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ABSTRACT 

The 4-phenylazophenol (4-PAP), was treated with two different sources of metallic iron 

(ZVI): commercial micrometric powder (pZVI) and nanoparticles synthetized by the 

borohydride reduction method (nZVI). 4-PAP degradation was studied both in the absence 
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and in the presence of H2O2 at different pHs. The degradation products of 4-PAP in each 

treatment were followed by LC-MS and CG-MS. Results showed that, in the absence of 

H2O2, the azo bond reduction of 4-PAP with the formation of amines was the main 

mechanism involved for both ZVI sources and nZVI exhibited a faster substrate removal than 

pZVI. In the presence of H2O2, an additional mechanism involving the oxidation mediated 

by hydroxyl radicals takes place. For pZVI, the addition of H2O2 produced a complete 

inhibition of the reduction pathway, being the oxidation the main degradation mechanism. In 

the case of nZVI, the system behavior showed an important dependence on the working pH. 

At pH 3.00, oxidative transformation pathways prevailed, whereas at pH 5.00 an almost 

negligible degradation -mainly driven by 4-PAP reduction- was observed. The assessment of 

the involved reaction mechanisms under different conditions allows the selection of the most 

suitable source for a specific treatment. 

 

 

KEYWORDS: ZVI, FENTON, AZO DYES, IRON NANOPARTICLES 

 

1. INTRODUCTION 

Fenton related techniques are one of the most studied wastewater treatments due to their 

ability to oxidize a wide variety of pollutants using green reactants with few environmental 

impacts [1]. Several works have focused on its use for the degradation of azo dyes [2–4], the 

most common family of dyes used in textile industry [5]. These dyes are resistant to 

traditional biological treatments and can generate carcinogenic aromatic amines upon 

reduction [6]. In particular, it has been shown that the dye 4-phenylazophenol (4-PAP), also 

known as Solvent Yellow 7, may be easily absorbed by human skin and metabolized to the 
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mutagenic aniline [7]. 4-PAP has one of the simplest structures among azo dyes, consisting 

on a benzene and a phenol ring conjugated through an azo linkage (Figure S1). This is an 

advantage for identification of products obtained under different conditions.  

Fenton related techniques are based on the production of hydroxyl radicals (OH•) from Fe(II) 

and H2O2 [8]. 

 

Fe(II)  +  H2O2    →    [Fe(III)OH]2+  +  HO•     (1) 

 

Hydroxyl radicals have a high oxidation potential [9] and are capable of oxidize most of the 

organic compounds present in industrial effluents. The oxidation of aromatic compounds 

usually involves the addition of a hydroxyl group (-OH) to the aromatic ring during the first 

oxidation steps generating hydroxylated derivatives [10]. A subsequent attack of hydroxyl 

radical produces dihydroxylated compounds. Although a third addition is possible, 

trihydroxylated compounds are unstable and tend to undergo ring opening reactions with the 

loss of aromaticity and the generation of aliphatic acids [11]. In the case of azo dyes, OH• 

can also attack azo bonds thus generating hydroxylamines (R-NHOH), hydroxyl hydrazines 

(R-NH-NHOH), nitroso compounds (R-N=O), diazo compounds (R-N=NH) and keto- 

imines (R=NH) [12]. Although the oxidation mediated by hydroxyl radicals is the most usual 

mechanism attributed to Fenton related techniques, it has been reported that in some 

conditions other oxidant species such as ferryl ion (FeO2
2+) may be formed and participate 

in the reaction mechanism [13]. 

ZVI-Assisted Fenton is a variant of Fenton process where the Fe(II) is provided by the 

oxidation of metallic iron (commonly called Zero Valent Iron, or ZVI) [14][15]. This variant 

has the advantage of introducing a new removal pathway that involves the reduction of the 
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target pollutant by metallic iron. According to the usually accepted mechanism of azo dyes 

reduction by ZVI, there is an electron transfer from iron to the nitrogen atoms that leads to 

the cleavage of the azo bond [16–18]. 

 

4-PAP  +  2 Fe0  +  4H+    →    Aniline  +  4-OH-aniline  +  2 Fe(II)  (2) 

 

In previous studies, we have demonstrated that under some operational conditions there is a 

competition between ZVI mediated reduction and Fenton mediated oxidation in the 

degradation mechanism of an azo dye [18]. 

The use of iron nanoparticles for the reduction of several contaminants has been widely 

studied due to the higher specific area and reactivity compared to conventional micrometric 

iron [19,20]. In this context, the use of nZVI particles was recently proposed to improve the 

performance of ZVI-assisted Fenton systems [21–23]. However there is evidence in literature 

that the size of iron particles could affect oxidant utilization, since smaller particles tend to 

be less efficient due to the higher H2O2 consumption by direct reaction with ZVI [24]. 

Therefore, despite their higher surface area and reactivity, Fe° nanoparticles (nZVI) could be 

less efficient for pollutant removal than conventional micrometric iron powder (pZVI) in 

ZVI-Assisted Fenton systems. 

The objective of the present work is to assess the advantages and drawbacks of the utilization 

of nanoparticles in ZVI-Assisted Fenton treatments. The transformation of 4-

phenylazophenol (4-PAP), which is a good model pollutant for following the degradation 

pathways of azo dyes due to the simplicity on its molecular structure, was studied in the 

presence nZVI or pZVI under different conditions. In particular, we have focused on the 

competition between H2O2 and 4-PAP for the reducing power of micro- and nano- sized ZVI 
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under different working conditions. To the best of our knowledge, this is the first study 

involving the elimination of 4-PAP by ZVI-mediated reduction and/or by oxidation in ZVI-

assisted Fenton systems. 

 

2. MATERIAL AND METHODS 

2.1.  Reagents 

4-Phenylazophenol (Alpha Aesar, 98 %), H2O2 (Merck, 30 %), FeSO4.7H2O (Cicarelli, 

analytical degree), NaBH4 (98.5 %, Riedel-de Haën), Electrolytic ZVI powder (Anedra, > 98 

%) and 2-Propanol (Emsure, analytical degree) were used as provided. H2SO4 and NaOH 

were provided by Merck. All the solutions were prepared using water of Milli-Q grade 

(Milipore, 18.2 MOmhs.cm at 25 ºC). 

 

2.2. Nanosized ZVI synthesis 

nZVI was obtained by borohydride reduction of a ferrous salt, based on the method reported 

by Lien et al [25]. Briefly, 200 mL of an aqueous solution of FeSO4.7H2O 7.5 % p/p at pH 

4.0 was purged with N2 during 20 min. Maintaining N2 bubbling, 200 mL of a 2 % p/p of 

NaBH4 at pH = 10 were added drop by drop at a constant velocity of 3 mL min-1, stirring the 

solution at 20 °C. The nZVI obtained was magnetically separated and washed 2 times with 

mili-Q water and 2 times with ethanol, dried under vacuum at 60 °C with a rotavapor and 

stored in a N2 atmosphere until use. With these procedures, it is expected to obtain particles 

of around 50 ± 15 nm [19]. 
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2.3. Experimental procedure 

Batch experiments were conducted in a 250 mL pyrex® reactor. 4-Phenylazophenol 

solutions were prepared at a concentration of 0.1 mM. The initial pH was adjusted by 

dropwise addition of 0.1 M H2SO4 and/or 0.1 M NaOH. No buffers were used in order to 

avoid potential interferences with Fenton reaction. H2O2 and ZVI (nano- or micro- sized) 

were sequentially added in order to start reaction. At desired times, samples (1.0 mL) were 

withdrawn and mixed with 1.0 mL of methanol 25 % to prevent composition changes 

between sampling and analysis [10]. All the experiments were carried out at room 

temperature and under vigorous magnetic stirring. Samples were passed through 0.45 m 

filters (Whatman) before analysis. After filtration, H2O2 was measured using a 

semiquantitive MQuant peroxidase test. 

 

2.4. Analytical techniques 

4-PAP concentration measurements were performed by HPLC with a Thermo Scientific 

Dionex UltiMate 3000™ instrument equipped with a vacuum degasser, a quaternary pump, 

an autosampler and UV-Vis diode array detector. Separation was performed on a Fortis C18 

(250 mm x 2.1 mm, i.d.: 5μm) column. The injection volume was 20 μL. A mixture of 50 % 

acetate buffer (0.01 M, pH = 4.8) and 50% acetonitrile was used as elution phase with a flow 

rate of 1 mL.min−1. 4-PAP retention time is 5.8 min on these conditions and the area of the 

signal obtained at 347 nm was used for quantification. 

Degradation products of 4-PAP were analyzed by both LC-MS and CG-MS. LC-MS runs 

were performed on a Shimadzu instrument (solvent delivery module LC-20AB, online 

degasser DGU-20A3, column oven CTO-20A and autosampler SIL-20A, LC-MS-2010 EV 
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mass detector) equipped with an C18 column (150 × 4.6 mm, 5 μm particle size, Restek, 

USA). The column temperature was maintained at 30.0 ± 0.2 °C. An isocratic mobile phase 

composed of 50/50 (v/v) ACN/0.1 % formic acid in water was used, with a flow rate of 0.3 

mL.min−1. M/Z detector was set at 199, 94, 110, 215, and 231 to identify 4-PAP and its 

primary degradation products (aniline, 4-OH-aniline, monohydroxylated and dihydroxylated 

derivatives of 4-PAP). In order to quantify the signal of the latter compounds, integration at 

the desired M/Z relation was carried out. Samples for CG-MS analysis were extracted with 

hexane and analyzed in a Trace GC Ultra instrument (Thermo Scientific, Waltham, MA, 

USA) coupled to an ISQ mass spectrometer controlled by a computer running X-Calibur 

software. Aliquots of 1 μL were injected using an AI/AS 3000 auto sampler (Thermo 

Scientific). In splitless mode, the injector temperature was maintained at 250°C. The 

separation was carried out using a Thermo Scientific™ TRACE™ TR-5MS column (30 mm 

x 0.25 mm x 0.25 μm) and helium (purity > 99.9%) as the carrier gas (flow rate of 1 mL min-

1). GC oven temperature program was as follows: initial temperature of 60°C for 1 min, 10°C 

min-1 to 130°C, 4°C min-1 to 230°C, and finally 8°C min-1 to 250°C (held for 10 min). The 

ion source and transfer line temperature were kept at 250 and 280°C, respectively. Electron 

ionization mass spectra at m/z of 50–500 were recorded at 70 eV. 

Specific surface area of pristine ZVI particles was determined by N2 adsorption at 77 K using 

a Micromeritics ASAP 2020 instrument. 

 

3. RESULTS 

3.1. Kinetic profiles of 4-PAP degradation 

In order to compare pZVI and nZVI performance for the degradation of 4-PAP, kinetic 

profiles were studied with and without H2O2 under different initial conditions. Figure 1 shows 
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the behavior of these systems when operated at an initial pH of 3.00. The comparison between 

the results obtained with nZVI and pZVI in the absence of H2O2 shows that nZVI completely 

removed the dye during the first hour of reaction, while pZVI was unable to remove more 

than 60% of 4-PAP under the tested conditions. Taking into account the results obtained from 

N2 adsorption at 77 K, the higher removal rate of nZVI may be ascribed to its high specific 

surface area (62.28 m2/g) compared to that of pZVI (0.67 m2/g). Moreover, if the amount of 

pZVI is increased to match the area of the nZVI particles in the same conditions, no 

difference on degradation rates of 4-PAP between both ZVI sources is observed (Figure S2). 

Therefore, under the latter conditions, nZVI is a more efficient material than the micrometric 

powder because of its higher exposed area, the specific reactivities of both materials being 

rather similar. 

Upon external addition of H2O2 to the reaction mixture, an enhancement of 4-PAP 

degradation occurs due to the contribution of the Fenton oxidation pathway. In this case, 

nZVI also showed a better performance than pZVI, which can be attributed mainly to the 

faster generation of Fe(II) during Fe° corrosion as consequence of its higher exposed surface. 

It is important to highlight that, when systems were operated at the starting pH of 3.00, both 

pZVI/H2O2 and nZVI/ H2O2 systems were more efficient for 4-PAP degradation than a 

traditional Fenton system where iron was added on the form of a ferrous salt (Figure S3A). 

Given the rather short timescales required for complete 4-PAP elimination in the presence of 

H2O2, the improvement observed by the use of ZVI sources instead of Fe(II) cannot be 

explained by the contribution of ZVI mediated reduction. A possible explanation is that the 

constant release of Fe(II) from ZVI prevents the presence of high concentrations of Fe(II) in 

solution, which may result in the scavenging of HO radicals [26]. 
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Figure 1. Kinetic profiles for 4-PAP degradation with ZVI at starting pH of 3.00. Initial 

conditions: [4-PAP] = 0.1 mM, pH = 3.00, [H2O2] = 2.0 mM, ZVI = 0.20 g/L. 

 

It is well known that ZVI performance is strongly dependent on pH conditions [27–30]. 

Therefore, it is interesting to compare the behavior of both ZVI sources when system is 

operated in mild acidic conditions (i.e. at starting pH of 5.00, Figure 2). Comparison between 

kinetic profiles obtained in ZVI assisted systems with initial pH values of 3.00 and 5.00 

(Figures 1 and 2) shows that 4-PAP elimination rates decrease as the initial pH is raised. The 

decrease of the rates of both reduction and oxidation as the working pH is increased maybe 

ascribed to the precipitation of Fe(III) in the form of oxyhydroxides onto ZVI surfaces [18]. 

This precipitation produces a corrosion layer, which prevents substrate reduction onto ZVI 

surface and also reduces the release of Fe(II) species to the solution bulk that are necessary 

for homogeneous Fenton reaction [31]. In order to evaluate the role of the corrosion layer on 

nZVI and pZVI materials, additional experiments were conducted in the presence of EDTA, 
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which forms highly stable complexes with Fe(III) (Kcond = 3.2.1013 M-1) [32] thus preventing 

Fe(III) oxyhydroxides precipitation [18]. The enhancement of 4-PAP elimination in the 

presence of EDTA (Figure 2), suggests that the formation of the corrosion layer plays a 

significant role on the decrease of substrate transformation rates induced by both materials. 

 

Figure 2. Kinetic profiles for 4-PAP degradation with ZVI at starting pH of 5.00. Initial 

conditions: [4-PAP] = 0.1 mM, pH = 5.00, [H2O2] = 2.0 mM, ZVI = 0.20 g/L, [EDTA] = 36 

mM. 

 

It is interesting to notice that, at pH 5.00 and in the absence of EDTA, the higher 4-PAP 

elimination rate was recorded for nZVI without H2O2 addition, while no significant 

transformation was observed for the nZVI/H2O2 system (Figure 2). This behavior contrasts 

with that observed when the initial pH was 3.00 (Figure 1). It is worth mentioning that, 

although 4-PAP is not transformed at an initial pH of 5.00, hydrogen peroxide decays 
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quickly, [H2O2] being below the detection limit after the first 2 minutes. The latter result may 

be explained by taking into account the reaction of H2O2 with nZVI surface (Reaction 3). 

 

Fe0  +  H2O2  +  2 H+    →    Fe(II)  +  2 H2O (E°= 2.223 V)  (3) 

 

Therefore, the addition of H2O2 in the presence of nZVI suspensions at mild acidic conditions 

exerts a negative effect on the efficiency of 4-PAP elimination because reaction 3 causes a 

decrease in Fe ° sites available to reduce 4-PAP. This effect will be discussed further in 

section 3.3. In addition, it was previously reported that in mild acidic conditions, reaction 3 

becomes the main route of H2O2 consumption for ZVI-assisted systems [18], which reduces 

oxidant availability for Fenton reaction. 

In the case of pZVI, an almost negligible degradation was observed in the absence of H2O2, 

while 4-PAP elimination was significant upon addition of H2O2 (Figure 2). In these 

conditions, oxidant consumption is slower and H2O2 is still present after 120 minutes of 

reaction, although in a low concentration (<0.5 ppm). The effect of H2O2 addition for pZVI 

source at this pH condition is opposite to the one observed for nZVI. The differences may be 

explained by considering that the higher surface area of nZVI makes them more suitable for 

promoting the reduction of the substrate, but also more susceptible to directly react with 

H2O2, thus consuming the oxidant and promoting iron passivation. From a technological 

viewpoint, worthless consumption of H2O2 through reaction 3 represents a very important 

issue for ZVI assisted Fenton systems since it leads to a much less efficient use of the oxidant 

in comparison with the traditional Fe(II)/H2O2 Fenton systems (Figure S3B). Although this 

is true for both ZVI sources, this effect is especially noticeable for the case of nZVI. 
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The higher nZVI corrosion upon addition of H2O2 is also evidenced by the recorded pH 

profiles (Figure S4), since pH sharply increases from 5.0 to more than 8.0 within the first 5 

minutes of reaction. At this pH, Fe(II) is highly unstable and tends to oxidize to Fe(III) 

species, which precipitate and become unable to sustain Fenton-like processes. On the other 

hand, for the pZVI/H2O2 system the solution pH increases slowly and does not exceed a value 

of 6.4, thus allowing the oxidation of 4-PAP to some extent. 

 

3.2 Product analysis 

The formation of 4-PAP byproducts by nZVI and pZVI were analyzed by LC-MS and CG-

MS. The results obtained in the absence of externally added H2O2 are shown in Figure 3. For 

the experiments conducted with an initial pH of 3.00, fragments compatible with the ionized 

form of aniline and 4-OH-aniline were identified by LC-MS and confirmed by CG-MS as 

the unique detectable products for both ZVI sources. In contrast, for the experiments 

conducted with an initial pH of 5.00, the profiles of 4-PAP byproducts were much more 

dependent on the ZVI source used. In the presence of nZVI 4,4'-dihydroxyazobenzene 

(MOH-4-PAP) was detected along with aniline and 4-OH-aniline; while in the presence of 

pZVI only MOH-4-PAP was detected as 4-PAP byproduct with the extent of 4-PAP 

degradation being rather low (i.e. less than 5% of 4-PAP degradation after 2 h of reaction, 

Figure 2). The formation of MOH-4-PAP under mild acidic conditions could be accounted 

for by the fact that the reduction of dissolved oxygen by passive iron surfaces produces H2O2 

“in situ” [33–35], thus leading to the generation of oxidizing species through the Fenton 

reaction. 
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Figure 3. Profiles of 4-PAP byproducts obtained by LC-MS in the absence of H2O2. Initial 

conditions: [4-PAP] = 0.1 mM, ZVI = 0.20 g L-1. 

 

In the presence of added H2O2 a wide variety of oxidation byproducts derived from 

hydroxylation reactions were found. Mono- and di-hydroxylated derivatives of 4-PAP 

formed by OH• addition to the aromatic ring (MOH-4-PAP and DOH-4-PAP, respectively) 

were detected by LC-MS. CG-MS analyses confirmed that MOH-4-PAP match to a product 

were HO• attack is produced on the non-hydroxylated ring of 4-PAP, mainly on para- position 

to form the 4,4'-dihydroxyazobenzene. Aniline and 4-OH-aniline were also detected on 
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systems operated at starting pH of 3.00, thus confirming that ZVI mediated reduction is also 

present when H2O2 is added, although its contribution is negligible.  

The inspection of the distribution of reaction products for pZVI/H2O2 systems (Figure 4) 

evidenced that 4-PAP hydroxylated derivatives are the main reaction intermediaries. The 

latter results show that, under both pH conditions, oxidation is the main 4-PAP 

transformation pathway when pZVI is used as iron source. Owing to the difference in the 

overall reaction rates, when working at starting pH of 3.00 MOH-4-PAP and DOH-4-PAP 

are completely degraded after 60 min of reaction, while at pH 5.00 they are still present in 

the reaction mixture for more than 120 min. In case of nZVI/H2O2 system, depending on 

initial pH a different behavior is observed. For the experiment performed with an initial pH 

of 3.00, the main products detected are MOH-4-PAP and DOH-4-PAP (Figure 4), indicating 

that oxidation triggered by Fenton reaction is the main degradation pathway. However, for 

the system operated with an initial pH of 5.00 the main products correspond to the amines 

formed by the reduction of 4-PAP, and only traces of the hydroxylated derivatives appear 

after 30 min (Figure 4). The latter results suggest that, under these conditions, the rather small 

reaction progress observed (Figure 2) is mostly associated to the ZVI mediated reduction of 

4-PAP, since the addition of H2O2 does not lead to any significant oxidation of the substrate. 
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Figure 4. Profiles of 4-PAP byproducts obtained by LC-MS with H2O2 addition. Initial 

conditions: [4-PAP] = 0.1 mM, ZVI = 0.20 g L-1, [H2O2] = 2.0 mM. 

Main degradation products detected for each system studied, as well as their formation 

pathways, are schematized on Figure 5. 
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Figure 5. Scheme of main degradation products followed by LC-MS. 

 

3.3. 4-PAP degradation in the presence of 2-propanol 

The role of OH• radicals was evaluated by adding 2-propanol as scavenger since it has been 

reported that it can react with both homogenous and surface bonded OH• [22]. If the oxidation 

of 4-PAP in ZVI assisted systems is triggered by OH• radicals, then the presence of 2-

propanol should inhibit Fenton oxidation pathway. It is important to mention that, we have 

recently shown that ferryl ions have a negligible contribution on the oxidation of Acid Black 

1 under the conditions used in the present work [32]. Figure 6 compares the kinetics of 4-

PAP elimination obtained using nZVI and pZVI in the presence of 2-propanol and using 

different concentrations of H2O2. The decay profiles recorded in the absence of H2O2 are 

similar to those obtained in the absence of 2-propanol (Figure 1) confirming that the presence 

of the scavenger does not hinder the reduction pathway. In addition, for the all tested H2O2 
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concentrations, only aniline and p-OH-aniline, which come from reductive pathways, were 

found by LC-MS as degradation byproducts. The absence of oxidation products in the 

presence of 2-propanol supports the hypothesis that HO• radicals are the main reactive species 

involved in 4-PAP oxidation at pH 3.00. Interestingly, kinetic profiles of Figure 6 show a 

progressive decrease in both the rate and the degree of 4-PAP transformation as [H2O2] is 

increased. This behavior can be explained by considering that H2O2 is an electron acceptor 

than can compete with 4-PAP for the electrons released by ZVI. Moreover, the results 

obtained in the presence of 2-propanol suggest that the increase of H2O2 concentration in 

acidic media not only may enhance the rate of 4-PAP oxidation triggered by Reaction 1 but 

also may decrease, to some extent, the iron-mediated reduction of 4-PAP (Reaction 2) due to 

the increased ZVI consumption through Reaction 3. 

 

Figure 6. Isopropanol inhibition of Fenton oxidation for nZVI (left) and pZVI (right). Initial 

conditions: [4-PAP] = 0.1 mM, pHi = 3.00, [H2O2] = 0 – 2.0 mM, ZVI = 0.20 g/L, [2-

propanol] = 0.5 M. 
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4. CONCLUSIONS 

The use of two different sources of metallic iron pZVI and nZVI for the elimination of 4-

PAP under different conditions allowed us to address several mechanistic and kinetic issues 

regarding the application of ZVI based technologies. Although both nanometric and 

micrometric particles showed similar transformation products (derived from azo bond 

reduction or HO• mediated oxidation), the relative contributions of reductive and oxidative 

pathways as well as the overall elimination rates significantly depend on the ZVI source, 

especially under mild acidic conditions (i.e. pHi 5.00). 

In the absence of added H2O2 and for moderate acidic media (i.e. pHi 3.00), nZVI exhibited 

a faster substrate removal than pZVI, the main mechanism involved in 4-PAP transformation 

for both ZVI sources being the azo bond reduction with the formation of the corresponding 

amines. Results show that the higher efficiency recorded for the nanoscaled material may be 

fully ascribed to its higher exposed area, since the specific reactivities of both materials are 

very similar. In contrast, for mild acidic media (i.e. pHi = 5.00) the formation of a corrosion 

layer onto iron particles may substantially reduce surface reactivity. The latter effect is much 

less critical for nZVI than for pZVI since the higher surface area of nanoparticles makes the 

substrate reduction possible even in mild acidic media. This behavior is one of the main 

advantages of the use of nanoparticulated ZVI for reductive elimination. It should be taken 

into account that, for ZVI systems operated under mild pH conditions, the “in situ” formation 

of H2O2 leads to the contribution of oxidative transformation pathways. Moreover, in these 

conditions, the transformation of 4-PAP by nZVI occurred through both reductive and 

oxidative pathways transformation, whereas for the pZVI only oxidation products of 4-PAP 

where found. 
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The presence of added H2O2 leads, for moderate acidic media, to faster transformation rates 

due to hydroxyl radicals mediated oxidation of 4-PAP, the major transformation products 

detected being the mono- and di-hydroxylated derivatives of the target substrate, 

independently of the source of ZVI used. It is important to highlight that, under moderate 

acidic conditions, both pZVI/H2O2 and nZVI/H2O2 systems were more efficient for 4-PAP 

elimination than a traditional Fenton system. As the working pH is raised, a strong 

dependence of the dominant transformation pathway on the ZVI source used is evidenced. 

For pZVI, the addition of H2O2 under mild acidic conditions produced a complete inhibition 

of the reduction pathway, being the oxidation the main degradation mechanism. In contrast, 

for the same working pH, nZVI/H2O2 systems showed an almost negligible substrate 

transformation mainly driven by 4-PAP reduction. 

 The results obtained in the present work suggest that the higher reactivity of ZVI 

nanoparticles compared to conventional powder may be, under some pH conditions, a 

drawback for ZVI-assisted oxidation treatments. The better understanding of the advantages 

and disadvantages of each iron source allows a more rational design of ZVI-based treatments. 

Noteworthy, despite this work has been focused on the degradation of a model azo dye, many 

of the insights obtained could also be applicable to other types of organic substrates. In 

particular, the competition between reduction and oxidation pathways is also expected to 

occur with other reducible compounds such as chlorinated solvents or nitroaromatic 

contaminants. 
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