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ABSTRACT: Clear cell renal cell carcinoma (ccRCC) is a
heterogeneous disease with 50−80% patients exhibiting mutations
in the von Hippel−Lindau (VHL) gene. RSUME (RWD domain
(termed after three major RWD-containing proteins: RING finger-
containing proteins, WD-repeat-containing proteins, and yeast
DEAD (DEXD)-like helicases)-containing protein small ubiquitin-
related modifier (SUMO) enhancer) acts as a negative regulator of
VHL function in normoxia. A discovery-based metabolomics
approach was developed by means of ultraperformance liquid
chromatography coupled to quadrupole time-of-flight mass
spectrometry (MS) for fingerprinting the endometabolome of a
human ccRCC cell line 786-O and three other transformed cell
systems (n = 102) with different expressions of RSUME and VHL.
Cross-validated orthogonal projection to latent structures discriminant analysis models were built on positive, negative, and a
combination of positive- and negative-ion mode MS data sets. Discriminant feature panels selected by an iterative multivariate
classification allowed differentiating cells with different expressions of RSUME and VHL. Fifteen identified discriminant metabolites
with level 1, including glutathione, butyrylcarnitine, and acetylcarnitine, contributed to understand the role of RSUME in ccRCC.
Altered pathways associated with the RSUME expression were validated by biological and bioinformatics analyses. Combined results
showed that in the absence of VHL, RSUME is involved in the downregulation of the antioxidant defense system, whereas in the
presence of VHL, it acts in rerouting energy-related pathways, negatively modulating the lipid utilization, and positively modulating
the fatty acid synthesis, which may promote deposition in droplets.

KEYWORDS: in vitro cell culture, RSUME, VHL, metabolomics, ultraperformance liquid chromatography−mass spectrometry,
clear cell renal cell carcinoma, metabolic fingerprinting

■ INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is the most common
histological subtype of RCC accounting for 75% of cases, and
it is considered as a glycolytic and lipogenic tumor.1−4 ccRCC
is a heterogeneous disease with 50−80% patients exhibiting
mutations in the von Hippel−Lindau (VHL) gene, which is
involved in the expression of hypoxia-inducible factors 1α and
2α (HIF-1α and -2α).5−7 HIFs are heterodimeric transcription
factors that induce essential genes for the cellular and systemic
homeostatic response to oxygen availability.8 When cancer
cells starve for oxygen, the VHL tumor suppressor cannot
target the HIFs for proteolysis, and stabilization of HIF-1α and
-2α increases the glycolytic flux associated with tumor
progression.9

RSUME (RWD domain (termed after three major RWD-
containing proteins: RING finger-containing proteins, WD-
repeat-containing proteins, and yeast DEAD (DEXD)-like
helicases)-containing protein small ubiquitin-related modifier
(SUMO) enhancer) is the product of the RWDD3 gene. It was

isolated from highly tumorigenic and angiogenic cells and is
expressed in several types of tumors with high angiogenic
phenotype.10−16 High RSUME expression has been associated
with poor prognosis in ccRCC, and it acts as a negative
regulator of VHL function in normoxia, promoting HIF-α
stabilization12,17 and activating HIF target genes, such as
VEGF and GLUT1.11,12,17 Moreover, high RSUME expression
has been correlated with high-grade ccRCC tumors.17

Considering that RSUME is implicated on HIF deregulation
in ccRCC and that the HIF is a key regulator of metabolic
reprogramming in this cancer type, we hypothesize that
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RSUME participates in metabolic changes in ccRCC tumor
progression.
Metabolic reprogramming is an accepted hallmark associated

with uncontrolled growth and spread of abnormal human
cells.18 Interactions between different cancer cells with the
surrounding and the molecules in the microenvironment
characterize the tumor metabolome. Thus, fingerprints
provided by changes of metabolite relative levels can offer a
functional readout of the cellular state and biochemical
activity.19 In this sense, untargeted metabolite profiling is an
analytical strategy that contributes to understand the biological
mechanisms and cellular pathways involved in cell biology.19

In vitro cell models are controlled systems that allow
studying the role of particular genes or proteins,20 drug
screening,21,22 and also the interrogation of both the
intracellular (fingerprint) and extracellular (footprint) metab-
olome.23 In this context, ultraperformance liquid chromatog-
raphy−high-resolution mass spectrometry (UPLC−HRMS)
appears as a sensitive and versatile analytical platform to
globally profile metabolites from in vitro models. Our research
group has previously investigated the exometabolome of two
human ccRCC cell lines with different VHL mutations and a
nontumor human renal cell line by means of a discovery-based
metabolic footprinting approach to find potential biomarkers
for kidney cancer detection.24 However, the effect of RSUME
on ccRCC cells with different VHL statuses using an
untargeted fingerprinting approach has not been reported up
to date.
In this study, we have optimized a protocol for harvesting,

quenching, extracting, lyophilizing, reconstituting, and profiling
the endometabolome derived from the human ccRCC cell line
786-O deficient in VHL (VHL−/−),25 as well as from three
other transformed cell systems (n = 102) with different
expressions of RSUME and VHL. We used a discovery-based
fingerprinting approach by means of UPLC coupled to
quadrupole time-of-flight MS (UPLC-QTOF-MS) combined
with cross-validated orthogonal projection to latent structures

discriminant analysis (oPLS-DA) models. The metabolite
panels selected by an iterative multivariate classification
allowed differentiating cells with different expressions of
RSUME and VHL. Discriminant metabolites identified with
level 126,27 provided clues to understand altered pathways
associated with RSUME expression in 786-O and 786-O VHL
cells. These pathways were validated by biological and
bioinformatics analyses and indicate a disruption of the cell
antioxidant defense and modulation of the fatty acid
metabolism depending on the interaction of RSUME and
VHL statuses.

■ MATERIALS AND METHODS

Chemicals

Optima LC-MS-grade acetonitrile and methanol, as well as
analytical grade formic acid, were purchased from Fisher
Chemical (Raleigh, NC, USA). Ultrapure water with 18.2 MΩ·
cm resistivity (Thermo Scientific Barnstead Micropure UV
ultrapure water system, Sunnyvale, CA, USA) was used to
prepare mobile phases and solutions. Leucine enkephalin was
purchased from Waters Corp. (Milford, MA, USA). Dulbecco’s
modified Eagle’s medium (DMEM) powder culture media, 1%
phosphate-buffered saline (PBS), 4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid (HEPES), streptomycin, penicillin,
and L-glutamine were purchased from GIBCO Thermo Fisher
Scientific (Waltham, MA, USA). Fetal bovine serum (FBS)
was purchased from Natocor S.A. (Coŕdoba, Argentina), and
NaHCO3 and sodium glutamate 1-hydrate (≥99%) were
purchased from Biopack (Buenos Aires, Argentina). Boc-L-
alanine (≥99%), buthionine sulfoximine (BSO) (≥97%),
butyryl-L-carnitine (≥97%), erastin (≥98%), isobutyryl-L-
carnitine (≥97%), L-(+)-lactic acid (≥98%), L-glutathione
oxidized (≥98%), L-glutathione reduced (≥98%), L-(−)-malic
acid (≥95%), L-leucine (≥98%), L-phenylalanine (≥98%),
lysophosphatidylcholine USP standard (PC 0:0/16:0 ∼65%),
O-acetyl-L-carnitine hydrochloride (≥98%), phosphocholine
chloride calcium salt tetrahydrate (≥97%), taurine (≥99%),

Figure 1. Scheme illustrating cell culture and sample collection for the different cell lines studied. CM: conditioned media; control PR: internal
control of proliferation rate.
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and L-tryptophan (≥98%) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). L-isoleucine (≥98%) was supplied by
Fluka (Steinheim, Germany). sn-glycero-3-Phosphocholine
(≥95%) was purchased from Cayman Chemical (Ann Arbor,
MI, USA). Crystal violet was supplied by ChemCruz (Dallas,
Texas, USA). N-Acetyl-phenylalanine was chemically synthe-
sized and characterized in our laboratory.24

In Vitro ModelCell Culture Design

The 786-O cell line, which derives from a primary ccRCC
tumor and has a deletion of the gene encoding the VHL
protein (VHL−/−), was obtained from R Voest, University
Medical Center Utrecht. Stable clones were obtained as
described elsewhere,12 transfecting the RCC 786-O cells with
pcDNA3-shScramble or shRSUME or pcDNA3-Flag-VHL-
shScramble or shRSUME, leading to four cell lines: the RCC
786-O cells silenced for endogenous RSUME (786-O
shRSUME), the RCC 786-O cells with endogenous RSUME
levels (786-O scramble), the RCC 786-O cells re-expressing
VHL and silenced for endogenous RSUME (786-O VHL
shRSUME), and the RCC 786-O cells re-expressing VHL with
endogenous RSUME levels (786-O VHL scramble). Cells were
cultured in DMEM (pH = 7.3) supplemented with 10% FBS,
2.2 g L−1 NaHCO3, 10 mM HEPES, 4 mM L-glutamine, 100 U
mL−1 penicillin, and 100 mg mL−1 streptomycin. All cells were
cultured at 37 °C in a humidified atmosphere of 5% CO2. The
cells were regularly tested for mycoplasma. Three different
culture media preparation batches were used. The protocol
designed for cell culture and endometabolome analysis
generated 30 samples for each cell line (Figure 1). Three
cryovials with a similar cell passage number were thawed for
each cell line. Cells from each cryovial were split into five
plates, treated independently during the experiments, and
cultured under maintenance conditions until use. The cells
were counted and seeded for each independent plate. After cell
counting, two plates were plated for each cell line, except for
plate #5, which was split in triplicates to use one of them as an
internal control of the proliferation rate (control PR) (Figure
1). Culture media blanks were obtained by incubating the cell
culture media using the same protocol used for cell lines
(Figure 1).

Sample Collection for Endometabolome Analysis

Cells were counted using a Neubauer chamber and cultured in
10 cm plates. Once 80% confluence was reached, the cells were
gently washed three times for 10 min with the DMEM culture
media, without FBS, antibiotics, and phenol red. Then, cell
monolayers were incubated overnight with 5 mL of culture
media under starving conditions28 (without FBS) and without
phenol red or antibiotics. Conditioned media (culture media
modified by overnight cell incubation) were harvested and
aliquoted in conic microtubes of 400 μL and immediately
frozen at −80 °C for further analysis. For endometabolome
analysis, the cells were washed twice with 5 mL of PBS solution
and once with 5 mL of ultrapure water at 37 °C in a fast way to
reduce cross-contamination and matrix effects while minimiz-
ing perturbation of the metabolic steady state of the cells.29

Subsequently, the cells were carefully scraped with 2 mL of
cold (−20 °C) methanol/acetonitrile (50:50 v/v); 1.4 mL of
the resulted suspension was sonicated on a water−ice bath to
complete cell lysis, incubated for 15 min at 0 °C, and
centrifuged at 16,000g for 20 min at 4 °C. The supernatant was
split into two aliquots of 640 μL and frozen at −80 °C after the
addition of 800 μL of ultrapure water in each tube. One plate

(control PR) was separated before scraping and used to count
cells. Process blanks were prepared using plates without cells
that were subjected to the sample preparation protocol
described above. Lyophilization blanks consisted of ultrapure
water. Samples and blanks were stored at −80 °C until
lyophilization.

Sample Preparation

Samples and blanks were lyophilized at −80 °C and 50 mTorr
for 48 h using a Telstar LYOQuest-85 freeze-dryer (Telstar,
Madrid, Spain) and stored at −80 °C until use. For each
sample, one aliquot was used for endometabolome analysis and
the other was stored at −80 °C for future analyses. The
samples were reconstituted the same day in 60 μL of water/
methanol (80:20 v/v) solution to reach a final concentration of
1 × 104 cells μL−1, vortex-mixed for 15 s, and centrifuged at
15,000g for 20 min at 4 °C. Intrastudy quality control (QC)
samples were prepared by pooling 5 μL of aliquots of each
sample, vortex-mixing for 30 s, and subsequently splitting into
six microtubes that were stored at −80 °C together with
samples until use. Quality assurance procedures were applied
to verify the performance of the analytical method and lack of
contamination before analysis. A system suitability QC sample
(SSS) was used to verify the stability of retention times, peak
shapes, and areas before sample analysis, in the middle, and at
the end of each sample batch. The SSS consisted of N-acetyl-
phenylalanine (5 and 25 μM for positive and negative ion
modes, respectively) and Boc-L-alanine (20 and 100 μM for
positive and negative ion modes, respectively). Out of 120
samples, 18 were used for method development and
optimization. A total of 102 randomized samples (26 for
each class except for the 786-O VHL scramble cell line with 24
samples) were analyzed by UPLC-QTOF-MS after condition-
ing the analytical platform with intrastudy QC samples.

Ultraperformance Liquid
Chromatography−High-Resolution Mass Spectrometry

UPLC−HRMS analyses were performed using a Waters
ACQUITY UPLC I Class system fitted with a Waters
ACQUITY UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm
particle size, Waters Corporation, Milford, MA, USA) coupled
to a Xevo G2S QTOF mass spectrometer (Waters Corpo-
ration, Manchester, UK) with an electrospray ionization (ESI)
source. The typical resolving power and mass accuracy of the
Xevo G2S QTOF mass spectrometer were 32,000 full width at
half-maximum and 0.3 ppm at m/z 554.2615, respectively. The
mobile phase consisted of water with 0.1% formic acid (mobile
phase A) and methanol (mobile phase B). The flow rate was
constant at 0.3 mL min−1, and the elution gradient was set as
follows: 0−1.6 min 10% B; 1.6−2 min 10−20% B; 2−6 min
20−70% B; 6−7 min 70% B; 7−14 min 70−90% B; 14−17.5
min 90% B; 17.5−18 min 90−95% B; and 18−21 min 95% B.
After each sample injection, the gradient was returned to its
initial conditions in 9 min; thus, the total run time was 30 min.
The column and autosampler tray temperatures were set at 35
and 5 °C, respectively. The injection volume was 2 μL. Data
were collected in positive and negative ionization modes in
separate runs and using the same chromatographic method.
The mass spectrometer was operated in positive and

negative ion modes with probe capillary voltages of 2.5 and
2.3 kV, respectively, and a sampling cone voltage of 30 V for
both modes. The source and desolvation gas temperatures
were set to 120 and 300 °C, respectively. The nitrogen gas
desolvation flow rate was 600 L h−1, and the cone desolvation
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flow rate was 10 L h−1. The mass spectrometer was daily
calibrated across the range of m/z 50−1200 using a 0.5 mM
sodium formate solution prepared in 2-propanol/water (90:10
v/v). Data were drift-corrected during acquisition using a
leucine enkephalin reference spray infused every 45 s at 5 μL
min−1 for negative ion mode (m/z 554.2615) and at 2 μL
min−1 for positive ion mode (m/z 556.2771). Data were
acquired in the MSE continuum mode30 in the range of m/z
50−1200, and the scan time was set to 0.5 s. For UPLC−MS/
MS experiments, the product ion mass spectra were acquired
with collision cell voltages between 6 and 40 V depending on
the analyte. Ultra-high-purity argon (≥99.999%) was used as
the collision gas. Data acquisition and processing were carried
out using MassLynx version 4.1 (Waters Corp., Milford, MA,
USA). The MS data have been deposited in the MetaboLights
public repository, with the data set identifier MTBLS1935
(https://www.ebi.ac.uk/metabolights/MTBLS1935).

UPLC−HRMS Analysis

Samples were randomly analyzed by UPLC-QTOF-MS within
a template of intrastudy QC samples. The sample lists for
UPLC−HRMS analysis were set up as follows for each
analytical batch (number of injections × sample type): 2×
solvent blank [water/methanol (80:20 v/v)]; 1× lyophilization
blank; 1× SSS; 1× process blank; 2× intrastudy QC; 20×
randomized samples with 1× intrastudy QC every five samples
and 1× SSS every 10 samples; 2× intrastudy QC; 1× SSS; and
2× solvent blank [water/methanol (80:20 v/v)]. The samples
were analyzed for five consecutive days for each ionization
mode. The first solvent blank injection of each batch was not
considered for data analysis.

Data Preprocessing

Spectral features (retention time (Rt), m/z pairs) were
extracted from UPLC−QTOF-MS data using Progenesis QI
version 2.1 (Nonlinear Dynamics, Waters Corp., Milford, MA,
USA) with default parameters for import filter and automatic
sensitivity for peak picking. The procedure included retention
time alignment, peak picking, deisotoping, integration, and
grouping together the adducts derived from the same
compound. Based on previous findings,24 different adduct
ions with NaCl were also considered for this step ([M + xNaCl
− H]−, [M + xNaCl + Cl]−, [M + xNaCl + H]+, and [M +
xNaCl + Na]+) in addition to ionic species that are typically
observed in ESI.
Two feature matrices were obtained from positive and

negative data sets. Different curation steps were applied to
these data. First, a 100% detection rate filter was applied to
intrastudy QC samples, that is, features that were not detected
in all intrastudy QC samples were discarded. In addition,
signals from salt clusters based on their mass defect were
removed.31 As endogenous metabolites may contain phos-
phate, sulfur, and iodine, exhibiting high mass defect, an
“inclusion list”31 was used to account for them. Subsequently,
QC sample-based robust LOESS (locally estimated scatter plot
smoothing) signal correction (QC-RLSC) was applied to
correct for instrumental drift during analysis using intrastudy
QC samples.32 Afterward, if a feature had a peak area in a
sample that was 3-fold or less than the mean peak area in
blanks, then its peak area was set to 0.33 Otherwise, the mean
peak area in blanks was subtracted from the feature peak areas
in the samples. After blank subtraction, only those features that
were present in at least 80% of one group class were retained.
In addition, features with RSD >30% in intrastudy QC samples

were removed. The chromatographic peak shape and the signal
intensity of each feature were further evaluated for data
curation. Features with signal intensity <103 in the continuum
mass spectra or with a mass difference larger than 10 mDa
along the sample list were discarded. Finally, each feature
matrix obtained after this procedure was normalized to the
total peak area for each sample.

Data Processing, Classification, and Prediction

Normalized matrices (Data Set S1 in the Supporting
Information) were utilized to build unsupervised and
supervised multivariate statistical analysis models using
MATLAB R2015a (the MathWorks, Natick, MA, USA) with
the PLS Toolbox version 8.1 (Eigenvector Research, Inc.,
Manson, WA, USA). Principal component analysis (PCA) was
used to track data quality and identify and remove outliers in
the data set. Surprisingly, samples cultured with one of the
three independent culture media batches were identified as
outliers by PCA (Figures S1−S3), affecting 16 samples from
the 786-O shRSUME cell line and 16 from the 786-O scramble
cell line. Therefore, these samples were not used for further
statistical analysis. oPLS-DA34,35 coupled with a genetic
algorithm (GA) or an interval PLS-DA (iPLS-DA) variable
selection method was applied to find feature panels that
maximized the classification accuracy for these two binary
comparisons: 786-O shRSUME versus 786-O scramble and
786-O VHL shRSUME versus 786-O VHL scramble. Feature
selection was applied on three matrices corresponding to
positive ion mode data, negative ion mode data, and the
combined data from both ion modes, leading to six different
discriminant feature panels. The parameters for GA and iPLS-
DA variable selection are detailed in Table S1. The oPLS-DA
model was cross-validated using venetian blinds with 10 data
splits. Data were autoscaled prior to generating PCA and
oPLS-DA models. PCA was also performed to inspect data
before and after variable selection (i.e., on the curated spectral
feature matrices and on the discriminant feature panels). For
the different binary comparisons, the panels of discriminant
features that had the lowest root-mean-square error of cross-
validation at the conclusion of the GA variable selection
process were selected. However, some features were excluded
for statistical analysis (see Data Analysis and Metabolite
Identification Procedure section).

Data Analysis and Metabolite Identification Procedure

Fold changes were calculated as the ratio of median peak areas
for the same binary comparisons: 786-O shRSUME versus 786-
O scramble and 786-O VHL shRSUME versus 786-O VHL
scramble. The Shapiro−Wilk test was used to determine the
normality of data distribution. Mann−Whitney U tests were
used to calculate the statistical significance, and p-values were
corrected for identified metabolites using the Benjamini−
Hochberg36 procedure for multiple comparisons with a false
discovery rate (FDR) of 0.1.
Metabolite identification was attempted for the 75

discriminant features resulting from the GA and iPLS-DA
variable selection processes. Elemental formulae were
generated based on accurate masses and isotopic patterns,
and mass spectral adduct ions were searched against the
Human Metabolome Database (HMDB),37 Metlin,38 and
LIPID MAPS39 databases. Metabolites were identified based
on accurate mass, isotopic profiles, fragmentation patterns
compared to those obtained from authentic chemical standards
in tandem MS experiments, and retention time matching with
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authentic chemical standards. Experimental MS/MS spectra
were compared to databases, and for those cases in which
spectra were not available, fragmentation patterns were
manually interpreted for metabolite annotation. Chemical
standards were prepared in ultrapure water or methanol (1−38
μM) and were analyzed under identical conditions as samples

for validating metabolite identification. Spiking experiments on
the study samples were also conducted with chemical
standards to address retention time differences caused by
matrix effects24 (Figures S4 and S5). Identification of
metabolites was reported according to the metabolomics
standard initiative (MSI) identification standards.26,27

Figure 2. Discriminant metabolite identification: (A) extracted ion chromatograms for [glutathione − H]− ions at m/z 306.0763 ± 0.0500
(continuous line, left y-axis) and for [glutathione − SH2−H]− ions at m/z 272.0885 ± 0.0500 (dashed line, right y-axis) generated from nonspiked
(red) and 18.9 μM spiked (green) intrastudy QC samples and a 18.9 μM glutathione (GSH) chemical standard solution (blue). (B) Mass spectrum
for [GSH − H]− ions at m/z 306.0763 in an intrastudy QC sample (red) and its simulated isotopic pattern (black). (C) Product ion mass spectra
of [GSH − H]− precursor ions for an intrastudy QC sample (red) and for a 18.9 μM GSH chemical standard (green) using a collision cell voltage
of 20 V. (D) Mass spectrum for [GSH − H]− ions at m/z 306.0763 in a 18.9 μM GSH chemical standard solution (green) and product ion mass
spectra of [GSH − H]− precursor ions for a 18.9 μM GSH chemical standard solution (blue) using a collision cell voltage of 10 V. (E) Mass
spectrum for [GSH − SH2−H]− ions at m/z 272.0885 in an intrastudy QC sample (red) and its simulated isotopic pattern (black). (F) Product
ion mass spectra of [GSH − SH2−H]− precursor ions for an intrastudy QC sample (red) and for a 18.9 μM GSH chemical standard (green) using
a collision cell voltage of 10 V. (G) Extracted ion chromatograms for [butyrylcarnitine + H]+ ions at m/z 232.1549 ± 0.0500 generated from
nonspiked (red, left y-axis) and 10 μM spiked (green, left y-axis) intrastudy QC samples; a 10 μM butyrylcarnitine standard solution (blue solid,
right y-axis) and a 10 μM isobutyrylcarnitine standard solution (blue dash, right y-axis). (H) Mass spectrum for [butyrylcarnitine + H]+ ions at m/z
232.1535 in an intrastudy QC sample (red) and its simulated isotopic pattern (black). (I) Product ion mass spectra of [butyrylcarnitine + H]+

precursor ions for an intrastudy QC sample (red) and for a 10 μM butyrylcarnitine chemical standard (green) using a collision cell voltage of 10 V.
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Spearman’s correlation analysis and retention time difference
were used to identify those features corresponding to the same
compound that were not grouped by Progenesis QI,
considering in-source fragmentation and additional adduct
ions formed in the source. Peak areas from features that
exhibited a pairwise correlation larger than 0.7, except for two
adduct ions corresponding to glutathione that were sub-
sequently verified with chemical standards, and features with a
retention time difference under 2 s were added and grouped
under the label of “total” metabolite. Through this approach,
14 features detected in negative ion mode were identified for
glutathione (M), that is, [M − SH2 − H]−, [M + Na − 2H]−,
[M + CHO2Na + Na − 2H]−, [M + H3PO4 + Na − 2H]−, [M
+ H3PO4 − H]−, [M + NaH2PO4 + Na − 2H]−, [M +
NaH2PO4 + NaCl + Na − 2H]−, [M + 2NaH2PO4 + Na −
2H]−, [2M + Na−2H]−, [2M + H3PO4 + Na − 2H]−, [2M +
H3PO4 − H]−, [2M + 3Na − 4H]−, and [2M + H3PO4 + 2Na
− 3H]− (Figures 2A−F, S4 and S15). Similarly, six features
were identified for glutathione in the positive ion mode, that is,
[M + H]+, [M − 2H + 3Na]+, [M + NaH2PO4 + Na]+, [M −
C5H7NO3 + H]+, [M − H2O + H]+, and [M − C2H5NO2 +
H]+ (Figures S16−S21). Two features were also identified for
leucine in the positive ion mode, that is, [M + H]+ and [M −
CH2O2 + H]+ (Figure S22). Furthermore, one of the features
was identified as HEPES, which is a nonendogenous
metabolite, and was therefore discarded for analysis.

Cell Viability under Oxidative Stress and Glutathione
Depletion

Two thousand cells per well were plated in triplicate for each
condition in a 96-well plate in a full growth medium. After 4 h,
cells were washed with PBS before adding the full medium or
the medium containing H2O2 at 0.1, 0.5, or 1.0 μM
concentrations with either BSO 1 mM or erastin 10 μM.
After incubation, the cells were fixed with 100% methanol,
stained with a 0.01% crystal violet solution, washed, and dried.
For quantification, the dye was extracted with 100% methanol
and optical density was measured at 550 nm. For H2O2
treatment, data were analyzed with multiple regression analysis,
one-way ANOVA, and Tukey’s multiple comparisons. For
BSO, erastin, BSO plus H2O2, and erastin plus H2O2
treatments, data were analyzed with an unpaired t-test.

Bioinformatics Analysis

The biospecimen data of somatic variants identified from
exome sequencing studies of ccRCC tumors correspond to the
TCGA Kidney Renal Clear Cell Carcinoma (Project ID:
TCGA-KIRC) of the TCGA Resource Network.40 The data
sets analyzed in this study are available at the National Cancer
Institute (NIH) GDC Data Portal repository [https://portal.
gdc.cancer.gov/projects/TCGA-KIRC].
A Kaplan−Meier analysis for 5 year survival conducted by

The Human Protein Atlas (https://www.proteinatlas.org/
humanproteome/pathology) from 528 ccRCC patients
(KIRC data set) summarizes the results from correlation
analysis between the mRNA expression level of RSUME and
enzymes involved in the tricarboxylic acid (TCA) cycle, fatty
acid β-oxidation (FAO), or fatty acid synthesis (FAS) and
patient survival. This allows dividing patients based on the
mRNA expression of each gene into “low” or “high”. In
addition, RSUME “low” (below a cutoff value of 2.92) and
RSUME “high” (over a cutoff value of 2.92) expression groups
were used for further analysis in VHL wild-type patients to
compare the TCA, FAO, and FAS pathway expression. The

VHL mutational analysis from tumors with sequencing data
was available and downloaded from Table S1 in the study from
Ricketts et al.41 To maintain data consistency, only those 463
patient samples and genes that were present in both The
Human Protein Atlas and the cited Table S141 were selected
from the TCGA-KIRC. Only patients without mutations in the
VHL gene were selected for further analysis. Gene expression
of the ccRCC tumors was obtained and downloaded by using
R Version 4.0.0 (including additional packages Bioconductor
version: Release (3.11)). Gene expression was verified by using
The Human Protein Atlas (https://www.proteinatlas.org/
humanproteome/pathology). Expression data is reported as
the median FPKM (number Fragments Per Kilobase of exon
per Million reads). Sample groups were filtered by removing
those samples considered as gene expression outliers. The
interquartile range (IQR) was used to find outliers defined as
expression values that fall below the first quartile (−1.5 IQR)
or above the third quartile (+1.5 IQR). Data analysis from the
TCGA data set was performed using R Version 4.0.0. Mann−
Whitney U tests were used to calculate the statistical
significance for pairwise comparisons of gene expression
values. All statistical tests were two-sided. The statistical
significance level was defined as 5%.

■ RESULTS AND DISCUSSION

Metabolic Fingerprints and Sample Classification

A protocol was developed for harvesting and extracting
intracellular metabolites from an in vitro model of human
renal cell lines (Figure 1), and endometabolome profiles were
obtained with a reverse-phase UPLC-QTOF-MS-based ana-
lytical method. A total of 896 and 2842 features (Rt, m/z pairs)
were extracted with the Progenesis QI software from the
negative and positive ion mode data, respectively. After a
stringent data curation process (see the Data Preprocessing
section), the numbers of features were reduced for each ion
mode data set to 56 and 128, respectively (Table S2). These
matrices were normalized (Data Set S1 in the Supporting
Information) and used to build PCA models. The 2D score
plot illustrated in Figure S1 shows that the intrastudy QC
samples clustered tightly and that the intrastudy QC-variance
was much smaller than the sample variance, suggesting a good
reproducibility in the sample preparation method, and
adequate performance of the analytical platform. In addition,
the figure shows that the endometabolome can be affected by
the media composition, even when using the same culture
media. This result was further confirmed by analyzing the
samples from cell lines 786-O shRSUME and 786-O scramble
that were cultured with batches #2 and #3 (Figure S2). The
PCA score plots clearly show that sample clustering was
achieved based on the culture media batch. Conversely, sample
separation was not evidenced based on the culture media batch
when the same analysis was made with cell lines 786-O VHL
shRSUME and 786-O VHL scramble that were cultured with
batches #1 and #2 (Figure S3). These results demonstrate the
importance of the experimental design in the analysis of in vitro
models, especially when a large number of samples have to be
analyzed and different culture media batches would be
expected to be used. In the present study, each batch was
used to culture more than one cell line and this design allowed
the identification of an anomalous batch (Figures S2 and S3).
There is evidence in the literature showing that the cell
secretome can be affected by the culture media composition.42
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To our knowledge, the confounding effect of the culture media
in the endometabolome profile has not been reported up to
date but should be considered in metabolic fingerprinting
studies. These results showcase the importance of the
experimental design and QC practices to ensure high-quality
data in untargeted metabolomics studies.23,43 After removing
the data corresponding to the outlier media batch,
unsupervised and supervised multivariate analyses were
conducted for all data sets (positive, negative, and combined
positive and negative ion modes) to investigate the effect of
RSUME expression on both types of RCC cells.
Figure 3A shows the PCA score plot using the curated set of

128 spectral features obtained in the positive ion mode for cell
lines 786-O shRSUME and 786-O scramble. The model
consisted of four PCs with 74.88% total captured variance and
did not provide sample class separation or any type of sample
clustering. Therefore, sample discrimination was further
attempted by means of oPLS-DA coupled to a GA variable
selection method, which yielded 19 discriminant metabolic
features. Of this reduced feature panel, six identified
discriminant metabolites allowed investigating the effect of
RSUME expression on 786-O cells (Table 1). The PCA model
built with these six identified discriminant metabolites
captured 88.47% of total variance, and the score plot exhibited

good sample class separation (Figure 3B). The cross-validated
prediction plot for the oPLS-DA model built using these six
identified and confirmed discriminant metabolites yielded
100% classification accuracy and consisted of two latent
variables that interpreted 88.39% and 74.95% variance from
the X-block (feature peak areas) and Y-block (class member-
ship), respectively (Figure 3C). A similar analysis was
performed for 786-O clones expressing the gene encoding
for the VHL protein. Figure 3D shows the PCA score plot
using the set of 128 spectral features from a model that
consisted of five PCs with 66.97% total captured variance, with
no evidence of sample clustering. A PCA model built with the
5 identified discriminant metabolites (Table 2) belonging to
the 15 discriminant feature panel selected by the GA process
yielded a similar total captured variance (66.45%) as the model
built with the whole feature set but did not exhibit sample class
discrimination either (Figure 3E). However, the cross-
validated prediction plot using these five identified and
confirmed discriminant metabolites yielded a classification
accuracy of 86% with a two-latent variable model that
interpreted 31.14% and 70.20% variance from the X- and Y-
blocks, respectively (Figure 3F).
Analogous analyses were performed for these binary

comparisons using the data sets obtained from the negative

Figure 3. Sample classification. (A) PCA score plot using the set of 128 spectral features (positive ionization mode) for the endometabolome
analysis of cell lines 786-O shRSUME (blue up triangles, n = 10) and 786-O scramble (green up triangles, n = 10) with a model that consisted of
four PCs with 74.88% total captured variance. (B) PCA score plot using the set of six identified discriminant metabolites (positive ionization mode)
for 786-O shRSUME (blue up triangles, n = 10) and 786-O scramble (green up triangles, n = 10) cell lines with a model that consisted of two PCs
with 88.47% total captured variance. (C) Cross-validated prediction plot from the oPLS-DA analysis model for 786-O shRSUME (blue up
triangles, n = 10) and 786-O scramble (green up triangles, n = 10) cell lines using six identified metabolites obtained from the GA variable
selection. This oPLS-DA model resulted in 100% cross-validated accuracy. (D) PCA score plot using the set of 128 spectral features (positive
ionization mode) for cell lines 786-O VHL shRSUME (yellow down triangles, n = 26) and 786-O VHL scramble (red down triangles, n = 24) with
a model that consisted of five PCs with 66.97% total captured variance. (E) PCA score plot using the set of five identified discriminant metabolites
(positive ionization mode) for 786-O VHL shRSUME (yellow down triangles, n = 26) and 786-O VHL scramble (red down triangles, n = 24) cell
lines with a model that consisted of two PCs with 66.45% total captured variance. (F) Cross-validated prediction plot from the oPLS-DA analysis
model for 786-O VHL shRSUME (yellow down triangles, n = 26) and 786-O VHL scramble (red down triangles, n = 24) cell lines using five
identified metabolites obtained from the GA variable selection. This oPLS-DA model resulted in 86% cross-validated accuracy.
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ion mode and combined negative and positive ion modes.
Table S3 compares the performance of PCA and oPLS-DA
models and shows that discriminant feature panels selected by
GA or iPLS-DA methods, as well as reduced panels, composed
of identified and confirmed metabolites yielded better
classification performance than the initial sets of 128, 56, and
184 features from positive, negative, and a combination of
positive and negative data sets, respectively. The only reduced
panel that exhibited limited discriminant power compared to
the original data set corresponded to the panel with seven
identified metabolites from the negative ion mode data for the
786-O VHL shRSUME versus 786-O VHL scramble
comparison. Score plots from PCA models built with the
original feature sets and with the panels of identified
metabolites for negative ion mode data, and for combined
positive and negative ion mode data are illustrated in Figures
S23 and S24, respectively.

Identification of Discriminant Metabolites

Metabolite identification was attempted for 75 features
resulting from a total of six discriminant feature panels
corresponding to the two binary comparisons 786-O
shRSUME versus 786-O scramble and 786-O VHL shRSUME
versus 786-O VHL scramble (see the Data Analysis and
Metabolite Identification Procedure). Because additional 11
features were highly correlated with some of the discriminant
features in the selected panels, metabolite identification was
also attempted for them, leading to a total of 86 features.
An example of metabolite identification is illustrated in

Figure 2 for glutathione and butyrylcarnitine. First, extracted
ion chromatograms and the corresponding mass spectra were
obtained for each feature in intrastudy QC samples. According
to the exact mass of the detected adduct ions or suggested
elemental formulae, possible candidates were searched in the
HMDB,37 Metlin,38 and LIPID MAPS39 databases. Sub-
sequently, fragmentation patterns from tandem MS experi-
ments were compared to the MS/MS spectra obtained from
HMDB,37 Metlin,38 and LIPID MAPS39 databases or were
manually interpreted (Figures S25 and S26). To confirm
tentative candidate molecules, retention time and fragmenta-
tion pattern matching between samples and chemical standards
were used as final identification criteria. Chemical standard
analysis also contributed to discard nonmatches with putatively
identified molecules, leaving some unidentified features
(Tables S4 and S5). Limitations associated with the lack of
identification were due to (i) coelution with compounds of
similar molecular weight as targets, interfering in the
quadrupole selection process of the precursor ion and
providing product ion overlap in tandem MS spectra, (ii)
insufficient precursor ion intensity for conducting MS/MS
experiments, or (iii) limited information in metabolite
databases.
Correlation analysis and retention time difference suggested

the presence of several ions corresponding to the same
metabolite due to in-source fragmentation and/or formation of
different adducts.44 Out of 86 features, 5 were identified and
confirmed as in-source fragment ions, as illustrated in Figure 2,
for glutathione. For all cases, the in-source-generated frag-
ments exhibited a Spearman correlation coefficient >0.87 with
their corresponding precursor ions detected as [M + H]+ or
[M − H]− ionic species. The identification of these ionic
species was confirmed by chemical standard matching through
MS and MS/MS experiments conducted at low energy44

(Figures 2, S19−S22). Therefore, features originally extracted
as independent ions by Progenesis QI, once identified, were
manually grouped and expressed as total M for further
statistical analysis. Similarly, several adduct ions with sodium
and formic acid as those identified for glutathione, that is, [M
+ Na − 2H]−, [M + CHO2Na + Na − 2H]−, [2M + Na −
2H]−, [2M + 3Na − 4H]−, and [M − 2H + 3Na]+ (Figures S6,
S7, S11, S14 and S17), were incorrectly assigned by the
software as features from different molecules. Glutathione also
generated adduct ions with phosphoric acid and sodium,
including [M + H3PO4 + Na − 2H]−, [M + H3PO4 − H]−, [M
+ NaH2PO4 + Na − 2H]−, [2M + H3PO4− H]−, [M +
NaH2PO4 + Na]+, [M + 2NaH2PO4 + Na − 2H]−, [M +
NaH2PO4 + NaCl + Na − 2H]−, [2M + H3PO4 + Na − 2H]−,
and [2M + H3PO4 + 2Na − 3H]− (Figures S4, S5, S8−S13,
S18). The large number of adduct species detected for
glutathione is not only related to matrix effects but also
associated with the large intracellular levels expected for this
compound in the mM range.45

The identified ionic species highlight that the chemical
composition of the culture media as well as the methods used
for washing and quenching the cell metabolism can drastically
influence the detected endometabolome species and favor the
formation of nonspecific ion pairing in ESI. These are
additional challenges associated with the identification pipeline
of metabolic fingerprinting and footprinting studies that need
to be accounted for when identifying features generated from
in vitro models. In the present work, strategies for accurate
identification also included spiking experiments on samples
and process blanks, as well as accounting for sodium-assisted
inductive cleavage in collision-induced fragmentation mecha-
nisms in tandem MS experiments46 (Figures S4−S8, S10, S11,
S13−S15, S17, S18).
For taurine, malic acid, oxidized glutathione, lactic acid,

phenylalanine, and tryptophan, only the [M − H]− ion was
detected (Figures S27−S32). Similarly, for phosphocholine,
creatine, glutamic acid, glycerophosphocholine, butyrylcarni-
tine, and o-acetylcarnitine, only the [M + H]+ ion was detected
(Figures 2G−I and S33−S37). In these cases, spiked intrastudy
QC samples or pooled samples and chemical standard
solutions provided identical retention time values. L-4-
Hydroxyglutamate semialdehyde and β-citryl-L-glutamic acid
were detected as [M − H]− and [M − H2O − H]−,
respectively. These compounds were identified with a
confidence level of 226,27 (Figures S25 and S26) because no
chemical standards were used for comparison (Table 1).
The high chromatographic resolution of the analytical

method allowed the correct identification of different isomers
such as butyrylcarnitine and isobutyrylcarnitine (Figure 2G),
leucine and isoleucine (Figure S22), and lysophosphatidylcho-
line (0:0/16:0) and lysophosphatidylcholine (16:0/0:0)
(Figure S38) because they exhibited different retention time
values. Overall, 37 of the 86 metabolic features were
successfully identified by MS and MS/MS experiments, while
35 out of 37 were further chromatographically confirmed by
chemical standards with MSI level 1 (Table 1, 2).

RSUME Effect on 786-O Cells with and without the VHL
Gene

Tables 1 and 2 show the identified metabolites with their
confidence levels from the different discriminant panels
obtained for the binary comparisons of 786-O shRSUME
versus 786-O scramble cells and 786-O VHL shRSUME versus
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786-O VHL scramble cells, respectively. In addition, volcano
plots were built based on the identified metabolites from the
different discriminant panels (Figures 4, S39 and S40). Overall,
results indicate that the RSUME expression significantly
modified the levels of glycerophosphocholine and creatine
independently of the presence of VHL. Glutathione and
phosphocholine levels were also affected by RSUME
expression, with glutathione concentration exhibiting a
significant increase in 786-O cells silenced for endogenous
RSUME. Conversely, levels of β-citryl-L-glutamic acid were
significantly increased by RSUME expression in 786-O cells. In
the presence of VHL, cells expressing RSUME exhibited
significantly increased levels of butyrylcarnitine, acetylcarnitine,
and taurine. Therefore, the UPLC-MS-based fingerprinting
data showed that the discriminant metabolic profiles were

associated with both RSUME expression and VHL status.
Some identified discriminant metabolites have been previously
linked to relevant alterations in ccRCC progression47−53 and
help to unveil RSUME participation in this type of cancer.8,17

Based on the discriminant metabolites found in the study, two
of the main identified altered pathways associated with
RSUME expression in 786-O and 786-O VHL cells involved
the cell antioxidant defense system and the lipid metabolism.
Therefore, additional biological experiments and bioinfor-
matics analyses were conducted for glutathione and carnitines,
respectively, to further assess the impact of the metabolic
fingerprinting results.

Glutathione and the Antioxidant Defense System

Glutathione was identified as a discriminant metabolite
between RSUME statuses in ccRCC cells defective for VHL.

Figure 4. Volcano plots. (A) Out of 17 identified metabolites from negative and positive ion mode data, glycerophosphocholine, β-citryl-L-glutamic
acid, creatine, and glutathione exhibited significant differential abundance (absolute fold change calculated as median ratio, FDR = 0.10, p-value =
0.014) for the binary comparison of 786-O shRSUME vs 786-O scramble. (B) Out of 17 identified metabolites from negative and positive ion
mode data, butyrylcarnitine, acetylcarnitine, taurine, and glycerophosphocholine exhibited significant differential abundance (absolute fold change
calculated as median ratio, FDR = 0.10, p-value = 0.0029) for the binary comparison of 786-O VHL shRSUME vs 786-O VHL scramble. Mann−
Whitney U tests were used to calculate the statistical significance, and p-values were corrected using the Benjamini−Hochberg procedure.

Figure 5. Effect of RSUME on the viability of RCC VHL-deficient cells under oxidative stress and glutathione depletion. (A−E) Crystal violet assay
performed to evaluate the cell viability in 786-O cells under (A) H2O2 treatment (0.1, 0.5, and 1 μM). Data are shown as mean ± standard error of
the mean (SEM). One-way ANOVA and Tukey’s test was used to calculate the statistical significance. ***p < 0.001 compared to scramble (H2O2,
0.1 μM) and #p < 0.05 compared to scramble (H2O2, 1.0 μM); n = 3; (B) cystine/glutamate transporter inhibitor (erastin, 10 μM) treatment; (C)
γ-glutamylcystine synthetase inhibitor (BSO, 1 mM) treatment; (D) cysteine/glutamate transporter inhibitor (erastin, 10 μM) plus oxidative
stimulus (H2O2, 0.5 μM) treatment; and (E) γ-glutamylcysteine synthetase inhibitor (BSO, 1 mM) plus oxidative stimulus (H2O2 0.5 μM)
treatment. Data are shown as mean ± SEM. An unpaired t-test was used to calculate the statistical significance: *p < 0.05, **p < 0.01, and ***p <
0.001; n = 3.
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RSUME-silenced 786-O cells showed a significant increase in
glutathione levels, with a fold change of 1.2 compared to
control cells (Table 1). It has been previously shown that the
highly energetic demand of proliferating cancer cells leads to
reactive oxygen species (ROS) accumulation54,55 and induces
the activation of antioxidant pathways.56 Glutathione is the
main ROS scavenger in cells55 and becomes relevant in ccRCC
because superoxide dismutase, which is an antioxidant enzyme,
is inhibited by HIF upregulation57 driven by VHL loss.
Glutathione has been associated with RCC tumor progres-
sion55 and has exhibited a strong classification value for RCC
patient outcome.52 The ROS threshold that determines a
proproliferative effect or cell death induction mediated by an
excessive and irreversible damage is a key factor to understand
the significance of RSUME-mediated glutathione levels.54,58

To gain more insights into how glutathione increase in 786-
O shRSUME cells regulates cell viability, the cell lines were
exposed to an oxidative challenge (Figure 5). Reduced 786-O
cell viability was evidenced for increased H2O2 concentrations,
with 786-O shRSUME cells being more affected than scramble
cells to the oxidative challenge (Figure 5A). Higher glutathione
levels found in 786-O shRSUME cells compared to scramble
cells were still not enough to counter ROS accumulation,
suggesting that other affected antioxidant pathways may be
involved. To further reveal differences among these cell lines
regarding the role of the glutathione pathway in preserving the
redox balance, cells were treated with two glutathione synthesis
inhibitors, that is, γ-glutamylcysteine synthetase inhibitor
(BSO) and cystine glutamate antiporter inhibitor (erastin).
The latter was unable to significantly modify the cell viability
between VHL-deficient cell lines (Figure 5B). In contrast, the
cell viability was significantly reduced in RSUME-silenced cells
compared to control cells under BSO treatment (Figure 5C),
suggesting that shRSUME cells use the glutathione antioxidant
system to counter higher ROS levels. The synergistic effect of
oxidative stimuli and glutathione depletion was also analyzed
with the intermediate tested concentration for H2O2 (0.5 μM).

The cell viability was significantly decreased in shRSUME cells
compared to control cells when they were exposed to an
oxidative insult and glutathione synthesis inhibition under both
synergistic treatments, that is, BSO and erastin (Figure 5D,E).
The fact that erastin alone failed to induce viability changes
(Figure 5B) in these cells with different levels of glutathione
was surprising given that cysteine has been proposed as to be
essential for the synthesis of this metabolite in cancer.47,59

Possibly, cysteine is generated through the cystathionine−
methionine cycle, which is also linked to choline derivatives.60

In line with this, we also found significantly increased levels of
glycerophosphocholine in 786-O shRSUME cells compared to
786-O scramble cells with a fold change of 1.9 (Table 1).
Moreover, this metabolite exhibited high correlation with
glutathione, acetylcarnitine, and butyrylcarnitine for the binary
comparison of 786-O shRSUME versus 786-O scramble cells
(Figure 6A), suggesting that choline derivatives would
participate in the folate/methionine Q5 cycle, which is
important for glutathione synthesis, and can also act as lipid
reservoirs for energy production.60 Altogether these results
show that metabolic changes derived by RSUME-silencing
support an alteration in the redox balance in 786-O shRSUME
cells.
The induction of ROS production has been a widely

accepted strategy for the treatment of ccRCC patients, but it is
currently used as a combined therapy given the high drug
resistance.61−63 It has been demonstrated that VHL expression
decreases BSO and erastin sensitivity in ccRCC cells.47

Therefore, a viability experiment was also conducted for
VHL re-expressing cells (Figure S41). Slight increments of
H2O2 concentration significantly reduced the viability of 786-
O VHL cells, but no differences were observed regarding
RSUME expression (Figure S41A). Similarly, no difference was
evidenced under BSO (Figure S41B) or erastin treatment
alone (Figure S41C) in RSUME-silenced cells compared to
control cells. When the synergistic effect of oxidative stimuli
and glutathione depletion was analyzed for VHL re-expressing

Figure 6. Heat maps. Pairwise correlation values of 18 identified metabolites for the binary comparison of 786-O shRSUME vs 786-O scramble
cells (panel A) and for the binary comparison of 786-O VHL shRSUME vs 786-O VHL scramble cells (panel B). Spearman’s correlation
coefficients were calculated. Lysophosphatidylcholine (0:0/16:0) (PC (0:0/16:0)).
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RCC cell lines, the cell viability was significantly decreased for
both BSO (Figure S41D) and erastin (Figure S41E), compared
with RSUME-silenced cells. Interestingly, VHL re-expressing
cells exhibited an opposite response than VHL-deficient cells
to the synergistic effect mediated by stimuli cotreatment (Figure
5D,E). The differences observed regarding viability associated
with RSUME expression may be related to oxidative
phosphorylation promoted by VHL.47,64 In agreement with
previous works,47 only VHL-deficient cell lines treated with
BSO exhibited differential decreased viabilities correlated with
glutathione levels. The fact that 786-O scramble cells

presented lower response to BSO treatment compared with
shRSUME cells opens the question to evaluate RSUME levels
as a predictive biomarker for ROS-targeted therapies.
Carnitines and the Lipid Metabolism

The metabolic fingerprinting results indicate that RSUME
expression significantly increased the levels of acetylcarnitine
and butyrylcarnitine in 786-O cells re-expressing VHL (Table
2 and Figure 4). The levels of these two compounds and other
carnitine derivatives were found to be increased in neoplastic
renal tissue and urine from RCC patients60 and have correlated
with kidney cancer grade,49,65,66 suggesting a role in tumor

Figure 7. Evaluation of RSUME effect on the mRNA expression of enzymes related to the fatty acid metabolism and the TCA cycle in VHL-
positive RCC patients. Box plots show mRNA expression of genes involved in (A) TCA cycle, (B) FAS, or (C) FAO pathways. Comparisons were
made between high (n = 44) and low (n = 171) RSUME expression within VHL-positive patients (n = 215). Box plots were constructed from the
minimum value, the first quartile, the median, the third quartile, and the maximum value of each set of data. Mann−Whitney U tests were used to
calculate the statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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progression. Accordingly, increased RSUME expression was
found in stage IV ccRCC tumors.17 Previous studies49,52,66

have shown that TCA cycle enzymes are downregulated at
transcriptional and protein levels in ccRCC tissue compared to
nontumor tissue. Therefore, a bioinformatics approach was
conducted to evaluate the potential TCA cycle downregulation
coupled to RSUME expression to understand the significance
of the elevated acetylcarnitine levels found in 786-O VHL
scramble cells compared to RSUME-silenced cells. The
expression of TCA cycle enzymes was assessed using the
TCGA Kidney Renal Clear Cell Carcinoma (TCGA-KIRC)
data collection, and levels of RSUME expression were
compared within VHL-positive ccRCC patients (Figure 7A).
This analysis showed that patients with higher levels of
RSUME expression exhibited lower levels of TCA cycle
enzymes.
Considering that acetylcarnitine is transported to the

cytosol, providing acetyl groups for the synthesis of fatty
acids, we also evaluated if RSUME affects enzymes involved in
FAS. Figure 7B shows that fatty acid synthase (FASN), the
central enzyme in de novo lipogenesis, and acetyl-CoA
carboxylase 2, which catalyzes the rate-limiting step in FAS,
were upregulated in VHL-positive ccRCC patients with higher
RSUME levels. This increase in lipogenesis has been previously
associated with tumor progression,67,68 supporting the
protumor role of RSUME.
Given that FAO is an acetyl-CoA-supplying process serving

as a source of TCA cycle and that FAO and FAS are
antagonistic,69−71 an additional bioinformatics analysis was
conducted to evaluate how RSUME levels affect enzymes
involved in FAO in VHL-positive ccRCC patients. Figure 7C
shows that both (S)-3-hydroxyacyl-CoA dehydrogenase
(HADH), essential in the mitochondrial β-oxidation of
short-chain fatty acids, and HADH trifunctional multienzyme
complex subunit alpha (HADHA), involved in medium-chain-
length fatty acid oxidation, were downregulated by RSUME.
This β-oxidation enzyme modulation has been previously
proven by a proteomics analysis66,67 when comparing normal
kidney with different ccRCC tumor grades. This information
supports that increased levels of acetylcarnitine and butyr-
ylcarnitine in 786-O VHL scramble cells may be associated
with upregulation of FAS and inhibition of TCA and FAO
pathways. These metabolic changes resemble protumor
features of ccRCC tumors.66−68 In addition, downregulation
of TCA cycle genes and upregulation of genes in the pentose
phosphate pathway and FAS have correlated with ccRCC
progression.52,67,72−75 In line with this, reduced expression of
TCA cycle enzymes (OGDH, SDHD, MDH2, and SUCLG2),
higher expression of a key FAS enzyme (FASN), and reduced
expression of FAO enzymes (HADHA and HADH) were
associated with poor ccRCC outcome (Figure S42).
Significant changes in amino acid metabolism have been

reported in VHL re-expressing RCC cells compared with VHL-
deficient cells.65 Accordingly, several amino acids were
identified as discriminant metabolites between 786-O VHL
shRSUME and 786-O VHL scramble cells, such as leucine,
phenylalanine, tryptophan, and taurine, the latter exhibiting a
significant increase in scramble cells (Table 2). Moreover, a
high correlation was found between glutathione and glutamic
acid, creatine, and phosphocholine (Figure 6). In accordance,
these three compounds have been reported to be involved in
the glutathione synthesis pathway.60 Significantly larger levels
of creatine were detected in both 786-O scramble and 786-O

VHL scramble cells in comparison with their corresponding
shRSUME cells, which may contribute to glutathione incre-
ment in these cells through the folate/methionine cycle.60

Overall, these results show that RSUME is involved in the
downregulation of the antioxidant defense system in the
absence of VHL, whereas in the presence of VHL, it acts in
rerouting energy related-pathways, negatively modulating the
lipid utilization and positively modulating the FAS, which may
promote deposition in droplets (Figure 8).

■ CONCLUSIONS
Results from UPLC-QTOF-MS-based metabolic fingerprinting
experiments of human ccRCC cell lines supported by
biological experiments and bioinformatics analyses provided
here a combined strategy to evaluate the role of RSUME in cell
metabolism. We optimized a protocol for harvesting,
quenching, extracting, and profiling the endometabolome
derived from 786-O cells. Multivariate models yielded
discriminant metabolic panels that differentiated with high
classification accuracy the metabolic profiles based on the
RSUME and VHL statuses. Discriminant metabolites identified
with MSI level 1 and results from biological experiments and
bioinformatics analyses provided clues to understand altered
pathways associated with RSUME expression in 786-O and
786-O VHL cells and open the question to evaluate RSUME
levels as a predictive biomarker for ROS-targeted therapies
response. Overall, our findings indicate a disruption of the cell
antioxidant defense system and modulation of fatty acid
metabolism depending on the RSUME and VHL statuses and

Figure 8. Schematic diagram of VHL-RSUME regulation of metabolic
changes in ccRCC cells: TCA cycle and fatty acid oxidation (FAO)
down modulation, FAS upregulation induced by RSUME expression
in 786-O ccRCC cells expressing VHL, and reduction of glutathione
levels induced by RSUME expression in 786-O VHL-deficient ccRCC
cells.
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provide new opportunities for unveiling the role of RSUME in
ccRCC.
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Buenos Aires (IBioBA-CONICET), Partner Institute of the
Max Planck Society, C1425FQD Ciudad de Buenos Aires,
Argentina

Lucas Tedesco − Instituto de Investigaciońes en Biomed́icas de
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