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ABSTRACT

From its discovery, the WASP-18 system with its massive transiting planet on a tight orbit was

identified as a unique laboratory for studies on tidal planet-star interactions. In an analysis of Doppler

data, which include five new measurements obtained with the HIRES/Keck-I instrument between

2012 and 2018, we show that the radial velocity signal of the photosphere following the planetary

tidal potential can be distilled for the host star. Its amplitude is in agreement with both theoretical

predictions of the equilibrium tide approximation and an ellipsoidal modulation observed in an orbital

phase curve. Assuming a circular orbit, we refine system parameters using photometric time series

from TESS. With a new ground-based photometric observation, we extend the span of transit timing

observations to 28 years in order to probe the rate of the orbital period shortening. Since we found no

departure from a constant-period model, we conclude that the modified tidal quality parameter of the

host star must be greater than 3.9×106 with 95% confidence. This result is in line with conclusions

drawn from studies of the population of hot Jupiters, predicting that the efficiency of tidal dissipation

is 1 or 2 orders of magnitude weaker. As the WASP-18 system is one of the prime candidates for

detection of orbital decay, further timing observations are expected to push the boundaries of our

knowledge on stellar interiors.

Key words: planet-star interactions – stars: individual: WASP-18 – planets and satellites: individ-

ual: WASP-18 b
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1. Introduction

Hot Jupiters, i.e. massive exoplanets on extremely tight orbits, are recognised

as unique laboratories for studying planet–star interactions. Their orbital distances

of 0.02–0.03 AU are small enough to produce detectable tidal deformations of their

host stars. Departure from a spherical symmetry of the gravitational potential gives

a rise to apsidal precession that could be detected via transit and occultation timing

(e.g., Ragozzine & Wolf 2009) and radial velocity (RV) variations (e.g., Csizmadia

et al. 2019). Dissipation of energy deposited in stellar tides leads to orbital shrink-

age (e.g. Levrard et al. 2009), which is also observationally accessible via long-

term transit and occultation timing.

Tidal deformation of a host star can be observed with both the photometric

and Doppler techniques. Tidal ellipsoidal distortions follow the orbital motion of a

planet and modulate both an observed light curve and RV signal with a period being

half the orbital period. In the most favourable circumstances, amplitudes of these

modulations are of order 102 parts per milion (ppm) of the observed flux (Pfahl et

al. 2008) and a few m s−1 in the Doppler domain (Arras et al. 2012).

The WASP-18 system comprises an F/G dwarf (V = 9.3 mag) being orbited

by a 10-MJup planet on a 0.94-day orbit (Hellier et al. 2009). Recent astromet-

ric studies suggest that there is a ∼0.1 M⊙ companion at a projected separation

of ∼3300 AU (Csizmadia et al. 2019, Fontanive et al. 2019). The host star is

referred to as WASP-18A, while the secondary component of that binary system

is named WASP-18B. WASP-18A b was immediately recognised as a promising

candidate for an in-falling planet. Using a canonical value of the modified tidal

quality parameter of the host star Q′
⋆ = 106 (Meibom & Mathieu 2005, Ogilvie &

Lin 2007, Milliman et al. 2014), which characterises the efficiency of dissipation

of tidal energy, the remaining system lifetime would be of about 7× 105 yr and a

cumulative departure from a linear transit ephemeris would reach about 30 s after

10 years (Hellier et al. 2009). The WASP-18 system was also identified as a prime

candidate for which an RV signature of planetary induced tidal deformations could

be detected (Arras et al. 2012). The orbit of WASP-18A b appears to be slightly

eccentric with a line of apsides orientated along the line of sight. Such a specific

configuration actually corresponds to a tidal RV signal produced by a fluid flow in

the star forced by the massive planetary companion. Those ellipsoidal distortions

of WASP-18A were found to produce photometric modulation in a visible-light

orbital phase curve with an amplitude of about 200 ppm (Shporer et al. 2019).

In this paper, we show that the tidal RV signal can be distilled from the observed

RV variations for WASP-18A, and its amplitude is consistent with theoretical ex-

pectations. We also use the transit timing data, spanning 28 years, to search for the

orbital shrinkage for WASP-18A b and to constrain the efficiency of tidal dissipa-

tion in its host star.
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2. RV reanalysis

We acquired 5 RV measurements with the High Resolution Echelle Spectrom-

eter (HIRES, Vogt et al. 1994) mounted at the 10 m Keck I telescope as an exten-

sion of the observing programme presented in Knutson et al. (2014). The original

dataset comprises 6 RV observations secured between 2010 February and October

2012. Their errors were in a range 3.7–5.6 m s−1 with a median value of 4.0 m s−1 .

Our new observations were performed between October 2012 and August 2019.

The instrumental setup and data-reduction pipeline was adopted from the Califor-

nia Planet Search consortium (Wright et al. 2004, Howard et al. 2009, Johnson et

al. 2010, see also Knutson et al. 2014 for details). For the sake of homogeneity, the

previously published HIRES RVs were also reprocessed. Mid-exposures were con-

verted to barycentric Julian dates in barycentric dynamical time (BJDTDB) . The

complete dataset is given in Table 1.

Additional RV measurements were taken from Triaud et al. (2010) and Albrecht

et al. (2012). Thirty seven of them were acquired between 2007 September and

2009 January using the CORALIE high resolution échelle spectrograph paired with

the 1.2 m Euler Swiss Telescope (La Silla, Chile). The errors were in a range 8.2–

14.2 m s−1 with a median value of 9.7 m s−1 . Forty eight measurements come

from the Planet Finder Spectrograph (PFS) and the Magellan II 6.5 m telescope

(Las Campanas, Chile). They were gathered on a single night in October 2011 in

order to study the Rossiter–McLaughlin (RM) effect. They have errors between 4.9

and 9.2 m s−1 with a median value of 5.9 m s−1 . Twenty three measurements were

secured in 2008 August with the high resolution échelle spectrograph HARPS at the

3.6 m ESO telescope at La Silla. They were also used to investigate the RM effect.

The errors were between 4.4 and 10.7 m s−1 with a median value of 6.1 m s−1 .

The procedure, we followed, was adopted from Maciejewski et al. (2020).

Thirty seven RV data points fall in transit phase and were affected by the RM effect.

Since our analysis procedure does not take this effect into account, the appropriate

corrections were calculated using the RM model obtained by Albrecht et al. (2012)

and then subtracted from the original RV measurements. The final RV sample com-

prised 119 RV data points. In order to place a constraint on a transit ephemeris, a

set of mid-transit times (Sect. 4) was added together with mid-occultation times

taken from Nymeyer et al. (2011), Maxted et al. (2013), and Wilkins et al. (2017),

corrected for the light-travel time across the WASP-18A b’s orbit. The Keplerian

model of the orbit was characterised by 9 free parameters: the orbital period Porb ,

RV amplitude Korb , mean anomaly for a given epoch, apparent orbital eccentricity

eorb , longitude of periastron ω , and four RV offsets for the individual RV datasets.

The best-fitting Keplerian solution was found with the Levenberg-Marquardt al-

gorithm. The parameters’ uncertainties were estimated with the bootstrap method

using the median absolute deviations for 106 resampled datasets.

As compared to a circular-orbit model, the eccentric model is favoured by the
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T a b l e 1

New and reprocessed RV measurements acquired with HIRES/Keck I.

Mid-exposure (BJDTDB) Relative RV∗ m s−1 RV error∗ (m s−1) Remarks

2455231.725706 −311.832 5.828 (1)

2455427.048972 909.848 3.519 (1)

2456167.071476 1371.783 3.951 (1)

2456193.094044 −1341.056 4.255 (1)

2456197.032589 −553.433 4.344 (1)

2456207.967066 129.533 4.526 (2)

2456209.021271 −946.126 4.685 (1)

2456913.036796 1092.564 4.290 (2)

2457241.125035 −335.939 4.793 (2)

2458393.977843 797.761 2.886 (2)

2458720.096038 −815.098 5.313 (2)

Remarks: (1) reprocessed from Knutson et al. (2014), (2) new measurement
∗ higher numerical precision left intentionally.

Bayesian information criterion (BIC),

BIC = χ2 + k lnN, (1)

where k is the number of fit parameters and N is the number of data points, with

∆BIC ≈ 330. The RV residuals against the best-fitting solution exhibit unmodeled

data-point scatter at the level of 10.7 m s−1 . This RV jitter was added in quadrature

to the RV errors in the final iteration. We found eorb = 0.010 ± 0.001 and ω =
268.7◦±1.4◦ .

Arras et al. (2012) demonstrated that an orbital configuration with a nonzero

eccentricity and longitude of periastron close to 270◦ might be de facto a sig-

nal comprising a circular orbit component Vorb(φ) and a tidal component Vtide(φ) ,

where φ is an orbital phase. The observed RV signal Vobs(φ) can be written as

Vobs(φ) = γ+Vorb(φ)+Vtide(φ) , (2)

where γ is the barycentre velocity and

Vorb(φ) =−Korb sin (2π(φ−φ0)) , (3)

and

Vtide(φ) = Ktide sin(4π(φ−φ0)) . (4)

In those formulae, φ0 is the phase offset for a reference epoch, and Korb and Ktide

are the amplitudes of the orbital motion and the tidal component, respectively. The

best-fitting solution was found with the Markov chain Monte Carlo (MCMC) em-

ploying the emcee sampler (Foreman-Mackey et al. 2013). One hundred walkers,
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105 steps long each, were used to produce marginalised posteriori probability dis-

tributions for the free parameters. The first 10% of steps were discarded in a burn-in

phase. Median values of the cumulative distributions were taken as the best fitting

parameters, and 15.9 and 84.1 percentile values of those distributions were used as

the 1σ uncertainties.

The best fitting model is presented in panel (a) in Fig. 1 together with the resid-

uals in panel (b). The orbital RV component is plotted in panel (c), and the tidal

RV signal is shown in panel (d). We obtained Korb = 1813.9 ± 2.4 m s−1 and

Ktide = 17.9± 1.9 m s−1 . The phase offsets φ0 = (4± 15)× 10−5 was found to

be consistent with zero well within 1σ . Although the barycentre velocity was sub-

tracted from the RV measurements prior to the fitting procedure, its uncertainty was

taken into account in the error budget by allowing an RV shift to float. This shift

was found to be −0.3±1.4 m s−1 , i.e., consistent with zero well within 1σ .
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Fig. 1. Panel (a): relative RV measurements observed for WASP-18A, phase-folded with the orbital

period of WASP-18A b. Open symbols mark measurements taken from the literature. Dots show our

new and reanalysed observations acquired with HIRES. The error bars of individual measurements

are increased by the value of jitter of 10.7 m s−1 , added in quadrature. The red line shows the best-

fitting model comprises two components: the orbital motion of the planet on a circular orbit and the

tidal RV signal. Panel (b): the residuals from the best-fitting model. Panel (c): orbital RV component.

Panel (d): tidal RV component.
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3. TESS photometry

The space-borne photometry from the Transiting Exoplanet Survey Satellite

(TESS, Ricker et al. 2014) was used by Shporer et al. (2019) to refine system or-

bital parameters under the assumption that the orbit of WASP-18A b is noncircular.

As the observed eccentricity is likely a manifestation of the tidal RV signal, we

reanalysed the photometric time series from TESS to refine system parameters for

a circular orbit scenario.

TESS observed the WASP-18 system in sectors 2 (from August 22 to Septem-

ber 20, 2018) and 3 (from September 20 to October 18, 2018) with Camera 2. The

photometric data of a 2 minute cadence were downloaded through the exo.MAST

portal1. The Presearch Data Conditioning (PDC) light curve was extracted for fur-

ther analysis. A median value of recorded counts was calculated for each sector

separately and then used for light-curve normalisation. To remove variability other

than transits, a 12 hour boxcar was applied with in-transit and in-occultation data

points masked. A transit ephemeris from Shporer et al. (2019) was used to extract

data collected in transit windows and extended by 90 minutes of out-of-transit ob-

servations before and after each event. The set of 47 complete transit light curves

was prepared for modelling with the Transit Analysis Package (TAP, Gazak et al.

2012).

Since the photometric time series might still be affected by out-of-transit vari-

ations, the TAP code was modified to be capable to model flux trends in a time

domain with a second-order polynomial. In our approach, trends, as well as mid-

transit times Tmid , were modelled separately for each transit light curve. Transit

parameters, such as the orbital inclination iorb , the semi-major axis scaled in star

radii a/R⋆ , and the ratio of planet to star radii Rp/R⋆ , were linked together for all

light curves. The value of Porb was taken from the transit-timing analysis (Sect. 4).

The coefficients of the quadratic limb-darkening (LD) law – the linear ulin and

the quadratic uquad – were allowed to float. Their initial values were bi-linearly

interpolated from tables of Claret & Bloemen (2011).

The best-fitting parameters and their uncertainties were determined from the

marginalised posteriori probability distributions produced from 10 MCMC chains

(i.e., the median value, and 15.9 and 84.1 percentiles). The random walk pro-

cess was driven by the Metropolis-Hastings algorithm and a Gibbs sampler. The

wavelet-based technique (Carter & Winn 2009) was employed to account for the

correlated noise. Each chain was 106 steps long. The first 10% of trials were

rejected to minimise the influence of the initial values. The best-fitting model is

plotted in Fig. 2, and its parameters are listed in Table 2. We also give the results

reported by Shporer et al. (2019) for comparison purposes.

In order to verify our procedure and its reliability of error estimates, the mod-

elling was repeated for a scenario with a noncircular orbit with the initial conditions

1https://exo.mast.stsci.edu
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Fig. 2. Phase folded transit light curve from TESS with the best-fitting model. The residuals are

plotted below.

T a b l e 2

Transit parameters for WASP-18A b re-determined for the circular orbit. The results from Shporer

et al. (2019) and from the trial noncircular scenario are given for comparison purposes.

Parameter Circular Shporer et al. (2019) Noncircular

Rp/R⋆ 0.09776+0.00028
−0.00027 0.09716+0.00014

−0.00013 0.09721+0.00018
−0.00017

a/R⋆ 3.492+0.024
−0.025 3.562+0.022

−0.023 3.549+0.021
−0.021

iorb 84.04+0.36
−0.38 84.88±0.33 84.70+0.31

−0.30

ulin 0.296±0.034 0.2192∗ 0.2192∗

uquad 0.158+0.061
−0.060 0.3127∗ 0.3127∗

∗ value taken from Claret (2017).

set as in Shporer et al. (2019). We entered eorb = 0.0091, ω = 269◦ and the LD

coefficients were fixed at the theoretical values ulin = 0.2192 and uquad = 0.3127

derived from Claret (2017). As it is shown in Table 2, our procedure reproduces the

results of Shporer et al. (2019) very well. The parameters of our trial noncircular

model agree with those of Shporer et al. (2019) within 0.2–0.4σ . The errors are

similar for iorb and a/R⋆ , and our estimate of uncertainty for Rp/R⋆ appears to be

greater by 30%. As an additional test showed, this is a consequence of the inclusion

of the quadratic term in the de-trending procedure.

Differences between parameters of the circular-orbit model and those of Sh-

porer et al. (2019) are noticeable at a 1.7–2.6σ level. The values of both iorb and

a/R⋆ were found to be slightly smaller which is a direct consequence of the sys-

tem’s geometry. The transits were found to be deeper. The source of this effect

is seen in the LD coefficients, which we set as the free parameters of the model.

Because of inconsistencies of theoretical stellar limb darkening tables, it is advo-

cated to keep the LD coefficients free in modelling of transit light curves if the

photometry is of sufficient quality and these coefficients can be determined reliably



7

(Csizmadia et al. 2013). We notice that inclusion of the uncertainties of the LD co-

efficients in the error budget increased errors of the other parameters, making them

more reliable. Our model yields ulin greater by 2.2σ and uquad smaller by 2.6σ

if compared to the theoretical expectations from Claret (2017). We note that the

similar though less significant trend can be found for V -band data in Southworth

et al. (2009).

4. Transit timing

The transit model obtained in Sect. 3 was used as a template for the ground-

based light curves in order to determine their mid-transit times. We used two

follow-up light curves from Heller et al. (2009), five from Southworth et al. (2009),

and two from Kedziora-Chudczer et al. (2019). Timestamps were converted to

BJDTDB and if needed magnitudes were rescaled into fluxes normalised to unity

outside the transits. The photometric time series from Maxted et al. (2013), Wilkins

et al. (2017), Cortés-Zuleta et al. (2020), and Patra et al. (2020) were not available.

In addition, we acquired a new transit light curve on September 26, 2019 using

the 0.6 m Helen Sawyer Hogg (HSH) telescope located at Complejo Astronomico

El Leoncito (CASLEO, San Juan, Argentina). An SBIG STL-1001E CCD camera

with 1024× 1024× 9 µm pixels was used as a detector. The instrument offered

a field of view of 9.3 × 9.3 arc minutes. The light curve was acquired through

an I -band filter with exposure times of 20–25 s (depending on seeing conditions),

giving an average cadence of 32 s. The observations were reduced with a standard

procedure carried out with AstroImageJ software (Collins et al. 2017). The fluxes

were obtained with the aperture photometry method with an aperture radius, a set of

comparison stars, and de-trending parameters being optimised to obtain the lowest

noise. The final light curve together with a transit model is presented in Fig. 3.

The mid-transit times were determined with TAP. For each light curve, the

TESS transit model with parameters obtained in Sect. 3 was fitted with the MCMC

procedure using 10 chains of a length of 106 steps. The transit parameters – Rp/R⋆ ,

a/R⋆ , and iorb – were allowed to vary under Gaussian penalties of the template

model. The LD coefficients were bi-linearly interpolated from tables of Claret &

Bloemen (2011) for stellar parameters determined by Heller et al. (2009), and also

allowed to vary under a Gaussian prior of a width of 0.1. The coefficients of a

second-order polynomial, which accounts for a possible trend in the time domain,

and Tmid were kept free.

A signature of transits of WASP-18A b was detected in broadband Hipparcos

photometry by McDonald & Kerins (2018). The star was sparsely sampled be-

tween December 1989 and March 1993 with 130 measurements in total. Such

early epochs are especially important for timing studies. The data were extracted

from Hipparcos Epoch Photometry, a complement to The Hipparcos and Tycho

Catalogues (ESA 1997), and then phase folded following a preliminary ephemeris.
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Fig. 3. Our new transit light curve observed on September 26, 2019 with the HSH telescope. Individ-

ual measurements are marked with dots, the best-fitting model is marked with a line. The quality of

the light curve is degraded mainly by faintness of comparison stars available in the field of view. The

photometric scatter is 3.0 parts per thousand of the normalised flux per minute of observation. The

residuals are shown below.

Phase of each data point was transformed into BJDTDB of an artificial transit lo-

cated near a middle of the time span of the observations. We note that the orbital

period could be in principle a subject of variation but the scale of this variation is

expected to be relatively small in a time scale of a few months or years, and any

cumulative shift in transit times would be preserved. A mid-transit time, which is

determined in this manner, is de facto an average representative for a time covered

by the phase-folded observations. The magnitudes were transformed into fluxes and

normalised using a median value of magnitude. The final light curve was trimmed

to ±5 hours around the expected mid-transit time.

A similar procedure was applied to the All Sky Automated Survey (ASAS,

Pojmański 1997) and SuperWASP (Butters et al. 2010) photometry. The richest

dataset extracted from the ASAS Photometric Catalog for an optimal aperture pro-

vides 525 measurements spread between November 2000 and December 2009 with

a median cadence of 3 days. After trimming and applying an iterative 5σ clip-

ping of outlying data points, 230 measurements were qualified for further analysis.

The SuperWASP database provides 3360 and 4330 observations done in 2006 and

2007, respectively. Because of the large number of data points and a high cadence,

data in both observing seasons were analysed separately. Trimming and 5σ clip-

ping left the final light curves with 1430 and 2060 data points for 2006 and 2007,

respectively. A subsequent procedure of the analysis was similar to that one which

was applied to the single follow-up light curves. The only differences were that no

time-domain trends were considered and the parameter Rp/R⋆ was allowed to float

in order to prevent underestimation of errors.

The compilation of mid-transit times is listed in Table 3. As the photometric

time series from Maxted et al. (2013), Wilkins et al. (2017), Cortés-Zuleta et al.

(2020), and Patra et al. (2020) were unavailable, the original mid-transit times were

taken then. Southworth et al. (2010) note that the time stamps in photometric time
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series of Southworth et al. (2009) might be offset by an unknown amount because

a clock of a computer which was used to record observations was not synchronised

properly. We used the photometric data which are available via CDS and converted

their midpoints of observations given in BJDUTC into BJDTDB . However, we found

no systematic shift of this subset of mid-transit times. This finding indicates that the

observations of Southworth et al. (2009) were practically unaffected by the faulty

time service.

The transit timing analysis was performed following a procedure adopted from

Maciejewski et al. (2018). The MCMC algorithm running 100 chains, 104 steps

long each with the first 1000 trials discarded, was employed to refine the linear

transit ephemerides

Tmid(E) [BJDTDB] = 2454221.48183(8)+0.94145242(2)×E , (5)

where E is a transit number counted from a reference epoch given in Hellier et al.

(2009). The posterior probability distributions of the fitted parameters were used to

determine their best-fitting values (medians) and their uncertainties (15.9 and 84.1

percentile values of the cumulative distributions). The best-fitting solution yields

χ2 = 66.9 and BIClin = 75.6.

A trial fit of a quadratic ephemeris in a form

Tmid = T0 +Porb ×E +
1

2

dPorb

dE
×E2 , (6)

where T0 is the reference mid-transit time for the transit number 0 and dPorb

dE
is

the change in the orbital period between succeeding transits, yields dPorb

dE
= (0.1±

1.1)×10−10 days per epoch, χ2 = 66.9, and BICquad = 80.0. The quadratic term

is indistinguishable from zero well within 1σ and the quadratic ephemeris is un-

ambiguously disfavoured by the statistics.

The timing residuals against the linear ephemeris are plotted in Fig. 4 together

with uncertainties of the quadratic term.

The parameter dPorb

dE
is related to Q′

⋆ with the formula (see e.g., Maciejewski et

al. 2018 and references therein)

Q′
⋆ =−

27

2
π

(

Mp

M⋆

)(

a

R⋆

)−5(
dPorb

dE

)−1

Porb , (7)

where Mp is a planet mass and M⋆ is a mass of a host star mass. Since no or-

bital decay was detected for WASP-18A b, the lower constraint on Q′
⋆ at the 95%

confidence level can be placed from the 5th percentile of the posterior probability

distribution of dPorb

dNtr
. Adopting the stellar mass M⋆ = 1.25± 0.13 (Hellier et al.

2009) and taking the remaining quantities determined in this study, we obtained

that Q′
⋆ > 3.9×106 .
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Fig. 4. Transit-timing residuals against the refined linear ephemeris. The new mid-transit time ac-

quired with the HSH telescope is marked with a diamond. The re-determined mid-transit times from

TESS are marked with dots. Data points from the literature are marked with open circles. The grey

lines illustrate uncertainty of the trial quadratic ephemeris and are drawn for 100 sets of parameters,

randomly chosen from the Markov chains. Lower panel shows the transit-timing residuals zoomed

in on observations acquired in the last 2 decades. The greyed vertical strap marks additional TESS

observations which are scheduled in August–November 2020.

5. Discussion

In all studies addressing the issue of the orbital eccentricity of WASP-18A b,

its value was found to be non-zero within 2.5-8.9σ , depending on the data used and

the methodology of their analysis (Hellier et al. 2009, Triaud et al. 2010, Nymeyer

et al. 2011, Knutson et al. 2014). Our analysis yields eb which differs from 0 at

a 10σ level. In Maciejewski et al. (2020), we show that our procedure of the RV

analysis provides reliable, not underestimated uncertainties. Following Eq. (3) of

Adams & Laughlin (2006), a circularisation timescale for WASP-18A b is ∼20

Myr using a conservative value of the planetary quality factor of 106 . This is more

than one order of magnitude shorter than the age of the system, which falls in a

range 0.5–1.5 Gyr (Hellier et al. 2009). Thus, the non-zero eccentricity is rather

unexpected unless there is an efficient mechanism which excites and maintains it or

the value of the planetary quality factor is underestimated. The apparently non-zero
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eccentricity together with the improbable orientation of the line of apsides, which

appear to be aligned nearly exactly with the line of sight, can be naturally explained

with the tidal RV signature.

Employing the equilibrium tide approximation, Arras et al. (2012) predict the

tidal RV amplitude to be ∼32 m s−1 . Using their Eq. (20), which arises from a

simplification of general considerations for a circular orbit, and adopting the stellar

mass M⋆ = 1.25± 0.13 (Hellier et al. 2009) and taking the remaining quantities

determined in this study we found, however, that the predicted tidal RV amplitude

is ∼20 m s−1 . The main source of uncertainties in the theoretical predictions is

a parameter f2 , which contains information on LD, and is proportionally related

to Ktide . In our calculations, we followed Arras et al. (2012) who used the LD

under the Eddington approximation, for which f2 ≈ 1.1. Since the equilibrium tide

approximation is supposed to be accurate to a factor of about 2 (Arras et al. 2012),

the empirically determined value of Ktide = 17.9±1.9 m s−1 can be considered as

being consistent with the theoretical prediction. After transformation of Eq. (20) of

Arras et al. (2012), we obtained

f2 =
1

3π

Ktide

R⋆

M⋆

Mb

(

a

R⋆

)3

Porb (sin iorb)
−2 = 0.98±0.12 (8)

for WASP-18A. This result agrees with the Eddington approximation at the 1σ

level.

A rough estimate of a hight of the tides relative to the unperturbed stellar radius

comes from the ratio of the tidal acceleration to the star’s surface gravity (Pfahl et

al. 2008)

Hexp =
Mb

M⋆

(

a

R⋆

)−3

R⋆ . (9)

For the WASP-18 system, we obtained Hexp = 159±10 km. This quantity can be

empirically determined by calculating a distance traveled by a stellar photosphere

in a time t equal to a quarter of a tidal cycle

Htide = pKtide

∫ 1
4

Ptide

0
sin

(

2π

Ptide

t

)

dt , (10)

where p = 1.36 is a projection factor, which scales disk integrated RVs into actual

photospheric velocities (Getting 1934, Burki et al. 1982), and Ptide = Porb/2. We

obtained Htide = 157±16 km which is consistent with Hexp well within 1σ .

Using Eq. (8) of Shporer et al. (2019), we redetermined the expected amplitude

of the photometric modulation Aellip = 199± 12 ppm. On the other hand, simple

geometrical considerations lead to the relation

Aellip =
Htide

R⋆−Htide

, (11)
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which yields Aellip = 181± 21 ppm. This value, which was de facto derived from

the RV tides, is in excellent agreement with both the theoretical predictions and the

observed amplitude of 190.0+5.9
−5.8 ppm (Shporer et al. 2019).

Csizmadia et al. (2019) has recently postulated that the eccentric orbit of WASP-

18A b is undergoing apsidal precession. The rate of this precession was found to be

ω̇ = 0.0091+0.0040
−0.0018 degrees per day using the literature RV together with the transit

and occultation timing datasets. While trying to reproduce this result, we noticed

that the best-fitting solution is found for ω̇ = 0.0033±0.0071 degrees per day. No

local minimum of a χ2 distribution was found around the value of ω̇ postulated

by Csizmadia et al. (2019). Compared to the model with no precession (Sect. 2),

the precession is disfavoured by the statistics. The non-precession model gives

χ2 = 490.0 and BIC = 533.0 with no jitter added. Although the precession model

yields a slightly smaller χ2 = 485.1, engaging ω̇ as the additional free parameter

results in no significant improvement in BIC = 532.8. Adding jitter results in a de-

crease of ω̇ down to ω̇ =−0.0015±0.0016 for the jitter of 10.7 m s−1 . A negative

value of ω̇ cannot be induced by the tidal deformations. It could be produced in a

result of the rotational deformation of the rapidly rotating host star if the planetary

orbit were significantly misaligned (Migaszewski 2012). However, the rotation pe-

riod of WASP-18A of ≈ 5.5 d (Csizmadia et al. 2019) is significantly longer than

the value of about 7 hours that would be required to reproduce ω̇ ≈−0.0015 with

WASP-18A b on a polar orbit. Furthermore, the orbit of the planet was found to be

well aligned (Triaud et al. 2010, Albrecht et al. 2012). As the redetermined value

of ω̇ is consistent with zero regardless the amount of jitter added, the detection of

apsidal precession of WASP-18A b appears to be premature.

As noted by McDonald & Kerins (2018), early Hipparcos observations of WASP-

18A b provide rather weak constraints in transit timing studies. In a test run with

those data skipped, the constraint on Q′
⋆ was found to differ by a marginal value

of 3%. While our value of the timing residual of about −0.018 d is consistent

with −0.021 d derived from the mid-transit time reported by McDonald & Kerins

(2018), our timing errors were found to be 2.5–2.6 times greater. To check if our

procedure overestimates timing uncertainties, we calculated a ratio of our timing

errors for TESS data to errors derived by Shporer et al. (2019). We found that this

ratio is between 0.93 and 1.36 with a median value of 1.19. Thus, we conclude that

the timing errors reported by McDonald & Kerins (2018) might be underestimated.

We also note that the timing errors from the Hipparcos photometry are significantly

asymmetric with σ+/σ− = 1.6. This effect is also visible in the original results of

McDonald & Kerins (2018) with σ+/σ− = 1.5. This asymmetry is a consequence

of a non-uniform data point distribution in the Hipparcos light curve.

Our homogenous transit-timing analysis has provided the tightest constraint on

Q′
⋆ for WASP-18A. Wilkins et al. (2017) used all timing data available then and

got Q′
⋆ > 106 at 95% confidence. Although McDonald & Kerins (2018) obtained

Q′
⋆ ≈ 5× 105 , Shporer et al. (2019) could only place a constraint on Q′

⋆ > 1.7×
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106 . The same constraint has been obtained recently by Patra et al. (2020). Our

determination of Q′
⋆ excludes values smaller than 3.9×106 with 95% confidence.

However, it is still not enough to verify theoretical findings of Collier Cameron &

Jardine (2018). They predict that the stars hosting hot Jupiters could have Q′
⋆ of

the order of 2×108 if the equilibrium-tide regime is considered. Under favourable

circumstances, the dynamical-tide mechanism could operate in stellar interiors and

the efficiency of tidal dissipation would be boosted by one order of magnitude that

translates into Q′
⋆ ≈ 2×107 .

WASP-18A will be observed again with TESS between August and November

2020. As it is shown in Fig. 4 (lower panel), new mid-transit times will definitely

place tighter constraint on Q′
⋆ . Adopting Q′

⋆ = 2× 107 , a departure of 1 minute

from a linear ephemeris could be detected after 2 decades of precise observations.

However, it is more likely that the system is far from the dynamical-tide regime

and the host star dissipates the tidal energy less efficiently. In such case, the cumu-

lative time shift of 1 minute would be noticed after about 60 years. Nevertheless,

the WASP-18 system still remains one of the best candidates for an infalling hot

Jupiter orbiting a main sequence star. The rapid decay rate of the WASP-12 b,

so far the only planet for which the orbital evolution due to tidal interactions has

been observed (Maciejewski et al. 2016, 2018, Maciejewski 2019, Yee et al. 2020),

seems to be triggered by the evolutionary changes in the star’s interior structure

(Weinberg et al. 2017).

6. Conclusions

As with the WASP-12 system (Maciejewski et al. 2020), the observed variation

in RVs of WASP-18A can be decomposed into the component induced by the or-

bital motion of the planet and the signal produced by the motion of the photosphere

following the planetary tidal potential. The amplitude of these RV tides was found

to agree with both the predictions of the equilibrium tide approximation and the

ellipsoidal modulation observed in the space-borne orbital phase curve. The orbit

of the planet appears to be de facto circular making the apsidal precession beyond

possibility of detection.

Although the WASP-18 system is one of the top candidates for which loss of

orbital angular momentum due to dissipation of planetary tides in the host star

could be observed, planetary in-spiralling remains undetected. Transit timing data

indicate that the modified tidal quality parameter Q′
⋆ of WASP-18A must be greater

than the canonical value of 106 reported in studies of binary stars in stellar clusters

(Meibom & Mathieu 2005, Ogilvie & Lin 2007, Milliman et al. 2014). This finding

is in line with recent studies on the population of hot Jupiters (Collier Cameron &

Jardine 2018). Further systematic timing observations acquired within a decade are

expected to permit for probing values of Q′
⋆ from the dynamical-tide regime.
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T a b l e 3

Mid-transit times for WASP-18 b.

Epoch Tmid (BJDTDB) +σ (d) −σ (d) Light curve source

-6283 48466.366 0.033 0.021 Hipparcos, ESA (1997)

-747 53518.2126 0.0084 0.0067 ASAS, Pojmański (1997)

-267 53970.11352 0.00092 0.00100 SuperWASP, Butters et al. (2010)

156 54368.3462 0.0010 0.0011 SuperWASP, Butters et al. (2010)

471 54664.90568 0.00058 0.00058 Heller et al. (2009)

472 54665.84803 0.00063 0.00064 Heller et al. (2009)

915 55082.910597 0.00060 0.00063 Southworth et al. (2009)

916 55083.852439 0.00032 0.00030 Southworth et al. (2009)

917 55084.793919 0.00024 0.00024 Southworth et al. (2009)

918 55085.734997 0.00027 0.00026 Southworth et al. (2009)

919 55086.677153 0.00034 0.00035 Southworth et al. (2009)

969 55133.7472 0.0012∗ 0.0012∗ Cortés-Zuleta et al. (2020)

970 55134.6914 0.0012∗ 0.0012∗ Cortés-Zuleta et al. (2020)

971 55135.6331 0.0012∗ 0.0012∗ Cortés-Zuleta et al. (2020)

1062 55221.30420∗ 0.00010∗ 0.00010∗ Maxted et al. (2013)

1286 55432.18970∗ 0.00010∗ 0.00010∗ Maxted et al. (2013)

1327 55470.78850∗ 0.00040∗ 0.00040∗ Maxted et al. (2013)

1330 55473.61440∗ 0.00090∗ 0.00090∗ Maxted et al. (2013)

1416 55554.57860∗ 0.00050∗ 0.00050∗ Maxted et al. (2013)

1433 55570.58400∗ 0.00045∗ 0.00048∗ Maxted et al. (2013)

1689 55811.5970 0.0041∗ 0.0041∗ Cortés-Zuleta et al. (2020)

1758 55876.5559∗ 0.0013∗ 0.0013∗ Maxted et al. (2013)

2841 56896.14780∗ 0.00080∗ 0.00080∗ Wilkins et al. (2017)

3223 57255.78320∗ 0.00030∗ 0.00029∗ Wilkins et al. (2017)

3291 57319.80100∗ 0.00039∗ 0.00038∗ Wilkins et al. (2017)

3311 57338.6296 0.0011 0.0011 Kedziora-Chudczer et al. (2019)

3312 57339.57210 0.00052 0.00051 Kedziora-Chudczer et al. (2019)

3649 57656.84078 0.00097∗ 0.00097∗ Cortés-Zuleta et al. (2020)

3650 57657.78359 0.00097∗ 0.00097∗ Cortés-Zuleta et al. (2020)

3651 57658.72404 0.00097∗ 0.00097∗ Cortés-Zuleta et al. (2020)

3684 57689.79147 0.00075∗ 0.00075∗ Patra et al. (2020)

4042 58026.8319 0.0011∗ 0.0011∗ Cortés-Zuleta et al. (2020)

4390 58354.45788 0.00019 0.00019 TESS

4391 58355.39931 0.00018 0.00018 TESS

4392 58356.34077 0.00022 0.00021 TESS

4393 58357.28206 0.00022 0.00024 TESS

4394 58358.22352 0.00021 0.00021 TESS

4395 58359.16514 0.00018 0.00017 TESS

4396 58360.10664 0.00019 0.00019 TESS

4397 58361.04799 0.00021 0.00022 TESS

4398 58361.98976 0.00021 0.00022 TESS

4399 58362.93133 0.00019 0.00019 TESS

4400 58363.87260 0.00019 0.00018 TESS

4401 58364.81379 0.00021 0.00020 TESS

4402 58365.75525 0.00019 0.00019 TESS
∗ Value taken from a source paper.
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T a b l e 3

Concluded.

Epoch Tmid (BJDTDB) +σ (d) −σ (d) Light curve source

4403 58366.69706 0.00021 0.00021 TESS

4406 58369.52127 0.00021 0.00021 TESS

4407 58370.46273 0.00020 0.00020 TESS

4408 58371.40404 0.00016 0.00016 TESS

4409 58372.34541 0.00020 0.00020 TESS

4410 58373.28729 0.00018 0.00018 TESS

4411 58374.22820 0.00017 0.00016 TESS

4412 58375.16982 0.00018 0.00017 TESS

4413 58376.11117 0.00021 0.00022 TESS

4414 58377.05268 0.00017 0.00017 TESS

4415 58377.99448 0.00019 0.00020 TESS

4416 58378.93581 0.00020 0.00019 TESS

4417 58379.87712 0.00020 0.00021 TESS

4418 58380.81887 0.00020 0.00020 TESS

4424 58386.46725 0.00019 0.00018 TESS

4425 58387.40877 0.00022 0.00023 TESS

4426 58388.35028 0.00020 0.00020 TESS

4427 58389.29173 0.00019 0.00019 TESS

4428 58390.23329 0.00017 0.00017 TESS

4429 58391.17446 0.00021 0.00021 TESS

4430 58392.11604 0.00019 0.00019 TESS

4431 58393.05742 0.00020 0.00021 TESS

4432 58393.99900 0.00019 0.00019 TESS

4433 58394.94026 0.00024 0.00023 TESS

4435 58396.82313 0.00020 0.00019 TESS

4436 58397.76454 0.00018 0.00018 TESS

4437 58398.70650 0.00017 0.00017 TESS

4438 58399.64746 0.00018 0.00018 TESS

4439 58400.58907 0.00018 0.00018 TESS

4440 58401.53084 0.00018 0.00019 TESS

4441 58402.47209 0.00019 0.00019 TESS

4442 58403.41357 0.00020 0.00020 TESS

4443 58404.35494 0.00019 0.00019 TESS

4444 58405.29602 0.00020 0.00020 TESS

4813 58752.69300 0.00089 0.00089 this paper

Table 2 in a machine-readable format is available at

http://www.home.umk.pl/g̃mac/TTV/doku.php?id=download or via CDS.


