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Fluorescence correlation spectroscopy (FCS) is commonly used to estimate diffusion and reaction rates. In
FCS the fluorescence coming from a small volume is recorded and the autocorrelation function (ACF) of the
fluorescence fluctuations is computed. Scaling out the fluctuations due to the emission process, this ACF can be
related to the ACF of the fluctuations in the number of observed fluorescent molecules. In this paper the ACF
of the molecule number fluctuations is studied theoretically, with no approximations, for a reaction-diffusion
system in which the fluorescence changes with binding and unbinding. Theoretical ACFs are usually derived
assuming that fluctuations in the number of molecules of one species are instantaneously uncorrelated to those
of the others and obey Poisson statistics. Under these assumptions, the ACF derived in this paper is characterized
only by the diffusive timescale of the fluorescent species and its total weight is the inverse of the mean number of
observed fluorescent molecules. The theory is then scrutinized in view of previous experimental results which,
for a similar system, gave a different total weight and correct estimates of other diffusive timescales. The total
weight mismatch is corrected by assuming that the variance of the number of fluorescent molecules depends on
the variance of the particle numbers of the other species, as in the variance decomposition formula. Including
the finite acquisition time in its computation, it is shown that the ACF depends on various timescales of the
system and that its total weight coincides with the one obtained with the variance decomposition formula. This
calculation implies that diffusion coefficients of nonobservable species can be estimated with FCS experiments
performed in reaction-diffusion systems. Ways to proceed in future experiments are also discussed.
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I. INTRODUCTION

The advancement in various biophysical techniques has
given the opportunity to observe physiologically relevant pro-
cesses at the level of one or a few biomolecules. These
processes are often characterized by fluctuations, which are
usually a complication, but their analysis can give hints on
how the processes occur and allow the quantification of bio-
physical parameters. Fluorescence correlation spectroscopy
(FCS) is an optical technique that uses the analysis of fluc-
tuations to quantify transport processes and reaction rates
that have been used in vitro and in vivo in a variety of sys-
tems [1–5]. In FCS the fluorescence intensity coming from
a relatively small volume (∼1 fl) is recorded and the fluctua-
tions about its mean are subsequently analyzed. The statistical
analysis of these fluctuations provides a noninvasive way to
obtain information about some of the underlying processes
that originate them, among them, the diffusion and binding
and unbinding reaction rates of the fluorescent molecules. In
FCS the autocorrelation function (ACF) of the fluorescence
fluctuations is computed from which the correlation times
are derived by fitting the ACF with prototypical expressions.
When there is a mechanistic model of the underlying pro-
cesses, some biophysical parameters can be derived from the
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correlation times and the weights with which they enter the
ACF [6–10].

The aim of the present paper is to determine the timescales
that can be derived from the application of FCS to reaction-
diffusion systems in which the fluorescence emission changes
due to binding and unbinding. This is motivated in that Ca2+,
an ubiquitous intracellular messenger [11–13], is usually vi-
sualized with dyes that change their fluorescence properties
upon Ca2+ binding [14]. Intracellular Ca2+ signals elicit dif-
ferent cell responses depending on their time and spatial
ranges. These ranges not only depend on the rates of cytosolic
Ca2+ entry and free diffusion, but also on the interaction
of the ions with the various Ca2+ buffers [15–20], usually
proteins that bind to Ca2+[21–23] changing the free Ca2+

concentration and altering its transport properties [24–28].
The expression of endogenous Ca2+ buffers not only varies
from cell to cell but can also change along the lifetime of a
cell. The dye itself is a Ca2+ chelator that modifies the Ca2+

transport rate. Having reliable estimates of the free diffusion
coefficients of Ca2+, its dyes, and its buffers and of their
reaction rates separately is then key to go from an intracel-
lular Ca2+ image to the quantification of the underlying Ca2+

distribution [29,30] and to derive a comprehensive description
of the signals beyond the particular situation probed in each
experiment. The theoretical analyses presented in this paper
show that FCS experiments allow the estimation of free diffu-
sion coefficients in reaction-diffusion systems.
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In this paper the ACF of the fluctuations in the number of
fluorescent molecules in an observation volume is studied the-
oretically for the reaction-diffusion system that describes the
dynamics of Ca2+ in the presence of a single wavelength (SW)
Ca2+ dye and the frequently used Ca2+ chelator, EGTA. As
argued in Ref. [31], the ACF of the molecule number fluctua-
tions corresponds to the mean of the fluorescence fluctuations
ACF over several experimental realizations. Thus the correla-
tion times of the molecule number fluctuations are determined
by the mean ACF of the fluorescence fluctuations. In spite of
its simplicity, the model analyzed here (see Appendix 1 for the
five evolution equations that describe it) gives a framework
for the interpretation of the experimental results that might be
obtained when using FCS in real cells. It is also applicable to
the situation probed experimentally in Ref. [32], where FCS
experiments were performed in aqueous solutions containing
Ca2+, the SW Ca2+ dye Fluo4, and EGTA. In Ref. [32] the
experimental results were interpreted using an approximation
of the ACF that is valid when the reaction timescales (τr) are
much smaller than those of diffusion (τd ). The advantage of
this fast reaction approximation is that it provides an analytic
expression of the ACF [8,33]. Its validity in the case of the
experiments of [32], however, is questionable. In particular,
the timescale of the reaction between Ca2+ and the dye is
larger than all the diffusion timescales with the exception of
the time it takes for one dye molecule to diffuse across the
largest axis of the observation volume. Although the studies
of [33] showed that the fast reaction approximation gives good
estimates of the correlation timescales even for τd � τr , it is
not clear that this result applies to systems with SW Ca2+ dyes
as those of the experiments in Refs. [32,34]. On the other
hand, the best fits to the experiments of [32] corresponded
to a two component ACF, while the one prescribed by the
fast reaction approximation was much more complicated (see
Appendix 2). In spite of this, the diffusion coefficients derived
from the fits were approximately equal (within the experimen-
tal error) to two of the theoretically expected values of the
coefficients of the system for each of the Ca2+ concentrations
probed.

In this work the ACF is studied theoretically for the sys-
tem of interest without using the fast reaction approximation.
Theoretical ACFs are usually computed assuming that fluc-
tuations, at a given time, in the number of molecules of one
species in the observation volume are uncorrelated from those
of the other species at the same time and that they obey
Poisson statistics [31]. Under these usual assumptions on the
instantaneous correlations, the studies of the present paper
show that the ACF is characterized by only one diffusive
timescale: the one that corresponds to the free diffusion co-
efficient of the fluorescent species (i.e., the Ca2+-bound dye,
which is assumed to diffuse at the same rate as the free dye).
The theory is then reanalyzed in view that other diffusive
timescales could be estimated correctly in the experiments
of [32]. In particular, the usual assumptions [31] on the in-
stantaneous correlations described before are questioned. In
this regard, there are two aspects for consideration. On one
hand is the possible existence of correlations between the
fluctuations in the number of free and of Ca2+-bound dye
molecules due to the binding and unbinding reactions with
Ca2+. On the other hand is how fluctuations in the number

of Ca2+ ions affect the statistics of the fluctuations in the
molecule number of the Ca2+-bound dye. These aspects are
studied numerically and, the latter, analytically, in the present
paper. Using the variance decomposition formula, it is shown
that fluctuations in the number of free Ca2+ ions increase
both the variance of the number of Ca2+-bound dye molecules
and the total weight of the ACF, which solves a disagreement
between the theory and the experimental results of [32]. In
the experiments, this interspecies variance dependence arises
because instantaneous actually means during the finite acqui-
sition time. The ACF of the fluctuations in the number of
Ca2+-bound dye molecules is then computed including this
finite time. The expression obtained is the sum of the auto- and
cross-correlation functions of the particle number fluctuations
of all the species of the system. This implies that the ACF
can have components with other timescales besides the one
associated to the free diffusion of the dye. In fact, the analysis
of the diffusive timescales of the nonfluorescent species that
were derived in Ref. [32] shows that they correspond to the
components of the free Ca2+ ions ACF with the largest weight
at each Ca2+ concentration probed. The ability to derive other
diffusion coefficients besides the one of the dye is confirmed
by the additional experiments performed with another Ca2+

dye that are presented at the end of the paper. These results
lead to the important conclusion that the combination of non-
linearities and of a finite acquisition time allows the transport
properties of nonfluorescent species to be estimated with FCS
experiments in reaction-diffusion systems.

The organization of the paper is as follows. In Sec. II, a
brief description is presented of the usual theory with which
FCS experiments are analyzed. In Sec. III, the analysis, with-
out approximations, of the ACF of the fluctuations in the
number of fluorescent molecules for the Ca2+, dye, EGTA
reaction-diffusion system is presented. In Sec. IV the validity
of the usual assumptions on the instantaneous correlations and
the statistics of the particle number fluctuations of the vari-
ous species is studied numerically. The second aspect is also
studied analytically using the variance decomposition formula
to relate the variance of the number of fluorescent molecules
with those of the other species. Section IV closes with the
analysis of the effect of the finite (experimental) acquisition
time on the variance and the ACF. In Sec. V the theoretical re-
sults of Sec. IV are used to interpret the experimental results of
[32]. Experimental results that validate the main conclusions
of the theoretical studies are also presented in Sec. V. Finally
the main results and conclusions are summarized in Sec. VI.

II. FCS THEORY

In fluorescence correlation spectroscopy (FCS) the fluores-
cence, f (t ), coming from a small volume is recorded over
time and analyzed. In particular, the time-averaged autocor-
relation function (ACF) of the fluorescence fluctuations is
computed as

G(τ ) = 〈δ f (t )δ f (t + τ )〉
〈 f (t )〉2 , (1)

where 〈 f (t )〉 is the average fluorescence in the sampling vol-
ume and δ f (t ) is the deviation with respect to this mean at
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each time, t . Fitting the ACF with prototypical expressions
the correlation times can be extracted from which, using an
underlying mechanistic model, biophysical parameters can
be inferred. The case of interest for the present paper is a
reaction-diffusion system composed of Ca2+, a single wave-
length Ca2+ dye, F, and a Ca2+ buffer, E. The relevant species
are then five: free buffer (E), free dye (F), Ca2+-bound buffer
(CaE), Ca2+-bound dye (CaF), and free Ca2+, that diffuse
with free coefficients DE (E and CaE), DF (F and CaF), and
DCa2+ (Ca2+), and react according to [32]

Ca2+ + F
k′

F←−−→
kF

CaF, Ca2+ + E
k′

E←−−→
kE

CaE, (2)

with on and off rates, kF, kE and k′
F, k′

E respectively. The
notation, Cs, will be either used for the concentrations or for
the species with the following order: C1 = E, C2 = F, C3 =
CaE, C4 = CaF, and C5 = Ca2+. As done in Refs. [32,34] the
theoretical calculations are performed under the assumption
that CaF is the only fluorescent species and that changes in
the number of these molecules inside the observation volume
is the main source of fluctuations, i.e., fluctuations due to
the emission or detection processes are not included (see,
e.g., Ref. [31] for a discussion on this assumption). The
stochastic variables of the problem are therefore the numbers
of molecules of each species, Ni, in the observation volume
which, as done in Ref. [31], are computed as integrals in the
space of the corresponding species concentrations. Thus, for
a short enough acquisition time, �t , the fluorescence as a
function of time, f (t ), can be written as [31]

f (t ) = �t
∫

QI (r)[CaF](r, t )d3r, (3)

where the parameter, Q, takes into account the detection
efficiency, the fluorescence quantum yield, and the absorp-
tion cross section at the wavelength of excitation of the
fluorescence and, for experiments performed with confocal
microscopy, I is approximated by a three-dimensional Gaus-
sian:

I (r) = I (0)e
− 2r2

w2
r e

− 2z2

w2
z , (4)

with wz and wr the sizes of the beam waist and z and r
the spatial coordinates along the beam propagation and the
perpendicular directions, respectively. Equation (3) is actu-
ally an approximation that assumes that the acquisition time,
�t , is small enough so that there is no need to integrate
[CaF](r, t ) along the acquisition time interval. This integral
will be included later to analyze the implications of the finite
acquisition time on the computation of the ACF.

Fluctuations in the number of molecules, or, correspond-
ingly, in their concentrations, are assumed to occur about a
mean that is defined by the spatially uniform equilibrium solu-
tion, [Ca2+]eq, [F]eq, [CaF]eq, [E]eq, and [CaE]eq, of Eqs. (A1)
which satisfies

[CaF]eq = [Ca2+]eq[F]tot

[Ca2+]eq + KdF
, [CaE]eq = [Ca2+]eq[E]tot

[Ca2+]eq + KdE
,

(5)

where KdF = k′
F/kF and KdE = k′

E/kE are the dissociation
constants of the reactions and [F]tot = [F]eq + [CaF]eq and
[E]tot = [E]eq + [CaE]eq are the total dye and EGTA concen-
trations, respectively. Namely, it is assumed that 〈NCa2+〉 =∫

d3r I (r)[Ca2+]eq = Ve f [Ca2+]eq with Ve f = π3/2w2
r wz, the

observation volume, and similar expressions for the other
species. Thus the ACF is written as

G(τ ) = 1

[CaF]eq

∫
d3r′

∫
d3r I (r)I (r′)

× 〈δ[CaF](r′, t + τ )δ[CaF](r, t )〉. (6)

Assuming that a linearized version of the model equations
[35] provides a correct description of the fluctuations [31], the
ACF can be written as a sum of integrals, each one associated
to one of the branches of eigenvalues of the linearized system.
Given the linearity of the equations, these integrals, which
constitute the components of the ACF, are usually computed in
Fourier space [31] (also see Appendix 3). Therefore, they are
integrals over the wave number, q, the variable conjugate to
the position vector, r, in real space. In the case of interest here,
there are five branches of eigenvalues, λi(q), i = 1, . . . , 5,
that, in principle, depend on the norm, q ≡ |q|. Two of the
branches are purely diffusive, one of them associated to the
free diffusion coefficient of the dye, DF, and the other to the
free diffusion coefficient of the nonfluorescent chelator, DE:

λ4 = −DFq2, (7)

λ5 = −DEq2. (8)

This type of eigenvalue leads to ACF components of the form

Gi(τ ) = Ai(
1 + τ

τ f

)√
1 + τ

w2τ f

, (9)

where w = wz/wr is the aspect ratio of the observation vol-
ume and τ f = w2

r /(4D f ) [with D f = DF in Eq. (7) and D f =
DE in Eq. (8)] is the diffusion time across the shortest axis of
this volume [5]. Under the usual assumptions on the instan-
taneous correlations [31] (also see Sec. IV) it is A5 = 0 and
A4 = 1/[F]totVe f . The other branches are more complicated
but, for small enough q, can be approximated by

λi ≈ λe f i ≡ −νe f i − De f iq
2, i = 1, 2, 3. (10)

If this approximation holds throughout the range of q values
that contribute non-negligibly to the corresponding ACF com-
ponent, Gi(τ ), then Gi(τ ) can be approximated by

Gi(τ ) ≈ Aie−νe f iτ(
1 + τ

τi

)√
1 + τ

w2τi

. (11)

This approximation is valid in the fast reaction limit (see Ap-
pendix 2). In the opposite fast diffusion limit the components
are either purely diffusive [as in Eq. (11) with νe f i = 0] or
purely exponential [as in Eq. (11) with τi → ∞] [36]. As in
Eq. (11), the notation Ai will be used throughout the paper to
denote the weight of the ith component, i.e., Ai ≡ Gi(τ = 0).
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TABLE I. Model parameters used to generate theoretical figures.
The values of [Ca2+]tot are described in each figure. Lengths are in
μm, time in s, and concentrations and dissociation constants in μM,
when not explicitly mentioned.

Concentration D Kd k′

Ca2+ (9.27–10.4) mM DCa2+ = 760
EGTA [E]tot= 9.66 mM DE = 405/352 KdE = 0.15 k′

E = 0.75
Fluo4 [F]tot = 0.676 DF = 85 KdF = 2.6 k′

F = 300
Fluo8 [F]tot = 0.676 DF = 100 KdF = 0.432 k′

F = 47.5

Microscopy parameters
wr = 0.28 μm, w = 5

Regardless of whether there are analytic expressions for the
nontrivial components, under the usual assumptions on the
instantaneous correlations, the total weight of the ACF is

Gtot ≡ G(τ = 0) = Var(NCaF)

〈NCaF〉2
= 1

Ve f [CaF]eq
. (12)

III. COMPLETE ANALYSIS OF THE EIGENVALUES AND
OF THE ACF FOR THE REACTION-DIFFUSION SYSTEM

WITH Ca2+, DYE, AND EGTA

In this section the nontrivial eigenvalue branches of
Eqs. (A1) linearized around equilibrium and the weights with
which they contribute to the ACF are analyzed without taking
the fast diffusion or fast reaction limits. The weight com-
putation is done under the usual assumptions on the initial
correlations, performing the integrals as explained in the Ap-
pendix 4. For all computations we use the parameter values of
Table I considering that the dye is Fluo4 and DE = 405 μm2.
The range of total concentration values embraces those used
in the experiments of [32].

A. Branches of eigenvalues, diffusion coefficients,
and component weights

Figure 1 shows the exact nontrivial eigenvalue branches,
λi (i = 1, 2, 3) (λ1 > λ2 > λ3), as functions of q2 for three
representative cases ([Ca2+]tot = 9.3, 9.6, and 10.4 mM) of

those explored experimentally in Ref. [32]. The three approx-
imated eigenvalues, λe f i, that are obtained by expanding each
λi around q = 0 and keeping terms up to O(q2) are also plot-
ted. These approximated eigenvalues are of the form Eq. (10)
with De f i the effective coefficients and νe f i the effective rates
of the fast reaction approximation derived in Ref. [32]. Fig-
ure 2(a) shows the three effective and the three free diffusion
coefficients of the problem and Fig. 2(b) shows the rates
νe f 2 and νe f 3, in all cases, as functions of [Ca2+]tot within
the range of concentration values studied experimentally in
Ref. [32]. It can be observed in Fig. 2(a) that both for small
and large [Ca2+]tot each of the effective diffusion coefficients
is approximately equal to a free diffusion one, but not the
same at both ends. Figure 1 shows that each λi(q2) behaves
as a piecewise linear function of q2 for most values of q.
This implies that expressions of the form of Eq. (10) give a
good approximation of each branch of nontrivial eigenvalues
but with slopes and, therefore, diffusion coefficients, that are
different depending on the range of q values. The slope of
each of these functions is −De f i for q ≈ 0 and −Di, with
Di one of the free diffusion coefficients of the problem, DF,
DE, or DCa2+ , for q large enough, but Di is not necessarily
similar to De f i for each i. This means that each eigenvalue
can be associated to a different diffusion coefficient depend-
ing on the wave number, q. The exponential rates, which
also vary with q2, are most relevant for q ≈ 0 for which
they coincide with the values prescribed by the fast reaction
approximation.

Figure 2(c) shows the weights of each of the four com-
ponents of the ACF and their sum [i.e., the total weight,
Gtot = G(τ = 0)], as functions of [Ca2+]tot, computed as ex-
plained in the Appendix 4. It can be observed that the weight,
A4, associated to the free diffusion coefficient of the dye
is the largest in all cases. Furthermore, we observe that, at
least up to [Ca2+] ∼ 9.7 mM, the weights A2 and A3 are
negligible with respect to the other two. This is consistent
with the fact that the best fits of the experimental ACF [32]
were obtained using two components, one of which always
corresponded to the timescale associated to the free diffusion
coefficient of the dye, DF. As may be observed in Fig. 2(c),
up to [Ca2+]tot ∼ 9.85 mM, the second largest weight is A1,
the one associated to λ1. For this range of [Ca2+]tot values

FIG. 1. Three nontrivial eigenvalue branches as functions of the squared wave number, q2, of the linearized reaction-diffusion equations
that correspond to a system with Ca2+, dye, and Fluo4 with the corresponding parameters of Table I, DE = 405 μm2/s and the total Ca2+

concentrations: [Ca2+]tot = 9300 μM in (a), [Ca2+]tot = 9600 μM in (b), and [Ca2+]tot = 10400 μM in (c). In the three subfigures λ1 is shown
with solid lines, λ2 with dashed lines, and λ3 with dashed-dotted lines. The effective eigenvalues, λe f 1, λe f 2, and λe f 3, are also plotted with thin
blue solid lines.
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FIG. 2. (a) Effective (De f 1: dashed line; De f 2: dotted line; De f 3: dashed-dotted line) and free (solid lines, DCa2+ > DE > DF) diffusion
coefficients as functions of [Ca2+]tot computed for a reaction-diffusion system with Ca2+, EGTA, and Fluo4 and the corresponding parameters
of Table I with DE = 405 μm2/s. (b) Similar to (a) but for the effective rates νe f 2 (dotted line) and νe f 3 (dashed-dotted line). (c) Similar to
(a) but for the total weight (Gtot : gray solid line) and the weights of the four components of the ACF (A1: solid line; A2: dashed line; A3:
dashed-dotted line; A4: dotted line).

Fig. 1(a) shows that λ1 ∼ −De f 1q2 and that De f 1 ≈ DE in
Fig. 2(a). For this range of concentrations, the correlation time
derived from the experiments of [32] that did not correspond
to the free diffusion of the dye, DF, corresponded to the
diffusion coefficient, DE. Different from what Fig. 2(c) shows,
however, the experimental fit gave the largest weight for this
timescale.

For the intermediate [Ca2+]tot values explored in Ref. [32]
([Ca2+]tot ∼ 9.47–9.66 mM) the second largest weight ac-
cording to Fig. 2(c) is A1. The corresponding eigenvalue
satisfies λ1 ≈ −De f 1q2 for q ≈ 0. As shown in Fig. 2(a), for
the intermediate range of concentrations, De f 1 is noticeably
smaller than the coefficient, De f 2, that could be derived exper-
imentally, besides DF, in Ref. [32].

Finally, the case of the largest [Ca2+]tot values explored in
Ref. [32] ([Ca2+]tot ∼ 10 mM) is analyzed. For this range of
concentrations, the second timescale obtained with the fitting
of the experiments seemed to correspond again to De f 2 which,
in this range, is approximately equal to the intermediate free
coefficient of the problem, De f 2 ≈ DE [Fig. 2(a)]. In this case
the nontrivial component with the largest weight is the one
corresponding to λ3 [see Fig. 2(b)]. This eigenvalue is λ3 ≈
−νe f 3 − DFq2 up to q2 ∼ 125 μm2. Thus the diffusionlike
decay of this component is pretty much dominated by DF and
it would be impossible to separate it from the term associated
to λ4 = −DFq2, G4. Furthermore, the fact that νe f 3 ∼ 85000 s
for this range of [Ca2+]tot values [see Fig. 2(b)] while τDF ∼
w2

r /(4DF) ∼ 2.3 × 10−4 s means that the contribution of this
component to the sum G4 + G3 will be small at least at the
correlation time τDF .

The analysis performed so far shows that the ACF com-
ponent with the largest weight is the one characterized by
the free diffusion coefficient of the dye, DF, for all the Ca2+

concentrations probed. The other eigenvalues are character-
ized by more than one diffusion timescale depending on the
wave number (see Fig. 1). The timescale that might eventually
be derived from a fitting would then depend on the relative
weight with which the different wave numbers contribute
to the corresponding component of the ACF. This aspect is
studied in what follows.

B. Weight densities

In this section the functions, gi(q, ϕ), that give the total
weight of each component, Ai, when integrated over q and the
angle, ϕ, that the wave number vector, q, forms with the plane
perpendicular to the optical axis, z, is analyzed. The functions,
gi(q, ϕ), are weight densities that satisfy

Ai =
∫ ∞

0
dq

∫ π

0
dϕ gi(q, ϕ). (13)

Figures 3(a)–3(c) show plots of gi(q, ϕ), i = 1, 2, 3, for
ϕ = π/2 and the same [Ca2+]tot values of Fig. 1 [ϕ = π/2
was chosen because it is the angle at which the functions,
gi(q, ϕ), attain their maximum values]. Figure 3(d) shows
the density, goF , that corresponds to the eigenvalue, λ4, as-
sociated to the free diffusion of the dye [see Eq. (7)] for
the case with [Ca2+]tot = 10.4 mM. This density is of the
form gi(q, π/2) = αq2 exp(−q2w2

r /4) with constant α for
any value of [Ca2+]tot as is the case for any eigenvalue of
the form Eq. (10) with fixed values, νe f i, De f i, for all q. In
Figs. 3(a)–3(c) it can be observed that this is not the case
for any of the nontrivial eigenvalues. However, the best fits
of the experimental data of [32] were obtained with two
purely diffusive components (i.e., λi = −Diq2), one of which
always corresponded to the free diffusion coefficient of the
dye, DF [the component with the largest weight according
to the results of Fig. 2(c)]. Figure 3 shows that the values
of the weight densities, gi(q, π/2), i = 1, 2, 3, alternate in
the sense that the range of q2 over which one of them is
largest the other two are almost negligible. If Figs. 3(a)–
3(c) are compared with Figs. 1(a)–1(c), respectively, it can
be observed that the range of wave numbers, q, for which
each weight density, gi(q, π/2), i = 1, 2, 3, is largest [e.g., g3

for q2 < 3 μm2, g2 for 3 μm2 < q2 < 7.3 μm2, and g1 for
q2 > 7.3 μm2 in Fig. 3(b)], the corresponding eigenvalue, λi

[λ3 for q2 < 3 μm2, λ2 for 3 μm2 < q2 < 7.3 μm2, and λ1

for q2 > 7.3 μm2 in Fig. 1(b)] is such that λi = −DFq2 − νe f

with the same νe f in all cases. Furthermore, by looking at
the q2 dependence of the largest weight density in each case
we conclude that, if we only keep the largest gi(q, π/2),
i = 1, 2, 3, for all q2, we are left with a weight density as

052407-5



CECILIA VILLARRUEL AND SILVINA PONCE DAWSON PHYSICAL REVIEW E 102, 052407 (2020)

FIG. 3. Weight densities, gi(q, ϕ = π/2), as functions of the squared wave number, q2. The ones that correspond to the three branches of
nontrivial eigenvalues of Fig. 1 are shown in (a)–(c) for the same Ca2+ concentrations and symbols as in Fig. 1. The density that corresponds
to λ4, the eigenvalue associated to the free diffusion coefficient of the dye, is shown in (d) for the case with [Ca2+]tot = 10.4 mM.

the one in Fig. 2(d) [e.g., compare Figs. 2(c) and 2(d)]. In
this way, when integrated over q2, the sum of the weights of
the nontrivial eigenvalues leads to a component of the form
of Eq. (11) with the diffusive timescale, τi, given by the free
diffusion coefficient of the dye.

The analysis of the weight densities shows that the ACF
should be characterized by only one diffusive timescale, the
one associated to DF. Why have other diffusive timescales
been estimated correctly in the experiments of [32]?

IV. WHAT FLUCTUATIONS ARE MEASURED WITH FCS
EXPERIMENTS THAT USE SINGLE-WAVELENGTH Ca2+

DYES?

A. Instantaneous fluctuations and resulting ACF

Computing the ACF [Eq. (6)] as done in Ref. [31] re-
quires knowledge of how fluctuations in the concentration of
fluorescent molecules, δ[CaF], at a certain time, t + τ , and
position within the observation volume, r′, are related to the
fluctuations at a previous time, t , and any other position,
r, in the volume. The resulting ACF then depends on the
correlations between δ[CaF](r′, t ) and fluctuations in all the
species concentrations, δCs(r, t ), s = 1, . . . , 5, at the same
time, t [31]:

〈δ[CaF](r, t )δCs(r′, t )〉. (14)

It is usually assumed [31] that fluctuations in the concen-
trations of different species are instantaneously uncorrelated,
that they obey Poisson statistics [i.e., that the variance and
the mean of the number of molecules of each species, Ni, in
the observation volume, Ve f , satisfy Var(Ni ) = 〈Ni〉], and that
correlations are spatially short ranged so that [31]

〈δCs(r, t )δC′
s(r

′, t )〉 = δss′δ(r − r′)Cs,eq, (15)

where Cs,eq is the equilibrium concentration of the sth
species. Given the linearity of the equations with which the
dependence of δ[CaF](r′, t + τ ) on δCs(r, t ), s = 1, . . . , 5,
is computed, each eigenvalue and eigenvector (with their
corresponding timescales) evolves separately. The “initial”
(actually, instantaneous) correlations of Eq. (14) then deter-
mine the weight with which each of these eigenmodes (with
their corresponding timescales) contribute to the ACF. The
relative weights of the various modes derived in the previous
sections are a direct consequence of Eq. (15). It is under this
assumption that the total weight of the ACF in the case of
a single fluorescent species, C4 = CaF, is given by Eq. (12)
and that the ACF has four, rather than five, components that,
when added together, are characterized by a single diffusive
timescale, τF , as shown in Sec. III B.

Fluctuations in the concentrations of Ca2+-bound and free
dye molecules can be instantaneously correlated depending
on the origin of the fluctuations. Namely, when a binding
reaction occurs creating a Ca2+-bound dye molecule, a free
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FIG. 4. Stochastic simulations of the reaction-diffusion system of Ca2+, dye, and EGTA. Deviation from the mean of the number of
Ca2+-bound dye molecules as a function of the deviation in the number of free dye molecules in the observation volume. (a) All the data points
and (b) average over the observation time interval.

dye molecule is destroyed at the same time and vice versa
[see Eq. (2)]. In particular, if the dye were immobile this
would imply a complete dependence between the two stochas-
tic variables, NF and NCaF, which would have a binomial
distribution. Some correlation still persists even if the dye
diffuses, as we analyzed in Ref. [36]. This (anti)correlation
tends to reduce the total weight of the ACF and although
it is not what was observed in the experiments of [32] it
could explain the fact that the weight of the component as-
sociated to the free diffusion coefficient of the dye was not
the largest one derived from the fittings. Figure 4 shows the
result of stochastic simulations of the reaction-diffusion sys-
tem of Ca2+, dye, and EGTA performed as explained in the
Appendix 7. This figure shows the deviation from the mean
of the number of Ca2+-bound dye molecules as a function
of the deviation in the number of free dye molecules in the
observation volume, where the contribution of each molecule
has been weighted with a Gaussian function of the distance
to the center (see Appendix 7 for more details). Figure 4(a)
displays all the data points derived from the simulation (dt ≈
2 μs) and Fig. 4(b) the numbers averaged over the observation
time interval (dtobs = 20 μs). Although some anticorrelation
is apparent over a few time steps, fitting the cloud of points
did not give any linear correlation. It is possible to conclude
that the effect of the anticorrelation in the fluctuations of
the number of Ca2+-bound dye and of free dye molecules is
negligible.

B. Variance of the number of molecules

The assumption that the ACF is only due to fluctuations
in the number of fluorescent particles (NCaF) implies that the
total weight of the ACF is the ratio between the variance
and the squared mean of NCaF [see Eq. (12)]. The dynamics
of the total dye, FT , or buffer, ET , concentrations are purely
diffusive. Thus, given that the observation volume Ve f con-
stitutes a small portion of the whole space over which the
particles diffuse, the total numbers of dye or EGTA molecules
in Ve f are Poisson distributed [37]. Regarding the number of
Ca2+-bound dye molecules, NCaF, if the total number of dye
molecules in Ve f , NFT , is known and the probability that a dye
molecule has Ca2+ bound, pb, is fixed, then NCaF (and NF ≡

NFT − NCaF) would be binomial [B(pb, NFT )]. Now, since NFT

is Poisson distributed, then NCaF and NF would also be Pois-
son, provided that pb is constant. In such a case, the total
weight of the ACF would satisfy Eq. (12). However, pb is
not fixed: it actually fluctuates with the number of Ca2+ ions,
NCa2+ , that are in Ve f , which is another stochastic variable.
This is apparent considering that 〈pb〉 = [CaF]eq/[F]tot, where
[F]tot is the equilibrium (spatially uniform) total dye concen-
tration. Therefore, pb, as a stochastic variable could then be
written as

pb = NCa2+

NCa2+ + KdFVe f
. (16)

It is expected that a fluctuating pb should enlarge the variance
of NCaF with respect to the case with fixed pb. We performed
stochastic simulations to check whether this could be the
case. Figure 5 shows the cumulative distribution function of
the Ca2+-bound dye molecules in the observation volume
obtained with the stochastic simulation of the full reaction-
diffusion system (solid line) and when the probability of

FIG. 5. Cumulative distribution function (CDF) of the Ca2+-
bound dye molecules in the observation volume obtained with the
stochastic simulation of the full reaction-diffusion system (solid
line) and when the probability of binding is assumed to be fixed at
pb = [Ca2+]/([Ca2+] + KdF ) (dashed line).
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binding is assumed to be fixed at pb = [Ca2+]/([Ca2+] +
KdF) (dashed line). It is apparent that the distributions differ.
A Kolmogorov-Smirnov test comparing both data sets rejects
the hypothesis that they both come from the same distribution.
The variance in the case of the simulations of the full reaction-
diffusion system is larger than when a fixed pb is used.

The variance decomposition formula is now used to an-
alyze the effect of a fluctuating pb on the variance of the
Ca2+-bound dye molecules in the observation volume. Con-
sidering the conditional probability P(NCaF | NCa2+ , NFT ) that
NCaF takes a certain value given that NCa2+ and NFT take some
other values and assuming that NCa2+ and NFT are independent
we obtain (see Appendix 5)

Var(NCaF) = 〈Var(NCaF | NCa2+ )〉NCa2+

+ VarNCa2+ (〈NCaF | NCa2+〉), (17)

where the two terms are given by Eqs. (A14). As discussed
in Sec. V, the assumption that NCa2+ and NFT are independent
holds for the parameters of Table I and the experiments of
[32]. Possible further corrections would be to consider the
variance decomposition formula for NCa2+ making it depen-
dent of NE. This is discussed in Sec. IV C.

An exact calculation of the terms in Eq. (17) is not simple
so that we approximate them by

Var(NCaF) = Var(NCaF)|〈pb〉 +
(

d pb

dNCa2+
〈NFT 〉

)2

Var(NCa2+ )

= 〈pb〉〈NFT 〉 +
(

d pb

dNCa2+
〈NFT 〉

)2

Var(NCa2+ )

= 〈NCaF〉 + α〈NCa2+〉, (18)

with α > 0. Using Eq. (18) the total weight of the ACF in
Eq. (30) becomes

G(0) = [CaF]eqVe f + α[Ca2+]eqVe f

([CaF]eqVe f )2 , (19)

instead of Eq. (12). Given that α > 0, under this theory it is
G(0) > 1/([CaF]eqVe f ). Therefore, if the weight derived from
the experiments satisfies Eq. (19) and the Ca2+-bound dye
concentration is derived assuming that [CaF]eqVe f = 1/G(0),
a smaller value, [CaF]eq, than the actual one would be ob-
tained, exactly as it happened in the experiments of [32].

C. Finite acquisition time and timescales of the ACF

The conditional variance expression is highlighting that
the instantaneous fluctuations in NCaF depend on those of
NCa2+ . Here instantaneous actually means within the acqui-
sition time. It is implicit in the assumption that the variance
of NCaF can be written in terms of the instantaneous value
of NCa2+ and then averaged over all possible values of NCa2+

[see Eq. (17)] that there is “enough time” for the free and
dye-bound Ca2+ ions to reach some “local” equilibrium deter-

mined by the current (instantaneous) values of NFT and NCa2+ .
It is implicit in Eq. (3) that the acquisition time, �t , is very
small. Considering its finiteness, Eq. (3) should be rewritten
as

δ f (n�t ) =
∫

d3r QI (r)
∫ �t

0
dtoδC4(r, n�t + to), (20)

where C4 = [CaF] as defined before and f denotes the fluo-
rescence collected during the finite acquisition time. The ACF
should then be written as

〈δ f (n�t )δ f (0)〉 =
∫

d3r
∫

d3r′Q2I (r)I (r′)
∫ �t

0
dto

×
∫ �t

0
dt ′

o〈δC4(r, n�t + to)δC4(r′, t ′
o)〉.
(21)

As already explained, δC4(r, t ) is determined solving the lin-
earized reaction-diffusion system in Fourier space as done in
Ref. [31]. This means that it is written as

δC
(q, t ) = 1

(2π )3/2

∫
d3r eiq·rδC
(r, t ) (22)

and is given by

δC
(q, t ) =
∑
s,k

eλs (q)t X
s(q)X −1
sk (q)δCk (q, 0), (23)

with λs the eigenvalue branches of Sec. III and X
s =∑
k B
kMks, with B and M defined in Eq. (A7). For the sake

of simplicity, let us assume for now that there is no diffusion
so that neither the eigenvalues nor the eigenvectors depend on
the wave number, q. In such a case it is

δNCaF(0) = 1

�t

∫
d3r I (r)

∫ �t

0
dtoδC4(r, to)

= 1

�t

∫
d3r I (r)

∫ �t

0
dto

∑
s,k

eλstoX4sX
−1
sk δCk (r, to)

= 1

�t

∫
d3r I (r)

∑
s,k

eλs�t − 1

λs
X4sX

−1
sk δCk (r, 0),

(24)

where NCaF is used to denote that we are considering the
time average over the acquisition time. If |λs�t | � 1 ∀s then
Eq. (24) reduces to

δNCaF(0) ≈
∫

d3r I (r)
∑
s,k

X4sX
−1
sk δCk (r, 0)

=
∫

d3r I (r)δC4(r, 0), (25)

which leads to the same expression of the instantaneous flu-
orescence fluctuation as the one derived from Eq. (3). Using
Eq. (24) we obtain

〈δNCaF(0)δNCaF(0)〉 = 1

�t2

∫
d3r I (r)

∫
d3r′I (r′)

⎛
⎝ ∑

s,k,
, j

eλs�t − 1

λs

eλ
�t − 1

λ


X4
X −1

 j X4sX

−1
sk 〈δCk (r, 0)δCj (r′, 0)〉

⎞
⎠. (26)

052407-8



QUANTIFICATION OF FLUCTUATIONS FROM … PHYSICAL REVIEW E 102, 052407 (2020)

Thus, considering, as usual, that the actual instantaneous fluctuations satisfy 〈δCk (r, 0)δCj (r′, 0)〉 = δk jCk,eqδ(r − r′), the
variance of the number of fluorescence molecules (which determines the total weight of the ACF) reads

〈δNCaF(0)δNCaF(0)〉 = Ve f

�t2

∑
k

[
Ck,eq

∑
s

(
eλs�t − 1

λs
X4sX

−1
sk

)2
]

≈ Ve f C4,eq + Ve f

∑
k

[
Ck,eq

∑
s

(
λs�t

2
X4sX

−1
sk

)2
]
, (27)

where Ve f = ∫
d3r I (r). The last approximation in Eq. (27) corresponds to expanding the exponential up to second order in

λs�t . It shows that, under the usual assumptions on the instantaneous correlations, the variance of the number of fluorescence
molecules averaged over the acquisition time is a weighted sum of the variances of all the species. This expression is a
generalization of the one we obtained using the variance decomposition formula and assuming that NCa2+ was Poissonian.
Namely neglecting some of the terms in Eq. (27) we obtain an expression of the form of Eq. (18).

A similar calculation can be done to compute the ACF. We write

δNCaF(t ) = 1

�t

∫
d3r I (r)

∑
s,k

eλs�t − 1

λs
X4sX

−1
sk δCk (r, t ) (28)

and obtain

〈δNCaF(t )δNCaF(0)〉 = 1

�t2

∫
d3r I (r)

∫
d3r′I (r′)

⎛
⎝ ∑

s,k,
, j

eλs�t − 1

λs

eλ
�t − 1

λ


X4
X −1

 j X4sX

−1
sk 〈δCk (r, t )δCj (r′, 0)〉

⎞
⎠

= 1

�t2

∑
s,k,
, j

eλs�t − 1

λs

eλ
�t − 1

λ


X4
X −1

 j X4sX

−1
sk 〈δNk (t )δNj (0)〉

≈ 〈δN4(t )δN4(0)〉 +
∑

s,k,
, j

λs�t

2

λ
�t

2
X4
X −1


 j X4sX
−1
sk 〈δNk (t )δNj (0)〉, (29)

where δNk (t ) = ∫
d3r I (r)δCk (r, t ) is the instantaneous fluc-

tuation in the number of particles of species k in the
observation volume. This implies that, in principle, the ACF
is a superposition of the ACF of the fluctuations in the
particle number of all the species that affect the time evolu-
tion of the observed variable (C4 in our case) and, also, of
cross correlations. Extending this computation to the space-
dependent problem of interest (with diffusion) would also
yield a weighted sum of these correlations. Equations (26)
and (29) reflect that, by adding the fluctuations in the particle
numbers over a finite time, the finite time correlation between
fluctuations in the observed variable (NCa2+) and in the particle
number of the other species can be present in the ACF. It is
important to note that the correlation times are always the ones
determined by the linearized reaction-diffusion system. The
correction derived in this section implies that the timescales
might be present with weights that are different from those
prescribed by the usual theory in which Eq. (15) is assumed
to hold for the fluctuations averaged over the finite acquisition
time. The correction would be more or less relevant depending
on the parameters of the acquisition time, the eigenvalues,
weights, and relative concentrations.

V. COMPARISON BETWEEN THEORY
AND EXPERIMENTS

In this section the theory is applied to explain the
experimental results of [32]. It is further illustrated with
additional experimental results performed in aqueous
solutions with Ca2+, EGTA, and a different Ca2+ dye
from the one used in Ref. [32].

For the parameters of Table I and, consequently, for the
experiments of [32], it is reasonable to assume that NCa2+

and NFT are independent. In particular, in the observation
volume, Ve f ≈ 0.6 μm3, the mean number of reactions dur-
ing the experimental acquisition time (�t = 20 μs) between
Ca2+ and F is very small compared to the mean, 〈NCa2+〉
(e.g., ∼0.6vs 〈NCa2+〉 ∼ 1300 ions for the experiment with
[Ca2+]tot = 9.27 μM). Changes in the stochastic variable,
NCa2+ , are therefore mostly determined by diffusion of the free
Ca2+ ions in and out of the volume (∼226 crossings during the
experimental acquisition time for [Ca2+]tot = 9.27 μM) and
by the reactions between Ca2+ and the EGTA molecules (∼51
reactions in Ve f during �t for [Ca2+]tot = 9.27 μM). On the
other hand, due to the relatively large free diffusion coefficient
of the ions it is reasonable to assume that NCa2+ is almost
Poissonian [37], so that its variance is equal to its mean. This
implies that, for the experimental conditions of [32], the only
relevant correction in the space-dependent version of Eq. (29)
would be the one due to the ACF of the fluctuations in the
number of free Ca2+ ions. In fact, the observations of [32] can
be explained assuming that the ACF can be written as

G(τ ) = 1

([CaF]eqVe f )2 [G̃CaF(τ ) + αG̃Ca2+ (τ )]

= 1

([CaF]eqVe f )2

∫
d3r d3r′Q2I (r)I (r′){〈δ[CaF](r, t )

× δ[CaF](r′, t + τ )〉 + α〈δ[Ca2+](r, t )

× δ[Ca2+](r′, t + τ )〉}, (30)
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FIG. 6. Weight densities of the three components of GCa2+ computed as functions of q2 at ϕ = π/2. Symbols and [Ca2+]tot in (a)–(c) are
the same as in Fig. 1.

with α > 0 and G̃CaF(τ ) ≡ 〈δNCaF(τ )δNCaF(0)〉 and
G̃Ca2+ (τ ) ≡ 〈δNCa2+ (τ )δNCa2+ (0)〉 computed with the usual
assumption on the instantaneous correlations [i.e., G̃CaF(τ ) is
the first term of an expansion like the one in the right-hand
side (RHS) of Eq. (29) and G̃Ca2+ (τ ) would be one of the
other terms]. Given that G̃CaF(0) = Var(NCaF) = 〈NCaF〉
and G̃Ca2+ (0) = Var(NCa2+ ) = 〈NCa2+〉, Eq. (30) reduces to
Eq. (19) for τ = 0. Thus Eq. (30) is consistent with the
assumptions that NCa2+ and NFT are independent and that NCaF

is Poisson distributed.
G̃CaF and G̃Ca2+ in Eq. (30) can be written as the sum

of components, each one associated to an eigenvalue branch
of the linearization of Eqs. (A1). Due to the structure of
the corresponding eigenvectors, G̃Ca2+ only depends on the
nontrivial eigenvalues, i.e., it is the sum of three components.
We show in Fig. 6 the corresponding weight densities for the
same conditions and with the same selection of symbols as
in Fig. 1 ([Ca2+]tot = 9300 μM in (a), [Ca2+]tot = 9600 μM
in (b), and [Ca2+]tot = 10400 μM in (c)). It can be observed
that the component of largest weight density is the one corre-
sponding to λ2 in (a), to λ3 in (b), and to λ1 in (c). Comparing

Figs. 6 and 1 it is possible to conclude that the largest weight
density attains its maximum value for a wave number, q,
such that dλ2/dq2 ∼ −DE for the conditions of Fig. 6(a),
dλ3/dq2 ∼ −DCa2+ ∼ −De f 2 for the conditions of Fig. 6(b),
and dλ1/dq2 ∼ −DE for the conditions of Fig. 6(c). The
coefficients, DE, De f 2, and DE were the ones obtained from
the fittings of [32], besides the free diffusion coefficient of
the dye, DF, for the Ca2+ concentrations of Figs. 6(a)–6(c),
respectively.

In order to further illustrate that it is in fact possible to
estimate correctly the diffusion coefficients of nonfluorescent
species performing FCS experiments in reaction-diffusion
systems, we repeated the experiments of [32] in aqueous
solutions with Ca2+, EGTA, and the Ca2+ dye, Fluo8, in-
stead of Fluo4. Fluo8 differs from Fluo4 in its off rate and
dissociation constant (k′

F = 47.52 s−1 and KdF = 0.432 μM
instead of 300 s−1 and 2.6 μM, respectively) and in its free
diffusion coefficient (DF = 109 μm2/s instead of 85 μm2/s).
The experiments were performed using [F]tot = 0.676 μM,
[E]tot = 9.66 mM, and the total Ca2+ concentrations: 9.27,
9.37, 9.42, 9.52, 9.57, 9.61, and 9.66 mM. The best fits

FIG. 7. Theoretical and experimental results (with lines and symbols, respectively) for the case of experiments performed in aqueous
solutions containing Ca2+, EGTA, and Fluo8. The theoretical results were obtained using the corresponding parameters of Table I with
DE = 352 μm2. (a) Ratio between the weight associated to the free diffusion coefficient of the dye and the total weight of the ACF
derived from the experiments [GoF /Gtot = A1,fit/(A1,fit + A1,fit ): rhombuses with error bars] and computed as in Fig. 2(c) (GoF /Gtot = A4/Gtot :
circles). (b) Effective diffusion coefficients (dashed line: De f 1; dash-dotted line: De f 2; dotted line: De f 3) and coefficients derived by fitting the
experimental ACFs with expressions of the form Eq. (31) for each [Ca2+]tot probed, circles for the diffusion coefficient derived from τ1, and
triangles for the one derived from τ2. The experimental points correspond to averages over three experiments for almost all values of [Ca2+]tot ,
two for [Ca2+]tot = 9.37 and 9.57, and six for [Ca2+]tot = 9.66 mM.
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corresponded to an expression of the form

Gfit (τ ) ≈ A1,fit(
1 + τ

τ1

)√
1 + τ

w2τ1

+ A2,fite−ντ(
1 + τ

τ2

)√
1 + τ

w2τ2

, (31)

with τ1 equal to the diffusion timescale of the dye for all con-
centrations. Figure 7(a) shows the ratio between the weight
associated to the free diffusion coefficient of the dye and
the total weight of the ACF derived from the experiments
[GoF /Gtot = A1,fit/(A1,fit + A1,fit ): rhombuses with error bars]
and the corresponding ratios predicted by the theory un-
der the usual assumption on the instantaneous correlations
(GoF /Gtot = A4/Gtot: circles). The theoretical results were
computed as in Fig. 2(c), using the corresponding parameters
of Table I with DE = 352 μm2. The fact that the experimental
ratios are sensitively smaller than the theoretical ones can
again be attributed to the miscalculation of the theoretical
variance and, therefore, of the total weight, when the corre-
lations due to the finite acquisition time are not included.

Figure 7(b) shows the effective diffusion coefficients (with
lines) and those derived from the fitting (averages over two,
three, or six experiments with symbols) as functions of
[Ca2+]tot. It can be observed that, in almost all cases, one of
the fitted coefficients corresponds to the free diffusion of the
dye (circles) and the other to the largest effective diffusion
coefficient of the problem (triangles), which is approximately
equal to the free Ca2+ diffusion coefficient.

VI. CONCLUSIONS

In this work the ACF of the fluctuations in the number of
fluorescent molecules in an observation volume has been stud-
ied theoretically for the reaction-diffusion system composed
of Ca2+, a SW Ca2+ dye (Fluo4) that becomes fluorescent
when bound to Ca2+, and a Ca2+ chelator (EGTA). The
study was done without making approximations based on the
timescales involved. It showed that the eigenvalues that deter-
mine the correlation times of the ACF can be approximated
by the sum of a diffusive and an exponential decay rate [as in
Eq. (10)] with constant diffusion coefficients over finite wave
number intervals for almost all wave numbers (Fig. 1). As
expected, the diffusive and exponential rates corresponded to
those prescribed by the fast reaction approximation for short
enough wave numbers. The detailed analysis of the weights
associated to these timescales showed that, under the usual
assumptions on the instantaneous correlations of the molecule
number fluctuations, the ACF should be characterized by a
single diffusion coefficient: the one of the dye (Fig. 3). In any
practical realization, instantaneous actually corresponds to a
short time interval. The ACF was then computed including the
finite experimental acquisition time which resulted in a func-
tion of all the timescales of the linearized reaction-diffusion
system (Sec. IV). Based on the analysis of Sec. III, this implies
that the ACF should be characterized by diffusive timescales
that correspond to the effective or free diffusion coefficients
of the species of the system, depending on the parameters.
The presence of these timescales reconciled the theory with
the experimental results of [32]. It also has the important
consequence that the diffusion coefficients of nonfluorescent
species can, in principle, be drawn from FCS experiments per-

formed in reaction-diffusion systems. This ability to quantify
such diffusion coefficients was further validated with experi-
ments in Sec. V.

The conclusion derived in Sec. III B, according to which
the ACF of the fluorescence fluctuations for the system
of Ca2+, Fluo4, and EGTA should only depend on the
diffusion coefficient of the dye, contradicted the experimental
observations of [32]. Namely, in Ref. [32] other diffusive
timescales of the system could be estimated correctly with
FCS experiments. Another inconsistency between theory
and experiments was the mismatch between the total weight
of the experimental ACF and its expected value computed
using Eq. (12), the experimental concentrations, and the
dissociation constants provided by the vendors (see Fig. 3
in Ref. [32]). This discrepancy was solved in Sec. IV B by
including the dependence of the variance of the number of
fluorescent molecules in the observation volume, NCaF, on the
variance of the number of free Ca2+ ions, NCa2+ , in the same
volume. To this end, the variance decomposition formula was
used. The theoretical arguments were complemented with
stochastic simulations (Fig. 5). It was shown in Sec. IV C that
the dependence between the variance of NCaF and that of NCa2+

was a consequence of the finite acquisition time during which
the information on these stochastic variables is collected
in experiments. The computation of the ACF with Eq. (20)
showed that the finite acquisition time can introduce several
new terms in the function [see Eq. (27) for the case with
wavelength independent eigenvalues]. Arguing that, for the
parameters of the experiments in Ref. [32], it was reasonable
to assume that the number of free Ca2+ ions, NCa2+ , and the
total number of dye molecules, NFT , were independent and
that NCa2+ was Poisson distributed, only the term associated to
the ACF of the free Ca2+ ions was kept. With this additional
term the experimental results of [32] were explained in
Sec. V. Namely, it was shown that the diffusive timescales
that could be estimated correctly in Ref. [32] corresponded
to the eigenvalues with the largest weight density of the ACF,
G̃Ca2+ (τ ) = 〈δNCa2+ (τ )δNCa2+ (0)〉, of the number of free
Ca2+ ions, for each of the conditions probed experimentally.
In Sec. V, the results of experiments performed with the
Ca2+ dye, Fluo8, which differs in its kinetics and diffusion
coefficient from the one used in Ref. [32], were presented.
These results again displayed the mismatch between the
experimental weights of the ACF and those prescribed by
the theory under the usual assumption on the instantaneous
correlations [Fig. 7(a)]. The experiments allowed the correct
quantification of the diffusion coefficient of a nonfluorescent
species (the free Ca2+ ions) as shown in Fig. 7(b). The
identification of the timescales that are obtained in these
experiments is a necessary step for the use of SW dyes in FCS
experiments performed in living cells to quantify the transport
properties of free Ca2+ in this setting (work in progress).

The results of the theory presented in this paper also ap-
ply to FCS experiments performed in systems with other
types of fluorescent species, e.g., those done in Drosophila
melanogaster embryos expressing the fluorescent protein,
Bcd-EGFP [38]. The interpretation of the timescales drawn
from these experiments [9,39] in terms of an underlying
reaction-diffusion system under the fast reaction approxima-
tion gave estimates of various biophysical parameters [10] that
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proved to be consistent with other observations [35,40]. The
agreement held even if the relative weights of the experimen-
tal ACF components differed from the theoretical ones [36].
The correct quantification of the biophysical parameters of the
system in this example can now be explained in terms of the
theory developed in the present paper.

In summary, the work in this paper has shown that the
finite acquisition time, which is unavoidable in any practical
implementation of FCS, affects the weights and the corre-
lation times that characterize the ACF of the fluorescence
fluctuations in reaction-diffusion systems. It affects it in such
a way that the transport rates of the nonfluorescent species
can be derived from the correlation times. The results not only
provide theoretical support for the quantification of biophys-
ical parameters from FCS experiments presented in previous
works, they also suggest that the acquisition time is an ex-
perimental tool to probe more thoroughly the timescales that
characterize the dynamics of reaction-diffusion systems with
FCS experiments.
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APPENDIX

1. Reaction-diffusion system

The evolution equations for the reaction-diffusion system
with Ca2+, a Ca2+ dye, F, and a Ca2+ chelator, E, that react
according to Eqs. (2) are

∂[E]tot

∂t
= DE∇2[E],

∂[F]tot

∂t
= DF∇2[F],

∂[CaE]

∂t
= DE∇2[CaE] + kE[Ca2+]

× ([E]tot − [CaE]) − k′
E[CaE],

∂[CaF]

∂t
= DF∇2[CaF] + kF [Ca2+]

× ([F]tot − [CaF]) − k′
F [CaF],

∂[Ca2+]

∂t
= DCa2+∇2[Ca2+] − kF [Ca2+]

× ([F]tot − [CaF]) + k′
F [CaF] − kE[Ca2+]

× ([E]tot − [CaE]) + k′
E[CaE], (A1)

where [E]tot = [E] + [CaE], [F]tot = [F] + [CaF], and the
free diffusion coefficients of the species are DCa2+ (for Ca2+),
DE (for E and CaE), and DF (for F and CaF).

2. Simplified ACF in the fast reaction limit

The fast reaction limit holds when the characteristic times
of the reactions are shorter than the time it takes for the

species to diffuse across the observation volume. In such a
case, Eq. (10) provides a good approximation of the nontrivial
eigenvalues throughout the range of q values that contribute
non-negligibly to their corresponding components. Under the
assumption of Eq. (15) the ACF is then given by [32]

G(τ ) = GoF(
1 + τ

τDF

)√
1 + τ

w2τDF

+ Goe f 1(
1 + τ

τDe f 1

)√
1 + τ

w2τDe f 1

+ Goe f 2 e−νe f 2 τ(
1 + τ

τDe f 2

)√
1 + τ

w2τDe f 2

+ Goe f 3 e−νe f 3 τ(
1 + τ

τDe f 3

)√
1 + τ

w2τDe f 3

, (A2)

with τDe f i = w2
r

4De f i
, where the effective diffusion coefficients,

De f i, and the effective rates, νe f i, satisfy

De f 1 + De f 2 + De f 3 = DCa2+ + DF + DE, (A3)

νe f 1 + νe f 2 = νF + νE, (A4)

where νF = k′
F([F]eq/KdF + [F]tot/[F]eq) and νE =

k′
E([E]eq/KdE + [E]tot/[E]eq) are related to the timescales

when E and F are not part of the system, respectively. Thus,
in this limit, the ACF has one purely diffusive component
associated to the free diffusion coefficient of the dye and
three more components (one of them purely diffusive as
well) that depend on effective diffusion coefficients that
are functions of the free coefficients, DF, DCa2+ , and DE,
the concentrations, and the reaction rates. In Ref. [32] we
could fit the ACF derived from FCS experiments performed
in aqueous solutions containing Ca2+, the Ca2+ dye, Fluo4
dextran, and the Ca2+ buffer, EGTA, using two purely
diffusive components:

Gfit (τ ) ≈ A1,fit(
1 + τ

τ1

)√
1 + τ

w2τ1

+ A2,fit(
1 + τ

τ2

)√
1 + τ

w2τ2

. (A5)

The experiments of [32] were performed for different total
concentrations of Ca2+, [Ca2+]tot. Analyzing the [Ca2+] de-
pendence of the fitted coefficients, Di, i = 1, 2, we identified
the [Ca2+]-invariant one with the free diffusion coefficient of
the dye, DF [32]. Comparing the [Ca2+] dependence of the
other with what the fast reaction limit prescribed for the three
effective diffusion coefficients that enter the ACF, Eq. (A2),
allowed us to give it an interpretation (that was different
depending on the range of [Ca2+]tot) and eventually estimate
the free diffusion coefficients, DCa2+ and DE.

3. Linearized reaction-diffusion system,
eigenvalues, and eigenvectors

To compute the eigenvalue branches of Sec. II and their
corresponding eigenvectors we first work with Eqs. (A1) lin-
earized around the equilibrium solution written in terms of the
following concentration differences: ξ1 = [E]tot − [E]tot,eq,
ξ2 = [F]tot − [F]tot,eq, ξ3 = [CaE] − [CaE]eq, ξ4 = [CaF] −
[CaF]eq, and ξ5 = [Ca2+] − [Ca2+]eq. We then Fourier trans-
form the variables in space and rewrite the evolution equation

052407-12



QUANTIFICATION OF FLUCTUATIONS FROM … PHYSICAL REVIEW E 102, 052407 (2020)

as ˙̂ξ (q) = A(q)ξ̂ (q) with ξ̂ (q) the vector of Fourier transformed components, ξ̂1(q), . . . , ξ̂5(q) as functions of the wave number,
q, and the matrix, A(q), given by

A(q)=

⎛
⎜⎜⎜⎜⎜⎜⎝

−DEq2 0 0 0 0

0 −DFq2 0 0 0

kE[Ca2+]eq 0 −k′
E − kE[Ca2+]eq − DEq2 0 kE[E]eq

0 kF[Ca2+]eq 0 −k′
F − kF[Ca2+]eq − DFq2 kF[F]eq

−kE[Ca2+]eq −kF[Ca2+]eq k′
E + kE[Ca2+]eq k′

F + kF[Ca2+]eq −kE[E]eq − kF[F]eq − DCa2+q2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(A6)

The eigenvalues, λi(q), of A(q) give the eigenvalue branches we referred to in Sec. II. Clearly, λ4 and λ5 of Eqs. (7) and
(8) are eigenvalues of this matrix. In this basis, the eigenvectors can be readily computed in terms of the eigenvalues and other
parameters of the problems. Once we have them, we switch to the basis defined by the Fourier transform of the concentration
differences, c1 = [E] − [E]eq, c2 = [F] − [F]eq, and ck = ξk for k = 3, 4, 5, so that we can assume that only one of them is
fluorescent, c4 = [CaF] − [CaF]eq. Clearly, c1 = ξ1 − ξ3 and c2 = ξ2 − ξ4. The eigenvector matrix, M(q) (with the eigenvectors
as columns), and the change of basis, B(q), such that ĉ(q) = B(q)ξ̂ (q), are given by

M(q) =

⎛
⎜⎜⎜⎝

0 0 0 0 1
0 0 0 1 0
w r s 0 p
f g h e 0
1 1 1 0 0

⎞
⎟⎟⎟⎠, B(q) =

⎛
⎜⎜⎜⎝

1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠, (A7)

with w = kE[E]eq/(kE[E]eq + DEq2 + λ1), r = kE[E]eq/(kE[E]eq + DEq2 + λ2), s = kE[E]eq/(kE[E]eq + DEq2 + λ3),
p = kE[Ca2+]eq/(kE[Ca2+]eq + k′

E), f = kF[F]eq/(kF[F]eq + DFq2 + λ1), g = kF[F]eq/(kF[F]eq + DFq2 + λ2), h =
kF[F]eq/(kF[F]eq + DFq2 + λ3), and e = kF[Ca2+]eq/(kF[Ca2+]eq + k′

F). An analytic expression for the inverse of M in
terms of these variables and of the eigenvalues can be obtained from M using algebraic manipulating software.

4. Weight computation

We compute the nontrivial eigenvalues of A(q) as functions of q numerically. We then compute the eigenvector matrix M(q)
and its inverse as functions of q [using Eq. (A7) and the corresponding one for M−1]. We follow [31] to compute GCaF and GCa2+

in Eq. (30). Namely, we assume that

〈cs(r, t )c′
s(r

′, t )〉|〈pb〉 = δ(r − r′)
Ve f

δss′ Var(Ns)|〈pb〉 = δ(r − r′)δss′Cs,eq, (A8)

where Cs,eq is the equilibrium concentration of the sth species. In this way, it is

GCaF(τ ) = 1

([CaF]eqVe f )2

∫
d3q

( |Î (q)|
I (0)

)2 5∑
i, j,
=1

Bs
M
ie
−λi (q)τ (M−1)i j (B

−1) jsCs,eq, s = 4, (A9)

with Î (q) the Fourier transform of I (r), given by Eq. (4). GCa2+ has the same expression but with s = 5 instead of 4. In this way,
weight densities (i = 1, . . . , 4) of GCaF and GCa2+ can be written, respectively, as

gCaF,i(q) = q2[CaF]eq

(2π [CaF]eq)2 exp

[
−

(
wrq sin(ϕ)

2

)2

−
(

wzq cos(ϕ)

2

)2] 5∑
j,
=1

B4
M
i(M
−1)i j (B

−1) j4, (A10)

gCa,i(q) = q2[Ca2+]eq

(2π []eq)2 exp

[
−

(
wrq sin(ϕ)

2

)2

−
(

wzq cos(ϕ)

2

)2] 5∑
j,
=1

B5
M
i(M
−1)i j (B

−1) j5. (A11)

The weights, Ai, of Fig. 2 are computed integrating the weights, g,i, of Eq. (A10) over q and ϕ as in Eq. (13).
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5. Variance decomposition

We consider the conditional probability, P(NCaF | NCa2+ , NFT ) that NCaF takes a certain value given that NCa2+ and NFT take
some other values and write

Var(NCaF) =
∑

NCaF,NCa2+ ,NFT

(NCaF − 〈NCaF〉)2P(NCaF | NCa2+ , NFT )P(NCa2+ )P(NFT )

=
∑
NCa2+

(
P(NCa2+ )

∑
NCaF,NFT

(NCaF − 〈NCaF | NCa2+〉)2P(NCaF | NCa2+ , NFT )P(NFT )

)

+
∑
NCa2+

(
P(NCa2+ )

∑
NCaF,NFT

(〈NCaF | NCa2+〉 − 〈NCaF〉)2P(NCaF | NCa2+ , NFT )P(NFT )

)

+2
∑
NCa2+

(
P(NCa2+ )(〈NCaF | NCa2+〉 − 〈NCaF〉)

∑
NCaF,NFT

(NCaF − 〈NCaF | NCa2+〉)P(NCaF | NCa2+ , NFT )P(NFT )

)
,

(A12)

where

〈NCaF | NCa2+〉 =
∑

NCaF,NFT

NCaFP(NCaF | NCa2+ , NFT )P(NFT ),

〈NCaF〉 =
∑

NCaF,NCa2+ ,NFT

NCaFP(NCaF | NCa2+ , NFT )P(NCa2+ )P(NFT ). (A13)

The last line in Eq. (A12) clearly cancels out and we rewrite the other two sums as in Eq. (17) with

〈Var(NCaF | NCa2+ )〉NCa2+ =
∑
NCa2+

(
P(NCa2+ )

∑
NCaF,NFT

(NCaF − 〈NCaF | NCa2+〉)2P(NCaF | NCa2+ , NFT )P(NFT )

)
,

VarNCa2+ (〈NCaF | NCa2+〉) =
∑
NCa2+

(
P(NCa2+ )

∑
NCaF,NFT

(〈NCaF | NCa2+〉 − 〈NCaF〉)2P(NCaF | NCa2+ , NFT )P(NFT )

)
. (A14)

6. Experiments: Data acquisition, computation, and fitting
of the experimental ACF

FCS experiments were performed in aqueous solution con-
taining Ca2+, EGTA, and the fluorescent single wavelength
calcium indicator Fluo8 (Abcam). Solutions also contained
100 mM KCl, 30 mM MOPS, and were done at pH 7.2.
Fluorescence records were obtained in a spectral confo-
cal scanning microscope FluoView 1000 (Olympus, Tokyo,
Japan), using a 60x oil immersion objective (UPlanSApo),
NA 1.35, and a 115 μm pinhole size. The sample, a 70 μl
drop of the chosen solution deposited on a coverslip, was
illuminated with the 488 nm line of an argon laser with an
excitation power of 6–10 μW. Fluorescence was collected
from a single point located at approximately 15 μm from
the coverslip, at a 50 kHz acquisition rate during ∼180 s
(equivalently, 8 388 096 data points) in the [500–600] nm
range with a photomultiplier detector. The confocal volume
was calibrated using a solution containing 100 nM of fluo-
rescein (Sigma, St. Louis, MO) in a buffer solution pH=9,
assuming a diffusion coefficient of 425 μm2/s [41]. The
lateral width resulting value was wr = (0.277 ± 0.005) μm,
with w = wz/wr = 5 and the estimated effective volume was
Ve f = (0.59 ± 0.1) μm3. Experimental ACFs were calculated
with a custom-made routine written on the Matlab platform
[42]. To this end, each 180 s long record was divided into

N = 1021, 164 ms long segments containing 213 points each.
The ACF was computed for each of the N = 1021 segments,
as mentioned in Ref. [32], from which the average ACF
was obtained. The averaged ACFs were fitted with different
combinations of Eq. (A2) components and the function nlinfit
that comes with Matlab, using the default options [42]. The
first 1–2 points were discarded; this sets a timelag range
from 40–60 μs to 164 ms. In each case we tried several
initial guesses and chose the one that gave the smallest χ2

given by

χ2 = 1

Np − Nv

Np∑
i

[Gtheo(τi ) − Gexp(τi)]2

Gtheo(τi )
, (A15)

with Np the total number of data points of the experimental
ACF, Gexp, and Nv the number of variables of the model Gtheo

the ACF computed with the fitting model.

7. Stochastic simulations

We perform stochastic simulations of the reaction-
diffusion system assuming that particles move on a cubic
grid of N = 30 points per side with mesh size dx = dy =
dz = 0.1 μm. Diffusion is simulated as random walk on
the grid and the time step, dt ≈ 2 × 10−6 s, is chosen so
as to accommodate the fastest diffusing species (Ca2+, with
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DCa2+ = 760 μm2/s). In the full reaction-diffusion system
simulation, reactions are performed going through all the pairs
that can be formed at each time step and grid point and
deciding with a certain probability whether the reaction occurs
or not. We also perform simulations in which we only follow
the Ca2+-bound and Ca2+-free dye molecules and where the
transformation between these two species occurs with a fixed
probability per unit time in both directions (proportional to
the equilibrium Ca2+ concentration in the case that represents

binding with a constant kof f in the opposite case). In order to
compute the number of molecules or ions of a given species
within the observation volume we proceed as in Ref. [35].
Namely, we add all the particles but with a weight that is a
Gaussian function of the distance to the center of the simula-
tion volume with a width equivalent to that of the observation
volume (wr = 0.28 μm in x and y and wz = 5wr in the z
direction). We also tried other ways of counting molecules,
but we only present the results obtained in this way.
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