT modelthe one with the least differences with
respect to the analog model.

Figure 10: a. Scheme showing resultant velocityJ\after a fault bend, calculated with
respect to a normalized to 1 input velocity),\Mhe angle between both sections of the fap)lagd
the asymmetry of the backlimb trishear zoag ¥, and 4 are the velocities on either side of the
triangular zoneg is the angle between both sections of the fauli.the angle of asymmetry of the
backlimb trishear zone - the angle between thectnseof the fault bend angle (in a fine black
straight line) and the bisector of the apical argfl®acklimb trishear (BLT axial line, dashed). 1.
Syncline bending of the fault (positivgg. 2. Anticlinal bending (negatives) (Modified from
Cristallini and Allmendinger 2002). Curves showing resolution for Cristallini and Allntenger
(2002) velocity variation equation. Blue curves @mesyncline bending of the fault (positives,
while the orange curves are for anticlinal bendifmggativesp). In the analog model, the angle of
the fault was 30° (black curves). Blue point copasls toa = -10° asymmetry of the backlimb
adjusted to the experiment fold (Figures 4e andRé}l point corresponds to the= +8° asymmetry
of the forelimb adjusted to the experiment foldy{(Fes 4e and 7).

Figure 11: Comparison between analog model from Chester.et%1 and a backlimb
trishear with 30° of apical angle,= -10° asymmetry for the backlimb and= +35° asymmetry for

the forelimb.

Figure 12: Backlimb trishear model reconstruction using ANDINBD software. The
geometry obtained in the analog model with a higbpidg forelimb can be reproduced.
Backlimb trishear model with 40° of apical anglex= -20° asymmetry for the backlimb and=

+50° asymmetry for the forelimb. Analog model from Chester et al. 1991.
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Figure 1. Different geometric-kinematic models for a singlepsfault bend folda. Suppe (1983) fault

bend folding model (classical fault bend modelhirs twork: CFBF).b. Fault parallel flow model (FPF) from

Egan et al. (1997)c. Incline-shear model (ISh) based on White et a®86). In this case, vertical shear
indicates that the shear angle of incline-shearahisdvertical.d. Curvilinear hinge model (CH) from Tavani et
al. (2005).e, f. andg. Backlimb trishear (BLT) from Cristallini and Allmelimger (2002) with asymmetries that

satisfy those of CFBF, FPF, and ISh respectively.
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Figure 2: a. Backlimb trishear (BLT) implies progressive rotatiof the beds over an angular fault
bend. The angle@represents the apical angle angdavid 4 the velocities on either side of the triangulareon

0 is the dip angle for the faulb. Definition of the asymmetry angle){ in (a) triangular zone is symmetric

(0=0). Modified from Cristallini and Allmendinger (2Q).
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Figure 3: Sketch of the experiment pointing out the materieded. The wedge has 30°, simulating the

ramp. The dough consists of salt, flour and wakée black arrows indicate the direction and velooit the

moving piston.



classical fault bend folding fault parallel flow

vertical - shear curvilinear hinge model

backlimb trishear

Figure 4: Final stage of the hanging wall in the analog ni@denpared to different kinematic models.
The best fit (blue line) was visually made on tlellogw highlighted layer of the experimeat Suppe (1983)
fault bend folding model (CFBFh. Fault parallel flow model (FPF) from Egan et 41997).c. Incline-shear
model (ISh) based on White et al. (1988).Curvilinear hinge model (CH) from Tavani et al0(®). e.
Backlimb trishear (BLT) from Cristallini and Allmeimger (2005). The curvilinear shape of the fold ¢e

only obtained using the curvilinear hinge modebacklimb trishear.




Angles of backlimb trishear asymmetry
(same asymmetry in backlimb and forelimb)

Figure 5: Curves obtained from applying backlimb trisheasing 30° as apical angle and different
asymmetries (see figure inset color code). Compasiith the fold shape of the analog model (usiregytellow
highlighted bed as reference), -10° asymmetry wbekter for backlimb while +8° asymmetry works beffor

forelimb.



- difgem of slip Gr
Figure 6: Total component of the displacement field represstwith blue vectorsaa. Photograph of the

experiment with 1.25 cm of applied slip. Photograph of the experiment with 2.5 cm of ampl&ip. c.
Photograph of the experiment with 4.8 cm of appbég. d., e, andf. Color map graphics of slip vectors
direction measured anticlockwise from the x-axiglldv dashed lines represent the backlimb triskzeaes

adjusted to the analog model.



— Analog model velocity

— Backlimb trishear velocity

= = _ 5cm

Figure 7. Comparison between displacement vectors obtaim ftbe PIV analysis (blue arrows)
performed from the serial images of the analog rhadd those obtained after applying backlimb kineena
model (black arrows) using -10° and +8° asymmetioesbacklimb and forelimb, respectively, and amcap
angle of 30°. The black dashed lines representtriisbear zones for the backlimb trishear model.allot

component of the displacement field represented hlite vectors corresponds to 2.5 cm of appligd sli



a.

Kinematic model A (cm/h) B (cm/h) C (cm/h)
CFBF 6.8 6.8 3.9
FPF 6.8 6.8 6.8
ISh (vert.) 6.8 7.85 6.8
CH 6.8 6.8 3.9
BLT (-10;+8) 6.8 6.19 5.7

b 6.19 cm/h 5.61 cm/h

6.8 cm/h

2.5 cm of slip

Figure 8. a. Table presenting different kinematic models arartkielocities for the following regions:
A. above basal plane. B. above plane over the ramdipC. above the upper plane. Kinematic models ased
classical fault bend folding (CFBF), fault parallleiw (FPF), vertical shear (ISh), curvilinear hengnodel (CH)
and backlimb trishear (BLT)b. Photograph of the experiment with 2.5 cm of amgplgip and the total
component of the displacement field representel hlite vectors. Yellow dashed lines represent duklbmb

trishear zones. White rectangles illustrate théosedrom which the average velocity is calculated.



annalogue- kainematic Vyanalogue- Vy kinematic

Figure 9: Resultant from the subtraction of kinematic modakcities to the analog model velocities.
Kinematic models used are: classical fault bendifigl (CFBF), fault parallel flow (FPF), verticalesr (ISh),
and backlimb trishear (BLT) using -10° and +8° amatries for backlimb and forelimb, respectivelydamn
apical angle of 30°. The left column shows the adbion of horizontal velocity components (Vx) ahe right

column, the subtraction of vertical velocity compats (Vy). Note that the BLT model is the one wilik least

differences with respect to the analog model.
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Figure 10: a. Scheme showing resultant velocity {\after a fault bend, calculated with respect to a
normalized to 1 input velocity @, the angle between both sections of the fag)ltapnd the asymmetry of the
backlimb trishear zonen). Vo and \ are the velocities on either side of the triangalane.o is the angle
between both sections of the fault.is the angle of asymmetry of the backlimb trisheane - the angle
between the bisector of the fault bend angle (imexblack straight line) and the bisector of tipécal angle of
backlimb trishear (BLT axial line, dashed). 1. Syme bending of the fault (positiveg. 2. Anticlinal bending
(negativesp) (Modified from Cristallini and Allmendinger 2002). Curves showing resolution for Cristallini
and Allmendinger (2002) velocity variation equatidBlue curves are for syncline bending of the fault
(positivese), while the orange curves are for anticlinal begdi (negatives). In the analog model, the angle
of the fault was 30° (black curves). Blue pointresponds ta = -10° asymmetry of the backlimb adjusted to
the experiment fold (Figures 4e and 7). Red poortesponds to the = +8° asymmetry of the forelimb

adjusted to the experiment fold (Figures 4e and 7).



Figure 11: Comparison between analog model from Chester 08Il and a backlimb trishear with 30°

of apical angleg = -10° asymmetry for the backlimb and +35° asymmetry for the forelimb.
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Backlimb trishear with 40°of apical angle, -20°of
backlimb asymmetry and +50°of forelimb asymmetry

Figure 12: Backlimb trishear model reconstruction using ANRIN3SD software. The geometry
obtained in the analog model with a high dippingelionb can be reproduced. Backlimb trishear model with
40° of apical angley = -20° asymmetry for the backlimb and= +50° asymmetry for the forelimb. Analog

model from Chester et al. 1991.
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Figure4

classical fault bend folding fault parallel flow

vertical-shear curvilinear hinge model
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Figure5

Angles of backlimb trishear asymmetry
(same asymmetry in backlimb and forelimb)
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Figure8

a.

Kinematic model A (cm/h) B (cm/h) C (cm/h)

CFBF 6.8 6.8 3.9

FPF 6.8 6.8 6.8

ISh (vert.) 6.8 7.85 6.8

CH 6.8 6.8 3.9

BLT (-10;+8) 6.8 6.19 5.7
b.6.8 /b 6.19 cm/h 5.61 cm/h

2.5 cm of slip




VX analogue - VX kinematic

Figure9

Vyanalogue- Vy kinematic
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Figure 11

Backlimb trishear with 30°of apical angle, -10° of
backlimb asymmetry and +35°of forelimb asymmetry




Figure 12

Backlimb trishear with 40°of apical angle, -20° of
backlimb asymmetry and +50°0f forelimb asymmetry



Highlights:

Analogue model was performed to obtain the velocity field during deformation.
Documentation of velocity vectors comes from particle image velocimetry.
Backlimb trishear can represent the geometry and directions of particles velocities.
Steeper-dipping forelimbs can be reproduced using high positive asymmetries.

Backlimb trishear apical angle can be used to control the shape of the hinges.
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