
PHYSICAL REVIEW B 101, 174420 (2020)

Ferromagnetic fluctuations in the Rashba-Hubbard model
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We study the occurrence and the origin of ferromagnetic fluctuations in the longitudinal spin susceptibility
of the t-t ′-Rashba-Hubbard model on the square lattice. The combined effect of the second-neighbor hopping t ′

and the spin-orbit coupling leads to ferromagnetic fluctuations in a broad filling region. The spin-orbit coupling
splits the energy bands, leading to two Van Hove fillings, where the sheets of the Fermi surface change their
topology. Between these two Van Hove fillings the model shows ferromagnetic fluctuations. We find that these
ferromagnetic fluctuations originate from interband contributions to the spin susceptibility. These interband
contributions only arise if there is one holelike and one electronlike Fermi surface, which is the case for fillings
in between the two Van Hove fillings. We discuss implications for experimental systems and propose a test on
how to identify these types of ferromagnetic fluctuations in experiments.
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I. INTRODUCTION

Recent technological advances in atomic-scale synthesis
have allowed several experimental groups to fabricate het-
erostructure interfaces with tailored electronic structures and
symmetry properties [1]. In these heterostructures it is pos-
sible, for example, to tune the degree of inversion-symmetry
breaking and the strength of spin-orbit coupling by modulat-
ing the layer thickness or by applying electric fields [2–7].
Many of these heterostructures exhibit emergent phenomena
not found in the bulk constituents [8–16]. Particularly in-
teresting is the emergence of ferromagnetism at interfaces
between correlated materials [9–16], as this could be of poten-
tial use for spintronics applications. Interface ferromagnetism
can arise both due to itinerant electrons, or due to localized
spins at the interface. The former case most likely occurs
at surfaces of the delafossite oxides PdCoO2 and PdCrO2

[16], and at interfaces of GdTiO3/SrTiO3 [11,12]. In order
to understand how interface ferromagnetism can emerge in
these heterostructures, it is necessary to study the interplay
of inversion-symmetry breaking, spin-orbit coupling, and cor-
relation effects.

Motivated by these deliberations, we study in this paper
itinerant magnetic fluctuations in the Rashba-Hubbard model
on the square lattice, which describes the salient features
of interface electrons in a great number of heterostructures
[17–21] and which, moreover, is relevant for many non-
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centrosymmetric materials with strong spin-orbit coupling
[22–25]. Previously, we have studied this model in the context
of superconductivity using the random phase approximation
(RPA), and found that both spin-singlet and spin-triplet su-
perconductivity can arise [26]. Here, we want to investigate
the itinerant magnetism and study the magnetic fluctuations
as a function of electronic structure, on-site interaction U ,
and Rashba spin-orbit coupling (SOC). In particular, we want
to focus on the longitudinal ferromagnetic (FM) fluctuations,
which occur for fillings n in between the two Van Hove
fillings, nvH2 < n < nvH1 . Our aim is to find the origin of these
FM fluctuations and to show that they exist in a large region
of parameter space.

We find that the longitudinal FM fluctuations originate
from interband contributions to the spin susceptibility. These
interband contributions are dominant if there is one holelike
and one electronlike Fermi surface (FS), i.e., when the filling
n is in between nvH2 and nvH1 . It follows from this insight
that longitudinal FM fluctuations occur quite commonly, i.e.,
in any Rashba system with one holelike and one electronlike
Fermi surface. This is confirmed by our numerical calcula-
tions, which show that FM fluctuations are present whenever
the filling is in between nvH2 and nvH1 , independent of the
magnitude of the second-neighbor hopping and SOC. The FM
fluctuations survive also up to values of U close to the
magnetic instability, as obtained within the RPA. We note that
the mechanism for FM fluctuations presented in this paper
is markedly different from Stoner ferromagnetism, which
only occurs close to large maxima in the density of states
(DOS) [27]. As an experimental test to detect these type of
FM fluctuations we propose to measure the ratio between
the longitudinal and transversal susceptibilities, which shows
pronounced features as a function of SOC and filling.

The remainder of this paper is organized as follows.
In Sec. II we present briefly our model and theoretical
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framework. In Sec. III we study the itinerant fluctuations as a
function of SOC and second-neighbor hopping t ′. The ori-
gin of the ferromagnetic and antiferromagnetic fluctuations
is discussed in Sec. IV. In Sec. V we propose possible
experimental tests for detecting the predicted ferromagnetic
fluctuations. Section VI contains discussions and conclusions.
In Appendixes A and B we provide the main mathematical
aspects of the present calculation.

II. MODEL AND THEORETICAL SCHEME

The one-band Rashba-Hubbard model on the two-
dimensional square lattice is defined by

H =
∑

k

ψ
†
k ĥ(k)ψk + U

∑
k,k′,q

c†k↑ck+q↑c†k′↓ck′−q↓, (1a)

where the single-particle Hamiltonian ĥ(k) is

ĥ(k) = (εkτ0 + gk · τ ). (1b)

The band energy εk = −2t (cos kx + cos ky) + 4t ′ cos kx

cos ky − μ contains both first- and second-neighbor hop-
ping, t and t ′, respectively, and μ is the chemical poten-
tial [28]. The vector gk describes Rashba SOC with gk =
Vso(∂εk/∂ky,−∂εk/∂kx, 0) and the coupling constant Vso. τ =
(τ1, τ2, τ3)T are the three Pauli matrices and τ0 stands for the
2 × 2 unit matrix. In Eq. (1a), ψk = (ck↑, ck↓)T is a doublet of
annihilation operators with wave vector k and U is the on-site
Coulomb repulsion. In the following, energies are given in
units of t .

The presence of Rashba SOC splits the electronic disper-
sion εk of the single-particle Hamiltonian (1b) into negative-
and positive-helicity bands with energies E1

k = εk − |gk| and
E2

k = εk + |gk|, respectively, see Fig. 1(b). These spin-split
bands exhibit a helical spin polarization, which is described
by the expectation value of the spin operator

〈Sk〉i = (−1)i 1

2

gk

|gk| , (2)

where i denotes the band index. The spin polarization is
proportional to the normalized g-vector gk/|gk|, and thus is
purely within the xy plane. Moreover, the spin polarization is
of helical nature, i.e., to a good approximation perpendicular
to the momentum (tangential to the Fermi surface).

In order to study the magnetic fluctuations of Hamiltonian
(1), we compute the spin susceptibility χ̂ (q, iωl ) using RPA,
which is known to provide a reasonable description of the
essential physics, at least within weak coupling [23–26].
Within the RPA, the dressed spin susceptibility is given by

χ̂ (q, iωl ) = [I − χ̂ (0)(q, iωl )Û ]−1χ̂ (0)(q, iωl ), (3)

where χ̂ (0) is the bare spin susceptibility. Here, χ̂ , χ̂ (0),
and Û are 4 × 4 matrices containing the 16 components of
χσ1σ2σ3σ4 , χ (0)

σ1σ2σ3σ4
, and U , respectively. The longitudinal and

transversal susceptibilities can be computed in terms of the
matrix elements χσ1σ2σ3σ4 as

χlong(q, iωl ) = χ↑↑↑↑(q, iωl ) − χ↑↓↓↑(q, iωl ), (4a)

and

χtrans(q, iωl ) = χ↑↑↓↓(q, iωl ), (4b)
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FIG. 1. (a) Density of states versus filling n for t ′ = 0.3, with
Vso = 0 (dashed line) and Vso = 0.5 (solid line). (b) Band dispersions
for t ′ = 0.3, with Vso = 0 (dashed line) and Vso = 0.5 (solid lines).

respectively. More details on the derivation of the dressed
spin susceptibility (3) are given in Appendix A.

III. SPIN FLUCTUATIONS
OF RASHBA-HUBBARD MODEL

To set the stage, we first recall some properties of the spin
fluctuations in the square-lattice Hubbard model without SOC
but finite t ′, corresponding to Vso = 0 in Eq. (1). In the ab-
sence of SOC, full SU(2) spin-rotation symmetry is preserved
in the paramagnetic phase, and hence the longitudinal and
transversal spin susceptibilities are equal, i.e., χlong = χtrans.
As has been shown in numerous works [27,29–31], the spin
fluctuations are in this case mostly of (incommensurate) AFM
nature. Only very close to the Van Hove filling nvH there occur
ferromagnetic fluctuations, which diminish quickly for fillings
away from nvH. These FM fluctuations can be understood as
resulting from Stoner ferromagnetism [27,29], which occurs
for fillings close to a large asymmetric maximum in the DOS.
Indeed, for finite t ′, the maximum in the DOS at the Van
Hove filling nvH is always asymmetric [see dashed line in
Fig. 1(a)], such that the Stoner criterion for ferromagnetism
can be satisfied. We note, however, that for vanishing t ′ the
DOS is symmetric, such that the Stoner criterion cannot be
fulfilled. Hence, for t ′ = 0 the fluctuations are AFM also close
to the Van Hove filling, due to perfect nesting of the Fermi
surface.

For finite Rashba SOC (Vso �= 0) the situation changes
drastically. First of all, Rashba SOC lifts the spin degeneracy
of the bands, thereby splitting the Van Hove singularity into
two divergences that occur at the fillings nvH1 and nvH2 ,
see solid lines in Fig. 1. These two Van Hove singularities
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FIG. 2. (a)–(d) Fermi surface topology for four different fillings.
The dashed lines indicate the AFM zone boundary. (e)–(l) Color
maps of the bare static susceptibilities as a function of modulation
vector q for each of the four fillings. The second and third columns
show the longitudinal and transversal static susceptibilities, χ

(0)
long(q)

and χ
(0)
trans(q), respectively. Here, we set the temperature to T = 0.01,

and choose t ′ = 0.3 and Vso = 0.5, for which the two Van Hove
singularities are located at nvH1 = 0.87 and nvH2 = 0.65.

originate from saddle points in the dispersion at (0, π − δ),
(δ, π ), and symmetry related points. At these saddle points
the gradient of the dispersion vanishes, causing logarithmic
divergences in the DOS. Importantly, the topology of the
Fermi surfaces changes as the filling n crosses the two Van
Hove fillings: For n > nvH1 the two Fermi surfaces are hole-
like and centered around (π, π ), see Figs. 2(c) and 2(d).
For nvH2 < n < nvH1 , on the other hand, one Fermi surface
is electronlike, while the other is holelike [Figs. 2(a) and
2(b)]. For n < nvH2 , both Fermi surfaces are electronlike and
centered around (0,0).

As is known from many works on the Hubbard model
[27,32,33], the Fermi surface topology strongly influences
the structure of the spin fluctuations. To uncover this depen-
dence, we plot in Figs. 2(e)–2(l) the bare static susceptibility
χ̂ (0)(q, ω = 0) ≡ χ̂ (0)(q) as a function of modulation vector

FIG. 3. Relative intensity of the FM fluctuations compared to the
incommensurate AFM fluctuations in the longitudinal susceptibility,
χ

(0)
long(q = 0)/χ (0)

long(q̃), as a function of filling n, Rashba SOC Vso

[(a)], and second neighbor hopping t ′ [(b)]. The solid lines represent
the two Van Hove fillings nvH1 and nvH2 . IAFM stands for incommen-
surate AFM.

q for different fillings n. We find that for fillings with two
holelike Fermi surfaces (n > nvH1 ), the dominant modulation
vector of the longitudinal spin susceptibility χ

(0)
long(q) is in-

commensurate AFM. For fillings with one electronlike and
one holelike Fermi surface (nvH2 < n < nvH1 ), however, the
longitudinal spin fluctuations are mostly FM [see Fig. 2(f)].
Finally, for fillings with two electronlike Fermi surfaces (n <

nvH2 ), the longitudinal spin fluctuations are dominantly AFM
(not shown). The transversal spin susceptibility χ

(0)
trans(q), in

contrast to the longitudinal one, shows (incommensurate)
AFM fluctuations for almost all fillings n.

These findings are independent of the particular values of
t ′ and Vso, as shown in Fig. 3. Here, we present the relative
intensities of the FM fluctuations compared to the (incommen-
surate) AFM fluctuations in the longitudinal susceptibility,
i.e., we plot χ

(0)
long(q = 0)/χ (0)

long(q̃) where q̃ is the location

of the maximum of χ
(0)
long. Inside the contour labeled “1” the

maximum of χ
(0)
long is at the FM vector q̃ = 0, while outside

this contour, the maximum is at some (incommensurate) AFM
vector, i.e., (close to) at q̃ = (π, π ). In Fig. 3(a) we plot the
ratio χ

(0)
long(q = 0)/χ (0)

long(q̃) as a function of Vso and filling n
with fixed t ′ = 0.3, while in Fig. 3(b) it is shown as a function
of t ′ and filling n with fixed Vso = 0.5. We observe a broad
region, marked in yellow, where dominant FM fluctuations
occur. These regions are bounded by the two Van Hove fillings
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FIG. 4. Color maps of the dressed static susceptibilities as a
function of q for filling n = 0.83 and different onsite interactions
U approaching the critical interaction Uc. The first and second rows
show the longitudinal and transversal static susceptibilities, χlong(q)
and χtrans(q), respectively. As in Fig. 2, we set T = 0.01, t ′ = 0.3,
and Vso = 0.5, in which case Uc 	 2.5.

nvH1 and nvH2 (black lines). The full width at half-maximum of
the FM peak in these regions is about 0.4, corresponding to a
correlation length of about 15 lattice constants. In Fig. 3(a)
we see that with decreasing Vso, the FM fluctuation region
becomes narrower and narrower, and shrinks to a single point
at nvH = nvH1 = nvH2 for Vso = 0. From Fig. 3(b) we find that
as t ′ is increased the FM fluctuations occur at lower fillings n.
Moreover, the FM fluctuations become dominant only for t ′
larger than a certain onset value, i.e., for t ′ � 0.2.

We note that in the entire parameter space the spin fluctua-
tions are either FM (peaked at q = 0), commensurate AFM
[peaked at q = (π, π )], or incommensurate AFM [peaked
at q̃, with q̃ away from, but close to (π, π )]. Hence, the
transition from FM to (incommensurate) AFM does not occur
smoothly via a continuous evolution of the modulation vector
q, but rather abruptly when the peak at q̃ suddenly becomes
larger than the one at q = 0.

So far, we have focused on the bare susceptibility χ̂ (0)(q).
The spin fluctuations of the dressed spin susceptibility χ̂ (q),
Eq. (3), are shown in Fig. 4. For small and intermediate
U the structure of the spin fluctuations of χ̂ (q) is almost
identical to the spin fluctuations of χ̂ (0)(q). This is to be
expected, since a purely on-site interaction cannot change the
momentum dependence of the spin fluctuations. For low and
high fillings, n < nvH2 and n > nvH1 , both longitudinal and
transversal susceptibilities show dominant incommensurate
AFM fluctuations. In between the two Van Hove fillings,
nvH2 < n < nvH1 , the transversal susceptibility exhibits in-
commensurate AFM fluctuations, while the longitudinal one
shows FM fluctuations. These findings do not depend on the
particular values of t ′ and Vso. That is, the phase diagram
of Fig. 3, which shows the boundaries between the different
magnetic fluctuations, remains almost identical upon inclu-
sion of a small or intermediate on-site interaction U . Increas-
ing U beyond intermediate values, the FM fluctuations rapidly
decrease as the critical interaction Uc 	 2.5 is approached
[26], see first row of Fig. 4. For strong interactions U ∼ Uc

(incommensurate) AFM fluctuations dominate [see Fig. 4(c)

and 4(f)], leading to AFM order with magnetic moments
oriented in plane.

Hence, we conclude that the magnetic fluctuations remain
largely unchanged by on-site interactions U of small and
intermediate strength. In particular, the FM fluctuations are
unaffected; they originate from finite t ′ and finite SOC, rather
than the interaction U . Thus, in order to uncover the root of
the FM and AFM fluctuations, it is sufficient to consider the
bare susceptibility χ̂ (0)(q), whose form is known exactly, and
which can be analyzed using analytical means. This is the
purpose of the next section.

IV. ORIGIN OF MAGNETIC FLUCTUATIONS

In this section we want to study the origin of the longitudi-
nal FM and AFM fluctuations. To do so, we can focus on the
bare susceptibility χ̂

(0)
long, as discussed above. We observe that

χ̂
(0)
long can be separated into interband and intraband parts. That

is,

χ
(0)
long(q, iωl ) = χ

(0),intra
long (q, iωl ) + χ

(0),inter
long (q, iωl ), (5)

where χ
(0),intra
long and χ

(0),inter
long are given in Appendix B. As

discussed in Appendix B, the AFM fluctuations originate from
the intraband term, while the FM fluctuations stem from the
interband term, see Eqs. (B3)–(B6).

Let us first discuss the interband term, which is responsi-
ble for FM fluctuations. At the FM modulation vector q =
(0, 0) ≡ 0, the static interband susceptibility χ

(0),inter
long (0, ω =

0) takes the simple form

χ
(0),inter
long (0) =

∑
k

[
f
(
E1

k

) − f
(
E2

k

)] 4|gk|
4|gk|2 + �2

, (6)

where � is a small positive infinitesimal. Because E1
k < E2

k
and f (z) is a decreasing function of z, we have 0 � f (E1

k ) −
f (E2

k ) � 1 in the above expression. In the limit � → 0, the
summand in Eq. (6) exhibits a divergence at those k where
gk = 0 and f (E1

k ) − f (E2
k ) is nonzero. Since gk is inversion

antisymmetric in k, it vanishes at the four inversion-invariant
momenta

k ∈ {(0, 0), (0, π ), (π, 0), (π, π )}. (7)

Hence, the second factor of Eq. (6) becomes larger and
larger, and eventually diverges, as the above four momenta are
approached. The Fermi factor f (E1

k ) − f (E2
k ), on the other

hand, also always vanishes at the four momenta of Eq. (7),
where E1

k = E2
k . However, it can be nonzero in an arbitrarily

small neighborhood around these points. This occurs near
k ∈ {(0, π ), (π, 0)}, when one Fermi surface is electronlike
and the other one is holelike. If the two Fermi surfaces are
both electronlike (or holelike), then the Fermi factor vanishes
in a finite neighborhood around all four momenta of Eq. (7),
thereby canceling the divergence of the second factor in
Eq. (6). These findings are illustrated in Figs. 5(a) and 5(b),
which show the momentum dependence of the summand of
Eq. (6). For filling n = 0.83, corresponding to one electronlike
and one holelike Fermi surface, we observe that the summand
diverges near k ∈ {(0, π ), (π, 0)}, while for filling n = 0.95,
corresponding to two holelike Fermi surfaces, the summand
is finite for all k. From this we deduce that strong FM
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FIG. 5. Momentum dependence of the summand of Eq. (6)
[(a) and (b)] and of the summand of Eq. (8) [(c) and (d)]. In (a),
(c) the filling is n = 0.83, while in (b), (d) it is n = 0.95. The
parameters are t ′ = 0.3, Vso = 0.5, and � = 0.05. Note that four
different color scales are used.

fluctuations occur only for fillings in between the two Van
Hove fillings, i.e., when one Fermi surface is electronlike and
the other one holelike. As an aside, we note that close to the
second Van Hove singularity nvH2 , i.e., for fillings nvH2 + ε

(with ε > 0) there is an additional Fermi pocket around (0, π )
and (π, 0). This additional Fermi pocket renders the Fermi
factor f (E1

k ) − f (E2
k ) zero in the neighborhood of (0, π ) and

(π, 0). Therefore, the FM fluctuations, which originate from
divergences of the second factor of Eq. (6) at (0, π ) and
(π, 0), are suppressed for fillings close to nvH2 , see Fig. 3.

Next we study the intraband term of Eq. (5), which
produces AFM fluctuations. At the AFM modulation
vector q = (π, π ) ≡ Q, the static intraband susceptibility
χ

(0),intra
long (Q, ω = 0) takes the simple form

χ
(0),intra
long (Q) =

∑
α=1,2

∑
k

[
f
(
Eα

k+Q

) − f
(
Eα

k

)]

× Eα
k+Q − Eα

k(
Eα

k+Q − Eα
k

)2 + �2
. (8)

In the limit � → 0, the summand in Eq. (8) has a divergence at
those k where Eα

k+Q = Eα
k and f (Eα

k+Q) − f (Eα
k ) is nonzero.

The condition Eα
k+Q = Eα

k is satisfied at the AFM zone bound-
ary, indicated by the dashed lines in Figs. 2(a)–2(d). This
leads to a divergence of the second factor of Eq. (8), which
is further enhanced near (0, π ) and (π, 0) by the saddle
points in the dispersions of Eα

k+Q and Eα
k . The Fermi factor

f (Eα
k+Q) − f (Eα

k ), on the other hand, is nonzero near (0, π )
and (π, 0), only for the second band with fillings n > nvH1 and
for the first band with fillings n < nvH2 . For nvH2 < n < nvH1 ,
however, the Fermi factor always vanishes near (0, π ) and
(π, 0), thus canceling the divergence from the second factor
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FIG. 6. Ratio between the longitudinal and transversal static
susceptibilities R = χlong(0)/χtrans(0) as a function of (a) filling n and
(b) Rashba SOC Vso for different values of U . In (a) the parameters
are t ′ = 0.3 and Vso = 0.5, while in (b) we set t ′ = 0.3 and n = 0.83.

in Eq. (8). These observations are illustrated by Figs. 5(c)
and 5(d), which display the k dependence of the summand of
Eq. (8). For n = 0.95, corresponding to two holelike Fermi
surfaces, the summand show divergences near (0, π ) and
(π, 0), while for n = 0.83, corresponding to one holelike and
one electronlike Fermi surface, the summand does not show
any divergences. We conclude that strong AFM fluctuations
occur only for n < nvH2 and n > nvH1 , but not in between the
two Van Hove fillings.

In this section we have focused on the bare susceptibility
χ̂

(0)
long. But the above arguments also explain the origin of the

FM and AFM fluctuations in the dressed susceptibility χ̂long,
since an on-site interaction U of small or intermediate strength
does not alter the structure of the magnetic fluctuations (see
discussion at the end of Sec. III). It is possible to generalize
the given arguments in a straightforward manner to other
Rashba systems on other types of lattices with correlations
of weak or intermediate strength. Thus, we expect that FM
fluctuations occur generically for a large class of Rashba
systems with one electronlike and one holelike Fermi surface.

V. EXPERIMENTAL TEST TO IDENTIFY
FERROMAGNETIC FLUCTUATIONS

In order to identify the discussed FM fluctuations in exper-
iments, we propose to measure the ratio between the longi-
tudinal and transversal static susceptibilities in the presence
of a constant magnetic field, i.e., R = χlong(0)/χtrans(0). In
an experiment χlong(0) is the response to a constant mag-
netic field perpendicular to the two-dimensional layer, while
χtrans(0) is the response to a field parallel to the layer. The
ratio R is expected to depend only weakly on material details.
Moreover, R shows pronounced features as a function of
filling n and Rashba SOC Vso, for which one could look in
experiments.

In Fig. 6(a) we present the results for R versus filling n
for Vso = 0.5, t ′ = 0.3, and different values of U . The broad
peak larger than 1 for fillings in between the two Van Hove
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fillings, nvH2 < n < nvH1 , originates from the dominant FM
fluctuations in χlong, as discussed above. As a function of
on-site interaction U , the height of this peak remains nearly
unchanged for small and intermediate values of U . For strong
U close to Uc 	 2.5, the FM fluctuations rapidly vanish, as
discussed in Sec. III.

In Fig. 6(b) we plot R as a function of Rashba SOC Vso

for the filling n = 0.83, at which the FM fluctuations are
strongest. The values of U are the same as in Fig. 6(a).
Interestingly, R versus Vso shows a pronounced step at V onset

so ,
above which longitudinal FM fluctuations occur, cf. Fig. 3(a).
We note that V onset

so corresponds to the SOC strength, for
which the second Van Hove singularity is located at the filling
n = 0.83, i.e., entering the yellow region in Fig. 3(a). As in
Fig. 6(a), we find that R above the step does not change much
with increasing U , as long as U is smaller than Uc.

The discussed dependence of R on filling n and Rashba
SOC Vso could be measured in heterostructure interfaces. In
these interfaces it is possible to control the filling by doping
or gating [34]. The Rashba SOC, on the other hand, can be
tuned by applying electric fields or by modulating the layer
thickness [2,4].

VI. DISCUSSIONS AND CONCLUSIONS

In summary, we have studied magnetic fluctuations of the
t-t ′-Rashba-Hubbard model on the square lattice. The Rashba
spin-orbit coupling of this model splits the bands and leads to
two Van Hove singularities. We have found that for fillings in
between these two Van Hove singularities, there exist dom-
inant ferromagnetic fluctuations in the longitudinal suscep-
tibility. Outside this filling region the magnetic fluctuations
are (incommensurate) antiferromagnetic. The ferromagnetic
fluctuations remain largely unchanged by on-site interactions
U of small and intermediate strength. They originate from in-
terband contributions to the longitudinal susceptibility. These
interband contributions only exist if there is a holelike and
an electronlike Fermi surface, which is the case for fillings in
between the two Van Hove singularities. Thus, the origin of
these ferromagnetic fluctuations is different from the Stoner
criterion for ferromagnetism, which is only satisfied close
to large maxima in the density of states. As discussed in
Sec. IV, these types of ferromagnetic fluctuations are expected
to occur more generally, i.e., in any Rashba system with one
electronlike and one holelike Fermi surface.

We hope that our findings will stimulate experimentalists
to look for two-dimensional materials or noncentrosymmetric
systems that satisfy these conditions. In order to identify
the ferromagnetic fluctuations in an experiment, we have
proposed to measure the ratio between the longitudinal and
transversal susceptibilities. This ratio is expected to depend
only weakly on material details. It shows a pronounced step
as a function of spin-orbit coupling and a broad peak as a
function of filling, see Fig. 6.

To conclude, we mention several directions for future
research. First of all, the reported ferromagnetic fluctuations
could provide a pairing mechanism for unconventional super-
conductivity. We have recently reported some initial results
concerning this in Ref. [26]. It would be interesting to study in
more detail the pairing symmetry of the superconductivity that

is induced by the ferromagnetic fluctuations. Furthermore,
it would be worthwhile to investigate the magnetic fluctu-
ations of the Rashba-Hubbard model using more advanced
techniques, such as FLEX [35] or fRG [36]. Within the RPA
we find that the ferromagnetic fluctuations do not lead to
ferromagnetic order, since the antiferromagnetic fluctuations
become stronger as U approaches Uc. It would be interesting
to know whether this result is confirmed by more sophisticated
methods.
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APPENDIX A: SPIN SUSCEPTIBILITY WITHIN
THE RANDOM PHASE APPROXIMATION

In this Appendix, we give the precise definition of the
dressed spin susceptibility. Within the RPA the dressed spin
susceptibility χσ1σ2σ3σ4 (q, iωl ) is given by [23,24,26]

χ̂ (q, iωl ) = [I − χ̂ (0)(q, iωl )Û ]−1χ̂ (0)(q, iωl ), (A1)

where χ̂ (0) is the bare spin susceptibility and Û is the in-
teraction matrix. Here, χ̂ (0) and χ̂ are 4 × 4 matrices with
the matrix elements χ (0)

σ1σ2σ3σ4
and χσ1σ2σ3σ4 , respectively. The

explicit form of the matrix χ̂ (0) is given by

χ̂ (0) =

⎛
⎜⎜⎜⎜⎜⎝

χ
(0)
↑↑↑↑ χ

(0)
↑↓↑↑ χ

(0)
↑↑↓↑ χ

(0)
↑↓↓↑

χ
(0)
↑↑↑↓ χ

(0)
↑↓↑↓ χ

(0)
↑↑↓↓ χ

(0)
↑↓↓↓

χ
(0)
↓↑↑↑ χ

(0)
↓↓↑↑ χ

(0)
↓↑↓↑ χ

(0)
↓↓↓↑

χ
(0)
↓↑↑↓ χ

(0)
↓↓↑↓ χ

(0)
↓↑↓↓ χ

(0)
↓↓↓↓

⎞
⎟⎟⎟⎟⎟⎠ , (A2)

and similarly for χ̂ . The interaction matrix Û is a 4 × 4
antidiagonal matrix of the form

Û =

⎛
⎜⎝

0 0 0 U
0 0 −U 0
0 −U 0 0
U 0 0 0

⎞
⎟⎠ . (A3)

In the above expressions, the bare susceptibility
χ (0)

σ1σ2σ3σ4
(q, iωl ) is defined as the convolution of two Green’s

functions

χ (0)
σ1σ2σ3σ4

(q, iωl )

=
∑
k,iνn

G(0)
σ1σ2

(k, iνn)G(0)
σ3σ4

(k + q, iνn + iωl ), (A4a)

with

G(0)
σ1σ2

(k, iνn) = ([iνnσ0 − ĥ(k)]−1)σ1σ2 (A4b)

the 2 × 2 bare electronic Green’s function. Here, ωl = 2nπ/β

is the bosonic Matsubara frequency, while νn = (2n + 1)π/β

is the fermionic Matsubara frequency, with β the inverse
temperature.
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APPENDIX B: SIMPLIFIED EXPRESSIONS FOR THE
LONGITUDINAL BARE SUSCEPTIBILITY

In this Appendix, we derive simplified expressions for the
longitudinal bare spin susceptibility χ

(0)
long. First we show that

χ
(0)
long can be split into intra- and interband contributions. For

that purpose we note that the four components of the bare
Green’s function, Eq. (A4b), can be written as

G(0)
↑↑(k, iνl ) = G(0)

↓↓(k, iνl ) = 1/2

iνl − E1
k

+ 1/2

iνl − E2
k

, (B1)

and

G(0)
↑↓(k, iνl ) = G∗(0)

↑↓ (k, iνl ) = V̂k/2

iνl − E2
k

− V̂k/2

iνl − E1
k

, (B2)

where V̂k = Vk/|Vk|, with Vk = gk · (1, i). Combining this with Eq. (A4), we find that χ
(0)
long can be decomposed into an intraband

and an interband part, i.e., χ
(0)
long = χ

(0),intra
long + χ

(0),inter
long with

χ
(0),intra
long (q, iωl ) =

∑
k

[
f
(
E1

k+q

) − f
(
E1

k

)
E1

k+q − E1
k − iωl

+ f
(
E2

k+q

) − f
(
E2

k

)
E2

k+q − E2
k − iωl

]
1

2
(1 − ĝk · ĝk+q), (B3)

and

χ
(0),inter
long (q, iωl ) =

∑
k

[
f
(
E1

k+q

) − f
(
E2

k

)
E1

k+q − E2
k − iωl

+ f
(
E2

k+q

) − f
(
E1

k

)
E2

k+q − E1
k − iωl

]
1

2
(1 + ĝk · ĝk+q), (B4)

respectively, where ĝk = gk/|gk|, f (z) = (eβz + 1)−1 is the Fermi distribution function, and β is the inverse temperature.
For AFM fluctuations with modulation vector q = Q(1 + δ) close to Q = (π, π ), with δ � 1, we find that ĝk · ĝk+Q(1+δ) =

−1 + O[t ′, δ]. Hence, the AFM fluctuations originate from the intraband term, while the interband term gives only a contribution
of order O[t ′, δ]. Thus, we have

χ
(0)
long(Q, iωl ) 	 χ

(0),intra
long (Q, iωl ) =

∑
k

[
f
(
E1

k+Q

) − f
(
E1

k

)
E1

k+Q − E1
k − iωl

+ f
(
E2

k+Q

) − f
(
E2

k

)
E2

k+Q − E2
k − iωl

]
. (B5)

On the other hand, for FM fluctuations with q = (δ, δ) close to q = 0, we have ĝk · ĝk+(δ,δ) = +1 + O[δ2]. Therefore, the FM
fluctuations stem from the interband term. That is, we find

χ
(0)
long(0, iωl ) = χ

(0),inter
long (0, iωl ) =

∑
k

[
f
(
E1

k

) − f
(
E2

k

)][ 4|gk|
4|gk|2 + ω2

l

]
. (B6)

See the main text for a discussion of Eqs. (B5) and (B6).
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