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Abstract

The Main Andes at the northern Chilean-Pampeansfidi segment were formed by the
inversion of late Oligocene to early Miocene extenal depocenters in Neogene times.
Their structure, size and depth are loosely comstdaby field data since these sequences
have amalgamated forming an almost continuous blanith scarce basement outcrops
and their base is limitedly exposed. Satellite aadal gravity and magnetic data are used
in this work to define a 3D model that shows thedmaent structure at depth and adjust 2D
structural sections previously based on field ddiae results indicate complex basin
geometry with depocenters of variable size and hddptried beneath Mesozoic (?)-
Paleogene and Neogene sections. Additionally, pusly proposed crustal heterogeneities
across this orogenic segment are geophysically taaned with a new crustal
heterogeneity identified on the basis of a mode2&l crustal section. We propose
hypothetically, that this crustal discontinuity ¢tduhave played a role in controlling
Paleogene extension at the hanging wall of an astnoift basin, explaining the locus
and development of the Dofla Ana Basin. Finallys tWiork provides new information
about Cenozoic structure and Paleozoic basemehitesture, presumably derived from

amalgamation history of one of the highest and nmaecessible regions of the Andes.

Keywords. Central Andes; aerial magnetic datajllgatgravity data; terrestrial gravity

data; Paleogene basin architecture; Paleozoic magestmucture
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Introduction

The High Andes located across the Chilean-Pampkdnsfibduction zone are poorly
explored due to their height with local peaks réagtlhe 7000 m (Figure 1). A complex
structure produced by a thick-skinned array ofcitmes partly derived from inversion of
Late Triassic to Eocene-late Oligocene depocemtaisnew basement faults have produced
an intricate mountain morphology with relay faulisd abrupt changes in polarity
(Mpodozis and Ramos 1989; see Charrier et al., 2@07a synthesis). These High Andes
through the Chilean-Pampean flat subduction zone& ¢ separated in two
morphostructural systems: the Principal Cordili@iain Andes) to the west that comprises
the drainage divide zone and is characterized byractionally deformed Mesozoic rocks
associated with variable decollement depths, oneldped shallowly in Late Jurassic
gypsum sequences and another located more deegfyinverted Late Triassic extensional
detachment, and the Frontal Cordillera to the gasted by Late Paleozoic to Paleogene
extensive volcanoclastic sections exhumed in &thblénned system (see Ramos et al.,
2002 for a synthesis; and Martinez et al., 2016afoewer approach). The Precordillera to
the east is formed by Paleozoic imbricate serie®a@ated with variable decollement
depths, detached in Cambrian and Silurian sequéandés northern section and related to
the inversion of a Late Triassic extensional detaaft in the south. This system has barely
Paleogene cover and is considered to be part ariassof broken foreland mountain
systems, including the Sierras Pampeanas in theereamst foreland zone, that were
uplifted at the time when the flat subduction segistarted to develop since the last 17
Ma (Ramos et al., 1986, 2002).

The analysis of the structure in the High Andes bagn considerably delayed in
comparison with other neighbor segments due ta tireight and scarped morphology,
reason by which geophysical potential methods aathljnthose derived from aerial and
satellite data in the last years, where no teiedstneasurements are available or scarce,
proved to be useful. Particularly, we use in thrkvsatellite and terrestrial gravity and
aerial magnetic data, in combination with availalgjeological data, to analyze the
basement structure of the High Andes in the poexiglored northern part of the Chilean-

Pampean flat subduction zone, producing 3D and 2Detfs. Thus, we present a broad 3D
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inversion model of the basement from the High Anteshe foreland zone in order to
investigate the structure of the Paleogene depexenfdditionally, we performed a 2D
double inversion model, across a particular trange29°30’S in order to validate previous
structural cross sections that were previously-drdged on field data. This study is also
aimed to show the applicability of combined satelliaerial and terrestrial gravity and

magnetic data to analyze upper to lower crustataire in inaccessible mountain sectors.

Figure 1: Study area in the northern Chilean-Pampean flatisighion zone represented
over a DEM (90 x 90 m). White lines represent th@aur lines of the Nazca Plate at
depth (Mulcahy et al., 2014). The black dottedaegte indicates the location of the study

area. The profile modeled is indicated in red asrt®e study area.

Geological Setting

The Chilean-Pampean flat subduction zone is agedcmith a broad broken foreland
system integrated by several morphostructural systhat comprise from the trench the
Coastal Cordillera, the Main Cordillera in the dige divide zone between Chile and
Argentina, and the Frontal Cordillera, Precordédl@and Pampean Ranges to the east on the
Argentinean slope. Through this sector, Paleogeapocknters are exhumed in the Main
Cordillera over Mesozoic marine and continentaltises corresponding to the north-
extension of the Neuquén Basin mainly developedhenArgentinean slope of the Andes
(Vicente, 2005). To the east, the Frontal Cordillexposes the basement of the Mesozoic
sequences in a thick section of volcanic, volcamsicd and intrusive rocks of
Carboniferous to Permian-Triassic ages that compisuite of intrusives of the Elqui-
Limari and Colanguil batholiths and the Choiyoi Guo(Figure 3) (Bissig et al., 2001;
Charchaflié et al., 2007; Llambias y Sato, 199®esE rocks are covered unconformably
by Oligo-Miocene volcanic and sedimentary sequenté¢se extensional Dofla Ana Basin
(Figure 4) (see Winocur et al., 2015, for a recmithesis). Bissig et al. (2001) dated the
volcanic rocks of the Dofia Ana Formation by Ar/Aettmods obtaining ages comprehended
between 27 and 17 Ma. Latter, Charchaflié et 2007) and Litvak (2009) reported K-Ar
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and Ar-Ar ages on these sections over the eastade#@n slope, confirming pre-existing
ages and showing a wider extension of the basirbath slopes of the Andes. More
recently, Winocur and Ramos (2008; 2011) and Win&tial., (2014) proposed based on
field criteria an extensional intra-arc control fbese sections.

The Oligocene Dofla Ana Formation defined initiaby Thiele (1964) was lately
subdivided by Maksaev et al., (1984) and Martiralet (1995) into two units in the High
Cordillera of Chile on the basis of K-Ar ages amdamgular unconformity between them
identified in field work. Thus, the Tilito Formatio(27 to 22,1 Ma) composed of rhyolitic
ignimbrite tuffs and dacitic lavas is separatearfriie Escabroso Formation (21 to 17 Ma),
composed of andesitic to basaltic lavas, volcagglanerates and breccias, as part of the
Dofa Ana Formation. At the Argentinean side of Ameles, Ramos et al., (1987), Nullo
(1988) and Marin y Nullo (1989) recognized these tmits locally in the Cerro de las
Tortolas and La Ortiga (Figure 4).

To the east of these Cenozoic depocenters, thefdibera imbricates in an east-vergent
system the basement of these sequences corresgotairmarine and continental
sedimentary rocks of Paleozoic ages (Baldis efl882). Finally the Pampean ranges in the
foreland zone are characterized by a deeper dewvefie that exposes Early to Late
Paleozoic magmatic and metamorphic rocks. Thegderaamnorphostructural systems were
not affected by Oligocene extension, leaving tleaaf Cenozoic extension circumscribed

to the High Andes region at these latitudes.

Figure 2: 3D block diagram with a DEM on top of it showingpbgenter location on a
section at 29 ° 30 'S that signals the subhorizcsubduction of the Nazca Plate below the
South American plate at the northern Chilean-Pamiat slab segment. Black dots

correspond to the relocation of seismic eventsiobthfrom International Seismological

Centre (EHB Bulletin, http://www.isc.ac)juklorphostructural systems mentioned in the

text are shown as a reference.

Figure 3: Geological map of the drainage divide area and easslope of the Andes from

the Main Andes to the Frontal Cordillera and thethern Precordillera compiled from



132
133
134
135
136

137

138
139
140
141
142

143

144

145

146
147
148
149
150

151

152
153
154
155
156

157

data from Furque (1998), Cardo et al., (1998, 20@aminos and Fauqué (2001), Fauqué
et al., (2002) and Fauqué (2010). The red rectamnuylécates the area covered by the
figure 4 corresponding to the Valley del Cura regishere one of the most detailed

descriptions on the Cenozoic stratigraphy of therftal Cordillera is made. The location

of profile displayed in Figure 12 is shown as arehce.

Figure 4: Geological map of the Valle del Cura area in theial Cordillera, showing
the structure that affects and controls the Palemgseequences and their basement
constituting a doubly vergent system derived frandzoic inverted extensional systems
(taken from Winocur et al., 2015). These field daése taken to construct the structural

profile displayed in Figure 12.

Data and methods
Gravity data

This study is based on a database which compri36802gravity stations (Geophysical
Seismological Institute of the National University San Juan, IGSV). The database
covers the central region of Argentina in an drefaveen 27.5° to 36.5° S and from 71° to
65° W, extending outside of the boundaries of tiuelys area which avoids border effects
(Figure 5).

Figure5: Location of gravity and magnetic databases avadahlthe region of study.
Shaded rectangle indicates the area under studg.dRés indicate gravity data and yellow
stars indicate the susceptibility data used in thisk (Geophysical Seismological Institute

of the National University of San Juan, IGSV). Giegs correspond to the Nazca plate

contours obtained by Mulcahy et al., (2014) showa aeference.
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Each Gravity data station was measured using geaglaetvimeters with precisions of + 0.1
mGal. With the purpose of ensure the accuracy ®ihtleasurements and to homogenize all
stations obtained on different campaigns, each itgrastation has been linked to the
national altimetry network. This process allow aiog any possible artifact due to
problems in the leveling of the different sourdescause all of these were referred to IGSN
71 network (International Gravity StandardizatioretN1971) and are linked to the
fundamental station Miguelete (Buenos Aires), tigiothe nodal 145 City of San Juan and
PF9 into the N24 line (Morelli et al., 1974) (matetails about the homogenization and
reductions to altimetry network are shown in Vikeand Pacino 2010). This methodology
allows making a proper data reduction for anomadycudation using the classical
corrections detailed below (Blakely, 1995; Hinzalet 2005).

The theoretical or normal gravity, accounting floe imass, shape, and rotation of the earth
is the predicted gravitational acceleration onlibst-fitting terrestrial ellipsoidal surface. In
this work we have used the 1980 Geodetic Refer&ystem (GRS80) (Moritz, 1980),
being the latest ellipsoid recommended by the makonal Union of Geodesy and

Geophysics

The Somigliana closed-form formula (Somigliana, @P&r the theoretical gravitgr on
this ellipsoid at latitude (south or norti)s:

i k=i z
ge(ltksin®g) (1)

ar = (1-elsin @)1/

, Where the GRS80 reference ellipsoid has the vgdue 978032.67715 mGal, beingtige
normal gravity at the equator; k = 0.001931851353Jesived constant; and’ e=
0.0066943800229, being e the first numerical ecuztyt

The height correction, called the free-air corettiis based on the elevation (or
orthometric height) above the geoid (sea leveheamathan the height above the ellipsoid.
The revised standards use the ellipsoid as thacakrtlatum rather than sea level.
Conventionally, the first-order approximation formwf Agh in mGal, or 0.3086 h, is used

for this correction.
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The Bouguer correction accounts for the gravitaioattraction of a layer of the earth
between the vertical datum, i.e., the ellipsoidd dne station. This correctiodgB in
mGal, traditionally is calculated assuming that ¢heth between the vertical datum and the

station can be represented by an infinite horizesigdd with the equation:
AgB = 2mGoh = 4,193 x 10 °ch, (2)

where G, the gravitational constant, is 6.673 000" m® kg's? (Mohr and Taylor,
2001) ands is the density of the horizontal slab in kilograpes cubic meter. Additionally,
the mean density is 2.67 g/éfHinze, 2003), and h is the height of the statiometers
relative to the ellipsoid in the revised procedareelative to sea level in the conventional

procedure.

The terrain correction adjusts the gravity effecduced by a mass excess (mountain) or
deficit (valley) with respect to the elevation b&tobservation point. The terrain correction
was obtained using two digital elevation model&cal one and a regional one, obtained
from the Shuttle Radar Topography Mission (SRTM)tloé United States Geological
Survey (USGS). The software used (OASIS montaj Z&@inbines the algorithms
developed by Kane (1962) and Nagy (1966). Throighuse of a sampling procedure, a
corresponding topographic correction value wasgassi to each gravity station. The
resulting maximum error for this correction was.f8 inGal. Finally the complete Bouguer
anomaly values (Fig. 6a) were calculated on a sxgurid cell size of 5 x 5 km, using the

Minimum Curvature method (Briggs, 1974).

Figure6: a) Bouguer anomaly map with topographic correctionamied from terrestrial
data; b) crust — mantle interface depth correspogdio the hydrostatic Moho geometry
calculated for the study area considering Tn = 35kjrisostatic residual anomalies
obtained from the Airy-Heiskanen compensation matjelecompensative isostatic
residual anomalies, obtained by subtracting from igostatic anomaly an upward
continuation at 35 km (Cordell et al., 1991). Tarmmaly shows only the gravity effects of

bodies emplaced in the upper crust, since deepectsf(crustal roots) were eliminated.
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Flexural compensation models proposed by Watts5)}l ¥ienecke et al., (2007), Tassara
et al., (2007), Pérez-Gussinyé et al., (2008), drasand Echaurren (2012), Alvarez et al.,
(2013), applied to the Central Andes have enalileddetermination of elastic thicknesses
which are progressively higher eastwards into treldnd zone. However, relatively low

values of the effective elastic thickness nexthi areas of higher crustal thickening and
prolonged locus of magmatism in the Central Andesdcaso et al., 1992) justify the use
of a “local” compensation model (Airy-Heiskanen)awaluate the gravity field, such as in

the study area, where the arc has stayed for rhare30 My and the Moho is higher than
50 km. Additionally, this model has been used iis tiegion by several authors with the
aim of eliminating negative effects of the Andeants in order to analyze the upper crust
heterogeneities (Gotze and Evans 1979; Introcasd.,ef1992; Chapin 1996; Gotze and
Kirchner 1997; Whitman et al., 1999; Introcaso let2000; Gimenez et al., 2001; Tassara
and Yafez 2003, Sanchez et al., 2015).

Previous gravity and seismic models were takend¢otwsideration to estimate the isostatic
mountain roots responding to the Airy — Heiskanexdeh (Martinez et al., 2006, Gimenez
et al., 2009, Gans et al., 2011, Assumpcao e2@L3). Then, in this model we considered
a) a normal thickness of the crust of 35 km (Tf)allensity contrast of 0.4 g/érp) ,
and c) a crust density of 2.67 gfttp ). The resulting hydrostatic Moho depth is shown i
Figure 6b, yielding broad sectors over 50 km, aedching locally 60 km. Then, the
isostatic gravity root effect is calculated fromstiydrostatic Moho geometry, obtaining
the isostatic residual anomaly by subtracting #ffect to the Bouguer anomaly (Figure
6¢).

Therefore, the isostatic corrections could be usedremove at least partially the
gravimetric effect of the crustal roots. Howevdreyt do not solve the problem when
cortical roots are related to high density regianth or without topographic expression.
Moreover, these anomalies can be masking otheurdatces of short wavelength,
generated by shallower sources (Simpson et al§)19® overcome this disadvantage, we

performed the decompensative gravity anomaly, agqsed by Cordell et al. (1991).
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Under a hypothesis of local (instead of regionainpensation, the gravity effect of a
shallow geological body can be separated from tfexteof its deeper compensating root
inferred by deconvolution. The decompensative amprisathe Bouguer gravity anomaly
with isostatic and decompensative corrections ad@eddell et al. (1991) have proposed
for this method, to perform an "upward continuatitmthe isostatic anomaly (IA) in order
to reduce the effect of short wavelength structufégen, the "decompensative" anomaly
(like a residual anomaly) is calculated by subtracthe upward continuation from the
isostatic anomaly (Figure 6d). This anomaly sigmalghe foreland region broad areas that
are next to isostatic equilibrium, while around trainage divide area some areas appear

in a slightly not compensated state.

Magnetic data

The magnetic database used in this work comes fiiff@rent sources: i) A terrestrial
dataset that is only used as a control tool toyunjfaerial data from two aeromagnetic
surveys (Argentinean Mining Geological Service, H#HMAR). The first aerial survey was
previously used in Litvak et al. (2005) (Area 9nposed of Total Magnetic Field (TMF).

This was digitized and regularized using the terisdata as datum.

As already known, the observed value at a pointhef geomagnetic field includes the
contribution of the Normal Field of internal origiabout 95% of Earth's magnetic field),
the Crustal Field (constituting approximately 5%tbé Earth's magnetic field) and the
external sources (due to the Sun — Earth interdctithese contributions are present on the
value of the magnetic field measured at each pdintis, in order to analyze the crustal
magnetic field, the effects of the Normal Field dbidirnal Variations must be removed
from the measured data (Dobrin, 1976). Thus, thabdse of the total magnetic field
(TMF) was digitized and corrected by the daily a#idn for its corresponding time of
acquisition. Such reductions were made by both eongs that acquired the data and for
the Instituto Volponi itself, where the data reposi is placed. The Normal field is
obtained from the International Geomagnetic RefaerField (IGRF), under the
Responsibility of the International Association@tomagnetisms and Aeronomy (IAGA)
and the International Union of Geodesy and GeopbydUGS). The IGRF model is a set
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of Gauss coefficients and their secular variatiofiglegree and order from = m = 1to
10, largely representing the terms of lower degreentiain field from the outer core (Hinze

et al., 2013). By subtracting the IGRF values ®nieasured data, previously corrected for
diurnal variation, the Magnetic Anomaly is obtainééigure 7), which represents the

magnetic field of crustal origin (Blakely, 1995).

Figure 7: Magnetic Anomalies obtained from aerial and temestata sets gridded in
1000 x 1000 m cells from the Minimum Curvature e{Briggs, 1974).

Reduction to pole (RTP) (Baranov, 1975; Phillip8D2) is a process applied to magnetic
data that removes the asymmetry caused by the extical direction of magnetization.
The RTP method takes the total-observed magnetiid fransforming it, producing a map
that would have resulted considering the area éntémrestrial magnetic pole (magnetic
inclination 90). Assuming that the entire observed magnetic fisldue to the induced
magnetic effects, the application of this technidaeilitates direct comparison with
gravimetric data using the Poisson’s theorem (B0is$826). Such theorem states that all
properties of the magnetic field due to a homogesdmwdy are derivable from its gravity
field and vice versa. A pseudo anomaly refers tamammaly of one type (i.e. gravity or
magnetic) that has been transformed from the etgnvanomaly of the other type (i.e.
magnetic or gravity) via Poisson’s theorem (Hinzale 2013). Given an observation point
placed at a distance r from the source with consdensityc and magnetization with
intensity J and direction i, the Poisson’s theomnnects the gravity T(r) and magnetic
V(r) potentials by:

v =L

= o

Hence, the magnetic potential and first derivatofethe gravitational potential in the
direction of magnetization are linearly related thy scalar proportionality (J&». For
induced magnetization at the geomagnetic field polberei = z, the vertical magnetic

field componenBz (or RTP)can be related to the gradient Tzz cited aboves,Thu
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RTP= —=T_  (4)

Comparing pseudomagnetic and gravity effects agé#iesrespectively surveyed magnetic
or gravity effects, one can test and relate thect$fto a common source and reducing
interpretational ambiguities (Hinze et al., 2018)jg(re 7). The result is contrasted in
Figure 8 with the vertical gravity gradient obtadineom Geopotential Model EGM2008,

according to Poisson's equation.

Some morphostructural systems where the RTP peseatphological correspondence
with the derivative of the Bouguer anomaly are $ierra de Umango, Sierra de la Punilla
and Sierra de Maz indicated on figure 8. This bairag also observed for the northern
sector of the Precordillera, in some plutons of @@anguil batholith over the Frontal

Cordillera and westwards over some places of thie&hhigh Andes.

The lack of adjustment in some other places indg#lhat the assumption of non-existent
remnant magnetization is not valid for the wholeaarindicating that there is residual

magnetism in some isolated sectors.

Furthermore, the RTP filter is strongly affectedoat latitudes, reason by which these data

were not used for subsequent modeling (MacLeod,e1@93; Li, 2007).

Figure 8: Comparison between the Reduced to Pole MagnetimAlyovs. Vertical
Gravity Gradient, from the application of the Pagss theorem, as an independent test to
avoid sectors with remnant magnetization in therprtetation of basin geometry and

modeling.

Analysis
3D Gravity I nversion and determination of the basement depth

An inversion method has been applied based onrobtpithe Fourier transform of the

gravitational effect, integrated intoza= z, plane passing through a po#tx,v) located
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at a certain distance, in order to produce a 3D ofdpe basement geometry in the study
area (Figure 9) (Chai and Hinze, 1988; Guspi, 1¥®2akravarthi, 2001). The software
used for modeling operates in frequency domainiarthsed on the algorithm of Parker
(1972). This algorithm consists in obtaining theufer transform of the potential field,

expressed as an infinite strongly convergent Fotramsform series, whose expression is

.~ qr w (K"t a; (AR
Gy = [k} = 2n6G exp[kzusznqr}mlﬁ *?LDT (5)

, and where G is the universal gravitational camsta an imaginay unit; k, k vector

module, n the polynomial degree; and F the Fourarsform. The result given by Parker
(1972) corresponds to a polynomial of O degree,aapdlynomial of 1 degree with constant
coefficients, which leads to the formula of Reamed Ferguson (1989). This result can be

extended to multiple layering and variable densiity position.

In order to approximate the depth of the basemaetface, an inversion was calculated
using GMSYS 3D® software for each stratum defingdgkids located in one half-space
(Parker, 1972). For correct data processing, gndst be expanded in order to eliminate
border effects (Blakely, 1995). In this case, wedua 20% expansion of the grid, and grid
spacing of 1000 m between nodes. The model usegditrial gravity anomalies shown in
Figure 5d as data entry, where deep components fiklered. In order to compute the
depth of the crystalline basement and thereforegbmmetry of the Cenozoic basins, the
program takes as input parameter the density loligion at depth. Therefore, this basement
inversion model (Figure 9) is performed assumir®y layer model with stratified density
values. The shallower layer corresponds to thevseatary infill with a mean density of 2.4
g/cnt, representing mostly Quaternary unconsolidatedhssds; while a deeper medium
represents the Cenozoic sequences with a meantyeris2.68 g/cm and finally the
deepest layer represents a Permian - Triassic lessanith a density of 2.88 g/cm

This three-layer model provides a first order agpmation of the geometry and depth of
the basement across the highest Andes in the mor@leilean-Pampean flat slab region.
Figure 9 shows a general interpretation of sucletast topography which outlines major
sedimentary depocentres. This scheme signals frexamate depth and exact geometry of

some already known depocenters (foreland depoceloieated at the eastern Andean front;
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e.g. Matagusanos, Tulum, Bermejo, Vinchina deparentnd others incorporated into the
orogenic wedge, e.g. Iglesia-Calingasta depocentdriie also indicate the existence of
others not described previously, particularly thtmsmted at the highest Andes around the
drainage divide area and buried by thick sectidrniSemozoic strata. These depocenters are
interpreted as associated with syn-extensionalgiguphy produced during the Dofa Ana
extensional stage that affected the Andes at tladisedes. Thus, this model is used as an
initial framework to perform an improved and mowgaldled bi-dimensional model across

29°30' S, using additional geological and geopl@sionstraints.

Figure 9: Basement depth computed from gravity inversione Motv foreland basins are
defined as elongated lows parallel to the mountaints, delineated by gravity highs, and
how the Frontal Cordillera basement is charactetizsy more equidimensional lows and
highs that are potentially associated with the syaesional topography produced during
Dofa Ana basin development (see text or furthaail$gt Interrupted line formed by points
and short traces indicates the Chilean-Argentinbaandary as a reference. Thinner

interrupted lines are Province and District boungtar as a reference.

Figure 10: Below: 3D perspective of the computed basemenhdebtained from
inversion of gravity data (see text for detailsithwinderlying Nazca subducted slab
geometry obtained from seismic data and Moho gegmétained from gravity data (see
previous sections). A digital terrain model gridE® 90 x 90m) is indicated above as a

reference.

Gravity and magnetic 2D inversion

Two direct 2D models were traced at 29°30" S aftetaining the results of the 3D
inversion depth basement. For these direct motel$SM-SYS 2D software developed by
Webring (1985) was used (see Figures 1 and 3 fmatilan). This software is based on
methods implemented by Talwani et al. (1959) angrawed by Marquardt (1963)
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algorithm. One of the models, modeled from the detepBouguer anomaly, has been
designed for regional purposes, particularly targedte crustal heterogeneities, while the
other was more local, modeling the residual Bouguemaly, in order to only constraint

upper crustal structures.

For the lithospheric (whole crust)-scale 2D moddhcks representing the upper mantle

3

with density p, = 3.41 g/em®, Nazca Plate with densitp _ = 3.05 — 3.1 g/cm?,

subduction channel with densify, = 2.9 g/cm®, and South American lower crust with

densityp,. = 2.85 g/em®, mid crust with density,__ = 2.7 g/em?, and upper crust with

3

density p, = 2.67 g/cm®, were considered. Mafic rocks trapped at the pi@tesuture

zones between the different proposed Paleozoiartesr cited in literature were modeled

with densities p,,, = 2.95 to 3.00 g/cm® (see Gimenez et al., 2009 and references

therein).

Additionally, this model includes lateral densityarhations through the Nazca plate,
produced by dehydration and densification at dgpthcino and Introcaso 1988). The
geometry of the Nazca plate at depth is adjustethenmodel using a catalog of 213

interplate earthquakes_(http://www.isc.ac.uk/ehlgbul/search/catalogue/), filtering the

Mw>4 events.

The complete Bouguer Anomaly corrected for heigigure 6a) was used for this model,
in which the long wavelengths were adjusted comsidelateral variations in density

through mid and lower crust (Figure 11).

In order to adjust the model, lateral density u@ies were introduced considering
proposals that determine basement heterogeneityciatsd with accretional micro-
continental phases (see Gimenez et al., 2009 &mcknees therein), with Pampia basement
with a density of 2.72 g/cinCuyania with 2.64 to 2.70 g/émChilenia with 2.82 g/ch
and an extra heterogeneous region to the west tmitgnconsidered as a different

hypothetical basement block with a density of ZROT.
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Figure 11: a) Lithospheric model across 29° 30’S adjustedgishe complete Bouguer
anomaly. Mafic rocks are included in the areas ateptial sutures between different
Paleozoic terranes already implemented in Gimenhet ,g2009). Note that while limits
between the different basements of Frontal Condi|l®recordillera and western Sierras
Pampeanas have been linked to Paleozoic suturesydisternmost discontinuity included

in this model does not follow any previous proposal

For the local-upper crustal model (Figure 12), temsities used are the ones already
introduced in the three-dimensional inversion, adlvas the general geometry of the
basement at depth. Therefore sedimentary Quatemfiiywas modeled using a range of
density values between 2.3 and 2.4 g/cheing typical values of sedimentary sections in
the area (Gimenez et al., 2000; Ruiz and Introc2800; Introcaso et al., 2004).

The deepest sedimentary (volcanoclastic and clashids and the crystalline basement
were modeled with densities ranging from 2.6 t8y&n7, including Carboniferous and

lower Paleozoic, Permo-Triassic, Cretaceous and£en sections. These density vales
were already used for other neighbor crustal modeBerras Pampeanas and Precordillera

areas (Martinez and Gimenez, 2003; Kostadinoff.e2@10).

Mafic high density rocks were modeled delineatihg tCuyania and Pampia terrane
boundary zone inferred across the Valle Fertil Bment (Gimenez et al., 2000; Ruiz and
Introcaso, 2000; Martinez and Gimenez, 2003), usivg same density values for the
regional modeld = 2.72 g /cr).

Furthermore, to adjust this profile, magnetic sysibility values, obtained by reversing
the magnetic field, were used (Figure 7). Thesa @are corroborated by susceptibility
values sampled in the outcrops that are consistéhtstandard values for different rock
types (Telford et al., 1990; Chernicoff et al., 90Bostadinoff et al., 2010).
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Figure 12: a) Structural cross section based on Winocur gt(2015) (geological data
displayed on figures 3 and 4) across -29° 30’ S atjdsted from gravity and magnetic
data.

Discussion

Gravity and magnetic data have allowed delineatirggries of anomalies interpreted as
depocenters in the Frontal Cordillera area of tethern Chilean-Pampean flat slab
segment of the Southern Central Andes. These dataaduable in understanding basin
architecture and Mesozoic to Paleogene structace @xtensive blankets of volcanic strata
of the Permian-Triassic Choiyoi Group, and the EeeBliocene Dofia Ana and Farellones
formations characterize the highest Andes, buryimast of the basement structure. This
particular array of lows suggests the presencelomleter-scale depocenters on both sides
of the high Andes separated by NW transfer zoneguf€s 9 and 10) that coincide with
exposures of the Permian-Triassic Choiyoi Group Bodene-early Miocene Dofa Ana
Formation, both units considered, in a vast palitefature, synrift associations linked to
two periods of crustal stretching, one during Pangeeak-up and a younger during the
extensional destabilization of an Incaic relief thogleveloped on the Chilean side of the
Andes. 2D regional gravity models that adjust theasured gravity data and more locally
gravity and magnetic profiles (Figures 11 and 1)ly the presence of a different crustal
basement block on the Chilean slope of the Andgsaraéed by an east-dipping
discontinuity. This geometry could explain the depenent of Mesozoic?-Paleogene
depocenters in the present Andean drainage zoaaesult of the extensional collapse of
the hanging wall of a hypothetical suture (FiguBg, tonstrained on gravity criteria, whose
real nature needs further geological analyses. Therstructure of the Frontal Cordillera,
partly derived from inversion of these depocentewsild also be the result of the

reactivation of a crustal-scale discontinuity ekplzg its deep decollement.

Figure 13: Schematic representation of the Paleogene extealssetting in the Southern
Central Andes and the reactivation of a potentraistal heterogeneity inferred from

gravity modeling.
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Conclusions

The 3D and 2D models constructed from the decongtimes gravity and magnetic
anomalies adjusted with the available geological geophysical information (Ramos et
al., 2002; Gimenez et al., 2009; Winocur et al1%20&mong others) revealed the geometry
of the basement in a sector of the high Andes gdlat¢he northern Chilean-Pampean flat
subduction segment. In this model, elongated daptecs, associated with the eastern and
western deformational fronts of Precordillera andri@s Pampeanas respectively at the
eastern deformational front of the Andes, are dder with Neogene foreland basins.
However, a mosaic of equidimensional smaller depiece appears at the Frontal
Cordillera area at both sides of the high Andegrpreted as a result of the synextensional
topography of the Dofia Ana Basin developed in Eecenlate Oligocene times. The
lithospheric-scale 2D model suggests the preseheenon-previously recognized crustal
discontinuity to the west of these depocentersesponding to the Dofia Ana Basin that
could have hypothetically exerted a control on llagag extension (Figure 13). This newly
proposed basement discontinuity, summed to the m@uegynized in the model potentially
associated with the amalgamation of Cuyania andpamallochtonous, should be taken
into consideration for further Paleozoic plate restouctions, analyzing potential times of

docking and associated deformational processegaogjcal grounds.
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Highlights

e Gravity inversion to obtain the geometry of the Dofia Ana abanico basin.

Determination of main Depocenters from the Andes Range to Western Sierras Pampeanas.
* Remanent Magnetism determination by the Poisson’s Theorem.

Crustal Structure of the late Oligocene Miocene sequences located on Principal Andes.



