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Incomplete data sampling, bias, and like properties of distribution datasets that potentially introduce uncertainty in 
biogeographical analyses and blur biogeographical patterns; therefore, it is important to understand their influence. 
Despite their relevance, these problems have been largely overlooked in biogeography, where concepts such as 
ambiguity, stability or support have not even been defined. Here, we propose two stability measures for hypotheses 
of areas of endemism (AEs) and use them to explore the degree to which different structural qualities of data affect 
the results of analyses of endemism. Our findings suggest that different types of data incompleteness have different 
effects on the recovery of the species composition and the geographical or spatial structure of AEs, showing that 
distinct levels of sampling coverage affect the stability of results in different ways. We show that a small proportion 
of poorly sampled species may have a stronger impact on AEs stability than many species with medium sampling 
and that excluding poorly sampled species from the analyses does not guarantee more stable results. These results 
highlight the importance of planning data collection and indicate that, in order to obtain more stable results, focusing 
on completing the distribution of strongly undersampled species might be preferable to adding records of any species 
randomly.

ADDITIONAL KEYWORDS:  data bias – distribution data – endemicity analyses – endemism – NDM/VNDM – 
stability index.

INTRODUCTION

In biogeography, restrictions to geographical sampling 
(e.g. lack of access to certain areas; for example, see 
Ferraro & Casagranda, 2009; Turner et al., 2009) 
and imperfect detection (MacKenzie et al., 2005; 
Chen et al., 2013) are factors leading to incomplete 
and often biased datasets that poorly represent the 
real distribution of species (Dennis et al., 1999 and 
references therein). Given that knowledge of species 
ranges is fragmentary, analysis of real distribution 
data implies additional methodological challenges, 
such as the extent to which conclusions established 
on the basis of possibly biased data can reflect those 
biases more than a biogeographical reality.

In the fields of systematics and phylogenetics there 
have been extensive discussions of how different 
aspects of data structure affect confidence in 

conclusions. Among these is the problem of how taxa 
with many unknown characters decrease bootstrap 
supports (starting with Wilkinson 1994, 1995; followed 
by, e.g. Pol & Escapa, 2009; Goloboff & Szumik, 2015) 
and the problem of the appropriateness of different 
methods for establishing confidence in phylogenetic 
groups (Felsenstein, 1985; Hillis & Bull, 1993; Farris 
et al., 1996; Rydin & Källersjö, 2002). But despite 
the close historical ties between biogeography 
and systematics, those discussions in the realm of 
systematics have barely permeated biogeography 
(with few exceptions, such as Turner et al., 2009). 
Although some previous papers have begun to explore 
the influence of fragmentary data on the recognition 
of areas of endemism (Arias et al., 2008; Casagranda 
et al., 2009), the problem is still poorly understood, 
and deeper studies are needed. Likewise, the related 
problem of data acquisition has long been considered 
by ecologists (Hortal et al., 2007, 2008; Dengler & 
Oldeland, 2010; Tessarolo & Rangel, 2014), but not 
been considered in historical biogeography. Thus, in 
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the historical framework, concepts such as ambiguity, 
stability, robustness or support have so far not even 
been defined.

This paper presents the first attempt to evaluate 
stability in hypotheses of areas of endemism (AE) in 
the face of different aspects of data incompleteness. 
We also provide examples of the application of 
these techniques for exploring the degree to which 
different sampling and structural qualities affect the 
results of analyses of endemism. It is hoped that this 
contribution will provide a starting point towards 
the formalization of support measures in historical 
biogeography and a step towards understanding the 
influence of data sampling in biogeographical studies 
and the importance of planned data collection.

MATERIAL AND METHODS

Data

We use datasets from Weirauch et al. (2016) and 
Bertelli et al. (2017) and data for amphibians of the 
Amazonian countries (Bolivia, Brazil, Colombia, 
Ecuador, French Guiana, Guyana, Peru, Suriname 
and Venezuela) compiled from Global Biodiversity 
Information Facility (GBIF: https://www.gbif.
org/), to apply different types of resampling in 
order to simulate differences in data structure 

that can result from different sampling strategies 
or conditions. These datasets encompass different 
geographical areas and differ in taxon composition, 
number of species and sampling density. The dataset 
from Weirauch et al. (2016) (hereafter, NAM, ‘North 
American Mirids’; Fig. 1A) compiles 61 016 records 
for 1339 species of Miridae of North America; the 
dataset from Bertelli et  al. (2017) (compiled by 
Navarro-Sigüenza and Peterson over many years; 
hereafter MB, ‘Mexican birds’) includes > 100 000 
records for 780 species of birds distributed in Mexico 
(Fig. 1B), and the dataset compiled from GBIF (Fig. 
1C) includes ~34 000 records from 2000 species of 
amphibians of Northern South America (hereafter, 
SAA, ‘South American amphibians’). We selected 
heterogeneous datasets for the analyses in the 
expectation that this would allow us to interpret 
common results as general patterns instead of 
random behaviours attributable to specific traits of 
a particular dataset.

Resampling

The incompleteness of datasets may come from 
different problems. These problems are interrelated 
only in part, showing some degree of independence. 
The lack of representation of some distributions may 
result from either a uniformly incomplete sampling (a 

Figure 1.  Distributional datasets. A, dataset from Weirauch et al. (2016), on North American Miridae. B, dataset from 
Bertelli et al. (2017), on Mexican birds. C, GBIF South American amphibians.
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case in which we cannot speak of ‘bias’). Alternatively, 
some distributions may be incompletely sampled 
relative to others, and this bias may come from some 
species being sampled more strongly than others 
or from some regions of the study area being more 
thoroughly studied. Thus, we have implemented three 
different ways to emulate these problems in the data, 
to reflect these possibilities.

Case 1, poor general sampling
We consider as a case of ‘poor general sampling’ 
a dataset where the average number of localities 
recorded per species is low, meaning that the 
distributional range of most species is represented by 
only a few localities or unique records. To simulate this 
situation, we randomly removed records of the species 
in the dataset with a given probability, uniform for all 
species. We considered three subcases where every 
individual record was removed with probability 0.20, 
0.45 and 0.70 (subcases 1A, 1B and 1C, respectively). 
The use of these three values is intended to mimic 
different levels of insufficient data collection, from soft 
to severe. Note that the removal of every individual 
point record is decided independently, so that different 
resampled datasets may have slightly different 
resulting numbers of records retained.

Case 2, unevenly sampled species
Distributional datasets often include unevenly 
sampled species, meaning that some species (by virtue 
of their rarity or taxonomic bias) are particularly 
undersampled, represented by only a small number 
of localities (in the SAA dataset, some species are 
even represented only by the type locality). We 
simulated three subcases of undersampled species by 
randomly removing records only in subsets of species; 
the probability of a species to be selected for record 
removal is 0.20, 0.45 and 0.70 (subcases 2A, 2B and 2C, 
respectively). For each of these subcases, we considered 
instances with 0.20, 0.45, and 0.70 removal probability 
per record in the species selected (instances I, II, and 
III, respectively). This produced a total of nine possible 
treatments.

Case 3, geographically biased sampling
Geographical biases are common in distribution 
datasets. Geographical sectors with good or easy 
accessibility (e.g. roads, rivers or paths) are more 
likely to be visited than those with difficult access 
and tend to have a higher density of records. To 
simulate geographical bias, we manually delimited 
four geographical sectors well explored and visited 
by amphibian collectors, using these sectors as a 

constraint (Fig. 2A). We defined an inner resampling 
case, where records of species were removed only 
inside the sectors defined (Fig. 2B), and an outer 
resampling case, where records were removed outside 
the sectors defined, in order to increase the sampling 
imbalance (Fig. 2C). For each case, we considered 
subcases with 0.20, 0.45 and 0.70 removal probability 
per record, producing perturbations from minor to 
severe (subcases A–C of inner and outer resampling). It 
must be kept in mind that certain zones are naturally 
poor in species diversity or abundance, meaning that 
a lower concentration of records is not necessarily 
an unequivocal indicator of undersampling, and a 
higher density of records is not necessarily the result 
of oversampling. Therefore, some previous knowledge 
about the dataset and the study region is required 
in order to delimit well-collected areas properly. 
Therefore, we analysed the case of geographically 
biased sampling only for the SAA dataset, with which 
we are more familiar.

Analyses

We analysed the original (complete) and resampled 
datasets using the endemicity analyses implemented in 
VNDM v.3.1 (Goloboff, 2004), which identify AEs based 
on the criterion proposed by Szumik & Goloboff (2004). 
All the analyses were raun on raw data, i.e. using only 
observed records, without extending or filling assumed 
species distributions. Searches were performed 
using 0.6 as minimal species score, two as minimal 
number of endemic species, and retaining overlapping 
subsets with a difference of 40%. Twenty replicates of 
resampling were run per subcase/instance, in all cases. 
Although most comparisons are based on the individual 
areas of endemism found (IAs), consensus areas (CAs) 
were also used to quantify some differences among 
original and resampled datasets (see Results section, 
‘Unique areas’ and dataset instability). The CAs were 
built using the loose consensus method, with a 40% 
similarity in species composition as cut-off for merging 
(for details, see Aagesen et al., 2013).

Measurement of stability

The degree to which the results vary in the face of 
the perturbation from resampling can be measured 
in different ways. The approach used here is based on 
calculating, for each of the areas found for the complete 
dataset, the degree to which the area is recovered in 
the perturbed dataset. Given that not all areas need to 
be recovered exactly for the resampled dataset, some 
measure of distance between areas is needed to assess 
the stability of the results in the face of resampling 
(in phylogenetics, there have been proposals also to 
measure the degree to which the groups found during 
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resampling resemble the monophyletic groups; see 
Goloboff et al., 2009; Lemoine et al., 2018). Here, two 
measures of similarity are used to consider separately 
two dimensions of AEs: the geographical extension 
(geographical stability) and the biological composition 
(species stability).

The geographical stability considers the degree to 
which the cell composition in the two areas is similar; 
given that the approach of Szumik & Goloboff (2004) 
treats the problem as a combinatorial problem, 
minor differences in the inclusion or exclusion of 
cells (specially marginal cells) produce only minor 
differences in the score of endemicity, thus producing 
variations of the ‘same’ area rather than a ‘new’ 
area. The similarity, CAB, of cell composition in two 
areas A and B is given by CAB = cAB/(cAB + cA + cB), 
where cAB is the number cells shared by both A and 
B, cA the number of cells unique to A, and cB the 
number of cells unique to B. Each of the areas for 
the original dataset is considered to be retrieved 
if the cell composition similarity is equal to or 
larger than a user-defined threshold (the analyses 
presented here used 0.65), not retrieved otherwise; 
the final calculation produces (for each area) the 
frequency of recovery. The results are output for 
both the IAs and for their consensus, CAs. The CAs, 

in the case of resampling, groups the areas found 
for the original dataset that have a similar species 
composition (as done by Aagesen et al., 2013); given 
that the different IAs included in a given CA may 
have minor differences in their cell composition, the 
frequency with which each of the cells is included in 
the underlying IAs is indicated with a colour code.

The species stability is similar to the geographical 
stability, but considers instead the sets of species that 
are (according to the criterion of Szumik & Goloboff, 
2004) mapped as endemic to the area; we define sAB, 
sA and sB in an analogous manner to cAB, cA and cB, 
and the species similarity index is given by SAB = sAB/
(sAB + sA + sB). Note that (by virtue of the rules to 
accept a species as endemic to an area), there has to 
be some degree of correspondence between the species 
distribution and the cells that compose the area, for 
the species to be considered as endemic; thus, this 
criterion takes care of the spatial similarity indirectly. 
As in the case of geographical similarity, one of the 
areas found for the original dataset is considered to 
have been recovered in the resampled dataset if the 
species similarity index is above a certain threshold 
(0.65, in the present examples).

Those IAs found for the resampled data not sharing 
a similarity > 0.65 with any of the IAs for the full 

Figure 2.  Geographically biased resampling. A, well-explored sectors are marked as ellipses. B, inner resampling: records 
are removed only from inside the well-explored areas (in light blue). C, outer resampling: records are removed from the 
whole area, except for the well-explored areas (light blue area).

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/advance-article-abstract/doi/10.1093/biolinnean/blz019/5421048 by guest on 29 M

arch 2019



STABILITY IN AREAS OF ENDEMISM  5

© 2019 The Linnean Society of London, Biological Journal of the Linnean Society, 2019, XX, 1–13

dataset were summarized by CAs and reported as 
‘unique areas’ for completeness.

Implementation

Given the intensive computations required for this 
process, full automation is necessary. The required 
routines have been included in VNDM (Goloboff, 
2004) v.3.1.

The command autosample N in the input file 
indicates that VNDM should automatically proceed 
to perform resampling (this requires that the results 
from an independent search for the full dataset are 
read together with the original distributions, in the 
form of an *.ndm file); the number N (1–3) indicates 
the type of resampling (these options are numbered 
as the cases 1–3 above, in the section on ‘Resampling’).

The command autosave instructs VNDM to save the 
results for resampling automatically (as image files, 
with summaries of results) and then quit, facilitating 
processing by means of batch files, determining further 
options with additional commands.

The command samplespp sets the probability 
of choosing a species for deletion of some records 
when autosample 2 is in effect; samplerec sets the 
probability of eliminating an individual record (under 
autosample 1 or 2); samplearea sets the probability 
of eliminating a record within the last area held in 
memory when doing the resampling under autosample 
3 (if the subsequent number is positive), or outside of it 
(if the subsequent number is negative). Note that the 
frequency of recovery of the last area held in memory is 
not calculated under autosample 3, using the last area 
only as reference for enabling or disabling deactivation 
of records.

General options for the number of replications or 
comparison between areas are set with samplerepls, 
for the number of replications, and sampleareacut or 
samplesppcut, for the similarity above which an area is 
considered as ‘recovered’ (if the subsequent number is 
negative, then average values are calculated, but only 
when above threshold; defining either of these options 
as zero implies that the average degree of similarity is 
calculated for each area). The option autoconsense N 
automatically produces consensus areas, with cut-off 
N; the loose consensus rule (see Aagesen et al., 2013) is 
always used for autocalculating the consensus.

Interpretation

Methods based on resampling can be used for 
evaluating several aspects of the results (see, e.g. 
Goloboff et al., 2003; Egan, 2006; Hovenkamp, 2009). 
The purpose of our approach is to provide some 
estimation of the expected stability of the results, i.e. 
to give some idea of how likely the conclusions are to 

change in the face of new evidence. Predicting what 
type of distributional evidence can be added to the 
dataset would require knowledge both of the true 
distributions and of how they are sampled in practice; 
for simplicity, the comparison can be made between 
the estimation that would have been made if the 
sample of records had been incomplete (i.e. as obtained 
by resampling) and the estimation for the complete 
dataset. It is thus expected that the difference between 
the results with some records removed (with some 
degree of randomness) and with the full records will 
provide some insight into what the difference could 
be between the results for the present dataset and a 
dataset enlarged in the future.

Another aspect of the results that needs to be 
established is that of support, i.e. the degree to which the 
evidence seems to uphold the conclusions established 
on the basis of the full dataset. Although related to 
the notion of stability, this is not exactly the same (e.g. 
resampling may show that conclusions contradicted 
by the evidence are nonetheless likely to be obtained 
by increased sampling; see Goloboff et al., 2003 for 
discussion). Both the stability under resampling and 
the endemicity score as defined by Szumik & Goloboff 
(2004) seem to be related to the degree of support of the 
conclusions; the endemicity score increases with larger 
numbers of taxa showing a better conformity to an 
area of endemism, and the stability under resampling 
decreases as the distributions underlying and area of 
endemism are more discordant. Thus, both stability 
and endemicity score can be expected generally to 
increase as more evidence points to similar conclusion 
(= support). Comparison of the degree to which there 
is a correlation between the stability of a concluded 
area and the numerical value of its endemicity score 
provides, to some degree, validation of the extent to 
which these two aspects may indeed be appropriately 
reflecting differences in support.

RESULTS

In order to explore the effects of different sampling 
strategies on the identification of AEs, we calculated 
geographical and species stability for areas of 
endemism obtained under different perturbation 
schemes represented in the cases described in the 
Material and methods section (cases 1, 2 and 3).

Case 1, poor general sampling

When analysing poor general sampling, both geographical 
and species stability progressively diminish with the 
increase of data removal, for all subcases. The higher 
the probability of a record to be removed, the less likely 
an original set of cells and the species constituting an 
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AE are to be recovered. However, geographical stability 
seems to be less affected than species stability. Black 
bars in Figure 3 show the percentage of original AEs 
never recovered when the dataset is resampled with 
different probability of record removal (subcases A, B 
and C described above), i.e. those AEs with geographical 
and species stability equal to zero; but keep in mind 
that the 0.65 threshold is playing some role here. The 
difference between the number of areas and the number 
of endemic species never recovered is clear-cut. Although 
this pattern was consistently observed in all datasets, 
MB is slightly more stable than the other two datasets, 
showing the lowest number of original AEs with stability 
equal to zero (see Fig. 3).

Case 2, unevenly sampled species

Results for undersampled species are similar to those 
in the previous case (for all subcases); the stability 

of AEs decreases as both the percentage of species 
resampled and the probability of data removal 
are increased, as shown in Figure 4. The subcases 
reveal some differences in the behaviour of different 
datasets. When analysing subcase 2A (resampling 
species with a probability of 0.2), NAM and SAA show 
similar patterns of variation for both geographical 
and endemic stability; however, when increasing the 
probability of choosing a species for record removal 
to 0.45 (subcase 2B), NAM performed slightly worse 
than SAA in terms of geographical stability. MB 
produces the most stable results, showing a higher 
stability for most AEs and with very few AEs never 
recovered (stability zero), even in the most aggressive 
subcases of resampling (see Fig. 4A, B). A small subset 
of very poorly sampled species (probability of 0.20 to 
choose a species for eliminating records, with removal 
probability of 0.70) affects stability more than a 
milder perturbation on a larger proportion of species 

Figure 3.  Poor general sampling case. Proportion of areas recovered with different values of geographical and species 
stability, after removal of records with a probability of 0.2, 0.45 and 0.7 (A, B and C, respectively). Bar colours represent 
different values of stability.

Figure 4.  Unevenly sampled species case. Proportion of areas recovered with different values of geographical and species 
stability, when removing records for a subset of species (A, B and C indicate a probability of 0.20, 0.45, and 0.70, respectively, 
for a species to be selected for record removal) with a probability of 0.2, 0.45 and 0.7 (I, II and II, respectively). Bar colours 
represent different values of stability.
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(case 2A-III vs. case 2B-I), as shown in Figure 4 (cases 
framed in black rectangles). This observation could 
be taken as a guide when designing data-collection 
strategies aiming to improve dataset stability; focusing 
on the addition of new localities for poorly collected 
species would be better than randomly adding records 
for any species, even when the effective number of new 
records is the same. Following one or other strategy 
would apparently have different consequences on 
stability.

‘Unique areas’ and dataset instability

The number of unique areas resulting from resampled 
datasets increases with data perturbation, in all cases 
and for all datasets, being especially noticeable in 
cases 1 and 2 (poor general sampling and unevenly 
sampled species). The number of unique areas can 
be considered as an additional indicator of the 
relative stability of results; i.e. under perturbation, 
some datasets produce numerous unique patterns, 
not identified when analysing the complete dataset, 
whereas others produce consistent results and do not 
show major differences in the number and/or shape 
of the AEs after data removal. Considering a high 
number of unique areas as an indicator of instability, 
MB is found to produce the most stable results among 
the analysed datasets (Fig. 5).

Case 3, geographically biased sampling (SAA 
only)

For the SAA dataset, we identified five frequently visited/
collected zones, coincident with the Guayana, Atlantic 
Forest, Andes and Caribbean areas, and the Amazonian 
portion related to the river network (see Fig. 2). These 
zones were used to define inner and outer resampling 
schemes, as described in the Material and methods 
section (see Fig. 6). Our results show that application of 
mild and strong resampling, either inside or outside the 
delimited areas, affects both geographical and species 
stability of AEs; however, geographical stability seems 
to be more influenced by inner resampling than by outer 
resampling (Fig. 6). This might be attributable to data 
concentration; most of the AEs are located in frequently 
sampled zones, which in most cases concentrate a 
higher density of records, thus removal of records 
within those zones would affect the recovery frequency. 
Outer resampling has slightly stronger effects on 
species stability (Fig. 6). The major difference between 
inner and outer resampling is observed when counting 
for unique areas. Outer resampling generates a larger 
number of unique areas, suggesting that accentuating 
sampling imbalance would generate major overall 
instability (Fig. 6).

Stable and unstable areas of endemism

On closer inspection of the MB dataset, we observed that 
some AEs are more stable than others, always showing 
high recovery frequencies independently of the degree 
of data removal; we call these stable AEs (see AEs 4, 
6, 7, 11 and 13 in Fig. 7A). This has been observed 
only for geographical stability, having no correlate 
in species stability, where the recovery frequency of 
areas mostly decreases with data perturbation, as 
intuitively expected (Fig. 7B). In contrast, unstable 
AEs (again, in reference only to geographical stability) 
are very sensitive to resampling, and their stability 
decrease rapidly with data perturbation (see AEs 1, 2 
and 8 in Fig 7A) or change in unexpected ways (e.g. 
higher probabilities of data removal produce more 
stable results; as examples, see AEs 0, 3 and 9 in Fig 
7A). In the examples analysed, all the stable AEs have 
a high endemicity score (ES; Fig 7C). This, however, 
is not necessary reciprocal, as demonstrated by AE5, 
an unstable area with a high ES; therefore, a high ES 
seems to be a necessary but not a sufficient condition 
for stability.

Deleting poorly sampled species?

In their paper, Weirauch et al. (2016) created three 
different matrices based on the original data, by 
progressively eliminating poorly sampled species and 
obtaining matrices including only species with more 
than three, five and ten records, respectively. Although 
the reasons for excluding information in that way are 
not given explicitly, it seems to be based on the idea 
that ‘noisy’ species can be misleading and should be 
excluded in order to improve data quality.

To test this, we analysed the reduced matrices of 
Weirauch et al. (2016) and compared results in terms 
of stability, finding that filtering poorly sampled 
species does not always improve results. In most 
cases, geographical stability changes positively when 
removing a priori poorly sampled species, although this 
trend is not straight in case 2C-II and case 2C-III, and 
the exception of case 2A-I (see Fig. 8A). The opposite 
occurs with species stability in most cases; results 
have decreased in stability with a priori removal of 
poorly sampled species, except by the resampling cases 
with a high probability (0.7) of species resampling 
(see cases 2C-II and 2C-III in Fig. 8B). This makes us 
think that inclusion of poorly sampled species does not 
necessarily diminish the quality of results.

DISCUSSION

The development of stability measures that evaluate 
separately the spatial extension and species 
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Figure 5.  Unique areas. Number of unique areas found in cases 1 and 2 for each dataset. Different shades of blue indicate 
different probabilities of record removal: light blue 0.2, blue 0.45 and dark blue 0.70. Red dotted line indicates the total 
number of areas of endemism found with the original dataset.

Figure 6.  Geographically biased sampling case. Proportion of recovered areas in inner and outer resampling subcases, 
with different values of geographical and species stability under record removal probabilities of 0.2, 0.45 and 0.7 (A, B and 
C, respectively). Bar colours represent different values of stability. Grey bars indicate the number of unique areas found in 
inner and outer resampling subcases under the different record removal probabilities.
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composition of AEs helps in visualization of how 
gaps and biases in data have a direct impact on 
identification and can affect recognition of the spatial 
and biotic dimensions of AEs to different extents. Our 
results suggest that data incompleteness might have 
a bigger impact on the recovery of the endemic species 
composition than on the geographical or spatial 
structure of AEs, with cases where the set of endemic 
species of an AE were liable to recovery after artificially 
generating loss of distributional information (see 
Figs 3, 4). Rather than being discouraging, this result 
has a positive side, suggesting that even scattered data 
can lead to a fair spatial description of AEs, delimiting 
their geographical extent and providing meaningful 
information to channel sampling efforts.

Our results show how the percentage of species 
with different degrees of sampling coverage affect 
stability of results (Fig. 9). The MB dataset, which 
produces the most stable results and includes the 
highest percentage (40%) of densely sampled species 
(we defined this as having ≥ 100 different localities). 
In contrast, SAA, producing rather unstable results, 
includes < 3% of species with a strong geographical 
sampling. The NAM dataset, the results for which 
show a stability intermediate between the other 

datasets, has 10% of its species densely sampled. The 
correlation between sampling density and stability 
corroborates the importance of working with a good 
representation of species distribution.

The comparisons performed indicate that a small 
proportion of poorly sampled species causes stronger 
impact on AE stability than almost half of species mildly 
sampled (see Fig. 4). They also show that exclusion of 
poorly sampled species from biogeographical analyses 
does not necessarily provide a solution for improving 
the stability of the results (as shown in Fig. 8). These 
empirical observations suggest that focusing on 
completing the distribution of strongly undersampled 
species might be preferable to randomly adding 
records of any species.

According to our analyses, certain AEs seem to be 
geographically more stable than others, presenting a 
high frequency of recovery through different degrees 
and strategies of data removal. A better understanding 
of whether the stability (or lack thereof) is a natural 
property of AEs, or whether it is instead a consequence 
of data structure (gaps, distance among records, etc.), 
would help in depicting how data quality affects the 
general reliability of results. The stability measures 
proposed here provide a tool to quantify empirical 

Figure 7.  Stable areas. A, B, geographical (A) and species (B) stability values for each area of endemism (x-axis) are shown, 
for record removal probabilities of 0.2, 0.45 and 0.7 (red, orange and yellow bars, respectively). C, areas of endemism are 
sorted from lower to higher endemicity values (y-axis). Stable areas are framed in black.
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Figure 8.  Reduced datasets. Proportion of areas recovered with different values of geographical (A) and species (B) stability 
in cases references framed 1 and 2 and their subcases, when using datasets with species with more than three, five and ten 
records (x-axis). The colours of bars represent different stability value ranges.
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support of biogeographical hypotheses and to 
understand the limits of the available evidence.

We anticipate that this paper will inspire more 
studies along similar lines and that the trends 
reported here will help to provide insights to adjust 
analyses in order to lead to more solid results and 
make more realistic interpretations of AEs. This is 
especially important given that the conclusions on AEs 
are often intended to be used for defining priorities in 
conservation or delimiting biogeographical schemes.
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