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Two Late Cretaceous sauropods reveal
titanosaurian dispersal across South America
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South American titanosaurians have been central to the study of the evolution of Cretaceous
sauropod dinosaurs. Despite their remarkable diversity, the fragmentary condition of several
taxa and the scarcity of records outside Patagonia and southwestern Brazil have hindered the
study of continental-scale paleobiogeographic relationships. We describe two new Late
Cretaceous titanosaurians from Quebrada de Santo Domingo (La Rioja, Argentina), which
help to fill a gap between these main areas of the continent. Our phylogenetic analysis
recovers both new species, and several Brazilian taxa, within Rinconsauria. The data suggest
that, towards the end of the Cretaceous, this clade spread throughout southern South
America. At the same locality, we discovered numerous accumulations of titanosaurian eggs,
likely related to the new taxa. With eggs distributed in three levels along three kilometres, the
new site is one of the largest ever found and provides further evidence of nesting site
philopatry among Titanosauria.
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Titanosaurian sauropods are a group of large, long-necked,
herbivorous dinosaurs with a complex evolutionary his-
tory!=6. During the Late Cretaceous, they underwent an
extensive evolutionary radiation worldwide. Most of their record
in South America is restricted to Argentine Patagonia (e.g.,
Neuquén, Golfo San Jorge and Austral basins) and the Bauru
Basin of SW Brazil’-? (Fig. 1a). Some studies have attempted to
establish paleobiogeographic links between these regions!®:ll,
although there are remarkable faunistic differences between
Patagonian and Brazilian titanosaurians'>~1>. Similarly, other
contemporaneous tetrapods, such as pleurodiran turtles and
notosuchian mesoeucrocodylians, also show heterogeneous
distributions!®17.

By the Late Cretaceous, vast regions of South America
remained flooded by epicontinental seas!8, and although there are
high-rank taxonomic similarities, the evidence of eventual con-
nections between northern and southern terrestrial faunas are still
scarce. The ubiquity of the clade Titanosauria in a geographically
intermediate area is validated by the occurrence of the salt-
asaurids Yamanasaurus from Ecuador!® and Saltasaurus**—plus
a putative record of Neuquensaurus’!—from NW Argentina
(Fig. 1a), along with fragmentary accounts of sauropod dinosaurs
in the latter region. However, saltasaurids have not been docu-
mented so far in the Bauru Basin nor other units in Brazill-22,
and the non-saltasaurid specimens in NW Argentina are too
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fragmentary?? to allow determination of paleobiogeographic
relationships. In addition to saltasaurids, the other high-level
clade amongst titanosaurians is the Colossosauria, recently stem-
based defined as the most inclusive clade containing Mendoza-
saurus but not Saltasaurus, nor Epachthosaurus®. It includes the
subclades Rinconsauria and Lognkosauria (plus a few related
taxa), whose taxonomic composition has fluctuated over the
years?>~. The fossil record of colossosaurians has, so far, a dis-
parate distribution, with most of its members reported in Pata-
gonia and SW Brazil.

Herein, we report the discovery of new dinosaurs from the
Upper Cretaceous red beds of the Quebrada de Santo Domingo
locality (QSD) in the Andes of La Rioja, NW Argentina (Fig. 1b).
We recovered three partial skeletons that belong to two new
derived titanosaurian dinosaur species (Fig. 1lc, d) in different
stratigraphic positions of the Ciénaga del Rio Huaco Formation.
Moreover, we found titanosaurian egg clutches and eggshells in
an intermediate stratigraphic position, distributed in three levels.
With an overwhelming abundance of eggs, QSD is one of the
largest nesting sites documented worldwide. The results of our
phylogenetic analysis incorporating the two new taxa suggest that
they have Patagonian and Brazilian affinities, reinforcing the
hypothesis of a close relationship between the titanosaurian
sauropod faunas from northern and southern South America
during the Late Cretaceous.
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Fig. 1 Titanosaurian record in South America, map of the study area and skeletal reconstructions of the new titanosaurian species. a Percentage
diversity of Cretaceous titanosaurian sauropods in three main regions of South America: Patagonia (purple), NW Argentina (green), and SW Brazil
(yellow) (Supplementary Table 3). The yellow ring corresponds to the record of the saltasaurid titanosaurian Yamanasaurus in Ecuador. Map modified from
Scotese!”. b Location of the discoveries. € Punatitan coughlini gen. et sp. nov. d Bravasaurus arrierosorum gen. et sp. nov. Preserved elements are coloured in

red in ¢, d. Scale bar: 100km in b, and Tm in ¢, d.
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Results
Systematic palaeontology.

Sauropoda Marsh, 1878
Titanosauria Bonaparte and Coria, 1993
Colossosauria Gonzélez Riga et al., 2019

Punatitan coughlini gen. et sp. nov.

Etymology. ‘Puna’ is the local name that distinguishes the
oxygen-depleted atmosphere typical of the high Andes, and
‘coughlini’ refers to the geologist Tim Coughlin, who reported
the first dinosaur fossils in the area.

Holotype. CRILAR-Pv 614 (Paleovertebrate Collection of
Centro Regional de Investigaciones Cientificas y Transferencia
Tecnologica de La Rioja, Argentina), partial skeleton com-
posed of the anterior portion of posterior cervical vertebra
(likely C12), two middle dorsal vertebrae (likely D6-D7),
partial sacrum, 13 articulated caudal vertebrae (some with
articulated haemal arches), right pubis, left ischium, and sev-
eral dorsal ribs.

Horizon and type locality. Sandstone levels 170 m above the
base of the Ciénaga del Rio Huaco Formation (Campanian-
Maastrichtian) at QSD, La Rioja, NW Argentina (Geological
Setting in Supplementary Information).

Diagnosis. A medium-sized titanosaurian sauropod char-
acterised by the following combination of features (autapo-
morphies marked with an asterisk): (1) middle dorsal
vertebrae (likely D6-D7) with anterior and posterior spino-
diapophyseal laminae (spdl) forming wide and flat surface,
between aliform and transverse processes™; (2) accessory
posterior centrodiapophyseal lamina (apcdl) crossed over by
the posterior centroparapophyseal (pcpl) lamina, forming a X-
shaped intersection in D6-D7; (3) pcpl reaches the bottom of
posterior centrodiapophyseal lamina (pcdl) in D6-D7%; (4)
extra-depression ventrally to intersection of pcpl and apcdl in
D6-D7%; (5) deep postzygodiapophyseal centrodiapophyseal
fossa (pocdf) in D6-D7; (6) neural spine of D6 tapering dor-
sally, forming an inverted-“V” profile in anterior/posterior
view; (7) caudal transverse processes persist beyond Cal5; (8)
slightly anteriorly inclined neural spines in anterior-middle
caudal vertebrae (Ca5-6 to Cal0); and (9) distally expanded
prezygapophyses in anterior-middle caudal vertebrae.

Description and comparisons of Punatitan. Most diagnostic
features are in the axial skeleton of Punatitan (Fig. 2), allowing us
to distinguish the new taxon from other titanosaurians. The
holotype CRILAR-Pv 614 represents a medium-sized individual,
larger than the holotypes of Overosaurus®*, Saltasaurus®>,
Neuquensaurus*®?7, and Trigonosaurus®3, about the same size as
the holotype of Uberabatitan®®, and smaller than Aeolosaurus®C,
‘Aeolosaurus’!!, Mendozasaurus® and giant taxa (e.g., Argentino-
saurus, Patagotitan).

A cranial portion of a posterior cervical vertebra is only available
(Fig. 2a, b). It may correspond to C12, based on Overosaurus and
Trigonosaurus (MCT 1499-R?8). The centrum is shorter dorsoven-
trally than it is wide transversely, with its anterior surface strongly
convex. The base of the right parapophysis is level with the ventral
border of the centrum and ventrally delimits the deeply concave
lateral surface of the centrum. The prezygapophyses are ante-
rolaterally projected and well separated from each other. Their
anterior edge is placed slightly anterior to the level of the articular
surface. Both are medially connected by a sharp interprezygapo-
physeal lamina (tprl) that forms an opened U-shaped edge in
dorsal view. The right base of a rounded dorsomedially projected
spinoprezygapophyseal lamina (sprl) is preserved. Although the

neural arch is incomplete, the position and development of the
prezygapophyses, together with the position, orientation, and
robustness of the sprl, suggest a wide and concave spinoprezyga-
pophyseal fossa (sprf). Overall, the cervical vertebra of Punatitan is
similar to that of most titanosaurians. The robust sprl is more
similar to that of Malawisaurus®!, Mendozasaurus®, Futalognko-
saurus®2, and Dreadnoughtus® than to Overosaurus**, in which
the lamina is weakly developed, and the floor of the sprf is reduced.
In Trigonosaurus® the sprl is also conspicuous but relatively short,
thus defining a small sprf.

Two dorsal vertebrae are known for Punatitan, interpreted as
D6 (Fig. 2¢, d) and D7 (Fig. 2e), based on comparisons with
Overosaurus®* and Trigonosaurus®8 (e.g., the relative position of
parapophysis and diapophysis, orientation of neural spine). The
centra are opisthocoelous, almost as high as wide. Laterally, they
show deep and partitioned pleurocoels that have tapering, acute
caudal margins. They are located dorsally, near the neurocentral
junction. The neural arches are fused to the centra, without a sign
of suture.

The diapophyses are robust and well projected laterally, while
the parapophyses are more anteriorly and slightly ventrally
positioned, as occurs in middle dorsal vertebrae (e.g., D5-D7 of
Overosaurus®*). Below these processes, the neural arches are
notably intricate, showing a broad, deeply excavated fossa
(Fig. 2c) with a conspicuous asymmetry in both lateral sides, as
seen in other sauropods (e.g., Trigonosaurus®®, Lirainosaurus3*).

The pcdl and its anterior projection, the apcdl, plus the well-
developed pcpl are the most conspicuous traits in the lateral
aspects of these vertebrae (Fig. 2c), as seen in several
titanosaurians, such as Malawisaurus’!, Elaltitan3>, Over-
osaurus®*, Trigonosaurus®®, and Dreadnoughtus®3. The pcdl
projects posteriorly to reach the posterodorsal border of the
centrum. The apcdl projects anteriorly from the dorsal edge of
this lamina, contacting the anterodorsal border of the centrum.
The accessory lamina is crossed over by the pcpl, forming an X-
shaped intersection that is evident on the right side of D6 and D7
(on left sides of both, the pcpl finishes when contacting the apcd],
forming a Y-shaped pattern). The pattern observed in D6-D7 of
Punatitan is roughly observed in D7 of Overosaurus®* (other
dorsal vertebrae have no clear X-pattern) and Petrobrasaurus°,
but not in other titanosaurians such as Malawisaurus’l,
Elaltitan®, Trigonosaurus®8, Lirainosaurus®*, and Dread-
noughtus33. Conspicuously, these laminae define deep fossae in
Punatitan. The deep, subtriangular fossa, dorsally delimited by
the pedl and apcdl is identified as posterior centrodiapophyseal
fossa (pcdl-f)33. It is deeper in Punatitan than in Overosaurus®4,
Trigonosaurus®8, Muyelensaurus’’, and Dreadnoughtus>3.

The anterior centroparapophyseal lamina (acpl) and pcpl
project ventrally and posteroventrally, respectively, from the
parapophysis. The pcpl is truncated on the left side of D6-D7
when touching the apcdl; consequently, on this side, the pcdl-f is
much larger than on the right side. In both dorsal vertebrae, the
acpl and pcpl also define a deep but small fossa.

The oval-shaped prezygapophyses are connected medially by
transversely short tprl (Fig. 2e). They are detached from the
diapophyseal body by a marked step that dorsally elevates their
articular surface. In anterior view, the centroprezygapophyseal
lamina (cprl) has a sharp border, and it widens dorsally. This
lamina and the acpl define a deep fossa that faces anterolaterally.
The sprl in these dorsal vertebrae are present as blunt structures
that are poorly preserved. They connect the prespinal lamina
(prsl) medially, without obstructing its path. A similar condition
was inferred for Barrosasaurus38, and a posterior dorsal vertebra
referred as to Trigonosaurus®®, but they can correspond to
accessory laminae rather than to the true sprl, which is usually
seen in more anterior vertebrae?,
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Fig. 2 Punatitan coughlini gen. et sp. nov. (CRILAR-Pv 614). a, b Cervical vertebra (C12) in dorsal a and anterior b views. ¢, d Dorsal vertebra (D6) in right
lateral ¢ and posterior d views. e Dorsal vertebra (D7) in anterior view. f Articulated series of caudal vertebrae (Ca5-Cal7). g Detail of Ca8-Cal2. acpl
anterior centroparapophyseal lamina, apcd| accessory posterior centrodiapophyseal lamina, dp diapophysis, nc neural canal, ns neural spine, pcdl posterior
centrodiapophyseal lamina. pcpl posterior centroparapophyseal lamina, pocdf postzygapophyseal centrodiapophyseal fossa, posdf postzygapophyseal
spinodiapophyseal fossa, posl| postspinal lamina, poz postzygapophysis, pp parapophysis, prsl prespinal lamina, prz prezygapophysis, spdl
spinodiapophyseal lamina, spol spinopostzygapophyseal lamina, sprl spinoprezygapophyseal lamina, tprl interprezygapophyseal lamina. Circled numbers
correspond to apomorphies numbered in the text. Measurements in Supplementary Table 1. Scale bars: 100 mm.

The postzygapophyses are higher than the lateral tip of the
diapophysis in D6-D7, and there is no direct contact between the
postzygapophyses and the diapophyses. Instead, there is a lamina
that starts at the postzygapophysis and projects anterodorsally to
connect to the spdl, closer to the base of the spine than to the base
of the diapophysis. The homology of this lamina is debated*%:41; it
is here interpreted as the podl. This lamina is similar to the podl
observed in dorsal vertebrae of Malawisaurus!, Choconsaurus
(D6%42) and Dreadnoughtus (D6233), and its unusual connection
with the spdl may be related to changes of the neural spine
inclination and the relative position of the postzygapophyses and
diapophyses in middle dorsal vertebrae*!. At this point, this short
podl delimits ventrally a very small postzygapophyseal spinodia-
pophyseal fossa (posdf), which faces laterally (Fig. 2¢). A similar
small fossa is present in the anteriormost dorsal of Rapeto-
saurus*3 and the mid-posterior dorsal of Bonitasaura**. It differs
from the condition seen in Lirainosaurus and Neuquensaurus, in
which the posdf is well developed and faces more posteriorly. The

postzygapophyses in D6 slope dorsally to the neural spine
without a spinopostzygapophyseal lamina (spol), differing from
the condition of Dreadnoughtus’3, Mendozasaurus® and Elalti-
tan3>, which have a sharp lamina. The centropostzygapophyseal
lamina is also well developed, contacting the pcdl near the level of
the neural canal. Both laminae define a large and deep pocdf.
The neural spine is complete in D6 of Punatitan. It is
somewhat inclined posteriorly, with the tip extending as far
posteriorly as the posterior border of the centrum (Fig. 2c). It is
anteroposteriorly narrow and tapers dorsally. In anterior view,
the contour of the tip is rounded, without any expansion, forming
an inverted V-shaped profile, with a slightly sigmoid outline
owing to the presence of aliform processes. The neural spine bears
a prsl and a postspinal lamina (posl). The prsl is sharp in the basal
half of the spine, separating two deep, wide fossae, laterally
delimited by the prominent spdl. The posl is also sharp and
expands over almost all the neural spine, delimiting two deep,
narrow fossae, laterally bordered by the postzygapophyses, and
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the aliform processes (Fig. 2d). The neural spine of D6 in
Punatitan differs from that of most titanosaurians, which have
expanded (e.g., Dreadnoughtus’®) or squared (e.g., Chocon-
saurus*2, Overosaurus®*, Trigonosaurus®®) neural spines.

The still unprepared sacrum of Punatitan is incomplete and
will be described elsewhere. However, it was possible to observe
an ossified supraspinous rod placed over the preserved neural
spines (two or more). This structure is known for Epachtho-
saurus, Malawisaurus, and basal titanosauriforms®.

The holotype of Punatitan also preserves 13 articulated caudal
vertebrae as well as several haemal arches (Fig. 2f). The first
preserved caudal possibly represents Ca5. As in most titanosaur-
ians, these caudal vertebrae have strongly procoelous central. The
centra are dorsoventrally tall, differing from the depressed centra
of saltasaurines?>40. Their anterodorsal border is anteriorly
displaced from the anteroventral one, resulting in an oblique
profile in lateral view. They have slightly concave lateral surfaces,
with transversely thin ventrolateral ridges that delimit a deeply
concave ventral surface that is devoid of fossae. The internal
tissue of the caudal centra is spongy, and the neural arches are
apneumatic.

In the anterior caudal vertebrae, a suture is present above the
base of the transverse processes (Fig. 2g). It forms a conspicuous
ridge, which is not evident in related taxa, although it resembles
the dorsal tuberosity described for Baurutitan®’, and also
CRILAR-Pv 518c from Los Llanos, east La Rioja?3. The neural
arch of each caudal vertebra is situated over the anterior two-
thirds of the centrum, and each is relatively tall with well-
developed prezygapophyses and neural spines. The transverse
processes are sub-triangular to laminar and gradually change
from laterally to posterolaterally projected along the vertebral
column. The prezygapophyses are long and project anterodor-
sally. The postzygapophyses contact the neural spine via a short
spol and are located almost at the midline of the centra. This
condition differs from the much more anteriorly placed
postzygapophyses of the Patagonian Aeolosaurus’. The neural
spine is rectangular in cross-section and anteroposteriorly longer
than transversely wide (including prsl and posl). The spines are
tall in the anterior caudal vertebrae and become shorter and
square in the posterior ones. They also project slightly anteriorly,
especially in Ca8-Cal0 (Fig. 2g). Some degree of anterior
inclination of the neural spines is also reported for Trigono-
saurus®® and Aeolosaurus30, contrasting with the most common
condition amongst titanosaurians, i.e., vertical or posteriorly
oriented neural spines (e.g., Baurutitan*’, Dreadnoughtus®3,
Saltasaurus??). The available haemal arches are opened Y-shaped,
with no expanded pedicels, as are those reported for other derived
titanosaurians*®.

Bravasaurus arrierosorum gen. et Sp. nov.

Etymology. Bravasaurus, referred to the Laguna Brava, a lake
that gives name to the Laguna Brava Provincial Park, and
arrierosorum, refers to the people who crossed the Andes
carrying cattle during the 19th century.

Holotype. CRILAR-Pv 612, right quadrate and quadratojugal,
four cervical, five dorsal, and three caudal vertebrae, few dorsal
ribs, three haemal arches, left humerus, fragmentary ulna,
metacarpal IV, partial left ilium with sacral ribs, right pubis,
partial ischium, left femur, and both fibulae.

Paratype. CRILAR-Pv 613, isolated tooth, right ilium, right
femur, and dorsal ribs.

Horizon and type locality. Sandstone levels 34 m above the
base of the Ciénaga del Rio Huaco Formation (Campanian-
Maastrichtian) at QSD, La Rioja, NW Argentina (Geological
Setting in Supplementary Information).

Diagnosis. A small-sized titanosaurian sauropod characterised
by the following association of features (autapomorphies
marked with an asterisk): (1) quadrate with articular surface
entirely divided by medial sulcus™®; (2) sprl forms conspicuous
step between neural spine and prezygapophyses, in middle
cervical vertebrae*; (3) strongly depressed centra (up to twice
as wide as tall) in posterior dorsal vertebrae; (4) robust dorsal
edge of pneumatic foramen in dorsal centra, forming promi-
nent shelf that extends laterally, beyond the level of the ventral
margin of the centum*; (5) posterior dorsal vertebrae with a
rough posl, ventrally interrupted by middle spinopostzygapo-
physeal laminae (m.spol) that contact the postzygapophyses;
(6) posterior dorsal vertebrae with small ventral spinopostzy-
gapophyseal fossa (v.spof) delimited dorsally by the m.spol
and ventrally by the interpostzygapophyseal lamina (tpol); (7)
humerus with narrow midshaft, with midshaft/proximal width
ratio of 0.36; (8) deltopectoral crest of the humerus expanded
distally; (9) slender fibula (Robustness Index [RI]* = 0.15);
(10) distal condyle of the fibula transversely expanded, more
than twice the midshaft breadth.

Description and comparisons of Bravasaurus. The holotype of
Bravasaurus (Figs. 3 and 4), as well as the referred specimen,
indicates a small-sized titanosaurian, much smaller than Punatitan
(Fig. 1c, d) and other medium-sized sauropods, such as Trigono-
saurus, Overosaurus, and Bonitasaura. Considering that both spe-
cimens could be adults (see below), they would be similar to
Neuquensaurus or Magyarosaurus®. Cranial elements include
partial right quadrate and quadratojugal (Fig. 3a, b). The quadrate is
anteroventrally directed and bears part of the quadrate fossa. The
articular surface for the mandible is transversely elongated. It shows
two condyles that separate from each other by a longitudinal sulcus
(Fig. 3b). The medial condyle is round, whereas the lateral is
anteroposteriorly elongated. Diplodocus®! also has a sulcus but
restricted to the posterior region of the articular surface. Among
titanosaurians, the articular surface of the quadrate has a kidney
shape in Nemegtosaurus and Quaesitosaurus®?, with the sulcus
restricted to its anterior portion. In Bonitasaura®> and Rapeto-
saurus®4, the articular surface is not divided. The anterior process of
the quadratojugal projects ventrally, whereas the posterolateral
process barely extends ventrally, similar to Nemegtosaurus®?, and
much less developed than in Tapuiasaurus®> and Sarmientosaurus®.
Unlike in these latter taxa, the posterolateral process reaches the
articular condyle of the quadrate, which can only be seen behind
(and not below) the quadratojugal in lateral view (Fig. 3a).

The holotype of Bravasaurus preserves cervical, dorsal, and
caudal vertebrae. The neural arches of all elements are completely
fused to their respective centra, which may indicate that it had
reached somatic maturity before death>-38,

We recovered four anterior-middle cervical vertebrae less than
half a meter away from the cranial material. Three of them are
articulated and associated with ribs. They are opisthocoelous,
with sub-cylindrical and relatively elongated centra (Fig. 3c). The
neural arches have low neural spines, as observed in Rincon-
saurus®® and Uberabatitan®®. The diapophyses have posterior
extensions, and the prezygapophyses are placed beyond the
articular condyle of the centrum, as seen in the latter taxa. In
Bravasaurus the postzygodiapophyseal lamina (podl) splits into a
diapophyseal and a zygapophyseal segment, which become
parallel with each other. Previous studies identified this feature
as exclusive of Uberabatitan!32°. In derived titanosaurians, the
neural spines contact the prezygapophyses via the sprl, which is
straight or slightly curved ventrally in lateral view. In the anterior
cervical vertebrae of few titanosaurians (e.g. Saltasaurus2® and
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Fig. 3 Axial elements of Bravasaurus arrierosorum gen. et sp. nov. (CRILAR-Pv 612). a, b Quadrate and quadratojugal with interpretative drawing in right
lateral a, and ventral b views (anterior to the right). ¢ Middle cervical vertebra in right lateral view. d Anterior dorsal vertebra (D2) in posterior view.
e Middle dorsal vertebra (D7) in right lateral view. f-g Posterior dorsal vertebra (D8) in posterior f and left lateral g views. h, i Middle caudal vertebra in left
lateral h and ventral i views (anterior towards left). acpl anterior centroparapophyseal lamina, ap anterior projection, dp diapophysis, itf infratemporal
fenestra, m.spol middle spinopostzygapophyseal lamina, nc neural canal, ns neural spine, pcdl posterior centrodiapophyseal lamina, pcdlf posterior
centrodiapophyseal fossa, pcpl posterior centroparapophyseal lamina, pl pleurocoel, podl postzygodiapophyseal lamina, posdf postzygapophyseal
spinodiapophyseal fossa, posl| postspinal lamina, poz postzygapophysis, pp parapophysis, prz prezygapophysis, q quadrate, gj quadratojugal, spdl
spinodiapophyseal lamina, tpol interpostzygapophyseal lamina, and v.spof ventral spinopostzygapophyseal fossa. Circled numbers correspond to
apomorphies numbered in the text. Measurements in Supplementary Table 2. Scale bars: 10 mm in a, b, and 50 mm in c-i.

Rocasaurus*7), the sprl curves dorsally, forming a step close to the
prezygapophysis. This step disappears beyond the first cervical
vertebrae but remains present in middle cervical vertebrae of
Bravasaurus (C52-C6?; Fig. 3c).

The dorsal vertebrae of Bravasaurus have relatively short,
opisthocoelous centra (Fig. 3d-g). The well-developed pleurocoels
are located just below the dorsal margin of the centrum, which
forms a shelf that extends laterally, beyond the limits of the
centrum, in middle and posterior dorsal vertebrae. Except for
D10, the preserved dorsal centra are strongly dorsoventrally
depressed (Fig. 3d, f), as in Opisthocoelicaudia®®, Alamosaurus®!,
Trigonosaurus®®, and the “Series A” from Brazil’0. The neural
arches of the dorsal vertebrae are tall, but not as tall as in
Punatitan, in which the pedicels are particularly long. The
orientation of the preserved neural spines follows the same
pattern as in other derived titanosaurians, i.e., vertical in anterior
and posterior-most dorsal vertebrae, and inclined (as much as
40°) in middle dorsal vertebrae (e.g., Trigonosaurus?8). The prsl

and posl are robust along their entire length (especially in the
posterior dorsal vertebrae).

The anterior dorsal (D2) shows a low, laterally expanded neural
arch (Fig. 3d). Although poorly preserved anteriorly, this vertebra
exhibits a broad prespinal fossa with a weak prsl. It has rounded,
ventrolaterally inclined postzygapophyses that reach the diapo-
physes though long podl. Medially, the postzygapophyses join
each other by small laminae (tpol?) that intersect at the height of
the dorsal edge of the neural canal. The junction between these
laminae and the dorsal edge of the neural canal forms two small
fossae, as seen in the posterior cervical vertebrae of Overosaurus.
The neural spine is relatively low, and the postspinal fossa is
particularly deep compared with the other dorsal vertebrae. The
posl is weak. On the lateral aspect, the pcdl and the apcdl are the
most conspicuous laminae. The diapophysis is eroded, and
the parapophysis is located on the centrum above the pleurocoel.

The middle dorsal (D7) shows a slightly higher neural arch
than D2, and its neural spine is inclined posteriorly, beyond the

6 COMMUNICATIONS BIOLOGY | (2020)3:622 | https://doi.org/10.1038/s42003-020-01338-w | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01338-w

ARTICLE

Fig. 4 Appendicular elements of Bravasaurus arrierosorum gen. et sp. nov. (CRILAR-Pv 612). a Left humerus in anterior view. b Right pubis in
ventrolateral view. ¢, d Left femur in anterior ¢ and posterior d views. e, f Right fibula in lateral e and medial f views. dc deltopectoral crest, fh femoral head,
ft forth trochanter, gt greater trochanter, Ib lateral bulge, It lateral tuberosity, and vc ventral crest. Circled numbers correspond to apomorphies numbered

in the text. Measurements in Supplementary Table 2. Scale bars: 100 mm.

posterior articular surface of the centrum (Fig. 3e). The
parapophysis is missing, but the orientation of acpl and pcpl
suggests a position slightly below and anterior to the diapophysis.
In D8 and D10, a pair of m.spol interrupts the path of the posl,
ventrally limiting a single, small fossa, here interpreted as v.spof
(Fig. 3f). Its ventral limit corresponds to the tpol. A similar
structure is present in Lirainosaurus>*. The podl is present in all
the posterior dorsal vertebrae (D8-D10).

The anterior and middle caudal vertebrae of Bravasaurus are
procoelous. The centra are as tall dorsoventrally as they are wide
transversely, without any concavities on their ventral surfaces
(Fig. 3h, 1). The anterior margin of the centra does not appear to
be anteroventrally inclined, as occurs in Punatitan, Overosaurus®4,
or Aeolosaurus3. The neural arches are on the anterior portion of
the centra, as in most titanosaurians, and some other titanosauri-
forms (e.g. Wintonotitan®?). The neural spines are laminar and
vertically directed, while the prezygapophyses are short and
anteriorly projected. Such morphology shows many similarities
with Rinconsaurus®® and Muyelensaurus>’, but even more so with
the Brazilian Trigonosaurus®® and Uberabatitan'32°. As for the
centra, Bravasaurus differs from saltasaurines, in which they are
depressed, with a ventral longitudinal hollow (e.g., Saltasaurus®?).
Nor do they possess the ventrolateral ridges (Fig. 3i) present in
other titanosaurians such as Aeolosaurus®0, Overosaurus*4, and
Punatitan. Bravasaurus also differs from the latter taxa by the
orientation of the neural spine in the anterior caudal, which is
vertical rather than anteriorly directed. None of the preserved
caudal vertebrae shows signs of distal expansion in the
prezygapophyses, as seen in Punatitan.

The morphology of the humerus is compatible with that of
many colossosaurian titanosaurians. Its robustness is high (RI =
0.35), as in Opisthocoelicaudia®, Diamantinasaurus®3, and
Savannasaurus®*, much more than in Rinconsaurus®® and
Muyelensaurus®’. The deltopectoral crest is markedly expanded
distally (Fig. 4a), as in Saltasaurus®®, Neuquensaurus®’, Opistho-
coelicaudia®, and Dreadnoughtus®3. All pelvic elements are
represented in the holotype, although only the pubis (Fig. 4b)

allows comparisons. It is proximodistally elongate and less robust
than in Futalognkosaurus3? or Opisthocoelicaudia®®. The distal
end is markedly expanded, as in several derived forms (e.g.,
Rapetosaurus®3, Bonitasaura**, Muyelensaurus®”). The ilium of
the specimen CRILAR-Pv 613 resembles the ilium of other
derived titanosaurians, such as Rapetosaurus and Bonatitan®.
The femur is straight, with the fourth trochanter placed at the
proximal third (Fig. 4c, d), as in Uberabatitan'3, Patagotitan?,
Bonitasaura**, and Futalognkosaurus3?, whereas in Rincon-
saurus®®, Muyelensaurus®’, and Diamantinasaurus®? it is located
in the middle third. The humerus-to-femur length ratio in
Bravasaurus is 0.75, similar to Opisthocoelicaudia, higher than
Neugquensaurus and Saltasaurus, but lower than Patagotitan and
Epachthosaurus. The fibula (Fig. 4e, f) markedly contrasts with
the rest of the appendicular elements, as it is particularly gracile.
Its distal condyle is transversely expanded, as observed in
Epachthosaurus®®.

The known specimens of Bravasaurus indicate a small adult
size. We estimate a body mass of 2.89 tons (2.17-3.61 tons,
considering 25% error), based on a calibrated equation®” (see
“Methods” section). Estimates of <10 tons are few among
titanosaurians. The European Magyarosaurus (750 kg), is inter-
preted as a case of insular dwarfism®%%, The mass of
the European Lirainosaurus was less than two tons®’, whereas
that of the Argentinean Saltasaurus and Neuquensaurus was five
and six tons?, respectively. Among colossosaurians, estimations
for Rinconsaurus indicate just four tons? and at least some other
genera (e.g.,, Overosaurus, Trigonosaurus, Baurutitan), lacking
appendicular bones, are small-sized forms, slightly larger than
Bravasaurus, based on their vertebral size.

Phylogenetic analysis. The result of our phylogenetic analysis nests
Punatitan and Bravasaurus as derived titanosaurians in all most
parsimonious trees. The topology of the strict consensus tree is
similar to that obtained in previous studies using the same dataset®9,
although some taxa, such as Baurutitan and Trigonosaurus show
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Fig. 5 Phylogenetic relationships of Punatitan and Bravasaurus within Lithostrotia. Phylogeny of derived titanosaurians, based on the data set of
Carballido et al. © (see “Methods” section and Supplementary Fig. 4). Time ranges for each terminal were obtained from published data. Colours in South
American taxa are based on their palaeolatitudinal position. Both time ranges and palaeolatitude are given in Supplementary Table 4. 1. Lithostrotia, 2.
Eutitanosauria, 3. Saltasauridae, 4. Colossosauria, 5. Lognkosauria, 6. Rinconsauria, and 7. Aeolosaurini.

noticeable changes in their position (Fig. 5; Supplementary Fig. 4).
The former one is placed as the basalmost colossosaurian, and the
latter is clustered together with Uberabatitan, Gondwanatitan, and
Bravasaurus.

Both Punatitan and Bravasaurus are recovered within
Colossosauria®. Punatitan shows three of the seven ambiguous
synapomorphies that diagnose the newly erected clade®, and
Bravasaurus five. Furthermore, the new Riojan species are placed
within the clade Rinconsauria, along with several titanosaurians
from SW Brazil and Patagonia (Fig. 5). Punatitan is nested with
the Argentinean Aeolosaurus, by sharing the presence of distally
expanded prezygapophyses in posteriormost anterior and middle
caudal vertebrae. Other features of the caudal vertebrae, such as
the dorsal edge of the anterior articular surface of the centrum
ahead of the ventral margin, and the neural spines anteriorly
oriented in the posteriormost anterior and middle caudal
vertebrae, relate the latter taxa with the Brazilian ‘Aeolosaurus’
and Overosaurus, as successive sister taxa. Bravasaurus is
included in a collapsed clade comprising the Brazilian Trigono-
saurus, Uberabatitan, and Gondwanatitan. The clade is supported
by a single synapomorphy: height/width ratio smaller than 0.7 in
the posterior articular surface of cervical centra.

QSD nesting site. We documented three egg-bearing levels in the
lower section of Ciénaga del Rio Huaco Formation at QSD. The
egg clutches and eggshells are included in an interval of flood-
plain deposits in at least three distinct but closely spaced horizons
at 59.2, 62.8 and 63.9 m above the base of the unit (Supplemen-
tary Fig. 1). Fossil-bearing rocks are siltstones and sandy silt-
stones with horizontal lamination and graded and massive
bedding that form thin tabular sheets, extending for tens to
hundreds of metres. The fossiliferous layer is laterally traced over
more than three kilometres, and the egg clutches and eggshells
(CRILAR-Pv 620-621) are exposed regularly all along with it.
Nineteen egg clutches were spotted, one with up to 15 sub-
spherical eggs, arranged in two superposed rows.

The QSD eggs are similar to some Late Cretaceous titanosaur-
ian eggs®®. Among the remarkable diversity of eggs worldwide,
only Auca Mahuevo’® (Argentina), Dholi Dungri’! (India), and
Totesti’? (Romania) preserve titanosaurian embryos. Therefore,
these sites are the most reliable to correlate eggs with their
producers. At QSD, the eggs are cracked, slightly compressed and
flattened by the sedimentary load (Fig. 6a, b). We estimate an egg
size of 130-140 mm, similar to the eggs from Auca Mahuevo’?
and Totesti’2, but slightly smaller than the ones from Dholi
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Fig. 6 Quebrada de Santo Domingo nesting site. a Part of a titanosaurian egg clutch, CRILAR-PV 620/001. b Partial egg and the surrounding matrix. ¢, d
Eggshell micrographs under SEM ¢ and TLM d. Note the straight pore canal with a funnel-shaped aperture in ¢. Scale bars: 100 mm in a, and 0.5 mm in ¢, d.

Dungri’! (160 mm). The eggshells are mono-layered, measuring
1.67 £0.31 mm (n = 30). The thickness is similar to the eggshells
from layers 1-3 of Auca Mahuevo. The eggshells from Totesti
and layer 4 of Auca Mahuevo are slightly thicker, measuring
1.7-1.8 mm, whereas in Dholi Dungri they reach 2.26-2.36 mm.
The QSD shells are composed of densely packed shell units of
calcite crystals, which radiate from nucleation centres (Fig. 6¢, d).
They flare out at 50°, and their lateral margins become parallel at
the inner third of the shell, like in the Auca Mahuevo
specimens’?. Outwards, the units end out in rounded nodes of
0.3-0.4 mm in diameter, forming densely packed ornamentation
that is typical of the titanosaurian clade®®-72. Multiple straight
pore canals run through the eggshell, between the shell units.
They have funnel-shaped external apertures that form round
depressions between the surficial nodes. Among titanosaurian
eggshells, those from Dholi Dungri and Auca Mahuevo (layers
1-3) also have straight pore canals, whereas, in those from
Totesti and the layer 4 of Auca Mahuevo, the pore canals ramify
in a Y-shaped pattern.

As in Auca Mahuevo and other Cretaceous nesting sites, the
QSD specimens are preserved in a floodplain palaeoenviron-
ment. The occurrence of compact accumulations of whole eggs
is consistent with the hypothesis of incubation within the
substrate, as currently do the megapode birds from Australa-
sia®. Along with the egg clutches, hundreds of shells also
appear scattered within the egg-bearing levels. Such an
arrangement could be a consequence of the local transport of
exposed shells during floods, but also the product of local
removal during subsequent nesting episodes. Soft sediment
deformation and dislocation are frequent, and could also have
contributed to their dispersion. These features suggest that each
of the three egg-bearing levels could constitute a time-averaged
assemblage.

Discussion

As far as we know, Punatitan and Bravasaurus represent the first
confirmed occurrence of colossosaurian titanosaurians® in NW
Argentina. For 40 years, Saltasaurus remained as the only well-
represented sauropod for this region. Saltasaurus is closely related
with the Patagonian Rocasaurus and Neuquensaurus, as well as
Yamanasaurus'®, from Ecuador. There is a consensus regarding
the close relationship of these taxa, which constitute the Salt-
asaurinae, a clade of small-sized titanosaurians from the Late
Cretaceous that is also supported by our phylogenetic result. The
phylogenetic data also suggest that saltasaurines may not have a
close relationship with other Late Cretaceous titanosaurians from
South America (Fig. 5). Fragmentary findings in NW
Argentina20-2373 and Chile’# suggested the occurrence of non-
saltasaurine titanosaurians between Patagonia and Bauru, but the
hitherto known evidence was insufficient to conjecture about
their phylogenetic affinities. The new phylogenetic analysis
recovers Punatitan within a clade of typically “aeolosaurine” taxa,
such as Aeolosaurus and Overosaurus, whereas Bravasaurus is
nested in a collapsed clade with Brazilian species. The Patagonian
and Brazilian Aeolosaurus species show a close relationship as
previously supported!!, but recent phylogenetic analyses,
including the one here presented, suggest the Brazilian species
may represent a distinctive genus, other than Aeolosaurus'?13.
Both Riojan species expand the diversity of the clade Rincon-
sauria, and its geographical distribution.

Based on a combination of direct observations and body mass
estimation, Bravasaurus was a small-sized titanosaurian, though
not as small as the dwarf Magyarosaurus or Lirainosaurus.
Although it had probably reached its maximum size, it is much
smaller than Punatitan (Fig. 1c, d). The largest titanosaurians
ever known are placed within colossosaurians®® (e.g., Argenti-
nosaurus, Patagotitan), but others are relatively smaller, such as
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Rinconsaurus, Overosaurus, Trigonosaurus, Baurutitan, and
Gondwanatitan. In this context, the available evidence suggests
that Bravasaurus (~3 tons) is the smallest colossosaurian yet
recorded, followed by the taxa mentioned above. In contrast to
Magyarosaurus®8, Bravasaurus appears to have inhabited inland
territories. By the latest Late Cretaceous, there is an evident
reduction in size in saltasaurids and rinconsaurians across South
America, which may be related to fluctuations in climate’> and
vegetation’® (e.g., grassland), as a result of more temperate con-
ditions and influence of remnant epicontinental seas during the
dynamic aperture of the Atlantic.

The new findings from La Rioja reduce the paleobiogeographic
gap of Late Cretaceous colossosaurians in South America, which
were previously restricted to Patagonia and SW Brazil. Colosso-
sauria is divided into the gigantic Lognkosauria (e.g., Patagotitan,
Futalognkosaurus), plus some related forms, and the Rincon-
sauria. So far, the former clade is mostly limited to Patagonia
(although there are few putative non-rinconsaurians in Brazill4),
whereas Rinconsauria may contain a few Brazilian forms?%%77.
Besides, some taxa recovered within Rinconsauria are often
included within Aeolosaurini, a group of titanosaurians with
unstable interspecific phylogenetic relationships!2. Our results
suggest that Rinconsauria is much more diverse and widely dis-
tributed than previously thought>36:9-37_ The oldest representa-
tives of this clade would be in northern Patagonia, for the earliest
Late Cretaceous. By the Campanian-Maastrichtian, the Rincon-
sauria increased their diversity and spread geographically north-
ward, through La Rioja, to SW Brazil.

Comparison of the QSD eggs with confirmed occurrences of
titanosaurian eggs, such as Auca Mahuevo’? and Totesti’2, allow
their identification. The spherical shape of the eggs, the mono-
stratified shells and the nodular external ornamentation indicate
that the QSD eggs belong to titanosaurian sauropods. More
specific features (e.g., egg size, shell thickness, and straight vertical
pore canals), associate the QSD specimens with the Auca
Mahuevo eggs (layers 1-3). La Rioja Province is already known
for its titanosaurian nesting sites in the Los Llanos region, several
hundred kilometres southeast of QSD7879. There, two localities
preserve Late Cretaceous nesting sites that show distinct
palaeoenvironmental conditions. The eggs from these sites
markedly differ in their shell thicknesses but share the same egg
diameter, around 170 mm, larger than the 140 mm eggs from
QSD. In South America, the only eggs to match that size are those
from Auca Mahuevo and Rio Negro®?, in Patagonia, as well as an
isolated record from Baurudl. Eggs similar in diameter were
attributed to dwarf Cretaceous titanosaurians from Totesti’2. The
QSD eggs are relatively small, so either Bravasaurus or Punatitan
may have been the producers. Further specimens are required to
evaluate each scenario.

Both the oological and sedimentological data suggest a
distinct nesting strategy from other sites of La Rioja. Unlike the
sites in Los Llanos, the titanosaurian eggs of QSD appear in
successive floodplain deposits, as occurs in Auca Mahuevo and
other nesting sites worldwide®. Each of the egg-bearing levels
contains multiple egg accumulations that were not necessarily
laid contemporaneously. The several episodes interspersed in the
sedimentary sequence allow us to infer nesting site philopatry, a
behaviour that seems to have been frequent among Cretaceous
titanosaurians®7278:82.83 This evidence and egg morphological
features advocate a nesting strategy similar to that displayed at
Auca Mahuevo. The QSD site provides further evidence on the
plasticity of Late Cretaceous titanosaurian sauropods regarding
their nesting strategies. Although it is still necessary to better
understand the nesting conditions in other regions, such as Brazil,
it seems increasingly evident that the adaptation to different

nesting strategies could have been crucial in the diversification
and dispersal of titanosaurians across South America.

Methods
Specimens. All material described in this study is housed at the Paleovertebrate
Collection of CRILAR (La Rioja, Argentina).

Taxa and systematic definitions. For the sake of simplicity, we used generic
names when they are monotypic. The only exception corresponds to Aeolosaurus.
The data set already included ‘Aeolosaurus’ maximus, a taxon which has been
recognised as a member of Aeolosaurini®4, although it does not exhibit the diag-
nostic features of the genus (see Martinelli et al. 12 for further discussion) and is not
grouped with the Patagonian species in some analyses!>14. Consequently, we refer
to it as ‘Aeolosaurus’. We followed the systematic definitions provided by Car-
ballido et al.2 and Gonzélez Riga et al.’.

Eggshell micro-characterisation. We selected several eggshell fragments from
QSD for microscopic imaging. Thin sections were carried out in the Petrology Lab
at CRILAR, La Rioja, using the standard protocol for petrographic sectioning. We
cut and mounted six eggshell fragments for their observation under a scanning
electron microscope, following the protocol described in a previous study®>. We
used a LEO 1450VP equipment in the Laboratorio de Microscopia Electronica y
Microanélisis (Universidad Nacional de San Luis, San Luis, Argentina).

Body mass. We estimated the body mass of Bravasaurus using a scaling equation
adjusted for phylogenetic correlation/covariance®”. The equation

log BM = 2.754 - log Cyy,z—1.097

where BM is body mass, and Cyp is the sum of circumferences of the humerus
and femur. It has been used to estimate the body mass of gigantic (e.g., Patago-
titan?), as well as medium-sized titanosaurians (e.g., Rapetosaurus®o).

Phylogenetic analysis. We tested the phylogenetic position of Bravasaurus and
Punatitan amongst 30 derived titanosaurian terminals using a modified version of
the data matrix of Carballido et al.%. This matrix has been used to assess the
phylogenetic position of derived titanosaurians and related taxa (e.g., Sarmiento-
saurus®, Patagotitan?).

Data on several South American titanosaurians was added in order to expand
the representation of their diversity. We added scorings for Gondwanatitan and
Uberabatitan to increase the information on Brazilian taxa. We also included
Aeolosaurus rionegrinus®® and the saltasaurine Rocasaurus, from Patagonia to the
data set.

We added five characters (four from previous studies and one new) and
modified few scorings (Supplementary Tables 4, 5; Supplementary Data 1). This
resulted in a data set of 96 taxa and 421 characters (Phylogenetic Analysis in
Supplementary Information, and Supplementary Data 2). As in previous studies®,
24 characters were considered as ordered (14, 61, 100, 102, 109, 115, 127, 132, 135,
136, 167, 180, 196, 257, 260, 277, 278, 279, 280, 300, 304, 347, 353, 355).

Statistics and reproducibility. We performed a parsimony analysis of the mod-
ified data matrix using TNT v.1.187. We did a heuristic search with 1000 replicates
of Wagner trees and two rounds of tree bisection-reconnection branch swapping.
Branch support was quantified using decay indices (Bremer support values). They
were calculated with TNT v.1.1%7, and are given in the Supplementary Fig. 4. A
TNT file containing raw data for the parsimony analysis is available in the Sup-
plementary Data 2.

Nomenclatural acts. This published work and the nomenclatural acts it contains
have been registered in ZooBank, the proposed online registration system for the
International Code of Zoological Nomenclature (ICZN). The ZooBank LSIDs (Life
Science Identifiers) can be resolved and the associated information viewed through
any standard web browser by appending the LSID to the prefix “http://zoobank.
org/”. The LSIDs for this publication are: urn:lsid:zoobank.org:pub:CDA87D24-
50DA-415A-9FAF-54FB7CF26D73; urn:lsid:zoobank.org:act:18840DCF-33EF-
465D-8F69-0B38BB601BF7; urn:lsid:zoobank.org:act:658B5D64-1432-46BC-B543-
DFF1155EC71E; urn:lsid:zoobank.org:act:336215DA-56 AB-4B69-8059-
C1FFA564D58A; urn:lsid:zoobank.org:act:84B7ECE6-60B4-4324-B983-
CD86C8952E8A.

Reporting summary. Further information on research design and fieldwork is available
in the Nature Research Reporting Summary linked to this article.

Data availability
Additional information, including the dataset analysed in this study, is available in the
Supplementary Information, and Supplementary Data 1, 2 files. CRILAR-Pv 612-614 and
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620-621 are deposited at the Paleovertebrate Collection of CRILAR (Anillaco, La Rioja),
and are available upon request.
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Geological setting

The Andean Precordillera of western Argentina (Supplementary Fig. 1a) preserves
a protracted geological history of convergence and accretion that took place along the
south-western margin of Gondwana since at least the early Palaeozoic (Ramos, 1988).
The present relief of Precordillera results from crustal thickening that occurred mainly
in Neogene times during the Andean orogeny (Jordan et al., 1983). Contractional
deformation resulted in a fold-and-thrust belt that exposed Palaeozoic, Mesozoic and

Cenozoic strata (Bracaccini, 1946).

Since the 1990s, paleontological discoveries have allowed sedimentary units in
the northern Precordillera to be ascribed an Upper Cretaceous age. Main outcrop areas
with published stratigraphic studies are Huaco (Fosdick et al., 2017; Limarino et al.,
2000; Reat and Fosdick, 2018), Puesto La Flecha (Ciccioli et al., 2005), and Rio La
Troya (Tedesco et al., 2007) (Supplementary Fig. 1a). These strata consist of a 100-200
m thick red bed succession deposited in fluvial and lacustrine environments referred to
collectively as the Ciénaga del Rio Huaco Formation (Limarino et al., 2000). The
previously known fossil record includes palynomorphs and freshwater ostracods (Chaia,
1990; Ciccioli et al., 2005; Limarino et al., 2000; Pérez et al., 1993). The microfossil
assemblages allowed an Upper Cretaceous age (Maastrichtian) to be inferred for the
upper part of the unit. Additionally, a radiometric age of 108.1 + 4.4 Ma (Albian) by K-
Ar method in a tuff was determined by Tedesco et al. (2007) in La Troya section
(Supplementary Fig. 1a). More recently Fosdick et al. (2017) and Reat and Fosdick
(2018) established a maximum depositional age of ~96-93 Ma (Cenomanian-Turonian)
based on interpretation of detrital zircon U-Pb ages on samples from the lower part of
the unit at the Huaco area. The combined biostratigraphic and geochronological data
suggest a wide time range for the deposition of the Ciénaga del Rio Huaco Formation
within the Late Cretaceous and highlight the lack of more precise absolute ages to
establish an accurate chronostratigraphic framework for the unit.

Outcrops of Ciénaga del Rio Huaco Formation were recognized in subsequent
studies at Quebrada Santo Domingo (QSD), a locality of the Andean Precordillera of La
Rioja province (Supplementary Fig. 1a). For this area, Arcucci et al. (2005) and
Hechenleitner et al. (2018) reported fragmentary caudal remains of a titanosaurian
sauropod collected by the geologists Tim Coughlin and Rod Holcombe (Coughlin,



2000) and ascribed the fossil-bearing rocks to the Ciénaga del Rio Huaco Formation. A
stratigraphic description and map of the unit were recently offered by Limarino et al.
(2016).

At QSD area, the Ciénaga del Rio Huaco Formation consists of a sandy-silty
succession with scarce conglomerates (Supplementary Fig. 1b). It disconformably
overlies the Upper Triassic Santo Domingo Formation and supports, in apparent
transition, the Eocene Puesto La Flecha Formation (Supplementary Fig. 1c). In our
stratigraphic inspections, we note that sandstone sheets interleaved with siltstones and
nodular gypsum of the upper part of Ciénaga del Rio Huaco Formation are gradually
replaced upwards by laminated siltstones and fine sandstones and higher up to fine to
medium sandstones that characterize the lower Puesto La Flecha Formation. We do not
discard that this transition could be stratigraphically representative of the Puesto La
Flecha Formation as it was considered by Fosdick et al. (2017) and Reat and Fosdick
(2018). In this scenario, Punatitan would belong to the basal portion of the Puesto La
Flecha Formation. For the lower part of this unit Reat and Fosdick (2018) determined a
~65 Ma maximum depositional age. According to the interpretation of the authors, this
transition can represent a low accommodation depocentre with lacustrine sedimentation
during Palaeogene times containing numerous disconformities. To avoid confusion, we
adopt the name of Ciénaga del Rio Huaco Formation for the stratigraphic interval
containing dinosaur remains. We place the limit between both units 250 m above the
base of Ciénaga del Rio Huaco Formation which is the thickness ascribed for this unit at

Quebrada Santo Domingo (Limarino et al., 2016).

Here we divided the Ciénaga del Rio Huaco Formation strata at QSD into lower,

middle and upper sections.

Lower section. The lower section is a 103 m thick interval of moderate reddish-brown
colour formed by regular intercalations of sandstone bodies interleaved between
siltstones (Supplementary Fig. 1b, c). Conglomeratic facies are infrequent and mostly
present in the basal section in close association with sandy facies. They occur as the
infill of narrow and relatively deep channels and are interpreted as bottom channel fills
and gravelly bedforms. The sandstones commonly show well-developed internal
structure characterized by trough and planar cross-bedding, although structureless

sandstones also occur. Basal contacts are mostly defined by low angle erosive scours.



Sandstones represent various migrating bedforms deposited in lower, transitional and
upper flow regimes. They are present mainly as channel fills and proximal and distal
overbank deposits (levee and crevasse splay deposits). Siltstones occur in thick intervals
that host thin intercalations of sandstone sheets. They show massive or horizontal
lamination structure. These fine-grained rocks represent proximal overbank deposits
accumulated in floodplains, from suspension load. In association with the overbank
fines, some thin tabular layers of limestone occur. The presence of limestone is here
interpreted as the resultant of chemically or biochemically induced precipitation of
carbonates in small saline ephemeral lakes or ponds. Pedogenetic alterations were also
recognized in some horizons of the overbank fine deposits mainly present in the form of
root marks, as well as calcite and silica nodules. Facies and architectural elements
described here suggest a paleoenvironment characterized by the development of fine-

grained, mixed-load meandering rivers (Bridge, 2003; Miall, 1996).

Middle section. The middle section is a 24 m thick interval formed mostly by trough
cross-bedded coarse sandstones that can be easily recognized by its conspicuous light
greyish color (Supplementary Fig. 1b, ¢). The unit shows variations including moderate
to poorly sorted, coarse, very coarse and some clast-supported pebble conglomerate
lenses. They form 2-5 m thick channelized bodies with scoured bases, and sparse pebble
basal lags that fine upward into well-developed, large-scale, trough-cross bedded,
coarse- and medium-grained sandstones. The facies are interpreted as bottom channel
fills and sandy bedforms. This interval represents deposits of a sand-bed, braided fluvial
system with high energy transport (Allen, 1983; Miall, 1996).

Upper section. The upper section is a 116 m thick moderate red coloured silty-sandy
interval (Supplementary Fig. 1b, c). The lower part consists of tabular beds of regularly
to well-sorted medium- to fine-grained sandstones, usually graded, massive or planar
cross-bedded, interleaved with massive and fine laminated siltstones and mudstones,
including sparse nodular gypsum and thin beds of marls. The lower thick sandstones
represent deposits of sheet-type flood surges. High evaporative rates produced chemical
precipitation of evaporite minerals. Upsection, deposits are gradually replaced by finely
laminated siltstone and mudstone with sparse intercalations of thin sheets of fine
sandstones. Fine sediments settled during relatively prolonged periods in temporary
water bodies, which were occasionally interrupted by the invasion of flood surges that

resulted in spreading of fine sand blankets. The lower and upper parts of this section
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represent respectively sand to mudflats of the margins and floor of an ephemeral lake
system (Tunbridge, 1984).
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Supplementary Fig. 1. Geographical and geological settings of the Ciénaga del Rio Huaco
Formation at QSD. a Relative location of the studied area in northern Precordillera, La Rioja
province, NW Argentina. It shows the location of regions with stratigraphic studies: Huaco,
Puesto La Flecha and Rio La Troya. b Stratigraphic section with an indication of fossil-bearing
levels. ¢ Panoramic photograph of QSD area showing field relations of Ciénaga del Rio Huaco
Formation. The column is in metres. LS: lower section; MS: middle section; US: upper section.
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Taphonomy

Partial skeletons and egg clutches are found in different horizons of the Ciénaga
del Rio Huaco Formation at QSD. They differ in their depositional modes and

preservation.

Bravasaurus. The remains of Bravasaurus, both the holotype and the paratype, consist
of partial skeletons found at the lower section of the Ciénaga del Rio Huaco Formation,
approximately at the same horizon, 34 m above the base of the unit (Supplementary Fig.
1b), but separated laterally over a distance of 240 m. In both cases, they occur in 0.5 to
2 m thick beds of moderately to poorly sorted medium-grained sandstone, mostly
structureless or with diffuse horizontal and cross-beddings. These features and
association with floodplain deposits are interpreted as characteristic of proximal
crevasse splay deposits (Burns et al., 2017). Bones were found semi-articulated with no
evidence of abrasion and weathering. Long bones in this layer tend to have their long
axes oriented NW-SE (Supplementary Fig. 2). These features suggest fortuitous
preservation of dead bodies with a short exposure and only partial disarticulation. The
remains had minimal transport and were quickly buried during events with a high rate
of deposition such as channel overbanks that produce crevasse splays (Behrensmeyer
and Hook, 1992).

Punatitan. The remains of Punatitan consist of a partial skeleton found at the upper
section of the Ciénaga del Rio Huaco Formation, 170 m above the base of the unit
(Supplementary Fig. 1b). The deposit that contains the fossils is a 2.2 m thick graded
bed of medium- to fine-grained sandstone. Its basal part shows a horizontal and planar
cross-bedded arrangement, whereas the upper portion is structureless. It is interpreted as
a sandy lobe deposit, part of the marginal sand flat of an ephemeral lake system (Hubert
and Hyde, 1982). The remains are semi-articulated, closely spaced and partly stacked on
each other with no evidence of abrasion. Long elements of the skeleton are disposed of
with a preferred NE-SW orientation (Supplementary Fig. 3). The good preservation and
sedimentological features suggest rapid deposition of sand and quick burial, preventing
higher degrees of disaggregation and dispersion (Behrensmeyer and Hook, 1992).
Favourable conditions are created during flash flood events that spread out in sheet
flows, decelerating and promoting high deposition rates. The sheet-like progradational

mode of deposition probably favoured minimal transport and staking of the remains.



Titanosaurian eggs. Eggshells and egg clutches were found in at least three distinct but
closely spaced horizons in a 5 m thick interval located 59-64 m above the base of the
Ciénaga del Rio Huaco Formation (Supplementary Fig. 1b). This interval can be traced
laterally for more than 3 km. The deposits consist of laminated siltstones and mudstones
commonly in mixture with very fine sand-sized grains. Lamination is recognized by
subtle centimetre-scale variations in grain size, between silt and clay, and by different
proportions of fine sand. They represent both rapid and gradual deposition from a
suspensive load of low-energy flow during flooding events in a floodplain setting. The
bedding was caused by variations in flood energy during deposition and different
flooding events. Particularly, eggs in clutches occur closely packed and show one- or
two-row arrangement in cross-section. The latter occupy a vertical space within the
strata of ~15-30 cm, which means that they are contained by various flooding events,
each one typically a few centimetres thick. Since it is unlikely that spherical, low-
density objects, stacked on a flatbed (the floodplain), may be able to stay grouped in situ
during and between several flood events, titanosaurians must have adopted a burial
nesting strategy (Fowler and Hall, 2011; Hechenleitner et al., 2015; Vila et al., 2010a,
2010b) that would have prevented the collapse and transport of eggs. The low-energy
floodplain depositional setting and the proximity to water bodies would be preferred
places for nesting.
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Supplementary Fig. 2. Outcrop map of the Bravasaurus gen. nov. holotype quarry.
Distances between skeletal elements and their respective orientations were restored to their
original horizontal position, as the bearing strata dip c. 30°. Dotted lines represent undetermined
bone fragments.
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Supplementary Fig. 3. Outcrop map of the Punatitan gen. nov. holotype quarry. Distances
between skeletal elements and their orientations are shown as observed in the field (not restored
to horizontal). Dotted lines represent undetermined bone fragments.
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Measurements

Measurements made on the holotype specimens of Punatitan and Bravasaurus are
listed in Supplementary Table 1 and Supplementary Table 2, respectively.

Supplementary Table 1. Representative elements of Punatitan gen. nov.
Measurements are in cm. Asterisks indicate dubious data because the exact limits of one
or both landmarks are difficult to recognise.

Cervical vertebra

CRILAR-Pv 614/ 1
Centrum height 8.5
Centrum width 21.5

Distance between prezygapophyses 6.5

Dorsal vertebrae

CRILAR-Pv 614/ 2 3
Centrum length 20.7 -
Height of the posterior articular

surface 16.5 -
Width of the posterior articular surface 154 -
Total height 45 -

Height of the neural spine (above the
medial border of the

postzygapophyses) 175 -

Caudal vertebrae

CRILAR-Pv 614/ 4 5 6 7 8 9 10

Centrum length (excluding posterior

articular surface) - 9 8 8 8 85 85

Height of the posterior articular

surface 13 12 11 85 75 75 75

Total height - - 235 245 225 18 165

Height of the neural spine (above the
medial border of the

postzygapophyses) - - 9 125 12 10 7
CRILAR-Pv 614/ 11 12 13 14 15 16
Centrum length (excluding posterior

articular surface) 9 85 85 8 8 -
Height of the posterior articular

surface 7 7 65 65 6 -

Total height 135 13* 135 135* - -

Height of the neural spine (above the
medial border of the
postzygapophyses) 6.5 55* - - - -



Supplementary Table 2. Representative elements of Bravasaurus gen. nov.
Measurements are in cm. Asterisks indicate dubious data because the exact limits of one
or both landmarks are difficult to recognise.

Cervical vertebrae

CRILAR-Pv 612/ 1 2 3 4

Centrum length 155 16.5 19 21
Centrum height 35 4.5 4.7 55
Centrum width 4 4.5 4.7 55

Total height 10 ? 12.5 13.5
Distance between

prezygapophyses 5 ? ? ?

Dorsal vertebrae

CRILAR-Pv 612/ 5 6 7 8 9
Centrum length - 13.5% - - -
Height of the posterior

articular surface 75 75 8.5 10.7 9
Width of the posterior

articular surface 9.5 10 13 115 10.7
Total height 20.5* 225 24.5* 26.5 25.5
Height of the neural spine

(above the medial border of

the postzygapophyses) 6.5* 8.7 12* 115 115
Caudal vertebrae

CRILAR-Pv 612/ 10 11 12

Centrum length 9 8.3 8

Height of the posterior

articular surface 5* - 35

Width of the posterior

articular surface 7* 5 4

Total height 12.5* - 7.5

Height of the neural spine

(above the medial border of

the postzygapophyses) 3.3* - 2.2

Forelimb

Humerus CRILAR-Pv 612/ 13

Length 53

Maximum proximal width 24

Maximum distal width 18.5

Minimum section perimeter  24.5

Metacarpal CRILAR-Pv 612/ 14

Length 19
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Maximum proximal width 8

Maximum distal width 5.2

Pelvic girdle

Pubis CRILAR-Pv 612/ 15

Length 47.5

Hind limb

Femur CRILAR-Pv 612/ 16

Length 68

Maximum proximal width 23
Maximum distal width 22*
Minimum section perimeter 31

Fibulae CRILAR-Pv 612 17 18
Length - 48.7
Maximum proximal width - 10
Maximum distal width 8.2 8.3
Minimum section perimeter 11.5 12
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Titanosauria in South America

In the Cretaceous Period, the titanosaurian clade reached a worldwide distribution
(Cerda et al., 2012; Faria et al., 2015; Gorscak and O‘Connor, 2016). Particularly in
South America, there are 51 valid species, of which nearly 75% were found in the
Argentinean Patagonia (Supplementary Table 3).

Supplementary Table 3. Valid species of Cretaceous Titanosauria in South
America, by regions.

NW Argentina + Chile  Saltasaurus loricatus
Atacamatitan chilensis

Punatitan coughlini gen. et sp. nov.
Bravasaurus arrierosorum gen. et
Sp. Nov.

Brazil Maxakalisaurus topai
'Aeolosaurus' maximus
Uberabatitan ribeiroi
Austroposeidon magnificus
Trigonosaurus pricei
Tapuiasaurus macedoi
Baurutitan britoi
Gondwanatitan faustoi
Brasilotitan nemophagus
Adamantisaurus mezzalirai

Patagonia Puertasaurus reuili
Argyrosaurus superbus
Aeolosaurus colhuehuapensis
Epachthosaurus sciuttoi
Drusilasaura deseadensis
Dreadnoughtus schrani
Elaltitan lilloi
Sarmientosaurus musacchioi
Nullotitan glaciaris
Antarctosaurus wichmannianus
Andesaurus delgadoi
Aeolosaurus rionegrinus
Argentinosaurus huinculensis
Barrosasaurus casamiquelai
Bonitasaura salgadoi
Bonatitan reigi
Futalognkosaurus dukei
Malarguesaurus florenciae
Mendozasaurus neguyelap
Quetecsaurus rusconii
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Ecuador

Notocolossus gonzalezparejasi
Muyelensaurus pecheni
Rinconsaurus caudamirus
Narambuenatitan palomoi
Neuquensaurus australis
Overosaurus paradasorum
Panamericansaurus schroederi
Pellegrinisaurus powelli
Petrobrasaurus puestohernandezi
Pitekunsaurus macayai
Rocasaurus muniozi
Traukutitan eocaudata
Baalsaurus mansillai
Kaijutitan maui

Choconsaurus baileywillisi
Laplatasaurus araukanicus

Yamanasaurus lojaensis
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Anatomical characters

Taxa added to the analysis. We added six taxa to the dataset provided by Carballido et
al. (2020), including Rocasaurus (Salgado and Azpilicueta, 2000), Aeolosaurus
rionegrinus (Powell, 2003), Gondwanatitan (Kellner and de Azevedo, 1999),
Uberabatitan (Salgado and Carvalho, 2008; Silva et al., 2019), and Punatitan and

Bravasaurus . Personal observations were also made on all these taxa.

Characters. We added just five characters to the original data matrix of 417 characters
provided by Carballido et al. (2020). Two of them are from Salgado et al. (1997), one
from Salgado et al. (2014), one from Santucci and Arruda-Campos (2011), and one is
new. In addition, a few characters were slightly modified (Supplementary Table 4).
Some scorings were also changed according to new observations and published data
(Supplementary Data 1). We introduced 169 modifications to the dataset provided by
Carballido et al. (2020), 80% of which were previously missing data. From 33 changes
to the original scorings, 17 are due to modifications in the characters' definitions or their
states (e.g., character 300). Among the other 16, three are changes to ambiguous states
(e.g., Overosaurus, character 178), one to "not-applicable” and another to missing data.

The remaining 11 modifications are listed in Supplementary Table 5.

Supplementary Table 4. Characters added or modified.

Character Modifications

Ch. 141 One state added (state 2; see below).

Ch. 177 Modified definition (now it also
considers the middle dorsal vertebrae).

Ch. 233 One state added (state 2; see below).

Ch. 250 One state added (state 3; see below)

Ch. 251 One state added (state 2; see below).

Ch. 254 One state added (state 2; see below).

Ch. 300 One state added (split state 1 into states
1 and 2; see below)

Ch. 418 Character added from Salgado et al.,
1997.

Ch. 419 Character added from Salgado et al.,
1997.

Ch. 420 Character added from Salgado et al.,
2014.

Ch. 421 New Character.

Ch. 422 New Character.

14



Supplementary Table 5. Specific modifications.

Epachthosaurus 164

Overosaurus

Muyelensaurus

Rinconsaurus

Trigonosaurus

Baurutitan

122
223

159
175

126

128

175

196

237

257

0—1

1-2
1-0

1-3
0—1

2—3

1—-0

0—1

1—-0

2—1

2—1

Epachthosaurus has prespinal laminae in its dorsal
vertebrae.

Modified based on Coria et al. (2013).

Modified based on Coria et al. (2013). The transverse
processes can be traced until caudal 16 o 17.

Modified based on Calvo et al., 2007a

The preserved anterior dorsal is not complete so that
interpretations could be controversial (Calvo et al.,
2007a). We interpret its condition as state 1.

Modified based on Calvo and Gonzélez Riga 2003.
No evident pleurocoel is observed, but there is a deep
fossa as observed in related forms.

Epipophyses are not well developed as in saltasaurids
(Campos et al., 2005).

Modified after personal photos/observations of the
specimens. Also, see Campos et al. (2005).

Dorsal vertebrae 6-10 do not show aliform processes.
A subtle expansion on one side of the neural spine in
D5 might look like an aliform process, but it does not
seem entirely consistent.

The neural spine is slightly wider than long, but not as
much as 1.5 times (Kellner et al., 2005).
The neural spines are vertical (Kellner et al., 2005).
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Phylogenetic analysis

We performed a maximum parsimony analysis of a modified version of the dataset of
Carballido et al. (2020; see below) using TNT v. 1.1 (Goloboff et al., 2008). After doing
a heuristic search with 1,000 replicates of Wagner trees and the first round of tree
bisection-reconnection (TBR) branch swapping, we obtained 100 most parsimonious
trees (MPTs). With another round of TBR the number of MPTs increased up to
150,000, once the memory overflowed. A strict consensus tree of 1480 steps

(consistency index, 0.353; retention index, 0.724) is shown in Supplementary Fig. 4.

The present phylogenetic analysis recovers almost the same topology as previous
studies (Canudo et al., 2018; Carballido et al., 2020, 2017; Supplementary Fig. 4).
However, some inconsistencies about Late Cretaceous sauropods deserve a more
detailed discussion. The main variations correspond to the affinities of Andesaurus with
probably more basal taxa, the more basal position of Malawisaurus, outside
Eutitanosauria, the colossosaurian affinities of Baurutitan, and the inclusion of
Gondwanatitan, Aeolosaurus rionegrinus, Uberabatitan, Trigonosaurus, Punatitan and

Bravasaurus as members of Rinconsauria and Aeolosaurini.

In the present analysis, Andesaurus is recovered as part of a large polytomy that
includes brachiosaurids, euhelopodids and sister taxa of Lithostrotia, among others. A
discrepancy regarding the position of Andesaurus could be linked to the presence of
some taxa that have been previously recognized as unstable, such as Padillasaurus,
Malarguesaurus, Lusotitan or Rayososaurus (Carballido et al., 2020, 2017). However,

its affinities with other somphospondylans are beyond the scope of this paper.

Malawisaurus is recovered from the analysis as more basal than Epachthosaurus
and, thus, outside Eutitanosauria. Such position contrasts with that obtained by
Carballido et al. (2017) and Canudo et al. (2018). However, it is consistent with other
analyses based on different data sets (Gonzélez Riga et al., 2018; Salgado et al., 2014;
Tykoski and Fiorillo, 2016).

The Brazilian titanosaurian Baurutitan has been included in a few phylogenetic
analyses. Martinez et al. (2016) recovered its position within a major polytomy that
consists of the saltasaurines Saltasaurus, Rocasaurus and Neuquensaurus, some basal

titanosaurs, such as Epachthosaurus, and few other Brazilian forms, such as
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Tapuiasaurus, Gondwanatitan and Trigonosaurus, among others. Based on a modified
version of the latter data set, Silva et al. (2019) recognised Baurutitan as a non-
saltasaurine titanosaurian, more closely related to Rapetosaurus. It is worth mentioning
that their analysis only includes one member of Colossosauria: Bonitasaura. The study
conducted by Bandeira et al. (2016) posits Baurutitan outside Titanosauria, although
this taxon has evident titanosaurian affinities, such as the presence of strongly
procoelous caudal centra (a synapomorphy of Titanosauria). Using a different data
matrix, Carballido et al. (2017), and subsequent analyses derived from it (Canudo et al.,
2018; Carballido et al., 2020), recovered Baurutitan as the sister taxon of a major
polytomy that includes South American saltasaurines and related forms (e.g.
Opisthocoelicaudia, Nemegtosaurus, Alamosaurus) plus Rapetosaurus + Isisaurus +
Tapuiasaurus. The polytomy is apparently resolved by pruning Nemegtosaurus
(Carballido et al., 2017), although, here, the removal of this taxon does not resolve the
polytomy (see below; Supplementary Fig. 4). Baurutitan is here recovered as the most
basal member of Colossosauria.

Despite the incorporation of Rocasaurus into the analysis, the relations of the
saltasaurine titanosaurians remain obscure. In our phylogenetic result, they are
recovered separately from a clade formed by Rapetosaurus (Madagascar), Isisaurus
(India) and Tapuiasaurus (South America). As stated above, the same topology was
obtained in a previous study after pruning Nemegtosaurus from the strict consensus tree
(Carballido et al., 2017).

The main change compared to previous studies is the grouping of several Late
Cretaceous titanosaurians from Bauru, plus Bravasaurus and Punatitan, within
Rinconsauria. The clade that includes Bonitasaura + (Notocolossus + Lognkosauria)
remains invariable with respect to the results obtained by Carballido et al. (2020, 2017).
In contrast, the clade Rinconsauria has undergone several modifications. This clade
originally included Rinconsaurus and Muyelensaurus (Calvo et al., 2007a; Salgado et
al., 2014). It was further supported by Tykoski and Fiorillo (2016) and Gonzélez Riga et
al. (2018), who also recognised similarities with Aeolosaurus rionegrinus and
Gondwanatitan. However, the latter taxa were not included in the data matrix provided
by Carballido et al. (2020, 2017). Instead, their analyses recover the Patagonian
Overosaurus and the Brazilian ‘deolosaurus’ as members of Rinconsauria. Although

the present data provide strong information about the invalidity of the Brazilian
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‘Aeolosaurus’ genus, it can still be considered an Acolosaurini (Martinelli et al., 2011).
The results of the present study group Rinconsaurus and Muyelensaurus as successive,
sister taxa of the clade Aeolosaurini. This clade is divided into two smaller clades. The
first one includes Overosaurus + (‘Aeolosaurus’ + (Aeolosaurus + Punatitan)), whereas
the other corresponds to an unresolved polytomy between Gondwanatitan,

Trigonosaurus, Uberabatitan and Bravasaurus.

The incorporation of Trigonosaurus within Rinconsauria and the position of
Bravasaurus and Punatitan within two independent but closely related clades are worth
mentioning. As well as Uberabatitan, Trigonosaurus has been included in a few data
matrices (Bandeira et al., 2016; Carballido et al., 2017; Silva et al., 2019). Bandeira et
al. (2016) did not find direct affinities between Trigonosaurus and other Brazilian taxa,
such as Uberabatitan or ‘Aeolosaurus’ maximus. Based on a data matrix modified from
Martinez et al. (2016) Silva et al. (2019) recovered Trigonosaurus as a non-saltasaurine
titanosaur, related with the saltasaurines plus Epachthosaurus and Bonitasaura. Using a
different data set, Carballido et al. (2020, 2017) excluded Trigonosaurus from their
reduced consensus tree after finding it unstable. Here, Bravasaurus and Punatitan (from
La Rioja), Overosaurus and Aeolosaurus (from Patagonia), as well as Trigonosaurus,
Gondwanatitan, ‘Aeolosaurus’, and Uberabatitan (from SW Brazil) are recovered as
members of Aeolosaurini (Franco-Rosas et al., 2004). Bravasaurus shares several
features with Uberabatitan (Salgado and Carvalho, 2008; Silva et al., 2019). The
cervical, dorsal and caudal vertebrae of both taxa also show many similarities with those
of Trigonosaurus, which is reflected in their position (although unresolved) in the strict
consensus tree (Supplementary Fig. 4). Punatitan exhibits most of the typical features
that allow recognition of aeolosaurine titanosaurians, e.g., caudal vertebrae with
anteriorly oriented neural arches. In fact, the current analysis suggests that Punatitan
could have been more related to Aeolosaurus rionegrinus than the Brazilian
‘Aeolosaurus’. On the other hand, although Bravasaurus, Uberabatitan and
Trigonosaurus do not have typically aeolosaurine caudals, they are recovered in a
polytomy with Gondwanatitan and, thus, they are also members of the clade

Aeolosaurini.
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'Ruyangosaurus_giganteus'
"Euhelopus zdanskyi'
'Erketu ellisoni’
'Phuwiangosaurus sirindhornae’
'Qiaowanlong kangxii'
'Ligabuesaurus lenzai'
'Malawisaurus dixeyi'
'Epachthosaurus sciuttoi’
Dreadnoughtus
'Rapetosaurus krausei'

_EE 'Isisaurus colberti'

'Tapuiasaurus macedoi’
'Neugquensaurus australis'
'Saltasaurus loricatus'
'Rocasaurus muniozi’
'Opisthocoelicaudia skarzynskii
'Nemegtosaurus mongoliensis’
'Alamosaurus sanjuanensis'
— 'Baurutitan britei'
'Bonitasaura salgadoi’
"Notocolossus gonzalezparejasi
'Mendozasaurus nequyelap'
'Quetecsaurus rusconii'
'Futalognkosaurus dukei'
'Puertasaurus reuili'
'Drusilasaura deseadensis'
'Patagotitan mayorum'
'Argentinosaurus hunculensis'
"Rinconsaurus caudamirus' B
"Muyelensaurus pecheni’
'Overosaurus_paradasorum'
'Reclosaurus maximus’'
'Aeclosihrus_rioneqrinus'
Punatitan
'Gondwanatitan faustoi'
Bravasaurus
'Trigonosaurus pricei’
'Uberabatitan ribeiroi’

Ilhlil'l

S

i

Supplementary Fig. 4. Strict consensus tree. From 150,000 most parsimonious trees, of 1480
steps. Bremer supports higher than one are shown on their respective branches.
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Latitudinal position of South American taxa

Our phylogenetic analysis recovers 30 derived titanosaurians within Lithostrotia; 25 of
them were found in different Cretaceous basins across South America. The latitudinal
gradient is one of the most obvious patterns in biogeography (e.g., Pianka, 1966; Sax,
2001). We calculated the palaeogeographic coordinates for each South American taxon
using the software GPlates (Miiller et al., 2018; Seton et al., 2012) (Supplementary
Table 6). We translated this data into a colour gradient, which we used in the
phylogenetic tree in Fig. 4. The colour coding enhances the visualization of latitudinal
differences between clades of derived titanosaurians. Then it is easy to observe, for
example, that Lognkosauria is a strictly Patagonian clade. In contrast, the small clade of
aeolosaurines that contains Bravasaurus seems to be restricted to lower latitudes,
whereas the clade in which Punatitan is nested comprises a much larger latitudinal
interval, between Patagonia and SW Brazil.

Supplementary Table 6. Latitude, palaeolatitude, location, and age of South
American Lithostrotia included in the phylogenetic analysis.

Latitu Palaeo Max. Min.
de lat. age age
Taxon (deg.) (deg.) Basin (My) (My) Reference
Tapuiasaurus -16.7 -21.1  Sanfranciscana 125.0 113.0 Zaher et al., 2011
Uberabatitan -19.6 -22.8 Bauru 72.1 66.0 Salgado and Carvalho, 2008
Trigonosaurus  -19.7 -23.0 Bauru 72.1 66.0 (Campos etal., 2005)
Baurutitan -19.7 -23.0 Bauru 72.1 66.0 Kellneretal., 2005
Gondwanatitan -22.1 -25.4  Bauru 83.5 66.0 Kellner and de Azevedo, 1999
Aeolosaurus' -23.0 -26.3 Bauru 83.5 66.0 Santucci and Arruda-Campos, 2011
Saltasaurus -26.1 -28.8 Salta Group 70.6 66.0 Bonaparte and Powell, 1980
Punatitan -286 -316 ? 75.8 66.0 This work
Bravasaurus -286 -316 ? 75.8 66.0 Thiswork
Quetecsaurus -34.1 -38.5 Neuquén 93.5 89.3 Gonzélez Riga and Ortiz David,
2014
Mendozasaurus -37.1 -41.3  Neuquén 89.3 85.8 Gonzélez Riga, 2003
Notocolossus -37.1 -41.0 Neuquén 89.3 83.5 Gonzalez Riga et al., 2016
Muyelensaurus -37.4 -41.3  Neuquén 89.3 83.5 Calvoetal., 2007a
Rinconsaurus -37.4  -41.2  Neuquén 86.3 83.6 Calvoand Gonzélez Riga, 2003
Overosaurus -37.6  -41.4  Neuquén 86.3 83.6 Coriaetal., 2013
Rocasaurus -39.3 -42.4  Neuquén 83.5 66.0 Salgado and Azpilicueta, 2000
Aeolosaurus -38.8 -41.9 Neuquén 83.6 66.0 Powell, 2003
Bonitasaura -39.6 -43.4  Neuquén 86.3 83.6 Apesteguia, 2004
Futalognkosaurus-38.5 -42.9  Neuquén 93,5 85.8 Calvoetal., 2007b
Neuquensaurus -39.0 -42.8 Neuquén 86.3 83.6 Powell, 1992
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Argentinosaurus
Patagotitan

Epachthosaurus
Drusilasaura
Puertasaurus
Dreadnoughtus

-38.9
-43.8

-45.3
-46.7
-49.9
-49.9

-43.5
-48.8

-49.8
-51.2
-52.9
-52.9

Neuquén 99.6 89.8
Somuncura- 105.3 99.6
Cafiadén
Asfalto

Golfo San Jorge 99.6 89.3
Golfo San Jorge99.6 89.3
Austral 83.6 66.0
Auwustral 83.6 66.0

Bonaparte and Coria, 1993
Carballido et al., 2017

Powell, 1990
Navarrete et al., 2011
Novas et al., 2005
Lacovara et al., 2014
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Character list

Skull

1.

Posterolateral processes of premaxilla and lateral processes of maxilla, shape: without
midline contact (0); with midline contact forming marked narial depression,
subnarial foramen not visible laterally (1). (Wilson, 2002: character 1).

. Premaxillary anterior margin shape: without step (0); with marked step but short step

(1); with marked and long step (2). (Modified from Wilson, 2002: character 2).

. Premaxila, ascending process shape in lateral view: convex (0); concave, with a large

dorsal projection (1); sub-rectilinear and directed posterodorsally (2). (Whitlock,
2011: character 3).

. Premaxilla, external surface: without anteroventrally orientated vascular grooves

originating from an opening in the maxillary contact (0); vascular grooves present
(1). (Whitlock, 2011: character 2).

. Premaxilla-maxilla suture, shape: planar (0); twisted along its length, giving the

contact a sinuous appearance in lateral view (1). (D’Emic, 2012: character 2).

Premaxilla, small finger-like, vertically oriented premaxillary process near
anteromedial corner of external naris: (0) absent; (1) present. (D’Emic, 2012:
character 3).

. Maxillary border of external naris, length: short, making up much less than onefourth

narial perimeter (0); long, making up more than one-third narial perimeter (1).
(Wilson, 2002: character 3).

. Maxilla, foramen anterior to the preantorbital fenestra: absent (0); present (1). (Zaher

etal., 2011).

. Preanteorbital fenestra: absent (0); present, being wide and laterally opened (1).

(Modified from Wilson, 2002: character 4).

10. Subnarial foramen and anterior maxillary foramen, position: well distanced from

one another (0); separated by narrow bony isthmus (1). (Wilson, 2002: character 5).

11. Antorobital fenestra: much shorter than orbital maximum diameter, less than 85% of

orbit (0); subequal to orbital maximum diameter, greater than 85% orbit (1).
(Modified from Wilson, 2002: character 6 following to Whitlock, 2011: character
13).

12. Antorbital fenestra, shape of dorsal margin: straight or convex (0); concave (1).

(Whitlock, 2011: character 14).

13. Antorbital fossa: present (0); absent (1). (Wilson, 2002: character 7).

22



14. External nares position: terminal (0); retracted to level of orbit (1); retracted to a
position between orbits (2). (Wilson, 2002: character 8).

15. External nares, maximum diameter: shorter (0); or longer than orbital maximum
diameter (1). (Wilson, 2002: character 9).

16. Orbital ventral margin, anteroposterior length: broad, with subcircular orbital
margin (0); reduced, with acute orbital margin (1). (Wilson, 2002: character 10).

17. Lacrimal, anterior process: present (0); absent (1). (Wilson, 2002: character 11).

18. Lacrimal, anteriorly projecting vertical plate of bone: absent (0); present (1).
(D’Emic, 2012: character 4).

19. Jugal contribution to the ventral border of the skull: present and long (0); absent or
very reduced (1). (Carballido et al., 2012: character 16).

20. Quadratojugal-maxilla contact: absent or small (0); broad (1). (Whitlock, 2011:
character 10).

21. Jugal-ectopterygoid contact: present (0); absent (1). (Wilson, 2002: character 12).

22. Jugal, contribution to antorbital fenestra: absent (0); present, but very reduced (1);
present and large, bordering approximately one-third its perimeter (2). (Modified
from Wilson, 2002: character 13).

23. Quadratojugal, position of anterior terminus: posterior to middle of orbit (0);
anterior margin of orbit or beyond (1). (Whitlock, 2011: character 30).

24. Quadratojugal, anterior process length: short, anterior process shorter than dorsal
process (0); long, anterior process more than twice as long as dorsal process (1).
(Wilson, 2002: character 32).

25. Quadratojugal, angle between anterior and dorsal processes: less than or equal to
90°, so that the quadrate shaft is directed dorsally (0); greater than 90°, approaching
130°, so that the quadrate shaft slants posterodorsally (1). (Whitlock, 2011: character
31).

26. Ventral edge of anterior surface of the quadratojugal: straight, not expanded
ventrally (0); slightly expanded ventrally, forming a small bulge, which height is less
than twice the ramus height (1); well expanded ventrally, forming a notorious bulge,
which height is twice or more the minimum height of the ramus (2). (Modified from
Upchurch et al., 2004: character 26).

27. Squamosal contribution to the supratemporal fenestra: present, the squamosal is well
visible in dorsal view (0); reduced or absent (1). (Curry-Rogers, 2005: character 37).

28. Squamosal-quadratojugal contact: present (0); absent (1). (Wilson, 2002: character
31).
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29. Squamosal, posteroventral margin: smooth (0); "with prominent, ventrally directed
"prong"" (1). (Whitlock, 2011: character 37).

30. Prefrontal posterior process size: small, not projecting far posterior of frontal-nasal
suture (0); elongate, approaching parietal (1). (Wilson, 2002: character 14).

31. Prefrontal, posterior process shape: flat (0); hooked (1). (Wilson, 2002: character
15).

32. Prefrontal, anterior process: absent (0); present (1). (Curry-Rogers, 2005: character
30).

33. Prefrontal-frontal contact width: large, equal or longer that the anteroposterior
length of the prefrontal (0); narrow, less than half the anteroposterior length of the
prefrontal (1). (Zaher et al., 2011: character 239).

34. Postorbital, ventral process shape: transversely narrow (0); broader transversely than
anteroposteriorly (1). (Wilson, 2002: character 16).

35. Postorbital, posterior process: present (0); absent (1). (Wilson, 2002: character 17).

36. Postorbital, posterior margin articulating with the squamosal: with tapering posterior
process (0); with a deep posterior process (1). (Zaher et al., 2011: character 245).

37. Frontal contribution to supratemporal fossa: present (0); absent (1). (Wilson, 2002:
character 18).

38. Frontals, midline contact (symphysis): sutured (0); or fused in adult individuals (1).
(Wilson, 2002: character 19).

39. Frontal, anteroposterior length: approximately twice (0); or less than minimum
transverse breadth (1). (Wilson, 2002: character 20).

40. Frontal-nasal suture, shape: flat or slightly bowed anteriorly (0); V-shaped, pointing
posteriorly (1). (Whitlock, 2011: character 21).

41. Frontals, dorsal surface: without paired grooves facing anterodorsally (0); grooves
present, extend on to nasal (1). (Whitlock, 2011: character 22).

42. Frontal, contribution to dorsal margin of orbit: contribution to dorsal margin of
orbit: less than 1.5 times the contribution of prefrontal (0); at least 1.5 times the
contribution of prefrontal (1). (Whitlock, 2011: character 23).

43. Parietal occipital process, dorsoventral height: short, less than the diameter of the
foramen magnum (0); deep, nearly twice the diameter of the foramen magnum ().
(Wilson, 2002: character21).

44. Parietal, contribution to post-temporal fenestra: present (0); absent (1). (Wilson,
2002: character 22).
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45. Parietal, distance separating supratemporal fenestrae: less than the long axis of
supratemporal fenestra, 0.8 or less (0); almost the same as the long axis of
supratemporal fenestra 0.8-1.2 (1); much larger than the long axis of supratemporal
fenestra, more than 1.2 (2). (Modified from Wilson, 2002: character 24).

46. Postparietal foramen: absent (0); present (1). (Wilson, 2002: character 23).

47. Paroccipital process distal terminus: straight, slightly expanded surface (0); rounded,
tongue-like process (1). (Whitlock, 2011: character 42).

48. Supratemporal fenestra: present (0); absent (1). (Wilson, 2002: character 25).

49. Supratemporal fenestra, long axis orientation: anteroposterior (0); transverse (1).
(Wilson, 2002: character 26).

50. Supratemporal fenestra, maximum diameter: much longer than (0); or subequal to
that of foramen magnum (1). (Wilson, 2002: character 27).

51. Supratemporal region, anteroposterior length: temporal bar longer (0); or shorter
anteroposteriorly than transversely (1). (Wilson, 2002: character 28).

52. Supratemporal fossa, lateral exposure: not visible laterally, obscured by temporal
bar (0); visible laterally, temporal bar shifted ventrally (1). (Wilson, 2002: character
29).

53. Supraoccipital, sagital nuchal crest: broad, weakly developed (0); narrow, sharp and
distinct (1). (Whitlock, 2011: character 45).

54. Laterotemporal fenestra, anterior extension: posterior to orbit (0); ventral to orbit
(1). (Wilson, 2002: character 30).

55. Quadrate fossa: absent (0); present (1). (Wilson, 2002: character 33).

56. Quadrate fossa, depth: shallow (0); deeply invaginated (1). (Wilson, 2002: character
34).

57. Quadrate fossa, orientation: posterior (0); posterolateral (1). (Wilson, 2002:
character 35).

58. Quadrate, articular surface shape: quadrangular in ventral view, oriented
transversely (0); roughly triangular in shape or thin, crescent-shaped surface with
anteriorly directed medial process (1).(Modified, based on Mannion et al., 2012 from
Whitlock, 2011: character 32)

59. Quadrate, articular surface shape: quadrangular in ventral view, oriented
transversely or roughly triangular in shape (0); thin, crescent-shaped surface
with anteriorly directed medial process (1). (Modified, based on Mannion et al.,
2012 from Whitlock, 2011: character 32).
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60. Palatobasal contact, shape: pterygoid with small facet (0); dorsomedially orientated
hook (1); or rocker-like surface for basipterygoid articulation (2). (Wilson, 2002:
character 36).

61. Pterygoid, transverse flange (i.e. ectopterygoid process) position: posterior of orbit
(0); between orbit and antorbital fenestra (1); anterior to antorbital fenestra (2).
(Wilson, 2002: character37).

62. Pterygoid, quadrate flange size: large, palatobasal and quadrate articulations well
separated (0); small, palatobasal and quadrate articulations approach (1). (Wilson,
2002: character 38)

63. Pterygoid, palatine ramus shape: straight, at level of dorsal margin of quadrate
ramus (0); stepped, raised above level of quadrate ramus (1). (Wilson, 2002:
character39).

64. Pterygoid, sutural contact with ectopterygoid: broad, along the medial or lateral
surface (0); narrow, restricted to the anterior tip of the ectopterygoid (1). (Zaher et
al., 2011: character 240)

65. Palatine, lateral ramus shape: plate-shaped (long maxillary contact) (0); rod-shaped
(narrow maxillary contact) (1). (Wilson, 2002: character 40).

66. Epipterygoid: present (0); absent (1). (Wilson, 2002: character 41).

67. Vomer, anterior articulation: maxilla (0); premaxilla (1). (Wilson, 2002: character
42).

68. Supraoccipital, height: twice subequal to (0); or less than height of foramen
magnum (1). (Wilson, 2002: character 43).

69. Paroccipital process, ventral non-articular process: absent (0); present (1). (Wilson,
2002: character 44).

70. Crista prootica, size: rudimentary (0); expanded laterally into dorsolateral process
(1). (Wilson, 2002: character 45).

71. Basipterygoid processes, length: short, approximately twice (0); or elongate, at least
four times basal diameter (1). (Wilson, 2002: character 46).

72. Basipterygoid processes, angle of divergence: approximately 45° (0); less than 30°
(1). (Wilson, 2002: character 47).

73. Basal tubera, anteroposterior depth: approximately half dorsoventral height (0);
sheet-like, 20% dorsoventral height (1). (Wilson, 2002: character 48).

74. Basal tubera, breadth: much broader than (0); or narrower than occipital condyle (1).
(Wilson, 2002: character 49).
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75. Basal tubera: distinct from basipterygoid (0); reduced to slight swelling on ventral
surface of basipterygoid (1). (Whitlock, 2011: character 53).

76. Basal tubera, shape of posterior face: convex (0); slightly concave (1). (Whitlock,
2011: character 54)

77. Basioccipital depression between foramen magnum and basal tubera: absent (0);
present (1). (Wilson, 2002: character 50).

78. Basisphenoid/basipterygoid recess: present (0); absent (1). (Wilson, 2002: character
51).

79. Basisphenoid/quadrate contact: absent (0); present (1). (Wilson, 2002).

80. Basisphenoid, sagital ridge between basipterygoid processes: absent (0); present (1).
(Zaher et al., 2011: character 242).

81. Basipterygoid processes, orientation: perpendicular to (0); or angled approximately
45° to skull roof (1). (Wilson, 2002: character 53).

82. Basipterygoid, area between the basipterygoid processes and parasphenoid rostrum:
is a mildly concave subtriangular region (0); forms a deep slot-like cavity that passes
posteriorly between the bases of the basipterygoid processes (1). (Mannion et al.,
2012: character 48).

83. Occipital region of skull, shape: anteroposteriorly deep, paroccipital processes
oriented posterolaterally (0); flat, paroccipital processes oriented transversely (1).
(Wilson, 2002: character 54).

84. Occipital condyle, lateral surface of the basioccipital: flat or slightly convex (0);
strongly concave (1). (Remes et al., 2009: character 50).

85. Dentary, depth of anterior end of ramus: slightly less than that of dentary at
midlength (0); 150% minimum depth (1). (Wilson, 2002: character 55).

86. Dentary, anteroventral margin shape: gently rounded (0); sharply projecting
triangular process (1). (Wilson, 2002: character 56).

87. Dentary symphysis, orientation: angled 15° or more anteriorly to (0); or
perpendicular to axis of jaw ramus (1). (Wilson, 2002: character 57).

88. Dentary, cross-sectional shape of symphysis: oblong or rectangular (0);
subtriangular, tapering sharply towards ventral extreme (1); subcircular (2).
(Whitlock, 2011: character 60).

89. Dentary, tuberosity on labial surface near symphysis: absent (0); present (1).
(Whitlock, 2011: character 57).
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90. Dentary, posteroventral process shape: single (0); divided (1). (D’Emic, 2012:
character 10).

91. Mandible, coronoid eminence: strongly expressed, clearly rising above plane of
dentigerous portion (0); absent (1). (Whitlock, 2011: character 62).

92. External mandibular fenestra: present (0); absent (1). (Wilson, 2002: character 58).

93. Surangular depth: less than twice (0); or more than two and one-half times
maximum depth of the angular (1). (Wilson, 2002: character 59).

94. Surangular ridge separating adductor and articular fossae: absent (0); present (1).
(Wilson, 2002: character 60).

95. Adductor fossa, medial wall depth: shallow (0); deep, prearticular expanded
dorsoventrally (1). (Wilson, 2002: character 61).

96. Splenial posterior process, position: overlapping angular (0); separating anterior
portions of prearticular and angular (1). (Wilson, 2002: character 62).

97. Splenial posterodorsal process: present, approaching margin of adductor chamber
(0); absent (1). (Wilson, 2002: character 63).

98. Coronoid, size: extending to dorsal margin of jaw (0); reduced, not extending dorsal
to splenial (1); absent (2). (Wilson, 2002: character 64).

99. Tooth rows, shape of anterior portions: narrowly arched, anterior portion of tooth
rows V-shaped (0); broadly arched, anterior portion of tooth rows U-shaped (1);
rectangular, tooth bearing portion of jaw perpendicular to jaw rami (2). (Wilson,
2002: character 65).

100. Tooth rows, length: extending to orbit (0); restricted anterior to orbit (1); restricted
anterior to antorbital fenestra (2); restricted anterior to subnarial foramen (3).
(Modified from Wilson, 2002: character 66).

101. Maxillary teeth shape: straight along axis (0); twisted axially through an arc of 30-
45°: absent (0); present (1). (D’Emic, 2012: character 15).

102. Dentary teeth, number: greater than 20 (0); 10-17 (1); 9 or fewer (2). (Modified
from Wilson, 2002: character73).

103. Replacement teeth per alveolus, number: two or fewer (0); more than four (1).
(Wilson, 2002: character 74).

104. Lateral plate: absent (0); present (1). (Upchurch et al., 2004: character 9).

105. Teeth, orientation: perpendicular (0); or oriented anteriorly relative to jaw margin
(1). (Wilson, 2002: character 75).
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106. Tooth crowns, orientation: aligned along jaw axis, crowns do not overlap (0);
aligned slightly anterolingually, tooth crowns overlap (1). (Wilson, 2002: character
69).

107. Tooth crowns, shape: narrow crowns (0); broad crowns (1). (Carballido et al.,
2017).

108. Tooth crowns, cross-sectional shape at mid-crown: elliptical (0); D-shaped (1);
subcylindrical (2); cylindrical (3). (Wilson, 2002: character 70).

109. Sl values for tooth crowns: less than 3.0 (0); 3.0-4.0 (1); 4.0-5.0 (2); more than 5.0
(3). (Upchurch et al., 2004: characters 67-69).

110. Crown-to-crown occlusion: absent (0); present (1). (Wilson, 2002: character 67).

111. V-shaped wear facets: present (0); absent (1). (Modified from Wilson, 2002:
character 68).

112. Development of the marginal wear facets: well developed (0); slightly developed
as marginal facets (1).(Carballido et al., 2017)

113. One high angle wear facet and a second low angle wear facet: absent (0); present
(1). (Carballido et al., 2017)

114. Single planar wear facet in labial or lingual surface of the teeth: absent (0); present
(1). (Carballido et al., 2017)

115. Marginal tooth denticles: present (0); absent on posterior edge (1); absent on both
anterior and posterior edges (2). (Wilson, 2002: character 72).

116. Enamel surface texture: smooth (0); wrinkled (1). (Wilson, 2002: character71).

117. Thickness of enamel asymmetric labiolingually: absent (0); present (1). (Whitlock,
2011: character 74).

118. Teeth, longitudinal grooves on lingual aspect: absent (0); present (1). (Wilson,
2002: character 76).

Cervical vertebrae

119. Cervical vertebrae, number: 10 or fewer (0); 12 (1); 13-14 (2); 15 (3); 16 or more
(4). (Modified from Wilson, 2002: character 80 and Upchurch et al., 2004: characters
96-100).

120. Atlas, intercentrum occipital facet shape: rectangular in lateral view, length of
dorsal aspect subequal to that of ventral aspect (0); expanded anteroventrally in
lateral view, anteroposterior length of dorsal aspect shorter than that of ventral aspect
(1). (Wilson, 2002: character 79).
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121. Axis, centrum shape: over two and a half times as long as tall (0); less than twice
as long as tall (1). (D’Emic, 2012: character 20).

122. Cervical vertebrae, parapophyses, shape and orientation: short and weakly
developed, projected laterally or slightly ventrally (0); middle development, ventrally
such that the cervical ribs are displaced ventrally around half the height of the
centrum (1); well developed, broad and ventrally projected such that cervical ribs are
displaced ventrally more than the height of the centrum (2). (Modified from D’Emic,
2012: character 29).

123. Cervical centra, articulations: amphicoelous (0); opisthocoelous (1). (Salgado et
al., 1997: character 1; Wilson, 2002: character 82; Upchurch, 1998: character 81 and
Upchurch et al., 2004: character 103).

124. Cervical centra, ventral surface: is flat or slightly convex transversely (0);
transversely concave (1). (Upchurch, 1998: character 84 and Upchurch et al., 2004:
character 107).

125. Cervical centra, midline keels on ventral surface: prominent and plate-like (0);
reduced to low ridges or absent (1). (Upchurch, 1998: character 83 and Upchurch et
al., 2004: character 106).

126. Cervical centra, pleurocoels: absent (0); present with well-defined anterior, dorsal,
and ventral edges, but not the posterior one (1); present, with well-defined edges (2);
absent, but with deep lateral fossa which bears small pneumatopores that
communicate to the interior pneumatic cavities (3). (Carballido et al., 2012)

127. Cervical centra, pleurocoels: singles without division (0); with a well-defined
anterior excavation and a posterior smooth fossa (1); divided by a bone septum,
resulting in an anterior and a posterior lateral excavation (2); divided in three or more
lateral excavations, resulting in a complex morphology (3); with a well-defined
anterior excavation and a posterior smooth fossa (Harris, 2006; Modified from
Salgado et al., 1997; Wilson, 2002).

128. Cervical vertebrae, well developed epipophyses: absent (0); present (1).
(Carballido et al., 2017)

129. Cervical vertebrae, epipophyses shape: stout, pillar-like expansions above
postzygapophyses (0); posteriorly projecting prongs (1). (D’Emic, 2012: character
24).

130. Prezygapophyses, anterior process situated ventrolaterally to the articular surface:
absent (0); present (1). (Remes et al., 2009: character 79).

131. Cervical vertebrae with an accessory lamina, which runs from the PODL (or
slightly anteriorly) up to the SPOL.: absent (0); present (1). (Modified from D'Emic,
2012: character 25).
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132. Cervical vertebrae, height divided width (measured in its posterior articular
surface): higher than 1.1 (0), around 1 (1); between 0.9 and 0.7 (2); smaller than 0.7
(3). (Modified from Wilson, 2002: character 84; Upchurch, 1998: character 85 and
Upchurch et al., 2004: character 108).

133. Cervical centra, small notch in the dorsal margin of the posterior articular surface:
absent (0); present (1). (Carballido et al., 2012).

134. Cervical vertebrae, neural arch lamination: well developed, with well-marked
laminae and fossae (0); rudimentary, with diapophyseal laminae absents or very
slightly marked (1). (Wilson, 2002: character 81).

135. Cervical vertebrae with an accessory lamina, which runs from the
postzygodiapophyseal lamina (PODL) up to the spinoprezygapophyseal lamina
(SPRL): absent (0); present (1). (Modified from Sereno et al., 2007: characters 50,
51; Whitlock, 2011: characters 78, 96).

136. Cervical centra, internal pneumaticity: absent (0); present with singles and wide
cavities (1); present, with several small and complex internal cavities (2). (Modified
from Carballido et al., 2011).

137. Anterior cervical vertebrae, prespinal lamina: absent (0); present (1). (Carballido et
al., 2012).

138. Anterior cervical vertebrae, neural spine shape: single (0); bifid (1). (Wilson, 2002:
character 72; Upchurch et al., 2004: character 118).

139. Middle and posterior cervical vertebrae, prespinal lamina: absent (0); present (1).
(Carballido et al., 2012).

140. Middle cervical vertebrae, lateral fossae on the prezygapophysis process: absent
(0); present (1). (Harris, 2006).

141. Middle, cervical vertebrae, height of the neural arch: less than the height of the
posterior articular surface (0); higher than the height of the posterior articular
surface, with spine lower than distance between postzygapophysis and the dorsal
margin of the centrum (1); higher, with spine lower than distance between
postzygapophysis and the dorsal margin of the centrum (2). (Wilson, 2002: character
87; similar Upchurch et al., 2004: 111 and 112). Modified here. In Bravasaurus and
Trigonosaurus, among other derived titanosaurians, the neural arch is taller than the
posterior articular surface, but the segment above the postzygapophyses is relatively
low compared to other titanosaurians.

142. Middle cervical centrum, anteroposterior length divided the height of the posterior
articular surface: less than 4 (0); more than 4 (1). (Wilson, 2002: character 74; and
Upchurch et al., 2004: character 102).

31



143. Middle and posterior cervical vertebrae, morphology of the
centroprezygapophyseal lamina: single (0); dorsally divided, resulting in a lateral and
medial lamina, being the medial lamina linked with the intraprezygapophyseal
lamina and not with the prezygapophysis (1); divided, resulting in the presence of a
“true” divided centroprezygapophyseal lamina, which is dorsally connected to the
prezygapophysis (2). (Carballido et al., 2012).

144, Middle and posterior cervical vertebrae, morphology of the
centropostzygapophyseal lamina (CPOL): single (0); divided, with the medial part
contacting the intrapostzygapophyseal lamina (1) (Carballido et al., 2012).

145. Middle and posterior cervical vertebrae, articular surface of zygapophyses: flat (0);
transversally convex (1). (Upchurch et al., 2004).

146. Middle and posterior cervical vertebrae, prominent triangular flange on posterior
edge of the diapophyseal process (in the PCDL): absent (0); present (1). (Remes et
al., 2009: character 78).

147. Middle cervical vertebrae, prezygapophyses position: do not extend beyond the
anterior margin of the centrum (0); extends beyond the anterior margin of the
centrum (1). (Salgado et al., 1997, character 37).

148. Middle and posterior cervical vertebrae, parapophysis shape: subcircular (0);
anteroposteriorly elongate (1). (D’Emic, 2012: character 28).

149. Posterior cervical vertebrae, lateral profile of the neural spine: displays steeply
sloping cranial and caudal faces (0); displays steeply sloping cranial face and
noticeably less steep caudal margin (1). (Upchurch et al., 2004: character 119).

150. Posterior cervical vertebrae, neural spine shape: not expanded distally (0);
expanded but not as much as the width of the centrum (1); laterally expanded, being
equal or wider than the vertebral centrum (1). (Modified from Gonzélez Riga et al.,
2009).

151. Posterior cervical vertebrae, lateral expansion: SPRLs does not contact the lateral
margins of the neural spine (0); SPRLs are contacting the lateral margins of the
neural spine (1). (Modified from Gonzalez Riga and Ortiz David, 2014: characters
26-27).

152. Posterior cervical and anterior dorsal vertebrae, neural spine shape: single (0); bifid
(). (Wilson, 2002: character 90, Upchurch et al., 2004: character 118).

153. Posterior cervical vertebrae, proportions — ratio total height /centrum length: less
than 1.5 (0); more than 1.5 (1). (Gonzéalez Riga et al., 2009: character 32).

154. Posterior cervical and anterior dorsal bifid neural spines, median tubercle: absent
(0); present (1). (Carballido et al., 2012: character 133)
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Dorsal vertebrae

155. Number of dorsal vertebrae: 14 or more (0); 13 (1); 12 (2); 10 (3). (Modified from
Wilson, 2002: character 91; Upchurch et al., 2004: characters 122- 125).

156. Dorsal centra, pleurocoels: absent (0); present (1). (Wilson, 2002: character 78;
Upchurch et al., 2004: character 128).

157. Dorsal vertebrae, transverse processes: are directed laterally or slightly upwards
(0); are directed strongly dorsolaterally (1). (Upchurch et al., 2004: character 138).

158. Dorsal vertebrae, distal end of the transverse process: curves smoothly into the
dorsal surface of the process (0); is set off from the dorsal surface, the latter having a
distinct dorsally facing flattened area (1). (Upchurch et al., 2004: character 140).

159. Anterior dorsal vertebrae, non-bifid neural spine in anterior or posterior view:
possess subparallel lateral margins (0); possess lateral margins which slightly diverge
dorsally (1); possess lateral margins which strongly diverge dorsally (2). (Modified
52 from Wilson, 2002: character 107; Upchurch et al., 2004: character 155).

160. Middle to posterior dorsal vertebrae, non-bifid neural spine in anterior or posterior
view: possess subparallel lateral margins (0); possess lateral margins which slightly
diverge dorsally (1); possess lateral margins which strongly diverge dorsally (2).
(Modified from Wilson, 2002: character 107; Upchurch et al., 2004: character 155).

161. Dorsal centra, pneumatic structures: absent, dorsal centra with solid internal
structure (0); present, dorsal centra with simple and big air-spaces (camerate) (1);
present, dorsal centra with small and complex air-spaces (polycamerate) (2); present,
dorsal centra with small and complex air spaces (semicamellate/camellate) (3).
(Modified from Carballido et al., 2011).

162. Anterior and middle dorsal neural spines, spinoprezygapophyseal lamina (SPRL):
absent (0); present (1). (Modified from Upchurch et al., 2007: character 131).

163. Posterior dorsal neural spines, spinoprezygapophyseal lamina (SPRL): absent (0);
present (1). (Modified from Upchurch et al., 2007: character 132).

164. Dorsal vertebrae, single not bifid neural spines, single prespinal lamina (PRSL):
absent (0); present (1). (Modified from Salgado et al., 1997: character14).

165. Dorsal vertebrae, single not bifid neural spines, single prespinal lamina (PRSL):
rough and wide, present in the dorsalmost part of the neural spine (0); rough and
wide, extended through almost all the neural spine (1); smooth and narrow (2).
(Carballido et al., 2012).

166. Dorsal vertebrae with single neural spines, middle single fossa projected through
the midline of the neural spine: present (0); absent (1). (Carballido et al., 2012).
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167. Dorsal vertebrae with single neural spines, middle single fossa, projected through
the midline of the neural spine: relatively wide median simple fossa (0); a thin
median simple fossa (1); extremely reduced median simple fossa (2). (Carballido et
al., 2012).

168. Anterior dorsal centra, articular face shape: amphicoelous (0); opisthocoelous (1).
(Wilson, 2002: character 94; Upchurch et al., 2004: character 104).

169. Anterior and middle dorsal centra, pleurocoels: have rounded caudal margins (0);
have tapering, acute caudal margins (1). (Salgado et al., 1997; Upchurch, 1998:
character 06; Upchurch et al., 2004: character 127).

170. Middle dorsal neural arches in lateral view, anterior edge of the neural spine:
project anteriorly to the diapophysis (0); converge with the diapophysis (1); project
posteriorly to the diapophysis (2). (Carballido et al., 2012).

171. Anterior and middle dorsal vertebrae, zygapophyseal articulation angle: horizontal
or slightly posteroventrally oriented (0); posteroventraly oriented (around 30°) (1);
strongly posteroventraly oriented (more than 40°) (2). (Carballido et al., 2012).

172. Anterior dorsal vertebrae, neural spine orientation: vertical, or slightly inclined
(less than 20° (0); posterodorsally, more than 20° (1); anteriorly directed (2).
(Wilson, 2002: character 102; Upchurch et al., 2004: characters 153-154)

173. Anterior dorsal vertebrae neural spine, triangular aliform processes: absent (0);
present but do not project far laterally (not as far as caudal zygapophyses) (1);
present and project far laterally (as far as caudal zygapophyses) (2). (Modified from
Wilson, 2002: character 102 and Upchurch et al., 2004: characters 153-154).

174. Anterior dorsal vertebrae, neural spine minimums width / length: 0.5 or greater
(stout and short neural spine) (0); lower than 0.5 (thin and tall neural spines).
(Carballido et al., 2017: character 174).

175. Anterior dorsal vertebrae, neural spine length (from TPRL to top): less than the
height of the centrum (0); slightly higher than the centrum (1); twice or more the
height of the centrum (2). (Carballido et al., 2017: character 175).

176. Anterior dorsal vertebrae, dorsal edge of the neural spine: flat (0); arrow-shaped
(1); convex (2). (Carballido et al., 2017: character 176).

177. Middle to posterior dorsal vertebrae, dorsal edge of the neural spine: flat (0);
arrow-shaped (1); convex (2). (Modified from Carballido et al., 2017: character 177).
Modified here to include middle dorsal vertebrae.

178. Middle to posterior dorsal centra, ventral surface: convex transversely (0);
flattened (1); is slightly concave, sometimes with one or two crests (2). (Upchurch et
al., 2004).
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179. Middle dorsal vertebrae, hyposphene-hypantrum system: present (0); absent (1).
(Modified from Salgado et al., 1997: character 25; Wilson, 2002: character 106;
Upchurch et al., 2004: character 145).

180. Posterior dorsal vertebrae, hyposphene-hypantrum system: present and well
developed, usually with a rhomboid shape (0); present and weakly developed, mainly
as a laminar articulation (1); absent or only present in posteriormost dorsal vertebrae
(2). (Carballido et al., 2012).

181. Middle and posterior dorsal vertebrae, transverse processes length: short (0); long
(projecting along 1.5 the articular surface width) (1). (Carballido et al., 2012).

182. Mid and posterior dorsal vertebrae with a single lamina (the single TPOL)
supporting the hyposphene or postzygapophysis from below: absent (0); present (1).
(Modified from Upchurch et al., 2004: character 146).

183. Middle and posterior dorsal vertebrae, neural canal in anterior view: entirely
surrounded by the neural arch (0); enclosed in a deep fossa, enclosed laterally by
pedicels (1). (Upchurch et al., 2004: character 136).

184. Middle and posterior dorsal vertebrae, neural spine height: approximately twice the
centrum length (0); for times the centrum length (1). (Upchurch et al., 2004).

185. Middle and posterior dorsal neural spines orientation: vertical (0); slightly inclined,
with an angle of around 70 degrees (1); strongly inclined, with an angle not larger
than 40 degrees (2). (Modified from Wilson, 2002: character 104).

186. Middle and posterior dorsal vertebrae, central keel: absent (0); present (1).
(D’Emic, 2012: character 49).

187. Dorsal vertebrae, height of the neural arch divided the height of the centrum: less
than 0.8 (0); more than 0.8 (1). (Pol et al., 2011).

188. Middle to posterior dorsal vertebrae, pleurocoel dorsal margin: rounded (0);
angular (1). (Rauhut et al., 2015: character 346).

189. Middle to posterior dorsal vertebrae, pleurocoel dorsal margin: well below the
dorsal margin of the centrum (0); at the level of the dorsal margin of the centrum or
higher (1). (Rauhut et al., 2015: character 347).

190. Middle to posterior dorsal vertebrae, small fossa anterior or anteroventral to the
pleurocoel: absent (0); present (1). (Rauhut et al., 2015: character 348).

191. Middle and posterior dorsal neural arches, centropostzygapophyseal lamina
(CPOL), shape: simple (0); divided (1). (Wilson, 2002: character 95).

192. Middle and posterior dorsal neural arches, anterior centroparapophyseal lamina
(ACPL): absent (0); present (1). (Wilson, 2002: character 96; Upchurch et al., 2004:
character 133).
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193. Middle and posterior dorsal neural arches, prezygoparapophyseal lamina (PRPL):
absent (0); present (1). (Wilson, 2002: character 97).

194. Middle and posterior dorsal neural arches, posterior centroparapophyseal lamina
(PCPL): absent (0); present (1). (Wilson, 2002: character 98, Upchurch et al., 2004:
character 137).

195. Middle and posterior dorsal centrum in transverse section (height: width ratio):
subcircular (ratio, similar to 1 or a bit higher) (0); slightly dorsoventrally compressed
(ratios between 0.8 and 1) (1); strongly compressed (ratios below 0.8) (2). (Modified
from Upchurch et al., 2004).

196. Middle and posterior dorsal vertebrae neural spine, triangular aliform processes:
absent (0); present but do not project far laterally (not as far as caudal zygapophyses)
(1); present and project far laterally (as far as caudal zygapophyses) (2). (Modified
from Wilson, 2002: character 102 and Upchurch et al., 2004: characters 153-154).

197. Middle and posterior dorsal vertebrae, spinodiapophyseal lamina (SPDL): absent
(0); present (1). (Upchurch et al., 2004: character 157).

198. Middle and posterior dorsal vertebrae, accessory spinodiapophyseal lamina
(SPDL): absent (0); present (1). (Upchurch et al., 2004: character 151).

199. Dorsal vertebrae, spinodiapophyseal webbing: lamina follows curvature of neural
spine in anterior view (0); lamina "festooned” from spine, dorsal margin does not
closely follow shape of neural spine and diapophysis (1). (Whitlock, 2011: character
104).

200. Anterior dorsal vertebrae, spinopostzygapophyseal lamina (SPOL): absent (0);
present (1). (Upchurch et al., 2007: character 133).

201. Middle and posterior dorsal neural spines, lateral spinopostzygapophyseal lamina
(ISPOL): absent (0); present (1). (Wilson, 2002: 100; Upchurch et al., 2004:
character 159).

202. Middle and posterior dorsal neural arches, spinodiapophyseal lamina (SPDL) and
spinopostzygapophyseal lamina (ISPOL) contact: absent (0); present (1). (Wilson,
2002: character 101).

203. Middle and posterior dorsal vertebrae, spinodiapophyseal (SPDL) and
spinopostzygapophyseal lamina (ISPOL) contact: ventral, well separated from the
triangular aliform process (0); dorsal, forms part of the triangular aliform process (1).
(Carballido et al., 2012).

204. Middle and posterior dorsal vertebrae, height of neural arch below the
postzygapophyses (pedicel): less than height of centrum (0); subequal to or greater
than height of centrum (1). (Whitlock, 2011: character 109).
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205. Posterior dorsal vertebrae, medial spinopostzygapophyseal lamina (mSPOL):
absent (0); present and forms part of the median posterior lamina (1). (Carballido et
al., 2012).

206. Posterior dorsal vertebrae, transverse processes: lie posterior, or posterodorsal, to
the parapophysis (0); lie vertically above the parapophysis (1). (Upchurch et al.,
2004: character 139).

207. Posterior dorsal centra, articular face shape: amphicoelous (0); slightly
opisthocoelous (1); opisthocoelous (2). (Modified from Wilson, 2002: character
105).

208. Posterior dorsal vertebrae, neural spine: narrower transversely than
anteroposteriorly (0); broader transversely than anteroposteriorly (1). (Wilson, 2002:
character 92).

209. Posterior dorsal vertebra, posterior centrodiapophyseal lamina (PCDL): has an
unexpanded ventral tip (0); expands and may bifurcate toward its ventral tip (1).
(Salgado et al., 1997).

Ribs

210. Cervical ribs, distal shafts of longest cervical ribs: are elongate and form
overlapping bundles (0); are short and do not project beyond the caudal end of the
centrum to which they are attached (1). (Wilson, 2002: character 140).

211. Cervical ribs, angle between the capitulum and tuberculum: greater than 90°, so
that the rib shaft lies close to the ventral edge of the centrum (0); less than 90°, so
that the rib shaft lies below the ventral margin of the centrum (1). (Wilson, 2002:
character 139).

212. Dorsal ribs, proximal pneumatopores: absent (0); present (1). (Wilson, 2002:
character 141)

213. Anterior dorsal ribs, cross-sectional shape: subcircular (0); plank-like,
anteroposterior breadth more than three times mediolateral breadth (1). (Wilson,
2002).

Sacrum

214. Sacral vertebrae, number: 3 or fewer (0); 4 (1); 5 (2); 6 (3). (Wilson, 2002:
character 108).

215. Sacrum, sacricostal yoke: absent (0); present (1). (Wilson, 2002: character 109).

216. Sacral vertebrae contributing to acetabulum: numbers 1-3 (0); numbers 2-4 (1).
(Wilson, 2002: character 110).
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217. Sacral neural spines length: approximately twice length of centrum (0);
approximately four times length of centrum (1). (Wilson, 2002: character 111).

218. Sacral ribs, dorsoventral length: low, not projecting beyond dorsal margin of ilium
(0); high extending beyond dorsal margin of ilium (1). (Wilson, 2002: character 112).

219. Pleurocoels in the lateral surfaces of sacral centra: absent (0); present (1).
(Upchurch et al., 2004: character 165).

Caudal vertebrae

220. Caudal vertebrae, number: 35 or fewer (0); 40 to 55 (1); increased to 70-80 (2).
(Wilson, 2002: character114).

221. Caudal bone texture: solid (0); spongy (camellate), with large internal cells (1).
(Wilson, 2002: character 113).

222. Anterior caudals, pneumatized neural arch: absent (0); present (1).

223. Caudal transverse processes: persist through caudal 20 or more posteriorly (0);
disappear by caudal 15 (1); disappear by caudal 10 (2). (Wilson, 2002: character
115).

224. First caudal centrum anterior articular surface: flat (0); concave (1); convex (2).
(Carballido et al., 2017).

225. First caudal centrum, posterior articular surface: flat (0); concave (1); convex (2).
(Carballido et al., 2017).

226. First caudal neural arch, coel on lateral aspect of neural spine: absent (0); present
(1). (Wilson, 2002: character 117).

227. Anterior caudal vertebrae (mainly the first and second): ventral bulge on transverse
process: absent (0); present (1). (D’Emic, 2012: character 52).

228. Anterior and middle caudal vertebrae, blind fossae in lateral centrum: absent (0);
present (1). (D’Emic, 2012: character 56).

229. Posteriormost anteriors and middle caudal vertebrae, transverse processes
orientation: perpendicular (0); swept backwards, reaching the posterior margin of the
centrum (1). (D’Emic, 2012: character 59).

230. Anterior caudal vertebrae, transverse processes: ventral surface directed laterally or
slightly ventrally (0); directed dorsally (1). (Whitlock, 2011: character 125).

231. Anterior caudal centra (excluding the first), articular face shape: amphiplatyan or
amphicoelous (0); procoelous/distoplatyan (1); slightly procoelous (2); procoelous
(3); posterior surface markedly more concave than the anterior one (4). (Modified
from Gonzalez Riga et al., 2009).
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232. Anterior caudal centra, pleurocoels: absent (0); present (1). (Wilson, 2002:
character 119).

233. Anterior caudal vertebrae, ventral surfaces: convex transversely (0); concave
transversely (1); flat or slightly concave (2). (Modified from Upchurch et al., 2004:
character 182). Modified so as to distinguish the concave surface of the caudal
vertebrae of some titanosaurians like Punatitan and Aeolosaurus from others with
flat or practically flat (but not convex) surfaces like Uberabatitan and Baurutitan.

234. Anterior and middle caudal vertebrae, ventrolateral ridges: absent (0); present (1).
(Upchurch et al., 2004: character 183).

235. Anterior and middle caudal vertebrae, triangular lateral process on the neural spine:
absent (0); present (1). (Whitlock, 2011: character 123).

236. Anterior caudal transverse processes shape: triangular, tapering distally (0);
"winglike", not tapering distally (1). (Wilson, 2002: character 128).

237. Anterior caudal neural spines, transverse breadth: approximately 50% of (0); or
greater than anteroposterior length (1). (Wilson, 2002: character 126).

238. Anterior caudal transverse processes, proximal depth: shallow, on centrum only
(0); deep, extending from centrum to neural arch (1). (Wilson, 2002: character 127).

239. Anterior caudal transverse processes, diapophyseal laminae (ACDI, PCDL, PRDL,
PODL): absent (0); present (1). (Wilson, 2002: character 129).

240. Anterior caudal transverse processes, anterior centrodiapophyseal lamina (ACDL),
shape: single (0); divided (1). (Wilson, 2002: character 130).

241. Anterior caudal vertebrae, hyposphene ridge: absent (0); present (1). (Upchurch et
al., 2004: character 187).

242. Anterior caudal centra, length: approximately the same (0); or doubling over the
first 20 vertebrae (1). (Wilson, 2002: character 120).

243. Anterior caudal neural arches, spinoprezygapophyseal lamina (SPRL): absent, or
present as small short ridges that rapidly fade out into the anterolateral margin of the
spine (0); present, extending onto lateral aspect of neural spine (1); present, well
developed and extending onto the anterior or anterolateral edges of the neural spine
(2) (Modified from Wilson, 2002: character 121). A third state was incorporated in
order to include the morphology observed in some taxa in which the SPRL is well
developed, but is not extending into the lateral aspect of the neural spine, as is the
case of Patagotitan.

244. Anterior caudal neural arches, spinodiapophyseal lamina (SPDL): absent (0);
present (1). In titanosaurians the SPDL, when present, is extending from the
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dyapophyseal section of the transverse process (the dorsalmost part of it) up to the
neural spine. (Carballido et al., 2017).

245. Anterior caudal neural arches, spinoprezygapophyseal lamina (SPRL)-
spinopostzygapophyseal lamina (SPOL) contact: absent (0); present, forming a
prominent lamina on lateral aspect of neural spine (1). (Wilson, 2002: character 122).

246. Anterior caudal neural arches, prespinal lamina (PRSL): absent (0); present (1).
(Wilson, 2002: character 123). (Carballido et al., 2017).

247. Anterior caudal vertebrae, ventral and medially placed SPRL, usually described as
bifurcated PRSL.: absent (0); present (1). (Carballido et al., 2017).

248. Anterior caudal prespinal lamina (PRSL), triangular shaped product of a dorsal
expansion of it: absent (0); present (1). (Carballido et al., 2017).

249. Anterior caudal vertebrae, pair thin laminae that are bounding the prespinal
laminae and that diverge dorsally: absent (0); present (1). (Carballido et al., 2017).

250. Middle caudal centra, shape: cylindrical (0); with flat ventral margin (1);
quadrangular, flat ventrally and laterally (2); trapezoidal (laterally compressed
forming a shallow fossa) (3). (Modified from Wilson, 2002: character 131 and
Carballido et al., 2020: character 250). We added a state that differentiates a centrum
with a square profile, as in some more primitive sauropods (e.g. Diplodocus), from
the centrum with a trapezoidal profile, in which the lateral faces are inclined
medioventrally, and the ventral surface of the centrum is relatively narrower. The
latter condition is frequent among rinconsaurians.

251. Anterior and middle caudal centra, ventral surface: without groove or hollow (0);
with groove (1); with hollow divided by a longitudinal septum (2) (Modified from
Wilson, 2002: character 132). We added a state to consider the diversity of ventral
surfaces in the anterior and middle caudal centra of derived titanosaurians.

252. Middle caudal centra, articular face shape: amphiplatyan or amphicoelous (0);
procoelous/distoplatyan (1); slightly procoelous (2); procoelous (3). (Gonzalez Riga
et al., 2009).

253. Posteriormost anteriors and middle caudal vertebrae, location of the neural arches:
over the midpoint of the centrum with approximately subequal amounts of the
centrum exposed at either end (0); on the anterior half of the centrum (1). (Upchurch
et al., 2004: character 185).

254. Anterior caudal vertebrae, anterior face of the centrum strongly inclined anteriorly:
straight (vertical) (0); slightly inclined anteroventrally (1); strongly inclined
anteroventrally (2). (Modified from Santucci and Arruda Campos, 2011: character
256). Among rinconsaurians the anteroventral inclination of the anterior face of the
caudal centra is frequent. However, in Uberabatitan and Trigonosaurus the
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inclination is subtle, whereas in Aeolosaurus and Punatitan, the anterior surfaces are
strongly inclined. The new state allows better separating these differences.

255. Middle caudal vertebrae, with the anterior face strongly inclined anteriorly: absent
(0); present (1). (Carballido et al., 2017).

256. Middle caudal vertebrae, height of the pedicels below the prezygapophysis: low
with curved anterior edge of the pedicel (0); high with vertical anterior edge of the
pedicel (1). (Carballido et al., 2012).

257. Middle caudal vertebrae, orientation of the neural spines: anteriorly (0); vertical
(1); slightly directed posteriorly (2); strongly directed posteriorly (3). (Modified from
Wilson, 2002: character 133).

258. Posterior caudal vertebrae, neural spine strongly displaced posteriorly: absent (0);
present (1). (Carballido et al., 2012).

259. Middle caudal vertebrae, ratio of centrum length to centrum height: less than 2,
usually 1.5 or less (0); 2 or higher (1). (Upchurch et al., 2004: character 179).

260. Anterior-posterior caudal vertebrae (those with still well-developed neural spine),
neural spine orientation: vertical (0); slightly directed posteriorly (1); strongly
directed posteriorly (2). (Carballido et al., 2012).

261. Posterior caudal centra, articular face shape: amphyplatic (0); procoelous (1);
opisthocoelous (2). (Modified from Gonzéalez Riga et al., 2009).

262. Posterior caudal centra, shape: cylindrical (0); dorsoventrally flattened, breadth at
least twice height (1). (Wilson, 2002: character 135).

263. Posterior caudal vertebrae, ratio of length to height: less than 5, usually 3 or less
(0); 5 or higher (1). (Upchurch et al., 2004: character 180).

264. Distalmost caudal centra, articular face shape: platycoelous (0); biconvex (1).
(Wilson, 2002: character 136).

265. Distalmost biconvex caudal centra, number: 10 or fewer (0); more than 30 (1).
(Wilson, 2002: character 137).

266. Distalmost biconvex caudal centra, length-to height ratio: less than 4 (0); greater
than 5 (1). (Wilson, 2002: character 138).

267. Forked chevrons with anterior and posterior projections: absent (0); present (1).
(Wilson, 2002: character 143).

268. Forked chevrons, distribution: distal tail only (0); throughout middle and posterior
caudal vertebrae (1). (Wilson, 2002: character 144).
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269. Chevrons, crus bridging dorsal margin of haemal canal: present (0); absent (1).
(Wilson, 2002: character 145).

270. Chevron haemal canal, depth: short, approximately 25% (0); or long,
approximately 50% chevron length (1). (Wilson, 2002: character 146).

271. Chevrons: persisting throughout at least 80% of tail (0); disappearing by caudal 30
(1). (Wilson, 2002: character 147).

272. Posterior chevrons, distal contact: fused (0); unfused (open) (1). (Wilson, 2002:
character 148).

Scapular girdle

273. Posture: bipedal (0); columnar, obligatory quadrupedal posture (1). (Wilson, 2002:
character 149).

274. Scapular acromion process, size: Narrow (0); broad, width more than 150%
minimum width of blade (1). (Wilson, 2002: character 150).

275. Scapular blade, orientation respect to coracoid articulation: perpendicular (0);
forming a 45° angle (1). (Wilson, 2002: character 151).

276. Scapular blade, distal expansion: absent (0); present (1). This character was
introduced for recognizing those sauropods which scapular blade is not markedly
expanded distally. The third state is recognized in several sauropods, such as
Patagotitan, Alamosaurus, Rinconsaurus. (Carballido et al., 2017).

277. Scapular blade, shape: acromial edge not expanded (both edges are running parallel
to each other) (0); rounded expansion on acromial side (1); racquet-shaped (2):
marked distal expansion due to the posterodorsal orientation of the dorsal edge (3).
(Wilson, 2002: character 152; as modified by Carballido et al., 2017: character 277).

278. Scapula, acromion process dorsal margin: concave or straight (0); with V-shaped
concavity (1); with U-shaped concavity (2). (Sereno, 2007: character 88).

279. Scapula, highest point of the dorsal margin of the blade: lower than the dorsal
margin of the proximal end (0); at the same height than the dorsal margin of the
proximal end (1); higher than the dorsal margin of the proximal end (2). (Carballido
etal., 2012, from Mannion, 2009).

280. Scapula, development of the acromion process: undeveloped (0); well developed
(1). (Carballido et al., 2012).

281. Scapular length/minimum blade breadth: 5.5 or less (0); 5.5 or more (1).
(Carballido et al., 2012).

282. Scapula, ventral margin with a well-developed ventromedial process: absent (0);
present (1). (Carballido et al., 2011).
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283. Scapular, acromial process position: lies nearly glenoid level (0); lies nearly
midpoint scapular body (1). (Carballido et al., 2012).

284. Scapular acromion length: less than 1/2 scapular length (0); at least 1/2 scapular
length (1). (Mannion et al., 2012: character168).

285. Glenoid scapular orientation: relatively flat or laterally facing (0); strongly
bevelled medially (1). (Wilson, 2002: character 153).

286. Scapular blade, cross-sectional shape at base: flat or rectangular (0); D-shaped (1).
(Wilson, 2002: character 154).

287. Coracoid, proximodistal length: less than the length of scapular articulation (0);
approximately twice the length of scapular articulation (1). (Wilson, 2002: character
155).

288. Coracoid, anteroventral margin shape: rounded (0); rectangular (1). (Wilson, 2002:
character 156).

289. Dorsal margin of the coracoid in lateral view: reaches or surpasses the level of the
dorsal margin of the scapular expansion (0); lies below the level of the scapular
proximal expansion and separated from the latter by a V-shaped notch (1).
(Upchurch et al., 2004: character 207).

290. Coracoid, infraglenoid deep groove: absent (0); present (1). (D’Emic, 2012:
character 76)

291. Coracoid, infraglenoid lip: absent (0); present (1). (Wilson, 2002: character 157).

292. Sternal plate, shape: posterolateral margin curved (0); posterolateral margin
expanded as a corner (1). (D’Emic, 2012: character 76).

293. Sternal plate, shape: oval (0); crescentic (1). (Wilson, 2002: character 158).

294. Prominent posterolateral expansion of the sternal plate producing a kidney-shaped
profile in dorsal view: absent (0); present (1). (Upchurch et al., 2004: character 211).

295. Prominent parasagital oriented ridge on the dorsal surface of the sternal plate:
absent (0); present (1). (Upchurch et al., 2004: character 212).

296. Ridge on the ventral surface of the sternal plate: absent (0); present (1). (Upchurch
et al., 2004: character 213).

297. Ratio of maximum length of sternal plate to the humerus length: less than 0.75,
usually less than 0.65 (0); greater than 0.75 (1). (Upchurch et al., 2004: character
209)

Forelimb
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298. Humerus, strong posterolateral bulge around the level of the deltopectoral crest:
absent (0); present (1). (D’Emic, 2012: character 80).

299. Humerus, radial and ulnar condyles shape: radial condyle divided on anterior face
by a notch (0); undivided (1). (D’Emic, 2012: character 83).

300. Humerus-to-femur ratio: less than 0.60 (0); 0.60 to 0.69 (1); 0.70 to 0.90 (2);
greater than 0.90 (3) (Modified from Upchurch et al., 2004: character 216 and
Carballido et al., 2017: character 300). We split character state 1 in two, because
there are noticeable differences between the humerus/femur proportions in the
saltasaurines (0.60 to 0.69) and colossosaurian titanosaurians (0.70 to 0.90).

301. Humeral deltopectoral attachment, development: prominent (0); reduced to a low
crest or ridge (1). (Wilson, 2002: character160).

302. Humeral deltopectoral crest, shape: relatively narrow throughout length (0);
markedly expanded distally (1). (Wilson, 2002: character161).

303. Humeral midshaft cross-section, shape: circular (0); elliptical (1). (Mannion et al,
2012: character 170).

304. Humerus, RI (sensu Wilson and Upchurch, 2003): gracile (less than 0.27) (0);
medium (0.28-0.32) (1); robust (more than 0.33) (2). (Carballido et al., 2012).

305. Humeral distal condyles, articular surface shape: restricted to distal portion of
humerus (0); exposed on anterior portion of humeral shaft (1). (Wilson, 2002:
character 163).

306. Humeral distal condyle, shape: divided (0); flat (1). (Wilson, 2002: character 164).

307. Humeral, lateral margin: medially deflected (0); almost straight until the half
length or even more (1); almost straight until the proximal third of the total length of
the humerus (2). (Carballido et al., 2012).

308. Humeral proximolateral corner, shape: rounded, the dorsal surface is well convex
(0); pronounced / square, the dorsal surface low, almost flat (1). (Wilson, 2002:
character 159).

309. Ulnar proximal condyle, shape: subtriangular (0); triradiate, with deep radial fossa
(1). (Wilson, 2002: character 165).

310. Ulnar proximal condylar processes, relative lengths: subequal (0); unequal, anterior
arm longer (1). (Wilson, 2002: character 166).

311. Ulnar olecranon process, development: prominent, projecting above proximal
articulation (0); rudimentary, level with proximal articulation (1). (Wilson, 2002:
character 167).
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312. Ulna, length-to-proximal breadth ratio: gracile (0); stout (1). (Wilson, 2002:
character 168).

313. Radial distal condyle, shape: round (0); subrectangular, flattened posteriorly and
articulating in front of ulna (1). (Wilson, 2002: character 169).

314. Radius, distal breadth: slightly larger than midshaft breadth (0); approximately
twice midshaft breadth (1). (Wilson, 2002: character 170).

315. Radius, distal condyle orientation: perpendicular to long axis of shaft (0); bevelled
approximately 20° proximolaterally relative to long axis of shaft (1). (Wilson, 2002:
character 171).

316. Carpal bones, number: 3 or more (0); 2 or fewer (1). (Wilson, 2002: character 173).

317. Carpal bones, shape: round (0); block-shaped, with flattened proximal and distal
surfaces (1). (Wilson, 2002: character 174).

318. Metacarpus, shape: spreading (0); bound, with sub-parallel shafts and articular
surfaces that extend half their length (1). (Wilson, 2002: character 175).

319. Metacarpals, shape of proximal surface in articulation: gently curving, forming a
90° arc (0); U-shaped, subtending a 270° arc (1). (Wilson, 2002: character 176).

320. Longest metacarpal-to-radius ratio: close to 0.3 (0); 0.45 or more (1). (Wilson,
2002: character 177).

321. Metacarpal I, length: shorter than metacarpal IV (0); longer than metacarpal 1V (1).
(Wilson, 2002: character 178).

322. Metacarpal I, distal condyle shape: divided (0); undivided (1). (Wilson, 2002:
character 179).

323. Metacarpal | distal condyle, transverse axis orientation: bevelled approximately 20°
respect to axis of shaft (0); proximodistally or perpendicular with respect to axis of
shaft (1). (Wilson, 2002: character 180).

324. Manual digits 1l and 111, phalangeal number: 2-3-4-3-2 or more (0); reduced, 2-2-2-
2-2 or less (1); absent or unossified (2). (Wilson, 2002: character 181).

325. Manual phalanx 1.1, shape: rectangular (0); wedge-shaped (1). (Wilson, 2002:
character 182).

326. Manual non-ungual phalanges, shape: longer proximodistally than broad
transversely (0); broader transversely than long proximodistally (1). (Wilson, 2002:
character 183).

Pelvic girdle
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327. Pelvis, anterior breadth: narrow, ilia longer anteroposteriorly than distance
separating preacetabular processes (0); broad, distance between preacetabular
processes exceeds anteroposterior length of ilia (1). (Wilson, 200: character 184).

328. Ilium, ischial peduncle size: large, prominent (0); low, rounded (1). (Wilson, 2002:
character 185).

329. Illium, dorsal margin shape: flat (0); semicircular (1). (Wilson, 2002: character
186).

330. Iliun, preacetabular ventral margin shape: straight (0), concave (1); with a convex
ventral bump (2). (D’Emic, 2012: character 99)

331. Ilium, preacetabular process shape: pointed, arching ventrally (0); semicircular,
with posteroventral excursion of cartilage cap (1). (Wilson, 2002: character 188).

332. llium, preacetabular process orientation: anterolateral to body axis (0);
perpendicular to body axis (1). (Wilson, 2002: character 189).

333. Highest point on the dorsal margin of the ilium: lies caudal to the base of the pubic
process (0); lies cranial to the base of the pubic process (1). (Upchurch et al., 2004:
character 245).

334. Pubis length respect to ischium: pubis slightly smaller or subequal to ischium (0);
pubis larger (120% +) than ischium (1). (Carballido et al., 2012).

335. Pubis, ambiens process development: small, confluent with anterior margin of
pubis prominent, (0); projects anteriorly from anterior margin of pubis (1). (Wilson,
2002: character 189).

336. Pubic apron, shape: flat (straight symphysis) (0); canted anteromedially (gentle S-
shaped symphysis) (1). (Wilson, 2002: character 190).

337. Puboischial contact, length: approximately one third total length of pubis (0); one
half total length of pubis (1). (Wilson, 2002: character 191).

338. Ischium, acetabular articular surface: maintains approximately the same transverse
width throughout its length (0); is transversely narrower in its central portion and
strongly expanded as it approaches the iliac and pubic articulations (1). (Mannion et
al., 2012: character 180).

339. Ischium, iliac peduncle with constriction or "neck™: absent (0); present (1).
(Whitlock, 2011: character 173).

340. Ischium, elongate muscle scar on proximal end: absent (0); present (1). (Whitlock,
2011: character 174).

341. Ischial blade, shape: emarginate distal to pubic peduncle (0); no emargination
distal to pubic peduncle (1). (Wilson, 2002: character 193).
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342. Ischia pubic articulation: less or equal to the anteroposterior length of pubic
pedicel (0); greater than the anteroposterior length of pubic pedicel (1). (Salgado et
al., 1997).

343. Ischia, anteroposterior pubic pedicel width divided the total length of the ischium:
less than 0.5 (0); 0.5 or larger (1). (Carballido et al., 2012).

344. Ischial distal shaft, shape: triangular, depth of ischial shaft increases medially (0);
blade-like, medial and lateral depths subequal (1). (Upchurch et al., 2004: character
194).

345. Ischial distal shafts, cross-sectional shape: V-shaped, forming an angle of nearly
50° with each other (0); flat, nearly coplanar (1). (Wilson, 2002: character 195).

346. Ischia, distal end: is only slightly expanded (0); is strongly expanded
dorsoventrally (1). (Upchurch, 1998: character 183).

347. Ischium, angle formed between the shaft and the acetabular line: forming an almost
right angle (80-110°) (0) or; a close angle (less than 70°) (1). (Carballido et al.,
2012).

348. Ischial tuberosity: absent (0); present (1). The tuberosity, noted by Otero (2010) for
the ischium of Neuquensaurus (Otero, 2010: Fig. 8) and is present in other taxa, such
as Patagotitan, Bonitasaura, Futalognkosaurus, and Alamosaurus. (Carballido et al.,
2017).

Hind limb

349. Femur, longitudinal ridge on the anterior face: absent (0); present (1). (D’Emic,
2012: character 107).

350. Femur, fibular condyle: well developed, having a similar height than the tibial one
(0); much shorter than the tibial condyle (1). The fibular condyle of Patagotitan and
Bonitasaura is reduced in its posterior projection respect to that of most other
sauropods, which fibular and tibial condyles are almost equally posteriorly projected.
(Carballido et al., 2017).

351. Femur, epicondyle development: well developed (0); reduced, almost absent (1). In
Patagotitan the epicondyle is extremely developed and notorious in posterior and
distal view, as a minor step laterally projected. In contrast in some titanosaurians the
epicondyle is almost imperceptible, as is the case of Dreadnoughtus,
Opisthocoelicaudia, Neuguensaurus and Saltasaurus. (Carballido et al., 2017).

352. Femur, fourth trochanter position: almost at the half of the femur (0); in the
proximal third of the femur (1). The fourth trochanter of Patagotitan is positioned
around the proximal third of the total femur length, similar to the position observed
in Futalognkosaurus, Bonitasaura, and some other non-Lognkosauria as
Rapetosaurus, Saltasaurus and Neuquensaurus. In contrast the fourth trochanter of
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most sauropods is around the half of the total femur length, being even lower in
Opisthocoelicaudia. (Carballido et al., 2017).

353. Femur, fourth trochanter development: prominent (0); reduced to crest or ridge (1);
extremely reduced (2). (Modified from Wilson, 2002: character 196, following to
Whitlock, 2011: character 186).

354. Femur, lesser trochanter: present (0); absent (1). (Wilson, 2002: character 197).

355. Femur midshaft, transverse diameter: subequal to anteroposterior diameter (0);
125- 150% anteroposterior diameter (1); at least 185% anteroposterior diameter (2).
(Wilson, 2002: character 198).

356. Femur, lateral bulge (marked by the lateral expansion and a dorsomedial
orientation of the laterodorsal margin of the femur, which starts below the femur
head ventral margin): absent (0); present (1). (Salgado et al., 1997).

357. Femur, pronounced ridge on posterior surface between greater trochanter and head:
absent (0); present (1). (Whitlock, 2011: character 181).

358. Femur head position: perpendicular to the shaft, rises at the same level as the
greater trochanter (0); dorsally directed, rises well above the level of the greater
trochanter (1). (Modified from Upchurch et al., 2004: character 263).

359. Femur, distal condyles relative transverse breadth: subequal (0); tibial much
broader than fibular (1). (Wilson, 2002: character 2000).

360. Femur, distal condyles orientation: perpendicular or slightly bevelled dorsolaterally
(0); or bevelled dorsomedially approximately 10° relative to femoral shaft (1).
(Wilson, 2002: character 201).

361. Femur, distal condyles articular surface shape: restricted to distal portion of femur
(0); expanded onto anterior portion of femoral shaft (1). (Wilson, 2002: character
202).

362. Situation of the femoral fourth trochanter: on the caudal surface of the shaft, near
the midline (0); on the caudomedial margin of the shaft (1). (Upchurch et al., 2004:
character 268).

363. Tibial proximal condyle, shape: narrow, long axis anteroposterior (0); expanded
transversely, condyle subcircular (1). (Wilson, 2002: character 203).

364. Tibial cnemial crest, orientation: projecting anteriorly (0); or laterally (1). (Wilson,
2002: character 204).

365. Tibia, distal breadth: approximately 125% (0); more than twice midshaft breadth
(1). (Wilson, 2002: character 205).
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366. Tibial distal posteroventral process, size: broad transversely, covering posterior
fossa of astragalus (0); shortened transversely, posterior fossa of astragalus visible
posteriorly (1). (Wilson, 2002: character 206).

367. Fibula, proximal tibial scar, development: not well-marked (0); well-marked and
deepening anteriorly (1). (Wilson, 2002: character 207).

368. Fibula, lateral trochanter: absent (0); present (1). (Wilson, 2002: character 208).

369. Fibular distal condyle, size: subequal to shaft (0); expanded transversely, more
than twice midshaft breadth (1). (Wilson, 2002: character 209).

370. Fibular, proximal end, anterior crest: absent or poorly-developed (0); well-
developed creating an interlocking proximal crus (1). (D’Emic, 2012: character 111).

371. Fibula, shaft shape: straight, or slightly sigmoidal (0); sigmoid, such that the
proximal and distal faces are angled relative to midshaft (1). (D’Emic, 2012:
character 113).

372. Astragalus, shape: at least 1.5 times wider than anteroposteriorly long (0);
anteroposterior and transverse dimensions subequal (1). (D’Emic, 2012: character

115).

373. Astragalus, shape: rectangular (0); wedge shaped, with reduced anteromedial
corner (1). (Wilson, 2002: character210).

374. Astragalus, fibular facet: faces laterally (0); faces posterolaterally, anterior margin
visible in posterior view (1). (Whitlock, 2011: character 186).

375. Astragalus, foramina at base of ascending process: present (0); absent (1). (Wilson,
2002: character 211).

376. Astragalus, ascending process length: limited to anterior two-thirds of astragalus
(0); extending to posterior margin of astragalus (1). (Wilson, 2002: character 212).

377. Astragalus, posterior fossa shape: undivided (0); divided by vertical crest (1).
(Wilson, 2002: character 213).

378. Astragalus, transverse length: 50% more than (0); or subequal to proximodistal
height (1). (Wilson, 2002: character 214).

379. Calcaneum: present (0); absent or unossified (1). (Wilson, 2002: character 215).

380. Distal tarsals 3 and 4: present (0); absent or unossified (1). (Wilson, 2002:
character 216).

381. Metatarsus, posture: bound (0); spreading (1). (Wilson, 2002: character 217).
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382. Metatarsal | proximal condyle, transverse axis orientation: perpendicular to (0);
angled ventromedially approximately 15° to axis of shaft (1). (Wilson, 2002:
character 218).

383. Metatarsal | distal condyle, transverse axis orientation: perpendicular to (0); angled
dorsomedially to axis of shaft (1). (Wilson, 2002: character 219).

384. Metatarsal 111 length divided by metatarsal | length: less than 1.3 (0); more than 1.3
(1). (Gonzélez Riga et al., 2016: character 331).

385. Longest metatarsal: metatarsal 11 (0); metatarsal IV (1). (Gonzalez Riga et al.,
2016: character 334).

386. Metatarsal | distal condyle, posterolateral projection: absent (0); present (1).
(Wilson, 2002: character 220).

387. Metatarsal I, minimum shaft width: less than that of metatarsals I1-1V (0); or
greater than that of metatarsals 11-1V (1). (Wilson, 2002: character 221).

388. Metatarsal | and V proximal condyle, size: smaller than (0); or subequal to those of
metatarsals Il and 1V (1). (Wilson, 2002: character 222).

389. Metatarsal Il length: more than 30% (0); or less than 25% that of tibia (1).
(Wilson, 2002: character 223).

390. Metatarsals 11l and IV, minimum transverse shaft diameters: subequal to (0); or
less than 65% that of metatarsals I or 11 (1). (Wilson, 2002: character 224).

391. Metatarsal 1V, proximomedial end, shape: flat or slightly concave (0); possesses a
distinct embayment (1). (D’Emic, 2012: character 117).

392. Metatarsal 1V, distal end, orientation: roughly perpendicular to long axis of bone
(0); bevelled upwards medially (1). (D’Emic, 2012: character 118).

393. Metatarsal V, length: shorter than (0); or at least 70% length of metatarsal 1V (1).
(Wilson, 2002: character 225).

394. Pedal non-ungual phalanges, shape: longer proximodistally than broad transversely
(0); broader transversely than long proximodistally (1). (Wilson, 2002: character
226).

395. Pedal digits 11-1V, penultimate phalanges, development: subequal in size to more
proximal phalanges (0); rudimentary or absent (1). (Wilson, 2002: character 227).

396. Pedal unguals, orientation: aligned with (0); or deflected lateral to digit axis (1).
(Wilson, 2002: character 228).

397. Pedal digit I ungual, length relative to pedaldigit Il ungual: subequal (0); 25%
larger than that of digit 11 (1). (Wilson, 2002: character 229).
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398. Pedal digit I ungual, length: shorter (0); or longer than metatarsal I (1). (Wilson,
2002: character 230).

399. Pedal ungual I, shape: broader transversely than dorsoventrally (0); sickle-shaped,
much deeper dorsoventrally than broad transversely (1). (Wilson, 2002: character
231).

400. Pedal ungual [I-11l, shape: broader transversely than dorsoventrally (0);
sickleshaped, much deeper dorsoventrally than broad transversely (1). (Wilson,
2002: character 232).

401. Pedal digit IV ungual, development: subequal in size to unguals of pedal digits Il
and 111 (0); rudimentary or absent (1). (Wilson, 2002: character 233).

402. Unguals of pedal digit Il and Ill, proximal dimensions: as broad as deep (0);
significantly broader than deep (1). (Allain and Aquesbi, 2008: character 253).

403. Number of phalanges in pedal digit Il: 3 (0); 2 (1). (Gonzalez Riga et al., 2016:
character 348).

404. Number of phalanges in pedal digit I1I: 4 (0); 3 (1). (Gonzalez Riga et al., 2016:
character 349).

405. Number of phalanges in pedal digit IV: 3 or more (0); 2 (1); 1 (2). (Gonzélez Riga
et al., 2016: character 350)

406. Postorbital, excluded from the infratemporal fenestra due to the articulation of the
jugal with the squamosal: absent (0), present (1). (Canudo et al., 2018).

407. Squamosal, ventral shape: thin (0); broad (1). (Canudo et al., 2018).

408. Preantorbital fenestra development: small, differentiated from the posterior
maxillary foramen in its direction (see Wilson and Sereno, 1998) (0); laterally
opened middle sized fenestra (1); laterally opened large fenestra (2). (Canudo et al.,
2018).

409. Mid- and posterior dorsal neural arches, centroprezygapophyseal fossa depth:
shallow or absent (0); deep, passing nearly all the way through the neural arch.
(Wilson and Allain, 2015: character 101).

410. Mid- posterior dorsal vertebrae, parapophysis, position with respect to
prezygapophyses: at the same level or below (0); well above (1). (Wilson and Allain,
2015: character 100).

411. Posterior dorsal neural arches, centroprezygapophyseal lamina (CPRL), shape:
single (0); divided (1). (Wilson and Allain, 2015: character 107).

412. Posterior dorsal neural arches, spinoparapophyseal lamina (SPPL): absent (0);
present (1). (Wilson and Allain, 2015: character 109).
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413. Middle caudal vertebrae, prezygapophyses orientation: anterodorsally oriented
(around 45 degrees) (0); anteriorly oriented (nearly horizontal) (1). (Canudo et al.,
2018).

414. Scapular acromion, ventral process: absent (0), present (1). (Carballido et al.,
2020).

415. llium, postacetabular posteroventral edge: open concave (0); U-shaped notch (1);
horizontal and low V-shaped notch (2). (Carballido et al., 2020).

416. Pubis, ischiadic articular surface: continuous without marked angle change (0);
marked step formed by a proximal posterior directed surface and a more distal
posterodorsally oriented surface (1). (Carballido et al., 2020).

417. Pubis, proximal symphysis: merges with the pubic shaft (0); forms a marked
ventromedially directed process (1). (Carballido et al., 2020).

Characters added

418. Posteriormost anterior and middle caudal centra, proportions: as high as wide
(high) (0), wider than high (depressed) (1). (Modified from Salgado et al., 1997:
character 34).

419. Middle caudal vertebrae, anterodorsal end of the neural spine located posteriorly
with respect to anterior border of the postzygapophyses: absent (0); present (1)
(Salgado et al., 1997: character 10).

420. Middle caudal vertebrae, length proportions of prezygapophyses with respect to the
centrum length: shorter than 40% (0); between 40 and 50% (1); longer than 50% (2).
(Modified from Salgado et al., 2014: character 54).

421. Posteriormost anterior and middle caudal vertebrae, prezygapophyses distally
expanded dorsoventrally: absent (0); present (1). (Santucci and Arruda-Campos,
2011).

422. Quadrate, articular condyle: undivided (0); anteriorly divided (1); posteriorly
divided (2); entirely divided by a sulcus, in a medial and lateral condyle (3). New.
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