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Abstract 

In renal cells, hyperosmolarity can induce cellular stress or differentiation. Both processes require 

active endoplasmic reticulum (ER)-associated protein synthesis. Lipid biosynthesis also occurs at ER 

surface. We showed that hyperosmolarity upregulates glycerophospholipid (GP) and triacylglycerol 

(GL-TG) de novo synthesis. Considering that massive synthesis of proteins and/or lipids may drive to 

ER stress, herein we evaluated whether hyperosmolar environment induces ER stress and the 

participation of inositol-requiring enzyme 1 (IRE1)-XBP1 in hyperosmotic-induced lipid synthesis. 

Treatment of Madin-Darby canine kidney (MDCK) cells with hyperosmolar medium triggered ER 

stress-associated unfolded protein response (UPR). Hyperosmolarity significantly increased xbp1 

mRNA and protein as function of time; 24 h of treatment raised the spliced form of XBP1 protein 

(XBP1s) and induced its translocation to nuclear compartment where it can act as a transcription 

factor. XBP1 silencing or IRE1 ribonuclease (RNAse) inhibition impeded the expression of lipin1, 

lipin2 and diacylglycerol acyl transferase-1 (DGAT1) enzymes which yielded decreased GL-TG 

synthesis. The lack of XBP1s also decreased sterol regulatory element binding protein (SREBP) 1 and 

2. Together our data demonstrate that hyperosmolarity induces IRE1XBP1s activation; XBP1s 

drives the expression of SREBP1 and SREBP2 which in turn regulates the expression of the lipogenic 

enzymes lipin1 (LPIN1) and 2 (LPIN2) and DGAT1. We also demonstrated for the first time that 

tonicity-responsive enhancer binding protein (TonEBP), the master regulator of osmoprotective 

response, regulates XBP1 expression. Thus, XBP1 acts as an osmoprotective protein since it is 

activated by high osmolarity and upregulates lipid metabolism, membranes generation and the 

restoration of ER homeostasis 
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UPR, unfolded protein response; XBP1, X-box binding protein; GP, glycerophospholipids; GL-DG, 
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acyltransferase;  
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1. Introduction.  

Hyperosmolarity is a key controversial signal for renal cells. Under physiological conditions, it 

induces renal cell differentiation and maturation of urine concentrating system. High interstitial 

osmolarity is necessary to concentrate urine in mature kidneys [1-3]. However, abrupt changes in 

environmental osmolarity may induce cell stress that can lead to death. Interestingly, both processes 

require an active synthesis of proteins either related to renal function in differentiated cells or related 

to osmoprotection [2-5]. In addition, we demonstrated that hyperosmolarity upregulates lipid 

metabolism in renal cells, by activating the transcription of lipogenic genes such as fatty acid synthase 

(fas), lipins, diacylglycerol acyltransferase (dgat) and the transcriptional regulator sterol regulatory 

element-binding protein (srebp) [6-8]. Hyperosmolar activation of lipid metabolism is a requirement 

as an osmoprotective mechanism by preserving membrane structure as well as a physiological tool in 

differentiation by constructing cell structure and tissue architecture. 

 Most lipids, glycerophospholipids (GP), trilglycerols (GL-TG), cholesterol and ceramide 

biosynthesis occur at the endoplasmic reticulum (ER). In addition, ER plays a central role in calcium 

storage and homeostasis, and in membrane-, secretory- and lysosomal-proteins synthesis, folding and 

post-translational modifications [9, 10]. In response to several stimuli, an abrupt protein synthesis may 

occur leading to an accumulation of macromolecular aggregates of misfolded proteins within ER 

lumen, which causes the disruption of ER homeostasis, known as ER stress. To restore ER 

homeostasis, the unfolded protein response (UPR) is activated. The UPR is an intracellular signaling 

pathway that transmits signals from the ER lumen in order to activate gene transcription. As 

consequence of UPR activation, ER protein-folding capacity is improved by increasing the expression 

of chaperones and foldases as well as the expansion of the ER membranes. If ER stress is not resolved, 

cell death occurs [11]. ER stress activates UPR by means of three ER transmembrane transducers: the 

inositol-requiring enzyme kinase 1 (IRE1), the pancreatic ER kinase (PERK), and the activating 

transcription factor 6 (ATF6). In normal conditions, all these three proteins bind to a chaperone named 

binding immunoglobulin protein (BiP), also known glucose-regulated protein 78 (GRP78), through 

their luminal domains. Under stress conditions, BiP binds to misfolded proteins causing its 

dissociation from IRE1, ATF6 and/or PERK. These proteins suffer a conformational change that 

triggers UPR pathways signaling. All the three pathways promote the transcription of genes related to 
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the restoration of cell homeostasis [11].  

 Activated-IRE1 pathway drives IRE1-endoribonuclease (RNase) activation which initiates 

a non-conventional mRNA splicing reaction of the pre-existing X box binding protein 1 mRNA 

(xbp1u). Spliced-XBP1 mRNA (xbp1s) is then translated to the spliced XBP1 protein (XBP1s). XBP1s 

is a transcription factor that translocates to the nucleus and initiates the transcription of UPR-related 

and non-related genes. XBP1expression is also activated by ATF6 and PERK pathways [11]. XBP1s 

can be considered a super transcription factor since its activity is associated with the expression of 

chaperones, endoplasmic reticulum-associated degradation (ERAD) proteins, XBP1 itself and 

inflammatory genes [12]. XBP1s also mediates the expression of genes involved in differentiation, 

survival, apoptosis and autophagy. In addition, IRE1α-XBP1s pathway is involved in lipid metabolism 

since activates the transcription of many lipogenic enzymes such as DGAT2 (diacylglycerol acyl 

transferase 2), SCD1 (stearoyl-CoA desaturase 1) and ACC2 (Acetyl-CoA carboxylase 2), being a 

critical regulator of hepatic lipid metabolism [13] .  

 Bearing in mind this background information, the aim of the present work was to determine 

whether hyperosmolarity activates IRE1α/XBP1s pathway in renal epithelial cells and the role of 

XBP1s transcription factor in the upregulation of lipid metabolism in renal cells submitted to 

hyperosmolar stress.    
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2. Materials and Methods 

All drugs, salts and solvents used to prepare buffers or chromatography mobile phases were of 

analytical grade and purchased from Merck Argentina. 

2.1. Culture conditions. Madin-Darby canine kidney (MDCK) cells (American Type Culture 

Collection, passages 55–58) were grown in a mixture containing DMEM (Dulbecco's modified eagle's 

medium) and Ham’s-F12 (1:1) (GIBCO
TM

), 10 % FBS (Fetal bovine serum) (Natocor
TM

), and 1 % 

antibiotic mixture (GIBCO
TM

). After reaching 70–80% confluence, cells were placed in low-serum 

medium (0.5% FBS) for 24 h and then subjected to hyperosmolarity for different periods of time (0, 6, 

12, 24 or 48 h). For isosmolar condition, the commercial medium was used. Its osmolality (298  19 

mOsmol/Kg of water), measured with an osmometer (μOSMETTE, Precision Systems; Sudsbury, 

MA), resulted from its sodium salts composition: 120 mM NaCl, 14 mM NaHCO3, 0.5 mM Na2HPO4 

(anhydrous), 0.5 mM NaH2PO4·H2O. Hyperosmolar media were made by adding aliquots of sterile 5 

M NaCl to commercial medium to achieve desired final osmolality (520  12 mOsmol/Kg of water) 

generated by sodium salts of commercial medium plus the addition of 125 mM NaCl [6, 14]. After 

treatments, media containing dead cells and debris were discarded, and cells attached to the culture 

plastic were collected after 0.25 % trypsin-EDTA (GIBCO
TM

) treatment and counted in a 

hemocytometer chamber (Neubauer´s chamber). Total and viable cells were determined by trypan blue 

exclusion test which is based on the principle that live cells possess intact cell membranes that exclude 

trypan blue whereas not viable cells do not [15]. Cells were used for western blot analysis, mRNA 

isolation and cellular fractionation. 

2.2. Analysis of XBP1 contribution to lipid synthesis. The involvement of XBP1 in 

glycerophospholipids (GP) and triglycerol-glycerolipids (GL-TG) synthesis was evaluated by using 

4µ8C (Sigma-Aldrich), a pharmacological inhibitor of IRE1α-associated endoribonuclease activity 

which is involved in the splicing of the immature xbp1 mRNA (xbp1u) [16]; or by gene silencing 

using xbp1-small interfering RNA (xbp1-siRNA) strategy. To do this, MDCK cells were grown in a 

mixture containing DMEM/Ham’s-F12 (1:1), 10 % FBS and 1 % antibiotic mixture. After reaching 

70–80% confluence, cells were placed in low-serum medium (0.5% FBS) for 24 h and, before NaCl 

addition, cultures were grown in the absence or in the presence of 20 M 4µ8C for 30 min to allow 
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inhibitor uptake. After that, hyperosmolar cultures were made by supplementing media with 5 M NaCl 

up to final concentration 125 mM while isosmolar cultures were added with equal volume of sterile 

vehicle.  Then cells were incubated for extra 24 h.  

In other set of experiments, cells were transfected with xbp1-siRNA designed in our laboratory by 

using BLOCK-iT™ RNAi Designer (Thermofisher) (5’CCUCUGAGACAGAGAGCCAAGCUAA-

3’/5’-UUAGCUUGGCUCUCUGUCUCAGAGG-3’) and purchased from Invitrogen. Transfections 

were performed with lipofectamine 3000 (Invitrogen) according to manufacturer instructions. Briefly, 

MDCK cells were grown in a mixture containing DMEM/Ham’s-F12 (1:1), 10 % FBS and 1 % 

antibiotic mixture. After reaching 50% confluence, media were replaced by fresh DMEM-F12/0.5 % 

FBS without antibiotic containing a mixture of lipofectamine 3000 and an aliquot of 20 μM xbp1-

siRNA to reach final concentration of 40 nM. Cells were grown in the presence of this reactive for 5 h 

and then, transfection protocol was repeated once. After transfection, media were replaced by fresh 

DMEM-F12/0.5 % FBS and hyperosmolar cultures were made by supplementing media with 5 M 

NaCl up to final concentration 125 mM, while isosmolar cultures were added with equal volume of 

sterile vehicle. Then cells were incubated for extra 24 h. After treatments, cells were collected by 0.25 

% trypsin-EDTA treatment, counted and used for RNA extraction or for lipid metabolism analysis. 

2.3. Analysis of TonEBP participation in lipogenic genes expression. To evaluate the role of 

TonEBP transcription factor on lipogenic enzyme expression, tonebp gene was silenced before 

hyperosmolar treatment by using tonebp-siRNA duplex (5′AUGGGCGGUGCUUGCAGCUCCUU3′/ 

5′GGAGCUGCAAGC ACCGCCCAUU 3’, Invitrogen) designed by Na et al [17]. MDCK cells were 

grown in a mixture containing DMEM/Ham’s-F12 (1:1), 10 % FBS and 1 % antibiotic mixture. After 

reaching 50% confluence, media were replaced by fresh DMEM-F12/0.5 % FBS without antibiotic 

containing a mixture of lipofectamine 3000 and an aliquot of 20 M tonebp-siRNA to reach final 

concentration of 200 nM. Cells were grown in the presence of this mixture for 5 h and then, 

transfection protocol was repeated once. After transfection, media were replaced by fresh DMEM-

F12/0.5 % FBS and hyperosmolar cultures were made by supplementing media with 5 M NaCl up to 

final concentration 125 mM, while isosmolar cultures were added with equal volume of sterile vehicle. 

Then cells were incubated for extra 24 h. After treatments, cells were collected by 0.25 % trypsin-

EDTA treatment, counted and used for RNA extraction. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

 

7 Casali & Malvicini et al 

2.4. RNA isolation and RT-PCR analysis. MDCK cells were grown in a mixture containing 

DMEM/Ham’s-F12 (1:1), 10 % FBS and 1 % antibiotic mixture. After reaching 70-80 % confluence, 

cells were subjected to hyperosmolar media for different periods of time (6, 12, 24, 48 h, as it is 

described in 2.1.); or treated with IRE1α-associated endoribonuclease activity inhibitor 4µ8C (as 

described in 2.2); or transfected with xbp1-siRNA or tonebp-siRNA (as described in 2.2 and 2.3.) and 

then treated with hyperosmolar medium and incubated for extra 24 h. Once the incubation time had 

finalized, cells were trypsinized, collected and counted as described above (see 2.1.). In all treatments, 

2 × 10
6
 cells were used for total RNA extraction by means of the SV Total RNA Isolation System 

(Promega) in accordance with the manufacturer's instructions. First-strand cDNA was synthesized 

from total RNA by using MMLV retrotranscriptase (Promega) and oligodT (Biodynamics). To 

evaluate mRNA expression level, cDNA PCR amplification was done by using specific primers 

designed with Primer3 software (BioTools - University of Massachusetts Medical School). β-actin was 

used as loading control. Table 1 shows primers sequences, the number of cycles applied and the 

annealing temperature in each case. PCR products were resolved in 2 % agarose (Promega) gels 

containing ethidium bromide (Promega) prepared in TBE (90 mM Tris/Borate/3 mM EDTA) buffer. 

The presence of PCR products was revealed under UV light. Bands densitometries were performed 

with Gel Analyzer 19.1 online-free software.  

Table 1. Nucleotide sequences for specific primers used in PCR assays. 

Protein Primer Forward (5´3´) Primer Reverse (5´3´) Cycles          

BGT1 GAGGTAGTCCCTAGTCCCACA CACCCACAAAGTCCAGAGGT 28 58 

COX2 TCAGCCATACAGCAAATCCTT GTAGCACTAGTAGTTTAGGAGT 25 55 

SMIT GCTCATAGCCAAAGGCTCTAC TCACCACCATAAAAGCCACA 25 58 

β-Actin CAAAGCCAACCGTAGAGAAG CAGAGTCCATAGACAATACCAG 24 58 

XBP1 ACTAGCCAGAGACCGAAAGAA TCTCCGCCTCCTCTTCAGTA 24 58 

XBP1(s) ACCCTAGGCTACTAGAAGAGGA TCAACGCTAGTCAGAATCCAT 31 59.1 

CHOP CCCTCACTCTCCAGATTCCA TAGCCACTTTCCTCTCGTTCT 26 58 

BIP TCACCTCCTAGGGAACTTTTAG TTTAGTCTTCAGCGGTCACAC 26 58 

Lipin1 CGCAAGTCCTTCAGGTTCTC TGTGGAGATGACTTTGCAGC 28 64.5 

Lipin2 AAGACCAAAATAGCTTCCCCT TAGATCCCCAGAATAGGAAGAG 29 63.6 

DGAT1 TGGATAGTGAGCCGCTTCTT AGGAGCCTCATAGTGGAGCA 32 60.8 

DGAT2 AGTAGGCTCAGGCAGGTTAGA GATAGCTCTTCAAAATAGGGGA 32 63.6 

SREBP1 AGACATGGCAACCACTGTGA  GARAGRRCCRCCGCTCACCA 31 59.1 

SREBP2 GATGTCATCTGTCGGTGGTG  GGGGGCTCRCTGRRACTTCC 28 59.1 

TonEBP AAGGCAACTCAAAAGCAGGA CCTGCAACACTACTGGCTCA 26 58 
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2.5. Metabolic labeling experiments. In order to evaluate the role of XBP1s in glycerolipid synthesis 

we studied the incorporation of [U-
14

C]-glycerol (Perkin-Elmer TM) into GP, GL-TG and GL-DG in 

MDCK cells treated either with 4µ8C or xbp1-siRNA. To do that, MDCK cells were grown in a 

mixture containing DMEM/Ham’s-F12 (1:1), 10 % FBS and 1 % antibiotic mixture. After reaching 

70–80% confluence, cells were placed in low-serum medium (0.5% FBS) for 24 h and, before NaCl 

addition, cultures were grown in the absence or in the presence of 20 M 4µ8C for 30 min to allow 

inhibitor uptake. After that, MDCK cells without or with 4µ8C were incubated in commercial media 

(isosmolar condition controls) or in hyperosmolar media for extra 24 h.  In other set of experiments, 

cells were transfected with xbp1-siRNA as described in 2.2. and after transfection treatment, media 

were replaced by fresh DMEM-F12/0.5 % FBS alone (isosmolar condition) or added with 5 M NaCl 

up to final concentration 125 mM (hyperosmolar conditions).  Then cells were incubated for extra 24 

h. In order to monitor glycerolipid de novo synthesis, 3 h before harvesting cells, 2 µCi/ml of [U-
14

C]-

glycerol were added to the media. After labeling, cells were collected and counted, and total lipids 

were analyzed as described in 2.6. Results are expressed as pmol of [
14

C-Gly]-Glycerolipids / 1 x 10
6
 

cells ± SEM.  

2.6. Lipid extraction, separation and quantitation. Total lipids were extracted by Bligh and Dyer 

method [18]. Briefly, after treatments (see 2.2.) or treatments and labelling (see 2.5.), MDCK cells 

were collected and counted, and ~3 × 10
6
 cells were suspended in 800 µl of phosphate-buffered saline 

(PBS) and mixed with 2 ml of methanol and 1 ml of chloroform, vortexed gently for 30 s, and 

incubated on ice for 15 min. To obtain two phases, 1 ml of chloroform and 1 ml of water were added, 

vortexed for 30 s and centrifuged at 800 g for 5 min. The lower organic phase containing total cell 

lipids was collected, dried under a nitrogen stream, and kept at -80°C for further analysis. Different 

lipid species were separated by thin layer chromatography (TLC). To do this, dried extracts were 

applied drop by drop onto a 1 cm lane of thin-layer silica gel chromatoplates (Merck) and developed in 

a solvent system containing a mixture of petroleum ether / hexane / ethylic ether / acetic acid 

(40:40:20:1, v/v) [7]. The different lipids were identified by comparison with the corresponding 

standards and the retention factors (Rfs): 0, 0.13 and 0.60 for glycerophospholipids (GP), 

glycerolipids-diglycerol (GL-DG) and glycerolipids-triglycerol (GL-TG), respectively. All the 
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solvents used were of analytical grade and purchased from Merck Argentina. 

2.6. Subcellular fractionation. To evaluate the presence of XBP1s in nuclear compartment, MDCK 

cells were grown in a mixture containing DMEM/Ham’s-F12 (1:1), 10 % FBS and 1 % antibiotic 

mixture. After reaching 70–80% confluence, cells were placed in low-serum medium (0.5% FBS) for 

24 h and then, MDCK cells were incubated in commercial media (isosmolar condition) or in 

hyperosmolar media for 24 and 48 h.  MDCK cells were collected and ~ 10 × 10
6
 cells were placed in 

a cold hypotonic-lysis buffer (10 mM Hepes-KOH, pH=7.9, 1.5 mM MgCl2, 10 mM KCl and 0.4 % 

Triton X-100), and mechanically disrupted by using a 20-gauche needle syringe. Then, a 10 X solution 

A, containing 2.5 M sucrose, 250 mM Tris-HCl pH=7.4, 30 mM MgCl2, 20 mM EDTA, was added to 

each sample to reach a final concentration 0.25 M sucrose, 25 mM Tris-HCl pH=7.4, 3 mM MgCl2, 2 

mM EDTA. Samples were centrifuged at 860 g for 15 min and the resulting pellet was washed twice 

with 1 X solution A, and then resuspended in an adequate volume with 1 X solution A. Protein content 

was determined by Lowry et al. procedure [19] and then, prepared for western blot analysis. 

2.7. Western blot analysis. After hyperosmolar treatment (see 2.1.) or hyperosmolar treatment 

followed by fractionation (see 2.6.), aliquots containing 50 µg of protein were incubated with 4 × 

Laemmli buffer at 100°C for 5 min. Then, proteins were resolved in a 12.5 % SDS-polyacrylamide 

(Thermofisher) gels and blotted to polyvinylidene difluoride membranes (PVDF) (GE Healthcare Life 

science) at 100 V for 40 min. Membranes were blocked with 5 % non-fat milk in Tris-buffer saline 

(TBS:100 mM Tris-HCl, pH=7.5, 1.5 M NaCl)-1 % Tween 20 solution (TBS-Tween) and incubated 

overnight at 4°C with primary antibodies: goat polyclonal XBP1 antibody, 1:200 (Santa Cruz 

Biotechnology) or rabbit polyclonal β-Tubulin antibody, 1:5000 (AbCam). According to the 

manufacturer information, anti-XBP1 antibody (Santa Cruz Biotechnology, XBP-1 R14, SC 32136) is 

suitable for detecting both unspliced- (XBP1u) and spliced- (XBP1s) forms of XBP1 protein. After 

washing, blots were incubated with secondary antibodies: rabbit anti-goat horseradish peroxidase 

(HRP)-conjugated (1:5000) or donkey anti-rabbit HRP-conjugated 1:6000 (GE Healthcare Life 

science). Bands were evidenced by means of ECL Plus Western blotting analysis system (GE 

Healthcare Life science). Bands densitometries were performed with Gel Analyzer 19.1 online-free 

software. 

2.8. Microscopy.  Cells were cultured in isosmolar or hyperosmolar media for 24 and 48 h in the 
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absence or in the presence of 20 M 48C (see 2.2.) on glass coverslips. After treatments, cells were 

fixed in 4 % paraformaldehyde (Sigma-Aldrich) prepared in PBS solution for 15 min and 

permeabilized with 0.5 % triton X-100 for 10 min.  Then, samples were blocked with 3 % BSA 

(bovine serum albumin, Sigma-Aldrich) in PBS for 60 min. After blocking, cells were incubated 

overnight with primary goat polyclonal anti-XBP1 antibody (1:20, Santa Cruz Biotechnology, XBP-1 

R14, SC 32136) at 4°C. According to the manufacturer information, this antibody is suitable for 

detecting both unspliced- (XBP1u) and spliced- (XBP1s) forms of XBP1 protein. Primary interaction 

was evidenced by incubating samples with a secondary donkey anti-goat Alexa Fluor® 488 

conjugated antibody, 1:200 (Abcam); DNA was stained with 2.5 μM Hoechst 33258 (Sigma-Aldrich) 

in wet chamber for 60 min at room temperature. Then, samples were washed with PBS and mounted 

with a drop of Vectashield mounting medium (Vector Laboratories). To evaluate lipid droplets, after 

treatments, cells were fixed in 4 % paraformaldehyde prepared in PBS solution for 15 min and 

permeabilized with 0.5 % triton X-100 for 10 min.  After washing, cells were incubated with 0.5 % oil 

red O (Sigma-Aldrich) in isopropanol for 5 min. Then, samples were exhaustively washed with tap 

water and PBS. DNA was stained with 2.5 μM Hoechst 33258 (Sigma-Aldrich). Next, samples were 

mounted with a drop of Vectashield mounting medium (Vector Laboratories). Fluorescence images 

were obtained with a Nikon Eclipse Ti (with an objective Plan apo VC 60×, 1.4 DIC 1/2) with 

acquisition software Micrometrics SE Premium (Accu-Scope). Images were processed using Image J. 

2.9. Statistical analysis. The results were expressed as mean ± SEM. Data from controls and different 

treatments were analyzed by ANOVA, and significant differences were assessed by a posteriori 

Dunnet test (P < 0.05). 
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3. Results.  

3.1 Hyperosmolarity induces UPR and XBP1 activation in MDCK cells. Cells subjected to 

hyperosmolarity activate numerous adaptive mechanisms during the first 24 h after osmotic challenge 

[2, 20]. These include the expression of osmoprotective genes such as membrane cotransporters, 

sodium/myo-inositol transporter (smit) [21] and sodium/chloride/betaine transporter (bgt1) [22], both 

needed for organic osmolytes transport to counterbalance the rise in intracellular ionic strength, and 

the expression of cyclooxygenase 2 (cox2) which is involved in survival mechanisms [23, 24]. 

According to these reports, figure 1A and B show that 12 h of treatment with hyperosmolar medium 

increased bgt1 and, in a lesser extent, smit (bgt1- and smit-mRNA) levels in MDCK cells, and both 

became significantly higher respect to control value after 24 h of treatment. cox2 (cox2-mRNA) 

expression was also regulated by hyperosmolarity but with a different pattern. During the first 12 h of 

treatment, cox2 levels decreased; but after 24 h of incubation cox2 expression clearly increased respect 

to isosmolar level. It is interesting to note that maximal cox2 expression was found after 48 h of 

hyperosmolarity when both bgt1 and smit levels were minimal; this observation might evidence a 

synchronized osmoprotective gene expression. To determine whether hyperosmotic-protein synthesis 

activation may induce ER stress, the expression of UPR markers, xbp1, chop and bip/grp78, were 

determined at the mRNA level. Figures 1C and D show that hyperosmolarity induced ER stress and 

UPR activation in MDCK cells. Hyperosmolar media increased xbp1 and chop levels after 24 h and 

both remained elevated after 48 h. It is worth pointing out that the rise in UPR markers became evident 

after the increase of osmoprotective genes expression. In contrast, hyperosmolar treatment did not 

change bip/grp78-mRNA level at any experimental time assayed.  

Triggering of Inositol-Requiring-Enzyme 1 (IRE1)-UPR pathway involves the activation of 

IRE1-endoribonuclease (RNase) activity which initiates a non-conventional mRNA splicing reaction 

of the pre-existing xbp1 mRNA (xbp1u). As a result of IRE1 action, spliced-xbp1 mRNA (xbp1s) 

increases. xbp1s translation yields XBP1s protein, a transcription factor that translocates to the nucleus 

and initiates the transcription of UPR-related and non-related genes, xbp1 itself among them [10, 25]. 

In order to assess whether hyperosmolarity-increased xbp1 expression (Fig. 1C) reflects its activation, 

we determined xbp1u and xbp1s forms, XBP1 protein and its presence in nuclear compartment (Fig. 

2). To evaluate mRNA levels, we designed specific primers that detect both xbp1u and xbp1s (see 
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table 1 in Materials and Methods). Fig. 2 A shows xbp1u and xbp1s levels in isosmolar conditions (0 h 

incubation with hyperosmolar medium) and after 6, 12, 24 and 48 h of incubation in hyperosmolar 

medium. Figure 2 B shows the densitometric analysis of xbp1 bands, each bar is a stacked 

representation of xbp1u and xbp1s values (arbitrary units). As it can be seen, in isosmolarity, most 

mRNA corresponded to xbp1u (70 ± 8 % vs. 30 ± 6%, xbp1u vs xbp1s, respectively). After 6 and 12 h 

of treatment with hyperosmolar medium, the levels of total xbp1 decreased; however, the proportion of 

xbp1s after 6 and 12 h of treatment was higher than the proportion of xbp1s in isosmolar condition (41 

± 5 % and 39 ± 3 % vs. 30 ± 6%, after 6 and 12 h of treatment vs. isosmolar condition, respectively); 

24 h of hyperosmolarity induced total xbp1 expression (Fig. 1 C and D) and its splicing (Fig. 2 A and 

B). At that time, xbp1s represented 49  5 % of total mRNA being significantly higher than isosmolar 

value (30  6 %). The maximal xbp1 levels were found after 48 h of treatment and the relative 

amounts of xbp1u and xbp1s were comparable to isosmolar values (69  8 % and 31  6 % for xbp1u 

and xbp1s, respectively). The last lane corresponds to the treatment with ER stress inducer 

tunicamycin (Tm). These results evidence the increase of IRE1 associated- endoribonuclease activity 

leading to the rise in xbp1s and confirm hyperosmolar-triggering of UPR. Figure 2 C shows XBP1 

protein expression. When western blot analysis was performed from whole MDCK cell lysates, the 

only band detected corresponded to the 28 kDa XBP1u protein. The densitometric analysis showed a 

slight but significant increase of XBP1u as a function of the time, being maximal after 24 h of 

treatment (Fig. 2 C and D). However, we were not able to detect a 55 kDa band corresponding to the 

spliced form of the protein. Considering that antibody can detect both XBP1u and XBP1s proteins, we 

hypothesized that the loss of XBP1s band in western blot analysis could have been due to the low 

proportion of XBP1s form in whole lysate. We thought that the low levels of XBP1s could be detected 

if we analyzed nuclear compartment. To do that, we obtained nuclear fractions from isosmolar and 

hyperosmolar MDCK cultures by differential centrifugation and then, performed western blot analysis.  

As it is seen in figure 2 E, 24 h of hyperosmolarity increased XBP1 mature form in nuclear 

compartment, reaching a maximum after 48 h of treatment. The presence of XBP1s in nuclear 

compartment was also evidenced by fluorescence microscopy (Fig. 2 F). In isosmolar condition, most 

label was concentrated in cytoplasmic dots (Fig. 2 F) but 24 and 48 h of treatment caused the 

redistribution of the immunolabelling to the nuclear compartment (Fig. 2 F). Together, these results 
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demonstrate that hyperosmolarity induces ER stress, UPR and XBP1 activation. 

3.2 XBP1 expression is required for osmotic activation of lipid synthesis. The ER is the major site 

of lipid metabolism as many enzymes involved in lipid synthesis reside in ER membranes [26]. 

Although the UPR activation was originally associated to maintain the protein homeostasis in the ER, 

a growing number of studies suggest that UPR plays essential roles in maintaining lipid metabolism 

and homeostasis [27]. We previously showed that hyperosmolarity upregulates phospholipid and 

triglycerides synthesis and content in renal cells [6, 7]; Fagone et al demonstrated that cell 

differentiation occurs with activation of membrane lipid synthesis which requires XBP1 activation 

[28]. Thus, we decided to evaluate whether hyperosmolarity-induced XBP1s (Fig. 2 E and F) was 

involved in glycerolipid metabolism in MDCK cells. To do that, two different strategies were used: the 

silencing of xbp1gene and the inhibition of the IRE1α activity by 4µ8C. As it was previously reported, 

hyperosmolarity increased glycerophospholipids (GP), triglycerides (GL-TG) and diglycerides (GL-

DG) synthesis (Fig. 3 C and G). The treatment of cells with xbp1-siRNA, which reduced the 

expression of both xbp1u and xbp1s (Fig. 3A and B), significantly decreased hyperosmlarity-induced 

GL-TG synthesis (Fig. 3 C) as well as oil red-O staining (Fig. 3D). However, no changes were found 

neither in GP nor in GL-DG synthesis. The treatment of cells with 20 M 4µ8C, that inhibits the 

RNAse activity of IRE1α, completely blocked the formation of xbp1s, in both isosmolar and 

hyperosmolar conditions (Figures 3E and F). As observed with xbp1-siRNA, 4µ8C considerably 

diminished GL-TG synthesis without changes in GP synthesis, but in this case, a slight but significant 

increase in GL-DG synthesis was observed (Fig. 3 G). Such a difference, compared with the synthesis 

of GL-DG in cells treated with xbp1-siRNA, may be due to the highest efficiency of 4µ8C in blocking 

the production of xbp1s (Fig. 3E vs. Fig. 3A). No changes were observed on lipid synthesis in 

isosmolar conditions by 4µ8C treatment. The decrease in GL-TG production was reflected in the 

reduction in the number (Fig. 3I) and in the size (Fig. 3J) of lipid droplets. 

3.3. XBP1 regulates lipogenic genes expression. Hyperosmolar induction of GL-TG synthesis and 

accretion is associated to the transcriptional activation of main lipogenic enzymes such as LPIN1 and 

LPIN2, both involved in the conversion of phosphatidic acid into GL-DG; and DGAT1 and DGAT2 

involved in the conversion of GL-DG into GL-TG [7]. As mentioned before, XBP1s transcription 
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factor can modulate the expression of different lipid metabolism enzymes [29, 30]. In addition, we 

found that the inhibition of xbp1 synthesis or maturation dropped GL-TG synthesis (Fig. 3). Hence, we 

evaluated whether XBP1s regulates the transcription of lpin1 and lpin2, and dgat1 and dgat2 mRNAs. 

To do that, MDCK cells were cultured for 24 h under hyperosmolar conditions in the absence or the 

presence of xbp1-siRNA (Fig.4 A and B) or 20 µM 4µ8C (Fig. 4 C and D). Both, xbp1-siRNA and 

4µ8C decreased lpin1, lpin2 and dgat1 expression. However, no changes were observed for dgat2 

enzyme neither by using xbp1-siRNA nor by action of 4µ8C. We previously showed that 

hyperosmolarity increases the expression of the transcription factor srebp (Sterol Regulatory-Element 

Binding Protein) which mediates hyperosmolar induction of LPIN enzymes [7]. Thus, we evaluated 

the possibility that XBP1s was mediating srebp expression. As it is seen in figure 4, both xbp1-siRNA 

(Fig. 4 E and F) and RNAse inhibitor 4µ8C (Fig. 4 G and H) blocked the expression of srebp1 and 

srebp2 transcription factors. Together, these results indicate that XBP1s modulates lipogenic enzymes 

transcription by regulating the transcriptional activation of srebp transcription factor.  

3.4. The role of TonEBP in hyperosmolar-induced XBP1 expression and activity. The 

transcription factor TonEBP (Tonicity Responsive-Enhancer Binding Protein) is considered the master 

regulator of osmoprotective response in renal cells. Its expression and translocation to the nucleus is 

rapidly activated by the increase of environmental osmolarity [2, 31, 32]. Once activated, TonEBP 

mediates the expression of osmoprotective proteins such as SMIT, BGT1 and COX2, among others. 

As XBP1 expression increased after 24 h of hyperosmolar treatment, we evaluated whether TonEBP 

activity was required for osmotic induction of XBP1. To do that, tonebp-siRNA was used to impede 

its expression. As it is shown in figure 5 A, tonebp-siRNA decreased tonebp mRNA as well as the 

levels of its target genes mRNAs: smit and bgt1. tonebp silencing also decreased the expression of 

hyperosmolar-induced xbp1-mRNA (Fig. 5 B and C), which in turn caused the fall in the expression of 

srebps mRNA (Fig. 5 D, E and F). Thus, hyperosmolar activation of TonEBP drives the transcriptional 

activation of xbp1u whose maturation, translation and activity are required for the regulation of lipid 

metabolism and homeostasis under hyperosmolar stress conditions.  
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4. Discussion.  

The goal of the present work was to evaluate whether hyperosmolarity induces ER stress-UPR 

activation and the relationship between UPR and glycerolipid synthesis regulation in renal epithelial 

cells. The data presented herein demonstrate that hyperosmolarity activates IRE1-XBP1 pathway 

(Fig. 1 and 2), and that XBP1 regulates glycerolipid synthesis through transcriptional regulation of the 

main lipogenic enzymes (Fig. 3 and 4) by means of XBP1-induced SREBP expression (Fig. 4). We 

also evidenced the relationship between TonEBP and XBP1 (Fig. 5).  

 Physiologically, renal medullary interstitium is characterized by its high osmolarity which is 

made of high and variable concentrations of urea and NaCl. Even more, environmental osmolarity 

may abruptly vary during urine concentration process [4]. To face up to the osmolar challenge cells 

activate the biosynthesis of various membrane-associated proteins such as the transporters 

sodium/myo-inositol transporter (SMIT), sodium/chloride/betaine transporter (BGT1), epithelial 

sodium channel (ENAC), urea transporter A and B (UTA and UTB), cystic fibrosis transmembrane 

conductance regulator (CFTR), Na
+
/K

+
-ATPase, glucose transporter 1 and 4 (GLUT1 and GLUT4), 

water channels (AQP1-5 and AQP9), metabolic enzymes (COX2) and receptors (AT1, type 1 

angiotensin II receptor), among others [2, 21-24]. In addition, in vivo as well as in vitro experiments 

demonstrated that hyperosmolarity is a main signal for renal tubular cells differentiation and urinary 

concentrating mechanism maturation. During the first hours of hyperosmolar treatment, Madin-Darby 

Canine Kidney (MDCK) cells activates the expression of osmoprotective genes (Fig. 1 A and B). Once 

adapted, cells begin to execute a molecular program to achieve final polarized-differentiated 

phenotype that involves the increase in cell size and volume, and the formation of primary cilium  

[14]. Both processes involve a high rate of protein synthesis [2-4, 14]. Thus, it is logical to hypothesize 

that hyperosmolarity induces ER stress. Apart from unfolded proteins, IRE1 might sense lipid bilayer 

stress [33-35]. Thus, perturbations in ER-membranes by the excess of fatty acids (especially saturated 

fatty acids), either by de novo synthesis or by GL-TG hydrolysis, can directly activate IRE1 

independently of unfolded proteins [34]. It has been reported that a feature of lipid-dependent 

activation of UPR is the absence of changes in the levels of BiP chaperone [34]. We previously 

demonstrated that hyperosmolarity increases acc and fas expression and de novo fatty acids synthesis 

[7]. Thus, it is possible that the rapid increase in saturated fatty acids affects ER membrane 
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physicochemical properties with the subsequent activation of IRE1 - XBP1 pathway. This possibility 

might explain the fact that BiP chaperone expression did not change with hyperosmolar treatment (Fig. 

1 C and D). However, such hypothesis must be proven. 

 We demonstrated that hyperosmolar medium induces phospholipid synthesis activity and 

phospholipid mass accretion in MDCK cells within the first 48 h of hypertonic treatment. The 

upregulation of GP synthesis is needed for membrane biogenesis during cell polarization-

differentiation processs, since it contributes to the enrichment of the apical and basolateral membranes 

in sphingomyelin (SM) and phosphatidylcholine (PC) content, respectively [6]. Here we show that 

XBP1s regulates lipogenic enzymes expression; thus, XBP1s participates in renal cell differentiation 

by activating lipid metabolism. XBP1 has been associated to eosinophils differentiation [36], adipose 

cell differentiation and myogenesis [37], cardiac myogenesis, hepatogenesis, plasma cell 

differentiation and development of secretory tissues [38, 39]. Despite it is known that XBP1 can direct 

the expression of diverse types of proteins [40], it is accepted that XBP1 promotes differentiation, at 

least in part, by regulating the biogenesis and expansion of organelles involved in secretion, including 

the ER and Golgi [41, 42]. Our results demonstrate that XBP1 directs the expression of lipogenic 

enzymes which are needed for membranes biogenesis in cell polarization and differentiation. In 

addition, we show that XBP1 expression is mediated by TonEBP (Fig. 5), which has also been 

involved in renal cell differentiation [1], skeletal muscle differentiation [43], P19CL6 cells 

differentiation to cardiomyocytes  [44], CACO-2 cell differentiation [45] and human bone marrow 

stem cells (hBMSCs) differentiation to chondrogenic cells [46]. Therefore, we can hypothesize that 

high sodium environment induces MDCK cells differentiation by activating TonEBP transcription 

factor which, at least in part, regulates XBP1 expression. In addition, XBP1 would constitute an 

osmoprotective protein since it drives the expression of lipogenic enzymes triggering a specific lipid 

synthesis program necessary for ER expansion that would restore ER homeostasis before cell 

differentiation.  

 IRE1α/XBP1s pathway was identified as a critical regulator of hepatic lipid metabolism [13]; 

XBP1s has been implicated in transcriptional regulation of many lipogenic genes such as scd1 and acc 

[30] and CDP-choline pathway [29]. Herein we show that xbp1 silencing as well as the inhibition of 

IRE1α RNAse activity by 4µ8C that hinders xbp1 maturation, decreased the expression of lpin1 and 
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lpin2 (Fig. 4), both involved in the generation of GL-DG needed for PC, PE and GL-TG synthesis. 

GL-DG biosynthesis was not reduced by 4µ8C (Fig. 3), probably due to a remnant preexisting lipin 

activity. GL-DG seemed to be directed to GP more than to GL-TG synthesis, thus preserving 

membrane homeostasis. Impaired GL-TG production was probably due to the decrease in dgat1 

expression and the deviation of GL-DG substrate to GP synthesis. Previous report indicate that XBP1s 

regulates the expression of DGAT2 enzyme in hepatic tissue [13]; however, in our experimental 

conditions, xbp1 maturation blockage did not decrease dgat2 expression, but decreased dgat1 (Fig. 4). 

Chitraju and coworkers demonstrated that both DGAT1 and DGAT2 contribute to GL-TG synthesis 

and storage in adipose tissue, and both can compensate for each other [47]. This is not the case in our 

system since dgat2 is not impaired by XBP1 silencing or inhibition, but GL-TG synthesis is blocked; 

moreover, GL-DG was found significantly increased (Fig. 3). 

It has been demonstrated that DGAT1, which is associated to ER membranes, has an exclusive 

role in protecting ER from the lipotoxic effect of an excess of fatty acids [48]. Considering our 

previous findings indicating that hyperosmolarity activates fatty acid synthesis [7], we can suggest that 

XBP1s contributes to ER homeostasis restoration and cell protection by activating the expression of 

dgat1 that would clearance fatty acid excess. Hence, cells subjected to hyperosmolar stress 

hyperactivate ER-associated protein synthesis, that in turn activates the ER stress sensor IRE1α. This 

protein triggers xbp1 maturation that conduce to the upregulation of fatty acid synthesis for membrane 

biogenesis; fatty acid excess is then cleaned up by LD formation. The increase in GP synthesis would, 

on one hand, provide new membrane extension to the jammed ER for carrying out the biosynthesis 

and maturation of osmoprotective proteins; the restoration of ER homeostasis would impede the 

activation of apoptotic or autophagic processes [49]. On the other hand, once ER functionality is 

restored, membrane biogenesis would be necessary for cell differentiation process, since glycerolipid, 

cholesterol and sphingolipid synthesis occur in ER membranes. Our data agree with previous reports 

showing the role of XBP1s in phosphatidylcholine synthesis, ER-membrane expansion and ER stress 

alleviation during B-lymphocyte differentiation [26, 28, 29].  

 One outstanding finding of our work was that srebp expression is mediated by XBP1s. We 

previously showed that hyperosmolarity upregulates glycerolipid synthesis due to an increase in the 

expression and activity of LPIN enzymes. Transcriptional activation of lpin1 and lpin2 expression is 
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mediated by SREBP [6-8]. Here we show for the first time that renal expression of srebp1 and srebp2 

is mediated by XBP1s (Fig. 4). Our finding agrees with the only one previous report from Ning et al. 

showing that insulin-mediated hepatic lipogenesis involved IRE1-XBP1s activation and srebp1c 

transcription upregulation [50].  

 Summarizing, in the present work we studied whether hyperosmolarity triggers ER-stress and 

UPR activation and its relationship with lipid synthesis in renal cells. Based on the present results we 

can hypothesize that the abrupt increase in the osmolarity of the environment induces signaling 

pathways that activate TonEBP transcription factor. TonEBP triggers the transcription of smit, bgt1, 

cox2 and xbp1 genes (among others). The products of these genes are membrane associated proteins 

whose synthesis occurs at endoplasmic reticulum (ER) membranes. The abrupt increase in ER-

associated protein synthesis, causes ER stress and IRE1 activation. IRE1-associated 

endoribonuclease splices xbp1u to xbp1s, which is translated to XBP1s protein. XBP1s translocates to 

the nucleus, binds to its response element in DNA and activates the transcription of srebp (among 

other genes). After its cytoplasmic translation, which also occurs at ER membranes, SREBP is 

activated, translocates to nuclear compartment and initiates the transcription of lipogenic genes: dgat1, 

lpin1, and lpin2, and as consequence, lipid synthesis is enhanced. The increase in glycerolipids content 

facilitates ER membranes expansion and alleviation of ER stress (Fig. 6). Therefore, XBP1 acts as an 

osmoprotective protein since it is activated by high osmolarity through TonEBP and it drives 

biomembranes generation and ER homeostasis restoration.  
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Figure Legends 

Figure 1. Hyperosmolarity induces changes in osmoprotective- and UPR markers-mRNA levels. 

MDCK cells were grown in a mixture containing DMEM/Ham's-F12 (1:1), 10 % FBS and 1 % 

antibiotic mixture. After reaching 70–80% confluence, cells were placed in low serum medium (0.5% 

FBS) and incubated in isosmolar media (commercial media, 298  19 mOsmol/Kg of water, no 

addition of NaCl) or in hyperosmolar media (commercial media added with sterile 5 M NaCl up to 512 

 12 mOsm/Kg of water) for 6, 12, 24 and 48 h. After treatments, cells were collected, counted and 

subjected to RNA extraction as described in Methods. Both osmoprotective genes (cox2, smit and bgt-

1) (A), and UPR activation markers (xbp1, chop and bip) (C) mRNA levels were evaluated by RT-

PCR. The images correspond to a representative experiment from three independent determinations. 

Bar graphs, B and D correspond to the densitometric analysis of the bands performed with 

GelAnalizer 19.1 online software. They represent the ratio between the values of each mRNA and -

actin (arbitrary units) and express the mean ± SEM of three independent experiments. Significant 

differences are shown within bar graphs. 

Figure 2. Hyperosmolarity induces XBP1 activation. Panel A: MDCK cells were grown in a 

mixture containing DMEM/Ham's-F12 (1:1), 10% FBS and 1% antibiotic mixture. After reaching 70–

80% confluence, cells were placed in low serum medium (0.5% FBS) and incubated in isosmolar 

media (commercial media, 298 mOsmol/Kg of water, 0 h of NaCl) or in hyperosmolar media 

(commercial media added with sterile 5 M NaCl up to 512 mOsm/Kg of water) for 6, 12, 24 and 48 h.  

In order to assess whether IRE1 - XBP1 pathway was active, specific primers were designed (Table 

1, Methods) to detect unspliced- (immature) and spliced- (mature) forms of xbp1 mRNA (xbp1u and 

xbp1s) by RT-PCR. Tunicamycin (Tm) was used as a positive control of pathway activation.  

Panel B shows densitometric analysis of the gel shown in A. Each bar is a stacked representation of 

xbp1u and xbp1s values. Densitometric analysis of the bands was performed with Gel Analizer 19.1 

online software and represent the ratio between the values of xbp1u or xbp1s and -actin (arbitrary 

units). Each bar represents the mean ± SEM of three independent experiments.  

Panel C shows a representative image of three independent western blot analysis of XBP1u protein 

and panel D shows the densitometric analysis of bands. Each bar represents the mean ± SEM of the 
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ratio between XBP1u and -Tubulin (arbitrary units). Although the antibody used (goat polyclonal 

anti-XBP1 antibody, 1:200, Santa Cruz Biotechnology, XBP-1 R14, SC 32136) is reported to detect 

both XBP1 isoforms under our experimental conditions, XBP1s band (55kDa) was not evidenced, 

probably due to the low proportion of this protein in total lysates. Then, western blot analysis was 

performed in nuclear fractions obtained by cell fractionation.  

Panel E shows a representative image of cell fractionation followed by western blot analysis of XBP1. 

For this experiment, MDCK cells were grown in a mixture containing DMEM/Ham's-F12 (1:1), 10% 

FBS and 1% antibiotic mixture. After reaching 70–80% confluence, cells were placed in low serum 

medium (0.5% FBS) and incubated in isosmolar media (commercial media, 298 mOsmol/Kg of water, 

0 h of NaCl) or in hyperosmolar media (commercial media added with sterile 5 M NaCl up to 512 

mOsm/Kg of water) for 24 and 48 h. After treatment MDCK cells were collected and ~ 10 × 10
6
 cells 

were placed in a cold hypotonic-lysis buffer (10 mM Hepes-KOH, pH=7.9, 1.5 mM MgCl2, 10 mM 

KCl and 0.4 % Triton X-100), and mechanically disrupted by using a 20-gauche needle syringe. Then, 

a 10 X solution A, containing 2.5 M sucrose, 250 mM Tris-HCl pH=7.4, 30 mM MgCl2, 20 mM 

EDTA was added to each sample to reach a final concentration 0.25 M sucrose, 25 mM Tris-HCl 

pH=7.4, 3 mM MgCl2, 2 mM EDTA. Samples were centrifuged at 860 g for 15 min and the resulting 

pellet was washed twice with 1 X solution A, and then resuspended in an adequate volume for western 

blot analysis. 

Panel F shows the distribution of XBP1 protein by fluorescence microscopy. For this experiment, cells 

were grown on coverslips and after treatments (described in Materials and Methods), cells were fixed 

with 4% paraformaldehyde in PBS followed by 0.5 % triton X-100 permeabilization. 

Immunodetection was performed with goat polyclonal anti-XBP1 antibody (1:20, Santa Cruz 

Biotechnology, XBP-1 R14, SC 32136) that can detect both XBP1 isoforms. Primary interaction was 

evidenced by incubating samples with a secondary donkey anti-goat Alexa Fluor® 488 conjugated 

antibody, 1:200 (Abcam) and 2.5 μM Hoechst. Samples were mounted with a drop of Vectashield 

mounting medium (Vector Laboratories). Images were processed with Image J and are representative 

of three independent experiments. Where applicable, significances were included within the graphs.  
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Figure 3. The role of XBP1 in lipid metabolism. Panel A: MDCK cells were grown in a mixture 

containing DMEM/Ham's-F12 (1:1), 10% FBS and 1% antibiotic mixture. After reaching 70–80% 

confluence, cells were placed in low serum medium (0.5% FBS) and then transfected with xbp1-

siRNA. After 24 h cells were subjected to hyperosmolar medium for extra 24 h. After treatment, cells 

were harvested, RNA was isolated and xbp1 mRNA was evaluated by RT-PCR analysis.  

Panel B shows the densitometric analysis of gel shown in panel A. Densitometric analysis of the bands 

was performed with Gel Analizer 19.1 online software and each bar represents the ratio between the 

values of xbp1u or xbp1s and -actin (arbitrary units). Each bar represents the mean ± SEM of three 

independent experiments. Significative results are indicated within the graph. 

Panel C: To analyze the role of XBP1 in lipid metabolism, MDCK cells were grown in a mixture 

containing DMEM/Ham's-F12 (1:1), 10% FBS and 1% antibiotic mixture. After reaching 70–80% 

confluence, cells were placed in low serum medium (0.5% FBS) and then transfected with with xbp1-

siRNA. After 24 h cells were subjected to hyperosmolar medium for extra 24 h; 3 h before harvesting 

2 μCi/ml [U-
14

C]-glycerol was added to each well. After labeling, cells were collected, and lipids were 

analyzed as described in Methods. The radioactivity incorporated to each lipid was visualized by 

radioautography and quantified by liquid scintillation counting. The results are expressed as pmol of 

[
14

C-Gly]-glycerolipid/10
6
 cells for GP, GL-TG and GL-DG and represent the mean ± SEM of four 

independent experiments.  

Panel D: In addition, MDCK cells were grown on glass coverslips; after reaching 70–80% confluence, 

cells were placed in low serum medium (0.5% FBS) and then transfected with xbp1-siRNA. After 24 h 

cells were subjected to hyperosmolar medium for extra 24 h; after treatment, cells were fixed in 4 % 

paraformaldehyde in PBS solution and permeabilized with 0.5 % triton X-100.  After washing, cells 

were incubated with 0.5 % oil red O in isopropanol; then, samples were exhaustively washed with tap 

water and PBS. Finally, samples were mounted in the presence of 2.5 μM Hoechst 33258 (Sigma-

Aldrich) with a drop of Vectashield mounting medium (Vector Laboratories). Fluorescence images 

were obtained with a Nikon Eclipse Ti (with an objective Plan apo VC 60×, 1.4 DIC 1/2) with 

acquisition software Micrometrics SE Premium (Accu-Scope). Images were processed using Image J 

and are representative of three independent experiments.  

Panel E: In other set of experiments, MDCK cells were grown in a mixture containing DMEM/Ham's-
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F12 (1:1), 10% FBS and 1% antibiotic mixture. After reaching 70–80% confluence, cells were placed 

in low serum medium (0.5% FBS) and both, isosmolar and hyperosmolar cultures were treated with 20 

µM 4µ8C, IRE1-XBP1 pathway inhibitor, for 30 min. Then cells were subjected to hyperosmolar 

medium for extra 24 h. After treatments, cells were harvested, RNA was isolated and xbp1 mRNA was 

evaluated by RT-PCR analysis.  

Panel F shows the densitometric analysis of gel shown in panel E which was performed with Gel 

Analizer 19.1 online software and each bar represents the ratio between the values of xbp1u or xbp1s 

and -actin (arbitrary units). Each bar represents the mean ± SEM of three independent experiments. 

Significative results are indicated within the graph.  

Panel G: To analyze the role of XBP1 in lipid metabolism, MDCK cells were grown in a mixture 

containing DMEM/Ham's-F12 (1:1), 10% FBS and 1% antibiotic mixture. After reaching 70–80% 

confluence, cells were placed in low serum medium (0.5% FBS) and both, isosmolar and 

hyperosmolar cells were treated with 20 µM 4µ8C for 30 min before NaCl addition; 3 h before 

harvesting 2 μCi/ml [U-
14

C]-glycerol was added to each well. After labeling cells were collected and 

lipids were analyzed as described in Methods. The radioactivity incorporated to each lipid was 

visualized by radioautography and quantified by liquid scintillation counting. The results are expressed 

as pmol of [
14

C-Gly]-glycerolipid/10
6
 cells for GP, GL-TG and GL-DG and represent the mean ± SEM 

of four independent experiments.  

Panel H. In addition, MDCK cells were grown on glass coverslips; after reaching 70–80% confluence, 

cells were placed in low serum medium (0.5% FBS) and both, isosmolar and hyperosmolar cultures 

were treated with 20 µM 4µ8C, IRE1-XBP1 pathway inhibitor, for 30 min. Then cells were subjected 

to hyperosmolar medium for extra 24 h. After treatments, cells were fixed in 4 % paraformaldehyde in 

PBS solution and permeabilized with 0.5 % triton X-100. After washing, cells were incubated with 0.5 

% oil red O in isopropanol; then, samples were exhaustively washed with tap water and PBS. Finally, 

samples were mounted in the presence of 2.5 μM Hoechst 33258 with a drop of Vectashield mounting 

medium (Vector Laboratories). Fluorescence images were obtained with a Nikon Eclipse Ti (with an 

objective Plan apo VC 60×, 1.4 DIC 1/2) with acquisition software Micrometrics SE Premium (Accu-

Scope). Images were processed using Image J and are representative of three independent experiments.  
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Panels I and J shows the quantification of the number and the size of lipid droplets showed in Panel H. 

Estimations were performed with Image J. Statistical significance is shown in each panel.  

Figure 4. Lipid metabolism protein expression requires XBP1s activity. MDCK cells were grown 

in a mixture containing DMEM/Ham's-F12 (1:1), 10% FBS and 1% antibiotic mixture. After reaching 

70–80% confluence, cells were placed in low serum medium (0.5% FBS) and then either transfected 

with xbp1-siRNA for 24 h, to knock down xbp1 (panels A, B, E and F), or treated with 20 µM 4µ8C, 

an IRE1-XBP1 pathway inhibitor for 30 min (panels C, D, G and H). Then, cells were incubated in 

isosmolar media (commercial media, 298 mOsmol/Kg of water, no addition of NaCl) or in 

hyperosmolar media (commercial media added with sterile 5 M NaCl up to 512 mOsm/Kg of water) 

for 24 h. After treatments, cells were harvested, and RNA was isolated for RT-PCR analysis. lpin 1, 

lpin2, dgat1 and dgat2 mRNA expression in the presence of xbp1-siRNA (Panel A) and in the 

presence of IRE-XBP1 pathway inhibitor (Panel C) were evaluated. srebp1 and srebp2 mRNA 

expression in the presence of xbp1-siRNA (panel E) and in the presence of IRE-XBP1 pathway 

inhibitor (Panel G) were evaluated. The images correspond to a representative experiment from three 

independent determinations. Bar graphs in panels B, D, F and H correspond to the densitometric 

analysis of the bands performed with Gel Analizer 19.1 online software. Each bar represents the ratio 

between the values of each mRNA and -actin (arbitrary units) and expresses the mean ± SEM of 

three independent experiments. Significant differences are shown within bar graphs. 

Figure 5. TonEBP is involved in xbp1-mRNA expression. MDCK cells were grown in a mixture 

containing DMEM/Ham's-F12 (1:1), 10% FBS and 1% antibiotic mixture. After reaching 70–80% 

confluence, cells were placed in low serum medium (0.5% FBS) and then transfected with tonebp- 

siRNA to silence tonebp gene. After 24 h, cells were incubated in isosmolar media (commercial 

media, 298 mOsmol/Kg of water, no addition of NaCl) or in hyperosmolar media (commercial media 

added with sterile 5 M NaCl up to 512 mOsm/Kg of water) for extra 24 h. After treatment, cells were 

harvested and RNA was isolated and followed by RT-PCR to evaluate mRNA expression of tonebp 

and its target genes smit and bgt1 (Panel A), xbp1 (Panel B) and srebp1 and srebp2 (Panel D). The 

images correspond to a representative experiment from three independent determinations. Bar graphs 

in panels C, E, and F correspond to the densitometric analysis of the bands performed with Gel 
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Analizer 19.1 online software. Each bar represents the ratio between the values of each mRNA and -

actin (arbitrary units) and expresses the mean ± SEM of three independent experiments. Significant 

differences are shown within bar graphs. 

Figure 6. The role of XBP1 in osmoprotection. Changes in environmental osmolarity induce 

signaling pathways that activate TonEBP transcription factor leading to the transcription of smit, bgt1, 

cox2 and xbp1 genes. These are membrane-associated proteins whose synthesis occurs at endoplasmic 

reticulum (ER) membranes. The increase in ER-associated protein synthesis causes ER stress and 

IRE1 activation. IRE1-associated endoribonuclease splices xbp1u to xbp1s, which is translated to 

XBP1s. XBP1s translocates to the nucleus, binds to its response element (ERSE) in DNA and activates 

srebp transcription. The activation of SREBP, which is an ER membrane-associated protein, causes 

SREBP translocation to nuclear compartment and transcriptional activation of lipogenic genes: dgat1, 

lpin1, and lpin2. As consequence, lipid synthesis is enhanced, membrane expansion is facilitated, and 

ER stress alleviation occurs. 
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Highlights 

 XBP1 activity is modulated by hyperosmolarity. 

 XBP1 expression is regulated by TonEBP, a hyperosmolar-induced transcription 

factor. 

 XBP1 is involved in lipid synthesis through lipogenic genes upregulation. 

 XBP1 would act as an osmoprotective protein. 
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