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Abstract 

Sensing and response to high temperatures are crucial to prevent heat-related damage and to 

preserve cellular and metabolic functions. The response to heat stress is a complex and 

coordinated process that involves several subcellular compartments and multi-level regulatory 

networks that are synchronized to avoid cell damage while maintaining cellular homeostasis. In 

this review, we provide an insight into the most recent advances in elucidating the molecular 

mechanisms involved in heat stress sensing and response in Marchantia polymorpha. Based on 
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the signaling pathways and genes that were identified in Marchantia, our analyses indicate that 

although with specific particularities, the core components of the heat stress response seem 

conserved in bryophytes and angiosperms. Liverworts not only constitute a powerful tool to 

study heat stress response and signaling pathways during plant evolution, but also provide key 

and simple mechanisms to cope with extreme temperatures. Given the increasing prevalence of 

high temperatures around the world as a result of global warming, this knowledge provides a 

new set of molecular tools with potential agronomical applications.  
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Introduction 

With increasing extreme heat events associated with climate change, understanding how 

plants sense and respond to high temperatures is crucial to prevent damage and preserve cellular 

and metabolic functions.  

 Depending on the exposure time and temperature, plants can develop different responses that 

range from acclimation to the activation of specific cell death programs in particular cells or 

tissues. The pathways that govern these responses are complex and depend not only on the extent 

of the stress applied but also on previous growing temperatures and other environmental 

conditions including light intensity and humidity (Wang et al. 2016). In addition, plants at a 

particular developmental stage also respond differentially to heat stress (HS), adding more 

complexity to heat stress response studies, which can certainly be challenging. In this sense, the 

bryophyte Marchantia polymorpha is emerging as an interesting and simpler model organism to 

study stress response. Although recent phylogenetic studies question the basal position of 

liverworts in the phylogeny of land plants (de Sousa et al. 2019; Puttick et al. 2018; Sousa et al. 

2020; Zhang et al. 2020) (Figure 1A), its study emerges as a useful opportunity to understand 

biochemical and molecular pathways in an organism that presents low genetic redundancy that 

might have an early evolutionary origin (Bowman et al. 2017). M. polymorpha is a member of 

Marchantiopsida, a clade characterized by a complex gametophytic thallus. Marchantia has a 

dominant haploid gametophytic generation, which can be easily reproduced asexually through 

gemmae. As each gemma develops from a single cell by mitosis, isogenic lines can be easily 
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established. In addition, it only takes 2–3 weeks for a gemma to grow into a gemmae-producing 

thallus and gemmae can be preserved for several years. These characteristics, together with its 

small genome size, constitute Marchantia as a widely used model organism for molecular, 

physiological, biochemical/genetic studies and evolutionary research. In fact, sequencing of the 

M. polymorpha genome revealed that key aspects of plant growth, development and stress 

response signaling pathways are conserved. Several of these pathways emerged during water-to-

land transition. As transition from aquatic to terrestrial environments required overcoming 

extreme temperature fluctuations, the study of heat stress sensing and response in Marchantia not 

only offers an evolutionary perspective but also might provide opportunities to apply this 

knowledge to develop biotechnological tools that might help to cope with heat waves expected 

because of climate change.  

 

Sensing of high temperatures 

It is widely accepted that an increase in the environmental temperature alters the plasma 

membrane fluidity of plant cells and activates membrane heat receptors (Hou et al. 2016; Török 

et al. 2014). Heat stress also results in the accumulation of unfolded proteins and reactive oxygen 

species (ROS) inside the cell. All these changes stimulate a plethora of signal transduction 

pathways that regulate the expression of specific genes, allowing the plant to tolerate stress and 

to survive. As high temperatures produce alterations in macromolecules (i.e. protein 

misfolding/denaturation or partial melting of DNA-RNA complexes), it has been postulated that 
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any of these changes might serve as a sensor of heat. However, the definition of a true primary 

abiotic sensor has been recently revised (Lamers et al. 2020). It has been proposed that a sensor 

needs to perceive the stress by detecting suboptimal environmental conditions and to activate a 

specific cellular signaling pathway that triggers a unique and coordinated response to the stress 

(Lamers et al. 2020).  

Several components of the plasma membrane have been postulated as primary heat sensors in 

plants as they are able to respond to small changes in temperature. Responses to high 

temperatures involve alterations in the plasma membrane lipid composition and also the 

interaction between lipids and specific membrane proteins. This membrane remodeling triggers 

downstream signaling pathways that determine the intracellular response to the stress perceived 

(Mittler et al. 2012; Saidi et al. 2010). Heat related changes in plasma membrane fluidity are 

associated with a specific transient Ca2+ influx across the plasma membrane (Gong et al. 1998; 

Liu et al. 2006; Saidi et al. 2009; Wu and Jinn 2010).  

Plant CNGCs (plasma membrane-embedded Cyclic Nucleotide-gated Ca2+ Channels) are 

involved in responses to biotic and abiotic stresses, and in development and fertilization 

(DeFalco et al. 2016; Dietrich et al. 2010; Kaplan et al. 2007; Moeder et al. 2011). OsCNGC14 

and OsCNGC16 modulate calcium signals in response to extreme temperatures and are required 

for heat and chilling tolerance in rice (Cui et al. 2020).  

The Arabidopsis genome contains 20 CNGC family members that exhibit variable levels of 

expression in different tissues (Talke et al. 2003) and are classified into five subgroups (I-III, IVa 
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and IVb) based on their sequence similarity (Mäser 2001). Interestingly, CNGCb from 

Physcomitrium patens and its orthologs CNGC2 and CNGC4 from Arabidopsis are essential 

components of the thermosensory machinery of land plant cells. P. patens impaired in CNGCb 

show hypersensitive temperature-dependent Ca2+ and hyper-thermoresponsive profiles of heat 

stress response activation. A similar phenotype was shown for Arabidopsis CNGC2 mutants 

(Finka and Goloubinoff 2013; Finka et al. 2011).  These reports indicate that temperature sensing 

via CNGC might be a highly conserved mechanism. A search in the genomic sequence databases 

of M. polymorpha revealed the presence of five CNGC encoding genes (Mp6g01920.1, 

Mp4g04110.1, Mp5g07780.1, Mp4g11640.1 and Mp3g14660.1). A phylogenetic analysis 

comparing CNGC proteins from Arabidopsis thaliana, P. patens and M. polymorpha shows that 

two MpCNGC proteins (encoded by Mp4g11640.1 and Mp3g14660.1) are grouped together in 

Group IVa with the P. patens proteins CNGCb and CNGCd and Arabidopsis AtCNGC2 and 

AtCNGC4, suggesting that a similar mechanism in response to HS could take place in 

Marchantia. In addition, MpCNGCs display the same protein domain architecture as the other 

proteins present in Group IVa and a high degree of identity, reinforcing the idea that they could 

play a similar role in Marchantia (Figure 1). 

Light and temperature share common sensors and regulators in plants. These include 

PHYTOCHROME-INTERACTING FACTORs (PIFs), which are key repressors of 

photomorphogenesis. Red light converts the inactive form of phytochrome B (phyB), Pr, into the 

active Pfr form, which interacts with PIF proteins (Shen et al. 2008; Zhu et al. 2000). 
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Importantly, high temperatures spontaneously revert the light-activated Pfr form of phyB back to 

the inactive Pr form in a process called thermal reversion that is light-independent. Therefore, 

phyB and other phytochromes have emerged as major sensors in Arabidopsis, integrating both 

light and temperature cues (Jung et al. 2015; Legris et al. 2016; Vu et al. 2018). Similarly to 

phyB in Arabidopsis, high temperatures shorten the lifetime of the photoactivated 

PHOTOTROPIN (MpPHOT) (Komatsu et al. 2014), which is the homolog of the blue light 

receptor AtPHOT2 (Fujii et al. 2017) and has been proposed as a thermosensor in Marchantia 

(Fujii et al. 2017; Vu et al. 2018). Phototropins contain two Light Oxygen or Voltage (LOV) 

domains at their N-terminal domain that is able to bind to a flavin mononucleotide (FMN) 

chromophore. In darkness, the LOV domain is inactive and non-covalently bonded to FMN.  

Upon blue light excitation, the LOV domain covalently binds to the FMN conferring the active 

state. The active status is thermoreversible, as an increase in temperature causes the active LOV 

domain to disconnect from the FMN and to return to the inactive state. MpPHOT has been 

shown to regulate cold-induced chloroplast movement, avoiding photooxidative damage. High 

temperatures cause the reversion of MpPHOT to an inactive state, preventing the response (Fujii 

et al., 2017). In Arabidopsis, phototropins act as thermosensors driving high temperature-

mediated guard cell movement (Kostaki et al. 2020). In response to high temperatures, stomata 

opening results in increased evapotranspiration and leaf cooling (Kostaki et al. 2020). However, 

the scenario in Marchantia spp seems different. Since Marchantia pores do not act as stomata and 
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warm temperatures have been shown to inactivate MpPHOT, (Fujii et al., 2017), it is not clear 

how phototropin activity would lead a response to high temperatures.  

Several articles report that leucine-rich repeat receptor-like protein kinases (LRR-RLKs) 

might also act as heat sensors. In A. thaliana, two LRR-RLKs (ERECTA and AtPXL1) are 

involved in heat stress response (Jung et al. 2015; Qi et al. 2004). AtPXL1 is induced upon heat 

stress and phosphorylates histidine-rich dehydrin1 (AtHIRD1) and light-harvesting protein 

complex I (AtLHCA1), which are likewise involved in different types of stresses such as high 

light/heat stress and salt/drought stress, respectively (Hara et al. 2011; Ivanov et al. 2017). 

Furthermore, the genes encoding Solanum tuberosum Receptor-like Kinase 1 (StRLK1) and 

Oryza sativa gamma-ray induced LRR-RLK1 (OsGIRL1) receptors are also induced during heat 

shock treatments (Park et al. 2014; Wu et al. 2009). Homologues of AtPXL1 and ERECTA are 

found in Marchantia and known as TDIF RECEPTOR (MpTDR) and ERECTA (MpER) 

respectively, although their roles in heat stress sensing is still uncertain (Hirakawa et al. 2019). 

Additionally, a recent study in Arabidopsis revealed a central role for chloroplast signaling 

regulating the level of response to high temperatures (Dickinson et al. 2018). Light-activated 

chloroplast induces the expression of heat-related genes such as HSP70, resulting in a diurnal 

pattern of thermotolerance. Concordantly with a central role for chloroplasts sensing high 

temperatures and regulating a transcriptional response, it has been shown that a heat-responsive 

retrograde pathway dependent on chloroplast translation capacity is critical for the activation of 

HSFA2 and its target genes in Arabidopsis (Yu et al. 2012). In fact, it has been suggested by 
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structural and functional studies, that chloroplast retrograde signaling is conserved in several 

species including flowering plants, the fern Ceratopteris richardii, and the moss P. patens (Zhao 

et al. 2019). A summary of the heat-sensing mechanisms that might be functional in Marchantia 

is shown in Figure 2. 

 

Reactive oxygen species (ROS) accumulation in response to heat stress 

Calcium ions and heat sensors transfer signals to transcription factors through a series of 

signaling cascades. Ca2+ signaling has been linked to regulatory mechanisms of ROS-producing 

enzymes (Dat et al. 1998; Foyer et al. 1997; Mittler et al. 2012). Although an excess of ROS 

causes detrimental effects on plant cells, ROS have been widely recognized as molecules 

mediating stress response and development (Mhamdi and Van Breusegem 2018; Schippers et al. 

2016; Waszczak et al. 2016). In particular, heat-shock transcription factors (HSFs) are proposed 

to directly sense ROS, regulating the expression of oxidative stress response genes (Li et al. 

2018). 

Since ROS production by plant NADPH oxidases/RBOHs (Respiratory Burst Oxidase 

Homologues) is synergistically activated by Ca2+ binding to their EF-hand motif, they have been 

implicated as a crosstalk point in the ROS-Ca2+ signaling network (Dietz et al. 2016; Kadota et 

al. 2015; Mittler et al. 2012; Mittler et al. 2004; Suzuki et al. 2011; Torres and Dangl 2005). 

There are about 10 isoforms of RBOH enzymes described in A. thaliana (Torres and Dangl 

2005; Torres et al. 1998). Particularly, RBOHD is a key player in ROS production under 
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stressful conditions (Kadota et al. 2015; Katano et al. 2018; Miller et al. 2009; Miller et al. 2007; 

Mittler et al. 2012; Sagi and Fluhr 2001). Experiments performed in A. thaliana mutant plants 

lacking RBOHD show that the systemic response to heat stress is largely dependent on RBOHD 

activity (Miller et al. 2009). Only two RBOH isoforms are encoded by the M. polymorpha 

genome, which suggests far less functional redundancy. These two isoforms, Mp3g20340.1 and 

Mp7g00270.1 (Kimura et al. 2020), display conserved C-terminal phosphorylation sites, 

suggesting that regulation by the Ca2+ signal might be also conserved.  

Other important sources of ROS during HS constitute the mitochondria and chloroplasts. 

Mitochondria play a crucial role in setting the cellular redox-state and in triggering signal 

transduction pathways upon stress. In A. thaliana, the induction of heat shock proteins (HSPs) 

after a heat stress treatment was shown to require mitochondrial ROS production (Zhang et al. 

2009). Remarkably, it is suggested that ROS accumulation is sensed by HSFs, linking heat stress 

responses with the ROS signaling network (Davletova et al. 2005). Although a similar 

mechanism could take place in Marchantia upon exposure to high temperatures, the role of 

mitochondria during this process remains far largely unknown. 

Particularly, photosynthesis is highly sensitive to high temperatures and heat can lead to an 

alteration of the redox state. HS is reported to affect thylakoid membranes, photosystems PSI and 

PSII, the cytochrome b6f (Cytb6f) complex and Rubisco, leading to the inhibition of various 

redox and metabolic reactions (Mathur et al. 2014). In M. polymorpha, ROS accumulation 

triggers the activation of the chloroplast genes MpSIG1, MpSIG2 and MpSIG5 (plastid RNA 
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polymerase sigma factors), which are thought to regulate the chloroplast transcriptome during 

stressful environmental conditions (Kanazawa et al. 2013; Zhao et al. 2017), a response that was 

also observed in Arabidopsis plants in response to HS (Danilova et al. 2018).  

Interestingly, activation of AtPHOT2 (to which MpPHOT is analogous) induces an increase 

in cytoplasmic [Ca2+], promoting ROS production via RBOH activation (Wen et al. 2008). In 

addition, the transcription factor MpTCP1 (TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1), 

with evolutionarily conserved roles across the plant kingdom, has been proposed as a sensor of 

altered redox conditions that can also play a role as a modulator of the Marchantia transcriptome 

in response to heat stress (Busch et al. 2019). Specifically, MpTCP1 senses ROS levels and 

regulates a complex network of ROS producing and detoxifying enzymes, mediating adaptive 

responses. Although further studies are needed to decipher ROS signaling and crosstalk 

pathways during heat stress in Marchantia, it is currently thought that ROS signaling is part of 

the regulatory pathways triggered in response to high temperatures from the early stages of land 

plant evolution (de Vries et al. 2020). As different stress pathways in Marchantia and 

Physcomitrium seem intertwined with ROS and retrograde signaling, plant terrestrialization 

might have included not only ROS signaling but also components of the retrograde-signaling 

pathway (de Vries et al. 2018). The mechanisms proposed to mediate Marchantia ROS 

accumulation in response to HS are illustrated in Figure 3. 

 

Transcriptional responses to heat stress   

This article is protected by copyright. All rights reserved.



 
 

When environmental temperatures rise, plants respond in a conserved manner through a 

process known as heat stress response (Saidi et al. 2010). This process is mainly characterized by 

the massive up-regulation of genes encoding HSPs (Finka et al. 2011), a response that is highly 

conserved and is also found in animals, yeast and prokaryotes. The activation of the heat stress 

response involves 0.5-1% of the total genome, including HSPs with chaperone function as the 

most abundantly expressed (Finka et al. 2011). Chaperones are key components in the heat stress 

response process due to the fact that they are timely expressed to prevent heat damage and 

contribute to thermotolerance in plants (Hua 2009; Larkindale and Vierling 2008). In addition to 

HSPs, thermotolerance is also dependent on the accumulation of specific metabolites and plant 

hormones triggered pathways (Hua 2009; Iba 2002).  

HSFs are critical components of the response to heat stress, activating the transcription of 

HSPs (Baniwal et al. 2004; Koskull-Döring et al. 2007). Members of the HSF A1 family 

(HSFA1s) are known as master regulators of the heat stress response in plants. Heat-induced 

gene expression is regulated by HSFs at different subcellular levels which operate 

simultaneously to develop a coordinated response (Sajid et al. 2018). During HS, Ca2+ regulates 

HsfA1s, which directly interacts with HSFA2 and HSFA1a via calmodulin 3 (CaM3) and a 

calcium/calmodulin binding protein-kinases (CBK) to regulate HSP gene expression (Sajid et al. 

2018). In Arabidopsis, AtCAM3 activates several HSFs including the Multiprotein Bridging 

Factor 1C (MBF1c) (Katano et al. 2018), a WRKY DNA-binding domain superfamily protein 

(WRKY39) (Li et al. 2009; Ohama et al. 2017) and several HSFA1s (Zhang et al. 2009). 
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There are a few reports on the role of HSFAs in bryophytes. In Physcomitrium, it was 

proposed that the regulation of PpHSFA1-1 at the post-transcriptional level is similar to that of 

AtHSFA2 (Chang et al. 2014). Moreover, a recent study assessing the P. patens transcriptome 

remodeling during acclimation to high temperatures revealed that an early response to heat stress 

involved HSPs related to protein folding and endoplasmic reticulum stress. Through a Weighted 

Gene Correlation Network Analysis, an HSFA1E binding motif was identified within the 

promoters of unrelated genes that displayed rapid heat-activation, suggesting that those genes 

might be direct targets of HSFA1E transcription factors upon heat stress (Elzanati et al. 2020). A 

search in the M. polymorpha genome revealed the presence of two genes encoding for HSFs 

(Mapoly0018s0001 and Mapoly0011s0205) (Liu et al. 2019a). Since Mapoly0018s0001 (named 

MpHSF2, (Liu et al. 2019a) belongs to the HSFA family, it arises as a good candidate to regulate 

the transcription of Marchantia HSPs in response to heat stress (Figure 4).  

In plants exposed to heat stress, members of the group II of MBF1 proteins translocate to the 

nucleus in a ROS-dependent manner. This translocation results in the expression of a set of 

proteins involved in the heat stress response, such as DREB2A, HSFB2a and HSFB2b (Jaimes-

Miranda and Montes 2020). In the case of MBF1c, it also modulates the metabolism of trehalose, 

salicylic acid and ethylene (Suzuki et al. 2008; Suzuki et al. 2013). The primary structure of 

MBF1 proteins is somewhat conserved among plants. MARPO_0105s0012 from M. polymorpha 

is described as the homologous of MBF1c, a member of the group II of MBF proteins (Jaimes-
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Miranda and Montes 2020; Tsuda and Yamazaki 2004) although its function in Marchantia 

remains to be elucidated. 

 HSPs are classified into five classes according to their molecular weight. In angiosperms, 

HSP70 and HSP90 are key components during the heat stress response because they directly 

regulate HSFA1s (Jacob et al. 2017; Swindell et al. 2007). Under normal conditions, HSP70 and 

HSP90 repress HSFA1s activity. Upon heat treatment, HSFA1 is released from HSP70/90 

repression and becomes active (Ohama et al. 2017). While the Arabidopsis HSP70 superfamily 

has 18 members and P. patens has 21 (Tang et al. 2016), there are at least 11 HSP70s reported in 

M. polymorpha. For HSP90, there are 7 encoding genes in Arabidopsis (Krishna and Gloor 

2001), 10 in P. patens (Zhang et al. 2013) and at least 5 putative HSP90 encoding genes in the 

M. polymorpha genome (Table 1). Experiments in P. patens showed that inhibition of HSP90 

triggers a heat-shock-like response, inducing the expression of HSFs in a process that is Ca2+ 

dependent (Saidi et al. 2009; Yamada et al. 2007). In addition, PpHSP17.3b and PpHSP16.4, 

encoding cytosolic small HSPs, are induced during heat stress and plants impaired in PpHSP16.4 

show delayed recovery after heat treatment (Ruibal et al. 2013; Saidi et al. 2005). In agreement 

with a similar role in M. polymorpha, MpHSP17.8A1 (MARPO_0076s0004) gene was shown to 

be highly induced after a heat treatment of 1 hour (Nishihama et al. 2016) (Figure 4). 

In Arabidopsis, HSP90 is also essential for stabilization of ZEITLUPE (ZTL), an E3 ubiquitin 

ligase that is a fundamental component of the central oscillator (Kim et al. 2011). In response to 

heat stress, ZTL and HSP90 are localized to protein aggregates that are degraded via the 
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ubiquitin–proteasome pathways (Gil et al. 2017). Since ZTL orthologues were identified in the 

genomes of nonvascular and vascular land plants, including M. polymorpha (Kubota et al. 2014), 

it is thought that the ZTL/HSP90 module might have an ancient origin. As early land plants were 

likely facing extreme temperature fluctuations and high soil temperatures, it is currently accepted 

that the ZTL/HSP90 module might have evolved in the earliest land plants to ensure 

thermostable growth (Gil and Park 2019). Remarkably, transcriptomic studies in M. polymorpha 

and P. patens show induction of circadian clock components upon heat stress that indicate an 

early origin of a thermostable clock system and its involvement during heat stress response 

(Elzanati et al. 2020; Flores-Sandoval et al. 2018).  

 

Phytohormones related to heat stress response 

One of the pathways that is strongly modified during plant HS is the abscisic acid (ABA) 

signaling pathway. ABA is known to mediate plant heat tolerance in Arabidopsis and Festuca 

arundinacea (known as tall fescue) (Wang et al. 2017). It is reported that ABA induces the 

expression of several HSPs through an HSFA2-dependent pathway, leading to an improved heat 

tolerance (Islam et al. 2018; Li et al. 2014; Wang et al. 2017). In addition, HSFA6b was shown 

to play a pivotal role in the response to ABA and thermotolerance (Huang et al. 2016). As other 

signaling pathways in plants, the ABA pathway is constitutively repressed. ABA levels increase 

in response to environmental changes such as HS, which is sensed by ABA receptors 
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(PYR/PYL/RCAR) (Zhang et al. 2019a), triggering the activation of downstream signaling 

cascades (Bulgakov et al. 2019; Wang and Song 2014; Zhang et al. 2019b).  

Functional components of the core ABA transduction pathway are present from aquatic 

charophyte algae to angiosperms (Sun et al. 2019). In fact, MpPYL1 was shown to be a 

functional ABA receptor of M. polymorpha, as was able to complement Arabidopsis mutants 

(Bowman et al. 2017). Also, a core ABA signaling module was identified and characterized in 

Marchantia (Jahan et al. 2019; Lind et al. 2015; Tougane et al. 2010; Bowman et al. 2017; 

Eklund et al., 2018), although its role in HS response is still unclear (Figure 5). An interesting 

hypothesis is that ABA co-option allowed early land plants to regulate this ancestral signaling 

pathway in response to dehydration and extreme temperatures, enabling their establishment on 

land. ABA acts as a key regulator of the stomatal aperture (Bright et al. 2006), which is 

associated with heat dissipation and water loss management (Devireddy et al. 2020; Haworth et 

al. 2018; Liu et al. 2016; Zandalinas et al. 2016). Remarkably, a recent phylogenetic study found 

that the absence of stomata in Marchantia was a result of reductive evolution. This was 

succeeded by air pore acquisition, which regulates gas exchange in Marchantia (Harris et al. 

2020). Unlike plants with stomatal regulation, it is believed that the air pores of Marchantia do 

not change their aperture size (Shimamura 2016). The regulation of stomatal closure through 

chloroplast retrograde signaling appears to be conserved among land plants, except in 

Marchantia, where the size of the air pore is not affected (Zhao et al. 2019). Due to the 
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morphological differences that exist in comparison with other land plants, the role of ABA 

signaling in response to heat stress remains to be elucidated in Marchantia. 

Jasmonic acid (JA) is another phytohormone that regulates the transcription of genes that 

respond to heat stress via HSFA-1 (Muench et al. 2016). The core of the JA signaling pathway 

proposed in angiosperms is constituted by the hormone jasmonoy-l-lisoleucine (JA-L-ILE), the 

Coronatine Insensitive 1 (COI-1) receptor and the Jasmonate Zim Domain (JAZ) proteins, a 

group of transcriptional repressors (Chini et al. 2007; Fonseca et al. 2009; Sheard et al. 2010). 

One MpCOI-1 and one MpJAZ protein are present in M. polymorpha (Monte et al. 2018a; Monte 

et al. 2018b). Although JA-Ile is not synthesized in Physcomitrium (Stumpe et al. 2010) or 

Marchantia, dn-OPDA (a precursor of JA-L-ILE) can act as a ligand of MpCOI1 (Monte et al. 

2018a). Remarkably, a recent study by Monte et al. (2020) showed that dn-OPDA can also act 

independently of MpCOI1 activating HSP and antioxidant enzymes upon heat stress (Figure 5). 

Not only OPDA and dn-OPDA are accumulated in Marchantia in response to high temperature, 

but pretreatment with dn-OPDA is sufficient to confer thermotolerance as it was reported for JA 

in angiosperms (Clarke et al. 2009; Monte et al. 2020; Muench et al. 2016). These important 

findings indicate that the COI1-independent signaling is an ancient and conserved pathway, 

whose ancestral role was to protect plants against heat stress.  

Auxins also participate in the regulation of heat responses. The addition of auxin prevents 

male sterility caused by heat stress in barley (Oshino et al. 2011) and regulates the auxin 

signaling pathway in the acquisition of thermotolerance (Kruszka et al. 2014). Additionally, high 
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temperatures promote auxin-mediated hypocotyl elongation in Arabidopsis (Kim et al. 2020). All 

components of the auxin transcriptional response machinery are present in M. polymorpha as 

single orthologs: MpTOPLESS (TPL), MpTRANSPORT INHIBITOR RESPONSE 1 (TIR1) 

auxin receptor and a single ortholog of each class of AUXIN RESPONSE FACTORs (MpARF1, 

MpARF2 and MpARF3 (Flores-Sandoval et al. 2015b; Kato et al. 2015). Interestingly, an 

extensive transcriptomic study focused on the expression of MpARFs showed that several 

transcription factors related to auxin response are co-expressed with MpHSR after a heat shock 

(Flores-Sandoval et al. 2018) (Figure 5).  

Altogether, these reports not only indicate the relevance of hormone signaling pathways 

regulating Marchantia response to heat stress, but also highlight the use of M. polymorpha as a 

model plant to understand the evolutionary mechanisms behind the involvement of plant 

hormones in the adaptive mechanisms triggered by extreme temperatures (Figure 5).    

 

Epigenetic regulation during heat stress 

Several epigenetic mechanisms are reported to participate in thermotolerance acquisition. 

These include modifications in DNA, histones, chromatin remodeling, microRNAs (miRNAs) 

regulation, among others (Liu et al. 2015). In particular, covalent histone modifications through 

acetylation or deacetylation by histone acetyltransferases (HATs) or histone deacetylases 

(HDACs) activities respectively, have been associated to the regulation of heat stress response 

gene expression (Buszewicz et al. 2016; Liu et al. 2015; Popova et al. 2013; Smith et al. 2004; 
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Xue-Franzén et al. 2013). The M. polymorpha genome encodes for seven MpHAT and twelve 

MpHDAC genes (Bowman et al. 2017) whose expression is affected by high temperatures (Chu 

and Chen 2018), indicating that they might also participate in the heat stress response (Figure 6).  

 Plant response to heat stress also involves miRNA regulation. Several miRNAs are induced 

by heat in vascular plants, including miR156, miR159, miR398 and miR160 (Sunkar et al. 2012). 

In particular, miR319/159 and miR160 are found in the M. polymorpha genome (Lin et al. 2016) 

and interestingly, its target gene MpARF3 expression is suppressed during heat stress in 

Marchantia (Flores-Sandoval et al. 2015a; Flores-Sandoval et al. 2018). 

Although information about chromatin remodeling and heat stress is scarce, new evidence 

shows the involvement of histone modifications in thermo-regulated gene expression. For 

instance, the chromatin remodeling factor PICKLE (PKL) plays a role promoting hypocotyl 

elongation in response to high temperatures. PKL modulates the methylation status of H3K27 

and activates the expression of auxin-responsive and growth-promoting genes in Arabidopsis. 

Remarkably, AtHSFA2 directly activates the H3K27me3 demethylase RELATIVE OF EARLY 

FLOWERING 6 (REF6), which in turn de-represses HSFA2, coordinating an epigenetic network 

involving histone demethylases and transcription factors that ensures reproductive success and 

transgenerational stress adaptation (Liu et al. 2019b). Recently, it was found that H3K27me3 

played an essential role in heterochromatin function in M. polymorpha (Montgomery et al. 

2020), where it was postulated that marks in H3K27me3 play a role in transposon silencing 
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(Figure 6). However, its role during heat stress response in Marchantia needs to be further 

investigated.  

In addition, H2A.Z, a histone variant involved in transcriptional control, DNA repair and 

regulation of centromeric heterochromatin that is conserved in Marchantia, has been also 

implicated in plant heat response in Arabidopsis (Cortijo et al., 2017). H2A.Z is mainly 

associated with repressive marks and low gene expression. At non-inducible temperatures, 

H2A.Z-nucleosomes are enriched at heat stress-responsive genes. In response to high 

temperatures, HSF1 is required for the temporary eviction of H2A.Z from the bodies of repressed 

genes (Cortijo et al. 2017). Remarkably, a role of H2A.Z modulating H3K27me3 marking has 

also been proposed (Carter et al. 2018). Although these modulatory aspects of heat stress 

response regulation are still unexplored in liverworts, this promising possibility should be 

verified in future studies. 

 

Concluding remarks and perspectives 

Heat stress response is a complex process that involves several components located in 

different subcellular compartments. These molecules are synchronized to trigger a coordinated 

response to avoid cell damage caused by high temperatures. In this review, we summarized the 

information available about the molecular events related to heat stress response in M. 

polymorpha compared with other bryophytes and vascular plants. How plants sense heat is still a 

controversial topic. However, based on the signaling pathways and heat stress related genes that 
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were identified in M. polymorpha, it appears that the core components of the heat stress response 

are conserved between bryophytes and higher plants (Figure 7). Due to their evolutionary 

history, liverworts constitute not only a powerful tool to study the signaling pathways and 

molecular responses to high temperatures during plant evolution, but also might provide key and 

simple mechanisms for angiosperms to cope with extreme fluctuations in temperature that are 

expected due to the current climate change.   
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Transcript ID KEGG Pathway Mapoly ID 
A.thaliana 

closest 
homologue 

MpHSP90s 

Mp1g26610.1 HSP90A, htpG; molecular chaperone 
HtpG 

Mapoly0002s021
7.1 

 HSP90.4 

Mp4g19750.1 HSP90A, htpG; molecular chaperone 
HtpG 

Mapoly0126s001
9.1 

 HSP90.4 
   

Mp5g15940.1 HSP90B, TRA1; heat shock protein 
90kDa beta 

Mapoly0071s001
6.1 

 HSP90.5 

Mp6g06660.1 HSP90A, htpG; molecular chaperone 
HtpG 

Mapoly0173s001
1.1 

 HSP90.1 

Mp2g04900.1 HSP90B, TRA1; heat shock protein 
90kDa beta 

Mapoly0031s014
5.1 

 HSP90.7 

MpHSP70s 

Mp4g11410.1 HSPA1s; heat shock 70kDa protein 
1/2/6/8 

Mapoly0011s012
5.1 

HSP70.1  

Mp2g04890.1 HSPA5, BIP; heat shock 70kDa protein 
5 

Mapoly0031s014
4.1 

 BIP2 

Mp2g08350.1 HSPA1s; heat shock 70kDa protein 
1/2/6/8 

Mapoly0015s012
0.1 

 HSP70.1 

Mp8g07330.1 dnaK, HSPA9; molecular chaperone 
DnaK 

Mapoly0013s006
0.1 

MtHSP70.1 

Mp8g13250.1 HSPA1s; heat shock 70kDa protein 
1/2/6/8 

Mapoly0110s000
6.1 

CpHSP70.2 

Mp8g13310.1 HSPA1s; heat shock 70kDa protein 
1/2/6/8 

Mapoly0110s001
2.1 

CpHSP70.2 

Mp3g22900.1 Molecular chaperones Mapoly0024s006
7.1 

HSP70.3  

Mp7g10010.1 HYOU1; hypoxia up-regulated 1 Mapoly0003s002
0.1 

HSP70.17 

Mp4g05820.1 Molecular chaperones 
GRP78/BiP/KAR2, HSP70 superfamily; 
C-term missing; [O] 

Mapoly0087s000
9.1 

HSP70.4  

Mp6g10360.1 HSP110; heat shock protein 110kDa 
PFAM HSP70 

Mapoly0016s007
8.1  

HSP70.14/HSP91  

Mp8g06490.1  HSPA4; heat shock 70kDa protein 4 Mapoly0013s014
1.1 

HSP70.14/HSP91  

HSFs 

Mp4g12230 HSFF; heat shock transcription factor, Mapoly0011s020 HSFB4/SCZ 
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Table1. HSPs and HSFs present in Marchantia polymorpha showing their corresponding homolog in 

Arabidopsis
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http://marchantia.info/genes/Mapoly0024s0067
http://marchantia.info/genes/Mapoly0024s0067
http://marchantia.info/genes/Mapoly0003s0020
http://marchantia.info/genes/Mapoly0003s0020
http://marchantia.info/genes/Mapoly0087s0009
http://marchantia.info/genes/Mapoly0087s0009
http://marchantia.info/genes/Mapoly0013s0141
http://marchantia.info/genes/Mapoly0013s0141
http://marchantia.info/genes/Mapoly0011s0205
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other eukaryote 5.1 
MpVg00470 HSFF; heat shock transcription factor, 

other eukaryote 
MapolyY_B0005.1 HSF3/HSFA1B 
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Figure legends 

Figure 1. Phylogenetic analysis of CNGC proteins in M. polymorpha. A) Evolutionary 

relationship between land plant groups and their estimated appearance by molecular clock 

(Morris et al. 2018).  B) CNGC protein sequences from M. polymorpha were collected from 

MarpolBASE database (https://marchantia.info/). Protein sequences were aligned using MAFFT 

7 with the iterative refinement method E-INS-i (Katoh et al. 2017). Phylogenetic relationships 

were inferred based on maximum likelihood using IQ-TREE v2.0 with the substitution model 

Blosum 62 and empirical state frequencies (Trifinopoulos et al. 2016). Branch support values 

were obtained from 1000 replicates. The tree was edited using iTOL v5. The cluster “Group 

IVa” (red background) includes CNGC channels associated to heat stress response in 

Arabidopsis and Physcomitrium, and the CNGC proteins proposed to accomplish a similar 

function in Marchantia. C) Protein Domain Architecture of Group IVa CNGCs. Red boxes 

represent transmembrane domains. The green box shows the regulatory domain dependent on 
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cNMP. Orange and Purple boxes show the position of regulatory domains associated to 

calmodulin regulation. 

 

Figure 2. Proposed mechanisms for heat stress sensing in Marchantia. Changes in plasma 

membrane fluidity are associated with a specific transient Ca2+ influx through the plasma 

membrane-embedded Cyclic Nucleotide-gated Ca2+ Channels in angiosperms, a mechanism that 

might also take place in Marchantia through the conserved MpCNGCs. Leucine-rich repeat 

receptor-like protein kinases (LRR-RLKs such as MpERECTA and MpPXL1) are also proposed 

to act as heat sensors. In addition, PHOTOTROPIN (MpPHOT), which is the homolog of the 

Arabidopsis blue light receptors AtPHOT1 and AtPHOT2 and has been proposed as a 

thermosensor in Marchantia. Finally, chloroplasts might also play a role sensing high 

temperatures in a diurnal pattern and inducing a transcriptional response upon heat stress, 

resulting in acclimation as observed in A. thaliana. 

 

Figure 3. Proposed mechanisms underlying ROS accumulation in response to heat stress 

in Marchantia. Ca2+ signaling has been linked to ROS production by plant NADPH 

oxidases/RBOHs, as they are activated by Ca2+ binding to their EF-hand motifs. MpPHOT might 

also play a role inducing an increase in cytoplasmic Ca2+ promoting ROS production via RBOH 

activation. Other important sources of ROS during heat stress in plants constitute the 
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mitochondria and chloroplasts, which might also have a role in Marchantia. High levels of ROS 

induce a complex network of detoxifying enzymes, which generally mediate adaptive responses. 

 

Figure 4. Transcriptional responses during heat stress response in Marchantia. 

Responses to heat stress at the transcriptional level include the expression of a group of genes 

related to survival of the plant cell and to avoid the damages caused by high temperatures. 

Calcium influx triggered in response to heat induces the activation of MpHSFs proteins in the 

cytosol and induce MpHSFs and MpHSP17.8A1 gene expression in Marchantia. It is also 

predicted that several MpHSP 90/70 might be activated at specific subcellular compartments in 

response to heat stress, based on their homology with their Arabidopsis counterparts (Table 1). 

Inside the nucleus, MpHSF1 y MpHSF3 might act as key regulators of the heat stress response. It 

is proposed that MpMBF1c is translocated to the nucleus in a ROS-dependent manner, where it 

can regulate the expression of specific genes in response to heat stress (MpHSR). Full arrows 

indicate pathways experimentally proven while and dash arrows show putative pathways. 

 

Figure 5. Involvement of phytohormones in the heat stress response in Marchantia. The 

jasmonic signaling response pathway is activated in Marchantia in response to high 

temperatures. The JA-L-ILE precursor dn-OPDA activates the expression of MpJA-R and 

MpHSR (heat stress-response genes) upon heat stress, increasing thermotolerance. ABA is also 
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proposed as an actor in the heat stress response in Marchantia, as it induces MpHSFs through the 

canonical MpPyr-MpSNRK-MpAREB pathway. During heat stress, MpARFs are also induced 

via a proposed auxin-dependent mechanism. Full lines indicate experimentally proven paths, 

while dashed lines show putative proposed pathways that might be functional in Marchantia 

based on conserved heat stress-response genes. 

 

Figure 6. Epigenetic response proposed during heat stress response in Marchantia. As 

the expression of Marchantia histone acetyltransferases (HATs) and histone deacetylases 

(HDACs) is induced upon heat stress, it is proposed that covalent histone modifications through 

acetylation or deacetylation by HATs or HDACs might also take place in the heat stress 

response. Plant response to heat stress also involves miRNA regulation. Since miR160 is induced 

by heat in vascular plants and its putative target in Marchantia, MpARF3, is suppressed during 

heat stress, a mechanism involving miRNA is also proposed. Full arrows indicate proven 

pathways of the hormonal heat stress response in Marchantia and dash arrows show putative 

pathways. 

 

Figure 7. Proposed model for heat stress sensing and response in Marchantia. Early 

events include plasma membrane structure/composition modification and the activation of 

MpCNGC calcium channels. The subsequent increase in cytosolic Calcium (Ca2+) concentration 

is proposed to activate a Ca2+-calmodulin (CaM) pathway that results in the activation of 

This article is protected by copyright. All rights reserved.



 
 

MpHSFs, inducing the expression of MpHSPs as observed in angiosperms. Leucine-rich repeat 

receptor-like protein kinases (LRR-RLKs such as MpERECTA and MpPXL1) are also proposed 

to act as heat sensors. An oxidative burst is also observed upon heat stress, which might result 

not only from MpRBOH activity, but also from mitochondrial and chloroplastic ROS. 

Jasmonates were also shown to play a role in the response to high temperatures. The JA-L-ILE 

precursor dn-OPDA is able to activate HSPs and antioxidant enzymes upon heat stress, 

increasing thermotolerance. In addition, Abscicic acid (ABA) is also proposed to play a role 

during the heat stress response activating HSPs. The canonical conserved signaling pathway in 

Marchantia is shown. Two epigenetic mechanisms might act in Marchantia to develop 

thermotolerance. The histone acetyl-deacetyltransferases (MpHAT and MpHDACs) are induced 

upon heat stress and MpMiR160 is proposed to regulate its target MpARF3. Dashed lines 

indicate proposed pathways based on the presence of conserved core proteins while full lines 

indicate experimentally demonstrated mechanisms. 
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Sensing and response to high temperatures are crucial mechanisms to prevent heat-related 

damage and to preserve cellular functions. In this review we aim to provide an insight into the 

most recent advances in elucidating the mechanisms and pathways involved in the response to 

heat stress  in the bryophyte Marchantia polymorpha. We discuss conserved and divergent 

pathways that relate temperature sensing with a plethora of transduction cascades that are 

emerging as central future research directions.  
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