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Abstract

Maternal diabetes impairs fetal development and increases the risk of metabolic 
diseases in the offspring. Previously, we demonstrated that maternal dietary 
supplementation with 6% of olive oil prevents diabetes-induced embryo and fetal 
defects, in part, through the activation of peroxisome proliferator-activated receptors 
(PPARs). In this study, we examined the effects of this diet on neonatal and adult 
pancreatic development in male and female offspring of mothers affected with pre-
gestational diabetes. A mild diabetic model was developed by injecting neonatal rats 
with streptozotocin (90 mg/kg). During pregnancy, these dams were fed a chow diet 
supplemented or not with 6% olive oil. Offspring pancreata was examined at day 2 
and 5 months of age by immunohistochemistry followed by morphometric analysis to 
determine number of islets, α and β cell clusters and β-cell mass. At 5 months, male 
offspring of diabetic mothers had reduced β-cell mass that was prevented by maternal 
supplementation with olive oil. PPARα and PPARγ were localized mainly in α cells and 
PPARβ/δ in both α and β cells. Although Pparβ/δ and Pparγ RNA expression showed 
reduction in 5-month-old male offspring of diabetic rats, Pparβ/δ expression returned to 
control levels after olive-oil supplementation. Interestingly, in vitro exposure to oleic acid 
(major component of olive oil) and natural PPAR agonists such as LTB4, CPC and 15dPGJ2 
also significantly increased expression of all Ppars in αTC1–6 cells. However, only oleic 
acid and 15dPGJ2 increased insulin and Pdx-1 expression in INS-1E cells suggesting a 
protective role in β-cells. Olive oil may be considered a dietary supplement to improve 
islet function in offspring of affected mothers with pre-gestational diabetes.

Introduction

The in utero environment plays an important role in 
the development of the fetus and the neonate (Harris 
et  al. 2017, Marciniak et  al. 2017). Pre-gestational 

diabetes affects organogenesis and increases the risk of 
congenital malformations (Correa et al. 2008). Moreover, 
both pre-gestational and gestational diabetes raise the 
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predisposition to insulin resistance early in life (Catalano 
et al. 2003, Lacroix et al. 2013) and the development of 
type 2 diabetes (Sobngwi et al. 2003, Chon et al. 2014). 
In humans, exposure to hyperglycemia in utero leads to 
differential effects on male and female offspring upon 
the risk of developing diabetes later in life (Sobngwi et al. 
2003, Mauvais-Jarvis 2018).

It has been shown that not only the quantity (Ojha 
et al. 2013), but the quality and ratio of components of 
the maternal diet also affects both fetal and postnatal 
development (Herring et  al. 2018). Importantly, lipids 
play a role in fetal development and variations to dietary 
fat composition has major implications, both short- and 
long-term, on offspring health (Herrera 2002, Berti et al. 
2016). For example, oleic acid, a monounsaturated fatty 
acid (MUFA) given in pregnancy to diabetic rats lowers 
phospholipids, cholesterol and free fatty acid content 
in foetuses (Capobianco et  al. 2008a). Furthermore, in 
humans, the addition of olive oil to the diet in individuals 
with type 2 diabetes has beneficial effects on blood glucose 
and reducing insulin resistance (Ryan 2000).

Previous research from our group has indicated 
that an enriched olive-oil diet given during gestation to 
mothers with mild diabetes improves fetal and placental 
development (Capobianco et  al. 2008a; Martinez 
et  al. 2012, Kurtz et  al. 2014a), mainly by reducing the 
intrauterine inflammatory environment and regulating 
lipid metabolic pathways such as fatty acid uptake, lipid 
synthesis and catabolism (Jawerbaum & Capobianco 
2011). Furthermore, these beneficial effects were 
identified to be mediated, in part, by the activation 
of the entire nuclear peroxisome proliferator-receptor 
(PPAR) family, namely PPARα, PPAR β/δ and/or PPARγ. 
The three members of this family of nuclear receptors are 
involved in feto-placental development, cell proliferation, 
differentiation, and metabolism (carbohydrate, lipid, 
protein) (Rees et al. 2008). Nevertheless, PPARs represent 
critical sensors of environmental dietary stimuli and 
are crucial in the regulation of metabolism. As primary 
regulators of lipid metabolism at the cellular level, they 
help maintain metabolic homeostasis when energy or 
lipid dietary composition is altered (Bordoni et al. 2006).

In maternal diabetes, PPARs levels and transcriptional 
activity are impaired in the placenta and different fetal 
organs, with further influence on the postnatal stage (i.e. 
the fetal origins of metabolic diseases) (Rees et al. 2008, 
Jawerbaum & Capobianco 2011, Jawerbaum & White 
2017). PPARs function as critical transcription factors 
when activated by unsaturated fatty acids, which are 
efficiently transported through the placenta to the uterus 

(Herrera 2002, Bordoni et al. 2006). Furthermore, dietary 
supplements enriched in 6% olive oil or safflower oil 
during diabetic pregnancies have been shown to activate 
PPARs, leading to the prevention of the metabolic and 
pro-inflammatory impairments in the fetus with evident 
results in the offspring, including the increase in insulin 
secretion (Capobianco et al. 2008a, 2015, Higa et al. 2010).

While PPARs are ubiquitous in the pancreas during 
normal embryonic development (Braissant & Wahli 1998) 
and play an important role in pancreatic glucose and lipid 
metabolism, the role of in utero pancreatic PPAR activation 
remains elusive.

A previous report has indicated that oleic acid (the 
major component of olive oil), a natural activating ligand 
of PPARs, exhibits anti-diabetic and anti-inflammatory 
properties in the INS-1E pancreatic cell line (Ravnskjaer 
et al. 2010). A rat model of maternal mild diabetes is useful 
to study the programming of the pancreatic development 
and the putative beneficial effects of the intervention 
with a normolipidemic diet enriched in oleic acid. 
Therefore, we hypothesize that olive-oil supplementation 
during pregnancy to a mild pre-gestational diabetic rat 
will activate PPARs in utero and might benefit the pancreas 
of the offspring postnatally.

Materials and methods

Animals

The in vivo experiments followed the Principles of 
Laboratory Animals Care (NIH publication number 85-23, 
https://olaw.nih.gov/policies-laws/phs-policy.htm) and 
were approved by the Institutional Committee for the Care 
and Use of Experimental Animals (CICUAL, Resolution 
CD Nº 3170/2015; School of Medicine, UBA, Argentina). 
Eight male and sixteen female adult Albino Wistar rats 
were purchased from the certified animal facilities of 
the School of Exact and Natural Sciences, University of 
Buenos Aires (UBA, Argentina). The rats were housed in 
the animal facilities of the Center for Pharmacological and 
Botanical Studies (CEFYBO-UBA-CONICET, Argentina) on 
a 12 h light:12 h darkness cycle with humidity maintained 
at a 45–60% and temperature between 21 ± 2°C. The rats 
had ad libitum access to food and water throughout the 
study. For mating the female rats, two females were placed 
in one cage with a male and mating was confirmed by 
the presence of spermatozoa in the vaginal smear the 
following morning. Two days after birth, female neonates 
from each rat were randomly selected to rendered 
diabetic by a s.c. injection of streptozotocin (90 mg/kg, 
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Sigma-Aldrich) diluted in citrate buffer (0.05 M, pH 4.5, 
Sigma-Aldrich), as described before (Kurtz et  al. 2010), 
or received citrate buffer alone (controls). The health of 
the rats and the environmental parameters were checked 
and recorded daily. At 2 months of age, prior to mating to 
control males, female offspring were confirmed diabetic 
by a fasting glucose reading (higher than 130 mg/dL) with 
a hand-held glucometer (Accu-Check, Roche Diagnostics) 
without anesthesia from lancing the tail vein. Twenty-four 
female rats (8 control and 16 diabetic rats) were housed 
in separate cages (two female: one male rat ratio) and 
pregnancy was confirmed by the presence of spermatozoa 
in vaginal smears the next morning. No adverse effects 
were observed by the dietary interventions or procedures 
detailed subsequently. At day 1 of pregnancy, rats were 
allocated into three groups (n = 8 each). The number of 
rats used was determined by statistical power analysis. 
Eight control (C) and eight diabetic (D, randomly selected) 
rats received a normal commercial chow diet composed 
of (g/100 g): carbohydrates (50); proteins (25); fat (5), 
major fatty acids 16:0 (0.58), 18:0 (0.16), 18:1 (1.27), 18:2 
(1.99), 18:3 (0.73); calories: 325 kcal/100 g (Asociacion 
Cooperativa Argentina, Buenos Aires, Argentina). A 
third group of eight diabetic rats randomly selected were 
supplemented with 6% olive oil (a supplement diet that 
is 354% enriched in oleic acid, PPAR activator) (D+OO) 
in the pellet. The composition of the diet was described 
previously (Capobianco et  al. 2015) and contains: (1) 
normal standard diet (composition listed previously) and 
(2) olive-oil-supplemented diet (g/100 g): carbohydrates 
(48); proteins (24); fat (11), major fatty acids 16:0 (1.55), 
18:0 (0.26), 18:1 (5.77), 18:2 (2.41), 18:3 (0.57); calories: 
340 kcal/100g. Food and water were provided ad libitum. 
Food intake was similarly increased in the diabetic group 
that received or not the olive-oil dietary treatment: 
control: 67 ± 3 g/kg/day, maternal diabetes: 75 ± 3 g/kg/day,  
maternal diabetes + olive oil: 73 ± 3 g/kg/day. Weight gain 
was similar in the evaluated groups (control: 132 ± 8 g, 
maternal diabetes: 135 ± 9 g, maternal diabetes + olive oil: 
119 ± 10 g). Fasting glycemia values, evaluated on day 
20 of pregnancy, were similar in the diabetic group that 
received or not the olive-oil dietary treatment (control: 
101 ± 10 mg/dL, maternal diabetes: 229 ± 19 mg/dL, 
maternal diabetes + olive oil: 208 ± 10 mg/dL). After 
birth, all the rats were fed with a normal chow diet. 
Body weight and food intake were measured bi-weekly. 
Maternal body weight was similar at weaning in the 
evaluated groups (control: 315 ± 14 g, maternal diabetes: 
318 ± 12 g, maternal diabetes + olive oil: 324 ± 15 g). 
Offspring weight was evaluated on a per litter basis.  

Each litter was weighted on day 2 of pregnancy and litter 
was adjusted to three males and three females. Housing 
conditions were maintained as described previously. At 
postnatal day 2 and at 5 months old, two female and two 
male rats per litter were kiled by decapitation at 12:00 h. 
Pancreata were dissected immediately and fixed in 4% 
formalin or immersed in RNAlater (RNA later, Invitrogen). 
Glycemia was also measured before killing by a hand-held 
glucometer (Accu-Check, Roche Diagnostics) on postnatal 
day 2 and after 6 h fasting at 5 months old rats from blood 
obtained by lancing the tail vein.

Immunofluorescence

After a 24-h fixation in 4% buffered formalin (west-Chester, 
PA, USA) pancreata were dehydrated and embedded in 
paraffin (University Hospital, Pathology Lab, London, ON, 
Canada) and sectioned in 5-µm sections and mounted 
in Superfrost-Plus slides (Fischer Scientific). In order to 
localize α-cells and β-cells within the islets of Langerhans, 
dual immunofluorescence was performed. Three 5-µm 
sections, separated by at least 50 µm, were deparaffinized 
in xylene, rehydrated in descending ethanol series (100%, 
90%, 70%) and washed in tap water. Tissues were then 
blocked with 1–2 drops of Sniper (Biocare Medical, 
Concord, CA, USA) for 5 min. All antisera were diluted 
in antibody diluent solution (DakoCytomation). Tissues 
were then incubated overnight at 4°C in a humidified 
chamber with 1:50 guinea pig anti-insulin (Abcam) 
and 1:750 rabbit anti-glucagon (Novus Biologicals, 
Centennial, CO, USA) primary antibodies. Slides were 
then rinsed and incubated for 60 min in darkness in a 
humidified chamber with its correspondent secondary 
antibodies (Invitrogen) 1:500 Donkey anti-guinea pig 
(Alexa Flour 555), and 1:500 Donkey anti-rabbit (Alexa 
488) fluorescent secondary antibodies and DAPI (Sigma-
Aldrich) was used to counterstain nuclei. Coverslip was 
applied with the addition of an anti-fade mounting 
solution (Life Technologies). To establish the specificity 
of all antibodies, controls included substitution of the 
primary antibody with non-immune serum or omission 
of the secondary antibody.

To further identify the co-localization of β-cells with 
the different PPAR isotypes (α, β/δ and γ) within the islets 
of Langerhans, dual immunofluorescence was performed. 
After deparaffinization as described previously, tissues were 
treated with citrate buffer pH 6 in a decloaking chamber for 
20 min for antigen retrieval. Slides were left to cool at room 
temperature, washed in PBS and blocked with 1–2 drops of 
Sniper (Biocare Medical) for 10 min at room temperature. 
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All antisera were diluted in antibody diluent solution 
(DakoCytomation). Primary antibodies anti-mouse 
insulin (1:200) (Sigma-Aldrich) with anti-rabbit PPARα 
(1:100) (Abcam) or anti-rabbit PPARβ/δ (1:50) (Santa Cruz 
Biotechnology) and anti-rabbit PPARγ (1:50) (Santa Cruz 
Biotechnology) were incubated in a humidified chamber 
for 48 h at 4°C. Slides were then rinsed and incubated 
for 60 min in darkness in a humidified chamber with 
its correspondent secondary antibodies (Invitrogen) at a 
concentration of (1:500) Donkey anti-mouse (AlexaFluor 
555) and (1:500) Donkey anti-rabbit (Alexafluor 488) at 
room temperature. This was followed by two 5-min PBS 
washes. Nuclear counterstain DAPI (Sigma-Aldrich, 1:500) 
was applied before the addition of coverslip with anti-fade 
mounting solution (Life Technologies). To establish the 
specificity of all antibodies, controls included substitution 
of the primary antibody with non-immune serum or 
omission of the secondary antibody.

Morphometric analysis

Analysis of pancreatic sections was performed using a 
Carl Zeiss Axioskop transmitted light and fluorescent 
microscope (Carl Zeiss) with QImaging Micro Publisher 
3.3 Real Time viewing camera (QImaging, Burnaby, 
BC, Canada). Digital images were captured with 40× 
or 2.5× objectives lens. Image analysis of sections and 
quantification of areas of interest was performed using 
ImageJ v1.51s software (NIH) (Chamson-Reig et al. 2009). 
Data processing and statistical analysis were performed 
using Excel v16.12 (Microsoft) and GraphPad Prism v7.00 
(GraphPad Software).

For each analysis, five male and five female animals 
per group (one male and one female per litter, a total 
of 30 rats) were randomly selected. Subsequently, three 
random sections (separated for at least 50 µm) from each 
pancreas were analyzed. Multiple fields of view were 
assessed upon the entire pancreas, to ensure all islets were 
analyzed. For each section, the following measurements 
were determined: total pancreatic area, islet area and total 
area occupied by α and β-cells and β-cell mass in mg (total 
β cell area × pancreatic weight/total pancreatic area). 
Islets were separated by size, clusters (<500 µm2), small 
(500–5000 µm2), medium (5000–10,000 µm2) and large 
(>10,000 µm2).

RNA extraction and qPCR

At 5 months of age, eight female and eight male 
pancreata (one male and one female per litter) per 

group of treatment (a total of 48 rats) were dissected and 
immersed immediately in RNAlater (Ambion) and stored 
at −80°C until RNA extraction. Total RNA was extracted 
using Qiagen RNeasy Plus kit (Qiagen) according to the 
manufacturer’s specifications and stored until further 
analysis. Sample yield and purity was quantified by 
absorbance at 260 and 280 nm (value 1.7–2) using 
NanoDrop 2000c Spectrophotometer (Thermo Fisher 
Scientific). Transcript abundance for Pparα, β/δ, γ, insulin 
and Pdx-1 was analyzed using quantitative RT PCR 
(RT-qPCR). RNA was amplified using designed primers 
(Primer-BLAST A, NCBI, NIH) with a Power SYBR® Green 
RNA-to-CT™ 1-Step Kit (Applied Biosystems, Thermo 
Fisher Scientific) following manufacturer’s protocol. 
Primer sequences are in Table 1. Relative quantification 
was performed using 2−ΔΔ Ct method with β-actin as the 
housekeeping gene. Data was determined as the relative 
expression ratio to control samples.

Cell culture

 To further understand the direct effects of oleic acid on 
the expression profile of Ppars in the endocrine pancreas, 
two different cell lines were utilized as they represent 
specific endocrine cells. INS-1E cells is a β-cell line 
(insulin) and αTC1–6 is an α-cell line (glucagon). INS-1E 
cells were cultured in RPMI1640 supplemented with  
11 mM glucose, 1 mM pyruvate, 10 mM HEPES, 100 µM 
β-mercaptoethanol, 10% FBS and penicillin/streptomycin. 
αTC1–6 cells were cultured in DMEM (Thermo Fisher 
Scientific) supplemented with 5.5 mM glucose, 2.5% FBS 
and 15% horse serum. For each cell line, 105 cells per 
well were cultured in 6-well plates for 24 h. Media were 
replaced with serum free media and cells were treated in 
the presence or absence of 5 μM oleic acid (OA) (major 
component of olive oil) (Sigma-Aldrich) (Vassiliou et  al. 
2009), 1 μM 15 deoxyΔ12,14prostaglandin J2 (15dPGJ2) 

Table 1 Primer sequences for q-PCR.

PPARα Forward TCCTCTGGTTGTCCCCTTGA
PPARα Reverse TGTCAGTTCACAGGGAAGGC
PPARβ/δ Forward GCTCCTGCTCACTGACAGAT
PPARβ/δ Reverse CGTGGCCACTTCCTCTTTCT
PPARγ Forward CCTGTTGACCCAGAGCATGG
PPARγ Reverse GGTCCACAGAGCTGATTCCG
Pdx-1 Forward CCGCGTTCATCTCCCTTTC
Pdx-1 Reverse TGCCCACTGGCTTTTCCA
Insulin Forward CCCGGCAGAAGCGTGGCATT
Insulin Reverse CATTGCAGAGGGGTGGGCGG
β-Actin Forward CGCGAGTACAACCTTCTTGC
β-Actin Reverse ATACCCACCATCACACCCTG
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(Cayman) (Capobianco et al. 2008a), 0.1 μM Leukotriene 
B4 (LTB4) (Cayman) (Martínez et  al. 2011) and 1 μM 
Carbaprostacyclin (CPC) (Cayman) (Higa et al. 2007) for 
24 h. At the end of incubation, total RNA was isolated 
using Qiagen total RNA isolation kit (RNeasy mini kit) 
according to the supplier’s protocol. cDNA synthesis 
and real-time PCR were performed using Power SYBR® 
Green RNA-to-CT™ 1-Step Kit (Thermo Fisher Scientific). 
Primers specific for Pparα, Pparβ/δ and Pparγ, Pdx-1 and 
insulin were used (Table 1). Relative expression levels were 
determined using 2−ΔΔ Ct method.

Statistical analysis

Data were presented as mean ± s.e.m. One-way ANOVA 
followed by Bonferroni post-hoc test was used to compare 
all groups. In case of comparison of only two groups, we 
used t-test. The differences were considered statistically 
significant at P < 0.05. Statistical analysis was performed 
using Graph Pad Prism Version 7 (GraphPad).

Results

Body weight, pancreas weight and fasting glycemia

To understand the general effects of postnatal diabetes 
and the dietary supplementation with 6% olive oil on 
maternal outcomes, we measured body weight, pancreas 
weight and glycemia at day 2 and 5 months in male 
and female offspring. At day 2, there were no statistical 
differences between body and pancreas weight and/or  
glycemia within all treatment groups in both sexes 
(Table 2). By 5 months of age, male and female offspring 
exhibited no changes in body weight and pancreas 
weight within all the groups. However, glycemia, was 
significantly increased in the male and female offspring 
from the diabetic dam groups, compared to the controls 
(P < 0.05) (Table 3). Interestingly, the gestational dietary 
treatment with olive oil in diabetic mothers prevented 
the increased glycemia in the 5-month male offspring 
but not the female offspring (P < 0.05 vs control group) 
(Table 3).

Pancreatic morphometry

To examine if alterations in pancreatic development 
underlie the changes in postnatal glycemia observed, the 
percentage of islet area was measured to determine the 
effects of the olive-oil supplementation on the postnatal 

endocrine pancreas in male and female offspring born to 
diabetic mothers.

At postnatal day 2, the percentage of islet area was 
statistically different in males between control and 
diabetic rats receiving olive oil and diabetic rats given 
vehicle (P < 0.05) (Fig. 1A), This was not seen in females 
(Fig. 1C). However, at 5 months of age, the percentage of 

Table 2 Weight and glycemia in 2-day-old female and male 
offspring.

Control
Maternal 
diabetes

Maternal 
diabetes + olive 

oil

Females 
Body weight (g) 6.32 ± 0.14 6.32 ± 0.15 6.60 ± 0.12
Pancreas  

weight (g)
0.025 ± 0.003 0.027 ± 0.001 0.024 ± 0.001

Glycemia  
(mg/dL)

64 ± 2 69 ± 5 70 ± 3

Males
Body weight (g) 6.42 ± 0.20 6.60 ± 0.16 6.20 ± 0.11
Pancreas  

weight (g)
0.022 ± 0.002 0.028 ± 0.001 0.031 ± 0.001

Glycemia  
(mg/dL)

61 ± 3 65 ± 4 69 ± 5

All values were expressed as mean ± s.e.m. (n = 6–8 per litter/group). Body 
weight was evaluated on a per litter basis. Pancreas weight and glycemia 
were evaluated on two females and two males per litter. Significant 
differences between treatment groups determined by one-way ANOVA 
(P < 0.05).

Table 3 Weight and glycemia in 5-month old female and 
male offspring.

Control
Maternal 
diabetes

Maternal 
diabetes + olive 

oil

Females
Body  

weight (g)
383 ± 15 421 ± 11 380 ± 17

Pancreas 
weight (g)

1.03 ± 0.10 0.88 ± 0.062 0.83 ± 0.07

Glycemia  
(mg/dL)

104 ± 6a 133 ± 6b 140 ± 9b

Males
Body  

weight (g)
460 ± 18 499 ± 5 512 ± 17

Pancreas 
weight (g)

0.99 ± 0.09 0.97 ± 0.06 0.92 ± 0.02

Glycemia  
(mg/dL)

102 ± 12a 147 ± 11b 120 ± 12ab

All values were expressed as mean ± s.e.m. (n = 6–8 litters/group). Body 
weight was determined on a per adjusted-litter basis. Pancreas weight 
and glycemia were evaluated in two females and two males per litter. 
Significant differences between treatment groups determined by one-way 
ANOVA. Different letters represent means that are significantly different 
from one another according to Bonferroni post-hoc test (P < 0.05).
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islet area was significantly reduced (P < 0.05) in the male 
offspring from diabetic rats compared to the control group 
and significantly increased to control values (P < 0.05) 
in the male offspring of diabetic mothers that received 
the olive-oil-supplemented diet (Fig. 1B). No differences 
between groups were seen in the females at the same age 
(Fig. 1C and D).

In addition, there was a significant decrease of 
the β-cell mass in the male offspring from diabetic rats 
(P < 0.01) that was prevented by the dietary maternal 
treatment with olive oil (Fig. 2B). Females at either age 
did not exhibit any differences in β-cell mass between 
experimental treatments (Fig. 2C and D). In view of 
these results and given females did not demonstrate any 
differences in the islet architecture in postnatal life, we 
decided to focus further analysis only in males.

Islet number and size distribution in male offspring 
at 5 months of age was examined and the number of 
small (5000–10,000 µm2) and large (>10,000 µm2) islets of 
diabetic rats supplemented with olive oil was significantly 
increased (P < 0.05) compared to either control or diabetic 
rats fed the standard chow diet (Fig. 3). Total number 
of islets was also increased in the adult offspring of 
diabetic rats fed with the diet supplemented with olive 
oil compared to the diabetic group that did not receive 
the olive oil (P < 0.001) (Fig. 3). At this age, there was a 

significant increase in islets clusters (2–3 cells) budding 
near pancreatic ducts (most of them β-cell origin) (Fig. 
4A) of diabetic rats fed the olive-oil-supplemented diet 
compared to the diabetic group (P < 0.01). However, no 
changes in α-cell clusters were observed between the 
groups (Fig. 4B). Collectively, this resulted in an increase 
in the total number of clusters in the pancreas of olive-oil-
supplemented diabetic rat offspring compared to diabetic 
rats alone (Fig. 4C).

Effects of maternal olive-oil supplementation on 
pancreatic PPAR expression and their distribution 
within the endocrine pancreas in the offspring

Real-time quantitative PCR was employed to assess the 
effects of olive-oil supplementation during pregnancy on 
postnatal pancreatic PPAR gene expression. No differential 
expression on the steady-state levels of PPARα was seen at 
5 months of age (Fig. 6A). By immunofluorescence, PPARα 
was localized to the mantle of the islet (α cell area) suggesting 
co-localization with glucagon secreting cells (Fig. 5A). 
However, pancreatic PPARβ/δ expression was significantly 
reduced (P < 0.01) in the adult offspring of diabetic rats 
compared to controls but was restored in the offspring 
of diabetic rats that received olive oil as a supplement 
during pregnancy (Fig. 6B). By immunofluorescence, 

Figure 1
Representation of the percentage of islets in total pancreas area in 
offspring at day 2 and 5 months of age: graphs A (males) and C (females) 
represents day 2 and graphs B (males) and D (females) 5 months of age. 
Bars represent control animals (white), diabetic animals (grey) and 
diabetic treated with olive oil (black). All values were expressed as 
mean ± s.e.m. (n = 6–8 animals/group). Significant differences between 
treatment groups were determined by one-way ANOVA. Different letters 
represent means that are significantly different from one another 
according to Bonferroni post-hoc test (P < 0.05).

Figure 2
Representation of the total β-cell mass in offspring pancreata at day 2 and 
5 months of age: graphs A (males) and C (females) day 2 and graphs B 
(males) and D (females) 5 months of age. Bars represent control animals 
(white), diabetic animals (grey) and diabetic treated with olive oil (black). 
All values were expressed as mean ± s.e.m. (n = 6–8 animals/group). 
Significant differences between treatment groups were determined by 
one-way ANOVA. Different letters represent means that are significantly 
different from one another according to Bonferroni post-hoc test 
(P < 0.05).
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PPARβ/δ was also localized at the mantle of the islet (to 
the cytoplasm of α cells) and the nuclei of β-cells (Fig. 5B) 
suggesting some role in β-cell differentiation or function. 
Finally, PPARγ was significantly reduced (P < 0.05) in the 
pancreas of the offspring of diabetic rats regardless of 
olive-oil supplementation (Fig. 6C). Moreover, PPARγ was 
also localized in the area where α cells are present in the 
rat islets by dual immunofluorescence (Fig. 5C).

Examining the direct effects of oleic acid on 
pancreatic PPAR expression

When both cell lines were treated with oleic acid for 
24 h, INS-1E cells showed a differential profile of PPAR 
gene expression compared to αTC1–6 cells. Treatment 
with OA reduced gene expression of PPARα (~20%) and 
PPARγ (~96%) and increased gene expression of PPARβ/δ 
(~20%) compared to corresponding controls in INS-1E 
cells. Meanwhile in αTC1–6, OA increased the gene 
expression of PPARα, PPARβ/δ and PPARγ mRNA around 
~310%, ~260%, and ~410 %, respectively, compared to 
controls. These results show for the first time that PPAR 
expression can be induced also in α-cells. Mainly, in this 
case, oleic acid significantly increased the gene expression 
of PPARα (P < 0.01), PPARβ/δ (P < 0.05) and PPARγ (P < 0.01) 
in αTC1–6 cells compared to INS-1E cells (Fig. 7A).

In order to confirm if these differences seen in INS-1E 
cells and αTC1–6 cells occur in the presence of other PPAR 

Figure 3
Representative microphotographs of large (A), medium (B) and small islets (C). Arrows indicate β cells (red) and α cells (brown). Column graphs represent 
the distribution of islets by size within the different treatments from male 5-month-old rats. Bars represent control animals (white), diabetic animals 
(grey) and diabetic treated with olive oil (black). All values were expressed as mean ± s.e.m. (n = 6–8 animals/group). Significant differences between 
treatment groups were determined by one-way ANOVA. Different letters represent means that are significantly different from one another according to 
Bonferroni post-hoc test (P < 0.05).

Figure 4
Representative microphotograph of beta cell clusters near ducts. The 
arrows identify insulin secreting β cells. On the left-hand side, graphs 
represent the number of (A) β, (B) α and (C) total clusters per total 
pancreas area in male offspring at 5 months of age. Bars represent 
control animals (white), diabetic animals (grey) and diabetic treated with 
olive oil (black). All values were expressed as mean ± s.e.m. (n = 6–8 
animals/group). Significant differences between treatment groups were 
determined by one-way ANOVA. Different letters represent means that 
are significantly different from one another according to Bonferroni 
post-hoc test (P < 0.05).
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natural agonists, we tested and compared LTB4, CPC and 
15dPGJ2. LTB4, a PPARα agonist, significantly increased 
mRNA expression of all PPARs in α cells compared to 
β cells with different levels of significance (Fig. 7B) 
(P < 0.01), (P < 0.05), (P < 0.05), respectively. Also, CPC, a 
PPARβ/δ agonist, did not have any effect on any of the 
PPARs in INS-1E cells. Although, in αTC1–6 cells, CPC 
significantly increased the expression of PPARα (~297%) 
and PPARγ (279%) (Fig. 7C). Moreover, 15dPGJ2 (PPARγ 
agonist) increased the expression of PPARγ mRNA in 
INS-1E cells (~191%) with no effect on αTC1–6. However, 
15dPGJ2 significantly increased PPARβ/δ gene expression 
(~127%) in αTC1–6 cells (Fig. 7D). These results imply 
that PPARs can be induced in either α- or β-cells and that 
their expression depends on the stimulus.

Interestingly, when the downstream PPAR target 
genes (e.g. Pdx-1 and insulin) were measured after OA, 
15dPGJ2 and LTB4 treatments in INS-1E cells, both target 
genes were significantly increased, while treatment of the 
cells with CPC had no effect (Fig. 8).

Discussion

Population studies had shown that dietary habits resulting 
high in monounsaturated fatty acids (MUFAs) attributed 

Figure 5
Representative microphotographs of PPARα, PPARβ/δ and γ. (A) Arrows identify PPARα (red) and insulin (green). (B) Arrows identify PPARβ/δ (red) in the 
nucleus of β-cells and insulin (green). (C) Arrows identify PPARγ (red) and insulin (green).

Figure 7
INS-1E cells and αTC1-6 cells treated with oleic acid (OA; 5 μM), leukotriene 
B4 (LTB4; 0.1 μM), 15 deoxy prostaglandin J2 (15dPGJ2; 1 μM), and 
carbaprostacyclin (CPC; 1 μM) for 24 h. Gene expression levels of PPARα, 
PPARβ/δ and PPARγ were determined following treatment with (A) OA, (B) 
LTB4 (C) 15dPGJ2, and (D) CPC using qRT-PCR. Levels of PPARα, PPARβ/δ 
and PPARγ were normalized to an internal control, β-actin. The 
normalized levels of transcripts were shown as relative percent to that of 
non-treated control. t-test analysis (α = 0.05) was performed to compare 
the levels of difference between αTC1-6 cells and INS-1E cells for each 
gene. *P < (0.05); **P < 0.01; ***P < 0.001.

Figure 6
Expression of PPARα (A), PPARβ/δ (B) and PPARγ (C) by q-PCR. Bars 
represent control animals (white), diabetic animals (grey) and diabetic 
treated with olive oil (black). *P < (0.05) and ***P < 0.001. All values were 
expressed as mean ± s.e.m. (n = 6–8 animals/group). Significant differences 
between treatment groups were determined by one-way ANOVA. 
Different letters represent means that are significantly different from one 
another according to Bonferroni post-hoc test (P < 0.05).
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to olive-oil consumption leads to overall reduced 
inflammatory markers and better health outcomes 
(Jiménez-Gómez et al. 2009, Schwingshackl & Hoffmann 
2014). Moreover, oleic acid, the major component of olive 
oil, reduces LDL and total cholesterol levels with beneficial 
consequences on blood sugar control and reducing insulin 
resistance, culminating in a better management of type 2 
diabetes (T2D). Oleic acid also reverses inflammation in 
obesity (Ryan 2000). Aside from regulating glycemia in 
adulthood, olive oil is promising during development as 
well (Jawerbaum & Capobianco 2011).

Previously, we have shown that daily dietary olive-
oil supplementation administered to mildly diabetic 
rats during pregnancy improved the development of 
the placenta and fetus with beneficial effects in different 
organs, including the heart and the lung (Kurtz et  al. 
2014a,b, Capobianco et  al. 2008a). The benefit to these 
organs has been attributed to PPARs activation and 

restoration of PPAR levels (Capobianco et  al. 2008b, 
2015, Kurtz et  al. 2014a). Specifically, these PPARs have 
anti-inflammatory functions and their expression is 
reduced in the placenta from diabetic rats and from pre-
gestational and gestational diabetic patients (Capobianco 
et al. 2005, 2013, Martínez et al. 2008, 2011, Wieser et al. 
2008, Arck et  al. 2010, Holdsworth-Carson et  al. 2010). 
Moreover, impaired PPAR pathways and levels of PPARs 
endogenous ligands in the placenta are rescued with 
olive-oil supplementation (Capobianco et  al. 2008a). 
Besides, we previously found that maternal olive-oil 
supplementation increases insulin levels and decreases 
triglycerides in the 5-month-old offspring from diabetic 
rats (Capobianco et  al. 2015). The proposed dietary 
supplementation provides half of the calories from lipids 
derived from olive oil, and thus, it would be feasible to be 
recommended in humans, as it corresponds to three daily 
spoons of olive oil. Therefore, we proposed that maternal 
dietary manipulations (such as the addition of olive oil) 
may add to the benefits of the tight insulin monitoring 
to mothers with pre-gestational or gestational diabetes on 
the development of the pancreata in postnatal life.

In rodents, the pancreas and other metabolic organs 
are not fully developed at birth. During e-18.5 to e-20.5, 
β-cells duplicate in number (Kaung 1994). Any alterations 
in this period are of importance as it determines the health 
or predisposition to develop disease of the individual 
long-term. By weaning, the quantity and quality of β cells 
are finally defined (Kaung 1994, Petrik et al. 1999, Zhang 
et al. 2005). Tight regulation of β-cell mass is required for 
preserving insulin secretion capacity over a life time.

In this study, by postnatal day 2, no significant 
differences were observed between treatments and sexes 
with respect to β-cell mass (mg), suggesting that at this 
time point the effects of maternal status of disease or 
diet had not manifested. However, by 5 months of age, 
males of diabetic mothers were overtly glucose intolerant 
(Capobianco et  al. 2015) and exhibited reduced β-cell 
mass. Interestingly, maternal olive-oil supplementation 
prevented fasting hyperglycemia in the male offspring due, 
in part, to prevention of β-cell mass and total pancreatic 
islet loss. The benefits of olive-oil supplementation in 
these offspring could also be attributed to higher number 
of larger islets and clusters near the ducts (mainly β-cells). 
Nevertheless, the increased β-cell number observed 
does not always account for hyperinsulinemia and 
hypoglycaemia (Zhang et al. 2005) or changes in plasma 
insulin levels (Nguyen et al. 2006). Given females did not 
show any glycemic differences within treatments at either 

Figure 8
mRNA expression levels of (A) insulin and (B) Pdx-1 after treatment of INS-1E 
cells and αTC1-6 cells with OA, PGJ2, LTB4 and CPC determined by qRT-PCR. 
Log2 fold changes were calculated compared to the respective controls.
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developmental age, further studies were only conducted 
in males.

Previous studies have demonstrated that, during 
development, PPARα, β/δ and γ are ubiquitously 
distributed in the pancreas and play essential roles in the 
regulation of its cellular differentiation, proliferation and 
metabolism (Braissant et al. 1996). During late gestation 
(i.e. gestational day 18.5), PPARα is expressed in the 
pancreas during a period when cells adapt from high-fat 
oxidation to high-glucose oxidation (Gremlich et al. 2005). 
Deletion of PPARα in ob/ob mice developed pancreatic 
β-cell dysfunction characterized by reduced mean islet 
area and decreased insulin secretion in response to glucose 
in vitro and in vivo (Lalloyer et al. 2006). Although PPAR 
isoforms are expressed in islets (Braissant et al. 1996), their 
function is still unclear.

In the adult rat pancreas, they are expressed in both 
the exocrine and the endocrine pancreas and by in situ 
hybridization and gene expression analysis PPARα and have 
lower expression when compared with PPARβ/δ (Braissant 
et al. 1996). PPARβ/δ is highly expressed in β-cells (Iglesias 
et al. 2012). Furthermore, in the diabetic male offspring at 
5 months of age, the expression of PPARβ/δ was reduced 
significantly but restored to control levels in the offspring 
of diabetic mothers treated with olive oil. In this group, 
PPARβ/δ was found in the nucleus of β cells suggesting that 
may be involved in β-cell differentiation and proliferation 
as observed histologically. Under normal cell culture 
conditions, we further determined that the steady-state 
levels of PPARβ/δ mRNA were increased in both INS1-E and 
αTC1–6 cells. Activation of PPARβ/δ by its ligands increases 
fatty acid oxidation capacity in INS-1E cells, enhances 
glucose stimulated insulin secretion (GSIS) in islets and 
protects GSIS against the effects of prolonged fatty acid 
exposure (Cohen et  al. 2011). In db/db mice, prolonged 
treatment with PPARβ/δ agonists (GW501516) reduced 
blood glucose by improving insulin sensitivity and islet 
function (Yang et al. 2016). A recent report indicates that a 
pharmacological ligand of PPARβ/δ amplifies the adaptive 
insulin secretory response of β-cells upon exposure to 
increasing concentrations of glucose in both INS-1E and rat 
isolated islets (Winzell et al. 2010). Others suggested that 
PPARβ/δ is a master regulator of functions associated with 
each step of insulin secretion (granule biosynthesis, vesicle 
trafficking and exocytosis) and may have a repressive role 
controlling β-cell mass and insulin exocytosis (Hellemans 
et al. 2007) with a protective effect against metabolic stress 
in β-cells (Ravnskjaer et al. 2010).

Taking into consideration all the observations listed 
previously, we suggest that PPARβ/δ may have had a role in 

restoring the β-cell mass in the male offspring of diabetic 
rats that received the olive-oil supplementation during 
pregnancy. In contrast, PPARα gene expression did not 
differ between treatment groups at 5 months of age, and it 
was only localized in the cytoplasm of α cells, suggesting 
that it has minimal effects on β-cell gene expression in 
adulthood. Furthermore, PPARα mRNA was also increased 
in αTC1–6 cells after OA exposure. Finally, we examined 
the expression of PPARγ and our studies showed a reduced 
expression of PPARγ in the 5-month pancreas of the 
offspring of diabetic rats, which was not prevented by 
the maternal treatment with olive oil, and that this PPAR 
isotype was only localized in α cells. While it has been 
shown that PPARγ is localized in both β cells (Braissant 
et  al. 1996) and in α cells (Laybutt et  al. 2002, Gupta 
et al. 2008), we were only able to detect its localization 
in α cells. This PPAR isotype has been previously 
demonstrated to represses glucagon transcription in the 
islets (Rosen et al. 2003) and its signaling is implicated in 
the regulation of β-cell proliferation in adults. Mice with 
deleted expression of PPARγ in β-cell had significant islet 
hyperplasia but, despite this alteration in β-cell mass, no 
effect on glucose homeostasis was noted (Rosen et al. 2003, 
Moibi et al. 2007). Another study showed that PPARγ may 
regulate Pdx-1 transcription (Kim et al. 2002, Gupta et al. 
2008), glucokinase (Kim et al. 2000), glucose transporter 
(Glut2) (Gupta et al. 2008) and indirectly β-cell function 
and mass (Laybutt et al. 2002). In our hands, the in vitro 
experiments showed that exposure with OA increased 
PPARγ mRNA only in αTC1–6 cells where it could be 
acting as a repressor.

In order to elucidate if the in vitro effects of OA was 
specific, we tested both cell lines with three different natural 
PPAR agonists and found that they were differentially 
expressed in both cell lines. To this end, the expression of 
PPARs did not show a common characteristic among all 
three isotypes of PPARs in β cells. However, aside of OA, 
all administered agonists dramatically reduced PPARβ/δ 
expression in β-cells. Although, PPARs downstream 
target genes such as PDX-1 and insulin were significantly 
increased in (INS-1E cells) after OA, 15dPGJ2 and LTB4 
treatments.

Another important point to address from these results 
is the novelty that both OA and LTB4 increased the 
expression levels for all three isotypes of PPARs in αTC1–6 
cells. However, such pattern was not shown in INS-1E 
cells, suggesting that OA has a differential effect in α cell 
compared to β cell in vitro.

In summary, this study has identified the distribution 
and the expression of PPARs in different cell populations 
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within the endocrine pancreas when maternally exposed 
to a diet enriched in oleic acid. We also demonstrated 
histologically that PPARβ/δ is present in the β cells at 5 
months postnatal, while PPARα and γ are only in α cells 
suggesting a different role of these PPARs in the adult 
endocrine pancreas. To further elucidate the underlying 
molecular mechanisms involved, we also examined 
the direct effects of oleic acid in α- and β-cell lines. We 
first found that all PPARs were differentially expressed 
in both cell lines. Interestingly, all PPAR isoforms were 
present in αTC1–6 cells when stimulated by oleic acid. 
The up-regulated gene expression of all three PPARs in 
αTC1–6 cells suggests a role for these nuclear receptors 
in a counter regulatory mechanism between α and β 
cells which are likely important for the maintenance of 
β-cell survival and function. Furthermore, we showed 
for the first time to our knowledge in vivo and in vitro 
the presence of PPARs in α cells. Collectively, based on 
these observations, we suggest that, in male offspring of 
mildly diabetic mothers, the early exposure of 6% olive 
oil may have permitted a normal pancreas development, 
likely due to the indirect effect of the maternal diet 
(e.g. oleic acid) on the intrauterine micro-environment 
(Capobianco et  al. 2008a) or by a direct effect by the 
activation of PPARs during fetal pancreatic development. 
Both interactions may have programmed β cells in utero 
and rescued male offspring from an early onset of T2D in 
adulthood.
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