
Novel Methods for Efficient
Changepoint Detection

Gaetano Romano, BSc, MSc

Department of Mathematics and Statistics

Lancaster University

Submitted for the degree of
Doctor of Philosophy

November, 2021

Declaration & Contribution Statements

This thesis has not been submitted, either in whole or in part, for a degree at this, or
any other university. I declare that the work presented in this thesis is, to the best
of my knowledge and belief, original and my own work. Listed below, a description
of the status of each paper forming the main corpus of this thesis and the external
contributions to the sections I did not directly contribute to that were left in place
for completeness.

The DeCAFS procedure, presented in Chapter 3 is joint work with Paul Fearnhead,
Guillem Rigaill and Vincent Runge and has appeared in the Journal of the American
Statistical Association (Romano et al., 2021). My contribution to the work was in
developing the method, implementing the method within an R package, performing
the detailed simulation study, input into methods for estimating the tuning parameters
and writing the paper. The theoretical properties introduced in Section 3.5 were
obtained by Paul Fearnhead, theory for the infimal convolution was developed by
Guillem Rigaill and Vincent Runge, and the results on the application in Section 3.7
were obtained by Guillem Rigaill.

The FOCuS procedure, in Chapter 4 is joint work with Idris Eckley, Paul Fearnhead
and Guillem Rigaill. The procedure has been submitted to the Journal of Machine
Learning Research. My contribution to the work was in developing the method,
implementing the method within an R package, performing both the simulation and
the real data studies. Theorem 5, deriving a bound on the expected number of
quadratics stored by FOCuS, was obtained by G. Rigaill, as well as its empirical
evaluation in Appendix B.3.4.

NUNC, introduced in Chapter 5 has been submitted to Computational Statistics and
Data Analysis, where it is currently under review. The manuscript is a collaboration
with my fellow PhD student, Edward Austin, and our supervisors Idris Eckley and
Paul Fearnhead. Our contributions to the paper are equal with myself leading the
more computational aspects of the work, whilst E. Austin focused on the theoretical
and application-focused aspects of the paper.

Gaetano Romano

i

Abstract

This thesis introduces several novel computationally efficient methods for offline and
online changepoint detection. The first part of the thesis considers the challenge of
detecting abrupt changes in scenarios where there is some autocorrelated noise or
where the mean fluctuates locally between the changes. In such situations, existing
implementations can lead to substantial overestimation of the number of changes. In
response to this challenge, we introduce DeCAFS, an efficient dynamic programming
algorithm to deal with such scenarios. DeCAFS models local fluctuations as a random
walk process and autocorrelated noise as an AR(1) process. Through theory and
empirical studies we demonstrate that this approach has greater power at detecting
abrupt changes than existing approaches.

The second part of the thesis considers a practical, computational challenge that
can arise with online changepoint detection within the real-time domain. We introduce
a new procedure, called FOCuS, a fast online changepoint detection algorithm based
on the simple Page-CUSUM sequential likelihood ratio test. FOCuS enables the online
changepoint detection problem to be solved sequentially in time, through an efficient
dynamic programming recursion. In particular, we establish that FOCuS outperforms
current state-of-the-art algorithms both in terms of efficiency and statistical power,
and can be readily extended to more general scenarios.

The final part of the thesis extends ideas from the nonparametric changepoint
detection literature to the online setting. Specifically, a novel algorithm, NUNC, is
introduced to perform an online detection for changes in the distribution of real-time
data. We explore the properties of two variants of this algorithm using both simulated
and real data examples.

ii

Acknowledgements

This PhD has been to me an incredible journey, full of valuable moments, interesting
challenges and remarkable people.

First and foremost, there are no words to fully convey my gratitude towards Idris
Eckley and Paul Fearnhead, my PhD supervisors. For providing guidance throughout
this journey, for your dedication to review my progress, for supporting me over the
asperities that arose over this period, the sincerest thanks to both of you.

The works presented in this thesis would not have been possible without my direct
collaborators Edward Austin, Guillem Rigaill and Vincent Runge. I am grateful for
the numerous exchanges we had that shaped my research, and I do sincerely hope
that there will be the occasion to tackle more challenges together in the future.

Many thanks to Daniel Grose for guiding me through the circles of C++1.
I would like to thank and acknowledge all the numerous friends and colleagues

from the StatScale office, the Department and Lancaster University for the valuable
discussions we held together2.

I wish to thank Pierre Nicholas for providing data for the application covered in
Chapter 3.

I would like to thank Franck Picard, the external examiner, and Rebecca Killick,
the internal examiner, for reviewing this work, and for the stimulating discussion that
we held in the viva. This provided valuable comments and ideas that will certainly
benefit to this and my future works.

Many thanks to Lancaster University and the EPSRC (EP/N031938/1 StatScale
grant) for the support that made the work presented in this thesis possible.

On a more personal basis, I would like to thank the numerous people close to me
over these three years3. Thanks for the precious moments we had over this period,
either physically or remotely. In a way or another, you all have all been of great help.

Lastly, to My sister Chiara, My mother Maria Pia and My father Giuseppe to
whom I owe everything, thank you.

1Like Virgil: ”Fede nei puntator esser s̀ı bassa\\ l’error di segmentazion ivi regna\\ non ragionam
di lor ma guarda e passa”.

2As many of you may know already, my coffee machine takes a moment to heat up: consider this
an invitation.

3And apologies for not being able to thank you directly, but (luckily for me) you are far too many
to be mentioned here. As denoted by Eco (1995), writing some comprehensive Acknowledgments is a
rather challenging task, far too complex to be resolved optimally the evening before the submission.

iii

Contents

1 Introduction 1

2 Literature Review 3
2.1 Constrained and Penalised Approaches 3

2.1.1 An overview of the constrained and penalised approaches . . . 4
2.1.2 Extensions to different models 12
2.1.3 Extensions to different Change Scenarios 13
2.1.4 Other extensions . 14

2.2 Binary Segmentation approaches . 14
2.2.1 An overview of the binary segmentation approaches 14
2.2.2 Extensions of Binary Segmentation 17

2.3 Other approaches . 18
2.3.1 Sequential testing approaches 18
2.3.2 Penalised approaches (fused lasso) 21
2.3.3 Model Based approaches . 21

3 Detecting Changes in Autocorrelated and Fluctuating Signals 23
3.1 Introduction . 23
3.2 Modelling and Detecting Abrupt Changes 27

3.2.1 Model . 27
3.2.2 Penalised Maximum Likelihood Approach 28
3.2.3 Dynamic Programming Recursion 29

3.3 Computationally Efficient Algorithm 30
3.3.1 The DeCAFS Algorithm . 30
3.3.2 The Infimal Convolution . 32
3.3.3 Fast Infimal Convolution Computation 32

3.4 Robust Parameter Estimation . 33
3.5 Theoretical Properties . 34
3.6 Simulation Study . 40

3.6.1 Comparison with Changepoint Methods 40

iv

3.6.2 Robustness to Model Mis-specification 41
3.6.3 Comparison to LAVA . 43

3.7 Gene Expression in Bacilus subtilis 45

4 Functional Pruning Online Changepoint Detection 50
4.1 Introduction . 50
4.2 Known pre-change mean . 52

4.2.1 Problem Set-up and Background 52
4.2.2 FOCuS0 : solving the Page recursion for all µ1 56

4.2.2.1 Step 1: updating the intervals and quadratics 57
4.2.2.2 Step 2 : maximisation 60

4.2.3 Simulation Study . 61
4.3 Extensions of FOCuS . 64

4.3.1 FOCuS when the pre-change mean is unknown 65
4.3.2 FOCuS in the presence of outliers 66
4.3.3 Simulation Study . 67

4.4 Application of FOCuS to the AWS Cloudwatch CPU utilization . . . 68

5 A Nonparametric Approach to Online Anomaly Detection 72
5.1 Introduction . 72
5.2 Background and Methodology . 75

5.2.1 Two Sequential Changepoint Detection Algorithms 77
5.2.1.1 NUNC Local . 77
5.2.1.2 NUNC Global . 79

5.2.2 Parameter selection . 80
5.3 Simulation Study . 82

5.3.1 False Alarm Probability . 84
5.3.2 Detection Power and Detection Delay 84

5.4 Applications . 86
5.4.1 Monitoring Operational Performances of Network Devices . . 86
5.4.2 Controller Data Analysis . 89

6 Remarks and Conclusions 91

Appendix A DeCAFS 93
A.1 Proof of Proposition 1 . 93
A.2 Proof of Proposition 2 . 94
A.3 Algorithm for INFQt,ω . 96
A.4 Additional Empirical Results . 97

A.4.1 Distorted Parameter Estimation 97

v

A.4.2 Comparison of DeCAFS and AR1Seg on a Ornstein-Uhlenbeck
process . 98

A.5 Additional Simulation Results . 99

Appendix B FOCuS 107
B.1 Proof of Proposition 7 . 107
B.2 Focus pseudo-code . 107
B.3 On the expected number of changes stored by Focus 108

B.3.1 Variants of the FOCuS implementations 108
B.3.2 Assumptions and definitions 109
B.3.3 Main results . 110
B.3.4 Empirical bound evaluation 111
B.3.5 Inclusions and convex hull Lemmas 112

B.4 Estimation of initial parameters . 113

Appendix C NUNC 114
C.1 Proof of Proposition 6 . 114
C.2 Proof of Proposition 5.2.2 . 115

Bibliography 117

vi

List of Figures

1.1 A realization of a Gaussian process with 2 changes in the mean
parameter, flagged by two vertical segments in green. 2

2.1 An illustration of the OP and PELT recursions 8
2.2 A representation of the FPOP procedure 11
2.3 In black, the signal object of inference. In red, the best triangular

approximation of such signal for a change at τ = 350, on the left,
τ = 500, in the center, and τ = 750, on the right. 17

2.4 MOSUM on a change-in-mean case 20

3.1 Segmentation of well-log data . 24
3.2 Data projections for different model scenarios 37
3.3 DeCAFS: Four Different Change Scenarios 40
3.4 DeCAFS: Main Simulation Study . 42
3.5 DeCAFS: AR(2) Simulation Study 43
3.6 DeCAFS: Sinusoidal Simulation Study 44
3.7 DeCAFS: Comparison with LAVA . 46
3.8 Plus Strand of the Bacilus Subtilis 47
3.9 Bacilus Subtilis Benchmark Comparisons 48

4.1 Detection delays of CUSUM, MOSUM, and Page-CUSUM. 55
4.2 A representation of FOCuS Cost function 59
4.3 Page-CUSUM grids overview . 62
4.4 A comparison of FOCuS with Page-CUSUM 63
4.5 Average Run Length (log scale) in function of the threshold 64
4.6 FOCuS and Yu-CUSUM runtimes . 68
4.7 FOCuS and FOCuS0 comparison . 69
4.8 AWS Cloudwatch CPU utilization . 71

vii

5.1 Example of telecoms operational data: (a) a series without an event,
and (c) a series with an event taking place between the two red lines.
The corresponding kernel density estimates are presented in (b) and
(d) respectively. 73

5.2 Controller Example . 74
5.3 NUNC: simulation scenarios . 83
5.4 NUNC: False Alarm Rate . 85
5.5 NUNC: Event Anticipation Rates . 88
5.6 NUNC: comparison of event anticipation and detection 89
5.7 NUNC: Controller Event Detection 90

A.1 A poor estimate of initial parameters 98
A.2 DeCAFS: OU process simulation . 99
A.3 Precision on the 4 different scenarios from the main simulation study

of Section 3.6. Should be read in conjunction with Figure 3.4. 100
A.4 Recall on the 4 different scenarios from the main simulation study of

Section 3.6. Should be read in conjunction with Figure 3.4. 101
A.5 Precision (a) and Recall (b) on different scenarios with a AR(2) noise.

Should be read in conjunction with Figure 3.5. 102
A.6 Precision (a) and Recall (b) on different scenarios with an underlying

sinusoidal process. Should be read in conjunction with Figure 3.6. . 103
A.7 Precision (a) and Recall (b) on different scenarios with an underlying

Ornstein-Uhlenbeck process. Should be read in conjunction with Figure
A.2. 104

A.8 F1 score (a), Precision (b) and Recall (c) on 3 different change scenarios
with an independent between-the-changes AR(1) noise as we vary φ.
Data simulated fixing σν = 2 over a change of size 10. 105

A.9 DeCAFS: Comparison with LAVA on a Sinusoidal Process 106

B.1 Number of observed candidate stored by FOCuS for signals with no
change or with one change. The two black lines represent the function
y = x and y = 0.5x. Red and blue line are the fitted regression lines
for respectively the no-change and single-change scenarios. 111

viii

List of Tables

2.1 Loss functions for some changepoint problems 5
2.2 A map of the base constrained and penalised approaches and their

faster implementations. 7

4.1 Detection delays for Page-CUSUM, FOCuS0 , and the FOCuS0 approx-
imation on a 10 points grid for 20 change magnitudes. In particular,
on the left most column, we underline the magnitudes that fall exactly
on the Page-CUSUM gridpoints. 65

4.2 Precision and Recall for R-FOCuS and Numenta HTM. 70

5.1 Detection Power of NUNC . 87
5.2 Detection delay of NUNC . 87
5.3 Table illustrating proportion of events anticipated (and detected) for

varying rates of false alarms for both NUNC Local and NUNC Global. 88
5.4 Table depicting the performance of the variants of NUNC and the

MOSUM on the controller movement dataset. 90

ix

Chapter 1

Introduction

Changepoint detection – also commonly known as change detection or sometimes as
break-point detection – is the statistical analysis that focuses on where (or whether)
one or more changes in some measurable properties of a temporal or spatial process
occurred. For simplicity, let us consider an introductory example, taking a departure
from this vague definition. In Figure 1.1 we find a realization of a piecewise stationary
Gaussian process: the observations are centered on a piecewise constant signal
with fixed variance. Two changes are present respectively at time 1000 and 3000,
segmenting the sequence into three subsets. Inferring such locations, as well as the
within-segment parameters, is the goal of our analysis.

Albeit being of historical interest (with seminal works such as Page, 1954; Scott
and Knott, 1974; Eiauer and Hackl, 1978), the problem of detecting change points has
seen increasing popularity over the last decade. Recent technological developments,
an ever-growing amount of large data streams – often intractable by traditional
techniques – have increased the demand for fast and efficient change point detection
algorithms (among many, we mention Killick et al., 2012; Maidstone et al., 2017;
Fryzlewicz, 2014; Eichinger and Kirch, 2018). Lowering the computational complexity
as much as possible has proved to be extremely important for many applications from
the industry and several fields such as medicine, neuroscience, genomics, astrophysics,
etc.

The work included in this thesis was motivated by the need of extending those fast
procedures to more non-standard scenarios – often present in practical applications
– which could pose a challenge to existing methodologies either of statistical or of
computational nature. Three novel fast and efficient changepoint detection procedures
are therefore presented.

Chapter 3 introduces DeCAFS, a novel recursion of a model-based approach that
extends the FPOP procedure (Rigaill, 2015) to data where the usual i.i.d. assumptions
fail, accounting for both autocorrelation in the noise and local fluctuations in the

1

Chapter 1. Introduction

−10

−5

0

5

0 1000 2000 3000 4000
t

y

Figure 1.1: A realization of a Gaussian process with 2 changes in the mean parameter,
flagged by two vertical segments in green.

signal object of interest, while still retaining the desirable log-linear computational
complexity. DeCAFS, is capable of outperforming the current state-of-the-art
algorithms in a variety of real-world scenarios.

Chapters 4 and 5 focus on real-time analysis of a data stream, that we call
online changepoint detection. From the introductory example, the difference is in
that we have not observed the entire sequence, and we wish to test as we obtain
new observations whether a change has occurred or not. In this domain, several
challenges appear that render most of the current methods infeasible. In addition to
the unbounded nature of the data, which does not allow for any pre-processing nor
infinite computations and memory, a glimpse at the collection of real-world problems
featured in Ahmad et al. (2017) would clarify the need for novel procedures. In
particular FOCuS, from Chapter 4, takes advantage again of a recursion similar to the
FPOP recursion, solving exactly the established sequential Page-CUSUM statistics
for Gaussian change-in-mean. In this way, FOCuS improves on related methodologies
either in terms of statistical power or computational efficiency. Within the same
Chapter is presented an application on monitoring AWS Cloudwatch CPU utilization.
Lastly, introduced in Chapter 5, NUNC, is an algorithm for online nonparametric
changepoint detection. This work was motivated by an open challenge posed by an
industrial partner, that of detecting anomalous behaviour in telecommunication data,
however proved itself to be efficient even on a different application.

Preceding the three methodological chapters, Chapter 2 provides a brief review
of the current state-of-the-art. This provides an introduction for the reader of some
basic knowledge of changepoint detection necessary to access the rest of the thesis,
should they not be acquainted with the field.

2

Chapter 2

Literature Review

Numerous approaches to changepoint detection have been introduced over recent
years. Despite all tackling a common problem, they differ in terms of approach or
formulation. Performing changepoint detection on a given sequence of observations
could correspond to either directly estimating the underlying generating signal and
the exact change locations; finding the optimal segmentation of the data – effectively
clustering an ordered set of elements; or testing whether a change or an anomalous
behaviour has been observed over a subset of the observations. Several classifications
of changepoint methods can be made. Some of these focus on the nature of the
analysis, separating univariate from multivariate, offline from sequential or online
procedures; other classifications discriminate the literature based on the underlying
model assumptions or on the nature of the change to estimate. What follows is a
classification that organises procedures based on the algorithmic approach employed
to solve the changepoint problem: such a classification will hopefully provide some
insights on how the various procedures relate in terms of the various optimization
problems they solve, from a computational perspective. In Section 2.1 we introduce
approaches that are based upon dynamic programming (in particular the constrained
and penalised approach), in Section 2.2 we focus on those methods based upon the
divide-and-conquer Binary Segmentation approach, in Section 2.3 we briefly review a
selection of other approaches within the literature.

2.1 Constrained and Penalised Approaches

Constrained and penalised algorithms form a family of multiple-changepoint detection
algorithms. They operate via specifying a cost function for a given segmentation and
recursively seeking for the segmentation that achieves the smallest cost. The overview
section mostly takes inspiration from the work of Maidstone et al. (2017).

3

Chapter 2. Literature Review

2.1.1 An overview of the constrained and penalised ap-
proaches

To provide a common framework, let y1, . . . yn be an ordered sequence of observations.
Across the course of this thesis, to denote the subset of such a sequence from s to t, we
will write ys:t = ys, . . . , yt for s < t. By assuming that the sequence can be split into
K + 1 segments, we denote with τ0, τ1, . . . , τK , τK+1 the set of ordered changepoints,
where τ0 = 0, τK+1 = n by definition and τk < τk+1 ∀ k ∈ 1, ..., K. A segment is
a subset of the data ranging between between two contiguous changepoints, in our
notation, the segment between τk + 1 and τk+1 will therefore be denoted by yτk+1:τk+1

.
The objective is to find the optimal segmentation of our sequence y1:n. This

consists of finding the best set of τ = τ0, . . . , τK+1 changepoints that minimise some
cost:

min
K∈N

τ1,...,τK

K∑
k=0

L(yτk+1:τk+1
), (2.1)

where L(ys+1:t) is the cost for a segment for points ys+1, . . . yt. If we assume the data is
independent and identically distributed within each segment, for segment parameter
θ, then this cost can be obtained through:

L(ys+1:t) = min
θ

t∑
i=s+1

− log(f(yi, θ)) (2.2)

with f(y, θ) being the likelihood for data point y if the segment parameter is θ.
Minimizing this corresponds to finding multiple changes in the underlying parameter
θ. The form of L(·) depends both on the likelihood of choice and on the piecewise
constant parameters objects of inference. Some of the most common loss functions
can be found in Table 2.1, however these can vary accordingly to the nature of the
change to estimate, as we are going to see in the next subsections.

The issue with such optimization problems lies in the fact that the optimal
segmentation would always be the one that separates each observation into a single
cluster, i.e. K̂ = n, τ̂ = 0, 1, . . . , n. A constraint needs therefore to be added to
get a sensible estimate of the number of changepoints. Two major approaches are
possible: solving a penalised optimization problem, originating from Yao (1988), and
solving a constrained optimization problem, which was first introduced with Yao and
Au (1989).

The constrained optimization problem. One possible solution is to solve 2.1
for a fixed value of K. The segment neighbourhood procedure estimates the optimal
cost for segmenting a sequence of n observations in K + 1 parts:

Q(K)
n = min

τ1,...,τK

K∑
k=0

L(yτk+1:τk+1
).

4

Chapter 2. Literature Review

Model Parameter L(ys+1:t)

ys+1:t ∼ N (µ, σ2) µ 1
2σ2

∑t
i=s+1 (yi − ȳs+1:t)

2

ys+1:t ∼ N (µ, σ2) σ (t− s)
[
log(

∑t
i=s+1(yi−µ)2

t−s) + 1
]

ys+1:t ∼ N (µ, σ2) µ, σ (t− s)
[
log(

∑t
i=s+1(yi−ȳs+1:t)

2

t−s) + 1
]

ys+1:t ∼ Pois(λ) λ (1 + log(ȳs+1:t))
∑t

i=s+1 yi

Table 2.1: Some loss functions for different changepoint optimization problems. The
first column gives the underlying model assumption, the second column the parameter
object of inference, the third the correspondent loss. For brevity reasons, we write
ȳl:u(u− l + 1) =

∑u
j=l yj.

Segment Neighbourhood takes advantage of a dynamical programming recursion to
solve this non-convex optimization problem with computational complexity KO(n2).
This is achieved through the recursion:

Q(K)
t = min

τ<t

[
Q(K−1)
τ + L(yτ+1:t)

]
.

For a fixed K < n it is possible to compute this recursion for all t = 1, . . . , n. The
quadratic increase in computational complexity comes from the fact that at each
iteration a check is needed for all τ = 1, . . . , t− 1 to perform the minimization.

This approach can be beneficial when the exact number of changes in the sequence
is known a priori. However, when K is unknown Maidstone et al. (2017) suggest fixing

a maximum number of changes allowed K, computing Q(k)
n for all k = 0, 1, . . . , K,

and then minimizing for Q(k)
n + g(k, n) for some penalty function g(k, n):

min
k

[
Q(k)
n + g(k, n)

]
The penalised optimization problem. When the penalty function is linear in

k, i.e. g(k, n) = βk, for β > 0 (and β potentially depending on n) we can write:

Qn,β = min
k

[
Q(k)
n + βk

]
= min

k,τ

[
K∑
k=0

L(yτk+1:τk+1
) + β

]
− β. (2.3)

This is known as the penalised cost optimization problem. The cost function Qn,β
represent the optimal cost for segmenting the data up to time n given a penalty β.

Remark 1 The penalised changepoint problem can be formulated as an `0 penalised
non-convex optimization problem. For simplicity, let us focus on the Gaussian change
in mean problem. We observe yt ∼ N(µt, 1), where µt is the piecewise constant signal

5

Chapter 2. Literature Review

object of inference. That is, we find a change at t whether µt 6= µt−1. We estimate
the number and location of the changepoints by effectively solving:

min
µ1:n

n∑
t=1

[
(yt − µt)2 + β1δt 6=0

]
(2.4)

where δt = µt − µt−1, 1 ∈ {0, 1} is an indicator function, β is the penalty for adding
a changepoint.

The Optimal Partitioning (OP) (Jackson et al., 2005) solves 2.3 exactly through
a dynamic programming recursion. With Q0,β = −β, we write the recursion:

Qt,β = min
0≤τ<t

[Qτ,β + L(yτ+1:t) + β] (2.5)

for t = 1, . . . , n. Considering that at each iteration we need to evaluate values for
t segmentation costs, we find that OP shows O(n2) computational complexity. In
Algorithm 1 we summarise the Optimal Partitioning procedure.

For the rest of this thesis we are going to be mostly focusing on the penalised
approach. Both approaches are closely related, and extensions that are found for
one are easily ported to the other optimization problem. However, the penalised
optimization problem incorporates model selection, and possibly for this reason it is
the predominant optimization problem in the dynamical programming changepoint
literature. To simplify notation we will refer to the optimal penalised cost Qn,β simply
as Qn.

Algorithm 1: Optimal Partitioning

Data: y1:n = {y1, . . . , yn} a series of length n
Input: β > 0

1 begin Initialisation
2 Q0 ←− −β
3 cp(0)←− {0}
4 end
5 for t = 1 to n do
6 Qt ←− min0≤τ<t [Qτ + L(yτ+1:t) + β]
7 τ̂ ←− argmin0≤τ<t [Qτ + L(yτ+1:t) + β]
8 cp(t)←− (cp(τ̂), τ̂)

9 end
10 Return cp(n)

Reducing the computational complexity of OP and SN. We mentioned how
the OP and SN solutions to the penalised and constrained minimisation have both

6

Chapter 2. Literature Review

quadratic computational complexity in the number of observations. Näıvely, reducing
the numbers of checks to be performed at each iteration reduces the complexity, and
in some situations it is possible to do so without resorting to an approximation.
Performing pruning, while still solving exactly the two optimization problems, is
possible if one of the two conditions on the segment costs holds:

Condition 1 There exists a constant κ such that for every l < t < u:

L(yl+1:t) + L(yt+1:u) + κ ≤ L(yl+1:u)

Condition 2 There exist some function γ(·, θ) such that the cost function satisfies:

L(ys+1:t) = min
θ

t∑
i=s+1

γ(yi, θ)

for every s, t.

Condition 1 is at the basis of the inequality based pruning methods, originating
from Killick et al. (2012) where the PELT procedure is introduced; Condition 2 is at
the basis of the functional pruning methods, originating from the pDPA from Rigaill
(2010, 2015). PELT performs pruning over the OP recursion, whilst pDPA is based on
the SN recursion. Maidstone et al. (2017) showed that it is possible to use inequality
based pruning for the constrained optimization problems (the SNIP procedure), and
functional pruning within optimal partitioning (the FPOP procedure). Table 2.2
summarises the relationships between these procedures. We now cover in detail the
PELT and FPOP procedures.

No Pruning Ineq. Based Pruning Functional Pruning

Penalised Approach OP PELT FPOP
Constrained Approach SN SNIP pDPA

Table 2.2: A map of the base constrained and penalised approaches and their faster
implementations.

PELT: inequality based pruning. The PELT algorithm – acronym for Pruned
Exact Linear Time – solves exactly the penalised minimization of 2.3 with an expected
computational cost that can be linear in n – while still retaining O(n2) computational
complexity in the worst case. This is achieved by reducing the number of segment
costs to evaluate at each iteration via an additional pruning step based on Condition
1. That is, if

Qτ + L(yτ+1:t) + κ ≥ Qt

7

Chapter 2. Literature Review

...... ...

Optimal Partitioning PELT

Ite
ra

tio
ns

Ite
ra

tio
ns

Figure 2.1: An illustration of the OP and PELT recursions. Solid lines correspond
to the optimal segmentation costs Qτ , whilst dotted lines to the functions L(yτ+1:t).
We can see how the costs to evaluate at each iteration increase linearly in OP, whilst
they are reduced in PELT whether the pruning condition is met.

then we can safely prune the segment cost related to τ , as τ will never be the optimal
changepoint location up to any time T > t in the future. An illustration of this is
given in Figure 2.1, and a summary of the PELT algorithm can be found in Algorithm
2 (assumes κ = β).

There are virtually no disadvantages in implementing the PELT recursion over
the OP recursion, as the computational cost is at worst that of OP plus the cost of
checking the pruning condition at each iteration. In many situations however the gain
in speed over OP can be substantial, and Killick et al. (2012) show that if the number
of changes increases linearly with n then PELT can have a computational cost that is
linear in n. More generally the computational benefits of PELT are largest when we
have many changepoints and short segments.

FPOP: functional pruning. FPOP – acronym for Functional Pruning Optimal
Partitioning – solves again the OP minimization in O(n log n), worst case O(n2)
computational complexity. The FPOP recursion breaks down the cost into its
functional form, and can be shown to prune more efficiently than PELT – that is
at any iteration FPOP will have the same or fewer candidates for the most recent
changepoint than PELT. A dedicated comparison of the two pruning methods can be

8

Chapter 2. Literature Review

Algorithm 2: PELT

Data: y1:n = {y1, . . . , yn} a series of length n
Input: β > 0

1 begin Initialisation
2 Q0 ←− −β
3 cp(0)←− {0}
4 R1 = {0}
5 end
6 for t = 1, . . . , n do
7 Qt ←− minτ∈Rt [Qτ + L(yτ+1:t) + β]
8 τ̂ ←− argminτ∈Rt [Qτ + L(yτ+1:t) + β]
9 cp(t)←− (cp(τ̂), τ̂)

10 Rt+1 ←− {τ ∈ {Rt ∪ {t}} : Qτ + L(yτ+1:t) + β ≤ Qt}
11 end
12 Return cp(n)

found in Section 6 of Maidstone et al. (2017).
In terms of the methodology, the idea behind functional pruning consists of

splitting the cost function L(·) into its core components γ(·, θ) according to Condition
2. Starting from the OP cost recursion we obtain:

Qt = min
0≤τ<t

[Qτ + L(yτ+1:t) + β]

= min
0≤τ<t

[
Qτ + min

θ

t∑
i=τ+1

γ(yi, θ) + β

]

= min
θ

min
0≤τ<t

[
Qτ +

t∑
i=τ+1

γ(yi, θ) + β

]
= min

θ
min

0≤τ<t
qτt (θ)

= min
θ
Qt(θ),

with qτt (θ) being the optimal cost of partitioning the data up to time t conditional
on the last changepoint being at τ and the current segment parameter being θ, while
Qt(θ) is the optimal cost of partitioning the data up to time t with the current segment
parameter being θ. Then, for Q0(θ) = 0, it is possible to derive the recursion:

Qt(θ) = min
{
Qt−1(θ), min

θ
Qt−1(θ) + β

}
+ γ(yt, θ). (2.6)

9

Chapter 2. Literature Review

Here, Qt(θ) = minτ q
τ
t (θ) presents itself in the form of a piecewise function in

θ, where qτt (θ) are its components. Performing the minimization over τ consists in
reconstructing the domain where each component qτt (θ) is optimal, i.e. finding Dτ ⊆
R : θ ∈ Dτ ⇐⇒ qτt (θ) = Qt(θ). If a component function is never optimal for any
θ, we can simply prune it. A description of the FPOP procedure can be found in
Algorithm 3. For a graphical representation of the recursion see Figure 2.2.

Algorithm 3: FPOP

Data: y1:n = {y1, . . . , yn} a series of length n
Input: β > 0.

1 begin Initialisation
2 Q0(θ)←− 0

3 θ̂0 ←− 0

4 end
5 for t = 1, . . . , n do
6 Qt(θ)←− min {Qt−1(θ), minθQt−1(θ) + β}+ γ(yt, θ)

7 θ̂t ←− argminQt(θ)

8 if γ(θ̂t, θ̂t−1) > β then
9 τ̂ ←− (t, τ̂)

10 end

11 end

12 Return θ̂1:n, τ̂

The major drawback of FPOP compared to PELT, and of all functional pruning
methods in general, is that in several cases it is only possible to solve the recursion for a
one-dimensional θ parameter. Furthermore, writing an implementation for the above-
mentioned recursion is often non-trivial as the form ofQt(θ) depends on the underlying
model assumptions. For example, in the simple Gaussian change-in-mean setting, with
θ being the mean parameter object of inference, we find that γ(yt, θ) = (yt − θ)2 is
quadratic in θ, therefore each qτt (θ) will be a quadratic and Qt(θ) will be a piecewise
quadratic in θ. Other update functions may be more difficult to handle, such as the
Poisson change-in-paramter, where the cost function is γ(yt, θ) = (yt log θ) − θ has
both terms in θ and log θ: in such case the intersections of the piecewise functions
cannot be expressed in terms of elementary functions. On the positive side, working
directly with the functional form of the cost can allow for adaptations of the penalised
optimization problem to more sophisticated models and scenarios, as we are going to
see in the next paragraphs.

On a side note, two forms of the FPOP recursion are present in the literature. The
one in (2.6) originates from Hocking et al. (2017): while being slightly different from

10

Chapter 2. Literature Review

(a) (b)

Figure 2.2: A representation of a single iteration of the FPOP procedure. In (a), 3
quadratics qt(θ), with the two in red and the green being the quadratics for a change
respectively at τ = 1, 2; in blue, the line obtained from minθQt−1(θ) + β; the dotted
black line is the optimal cost obtained from the pruning step. In (b), the update step
(yt − θ)2 for adding the latest point yt, from the pruned cost, in black, to the final
updated cost Qt(θ), in purple.

the one reported in Maidstone et al. (2017), it shares the same concepts but is more
compact as it maps a piecewise constant function to a piecewise constant function,
incorporating both the minimization, the pruning and the update of the optimal cost.
For this reason, it is the one adopted by many recent works related to functional
pruning (e.g. Runge et al., 2020a; Jewell et al., 2020), as well as the one employed in
both Chapter 2 and Chapter 3 of this thesis.

Choosing the `0 penalty. Concerning the penalised optimization problem, some
research focused on how to pick sensible values for the penalty β. One such of these
works, Lavielle and Moulines (2000), provides theoretical guarantees for consistency of
various common penalties. As an alternative to a fixed value, in Haynes et al. (2017a),
CROPS, is introduced: a sequential procedure to find the optimal segmentation of a
sequence of observations over a range of penalties.

11

Chapter 2. Literature Review

2.1.2 Extensions to different models

We now proceed by listing some of the numerous model extensions that can be applied
to the penalised and constrained recursions.

Nonparametric PELT. To perform nonparametric changepoint detection, the
NP-PELT procedure, from Haynes et al. (2017b) uses a segment cost chosen to detect
substantial changes in the empirical cumulative distribution function. This procedure
is detailed in Chapter 5, as the procedure shared in that chapter employs the same
nonparametric cost.

Change in slope of a linear model. Two works focused on detecting changes
in slope of a linear process through the penalised optimization problem: Fearnhead
et al. (2018) and Runge et al. (2020b). They both specify a similar cost function:

L(y(τ+1):t, s, e) =
t∑

i=τ+1

(
yi − s+ (i− τ)

e− s
t− τ

)2

,

which performs linear interpolation of a linear function that takes the value s at time
τ and e at time t. The minimization is performed, in CPOP, through a penalised
minimization problem with constraints on the segment length, solved through a
functional pruning recursion, and in SlopeOP over a finite set of real values s, e ∈ S
of size m. Both algorithms achieve similar performances: a detailed comparison of
the two can be found in the more recent work Runge et al. (2020b).

Change in the AR autocovariance, AR noise. In Section 4.3 of Killick
et al. (2012) a cost function for detecting changes in the autocovariance is introduced.
For detecting abrupt changes in the piecewise stationary signal of a sequence with
autocorrelation in the noise, we find the AR1Seg procedure (Chakar et al., 2017):
this procedure is based on the functional pruning pDPA recursion. More details
about AR1Seg can be found within Section 3.1: Chapter 3 introduces a procedure
that solves the generalization of such problem through a penalised functional pruning
recursion.

Robust FPOP. Fearnhead and Rigaill (2019) introduce a changepoint procedure
that makes the FPOP procedure robust to point-outliers. The idea is to replace the
cost (yt−µ)2 with a different loss that increases at a slower rate in |yt−µ|. Different
loss functions are presented in the study, of those, we present the Huber loss (from
Huber, 2004)

γ(yt, θ) = min{(yt − θ)2, 2K|y − θ| −K2},

and the biweight loss
γ(yt, θ) = min{(yt − θ)2, K2},

with the latter being employed in the real-data application of Chapter 4. These are
to be implemented in the recursion at the update step.

12

Chapter 2. Literature Review

2.1.3 Extensions to different Change Scenarios

This subsection briefly covers some procedures that extend the simple recursions to
more sophisticated change scenarios.

Collective and Point Anomaly Detection. Another changepoint scenario
involves situations where there is a normal behaviour, and then segments of time where
the features of the data change from this. These segments are known as collective
anomalies, and the changes are commonly referred to as epidemic changes. The CAPA
procedure of Fisch et al. (2018) extends the PELT recursion to estimate collective
anomalies, potentially in the presence of point anomalies. This is achieved through
minimizing the penalised cost:

∑
t/∈∪[si+1,ei]

− log f(yt, θ
0) +

K∑
j=1

min
θj

 ej∑
t=sj+1

− log f(yt, θ
j)

+ β

 ,
where f(·, ·) is our likelihood, θ0 is the parameter under the normal behaviour,
(s1, e1), . . . , (sK , eK) are the collective anomaly intervals, with an anomaly starting
at sj and ending at ej with parameters θj 6= θ0, j = 1, . . . , K. From its origin CAPA
has been extended to deal with multivariate sequences in Fisch et al. (2019), and to
perform online changepoint detection in Fisch et al. (2020).

Constrained FPOP and GFPOP. Hocking et al. (2017) propose an extension
of FPOP capable of providing inference on specific change patterns (for instance
only detecting up changes). This is achieved through specifying a constraint on the
parameters within the functional pruning minimization, deriving the recursion:

Qt(θ) = min
{
Qt−1(θ), Kθ,Qt−1 + β

}
+ γ(yt, θ),

where Kθ,Q is an operator necessary to constrain a specific type of change. For
example, to only detect up changes, our operator will be K≤θ,Q = minθ′<θQ(θ′).
Continuing our example, in the Gaussian change-in-mean, to constrain up changes
– often referred to as isotonic regression, the constrained FPOP recursions becomes:

Qt(µ) = min

{
Qt−1(µ), min

µ′<µ
Qt−1(µ′) + β

}
+ (yt − µ)2.

Based on this idea, the GFPOP procedure, from Runge et al. (2020a), develops a
general framework for constrained changepoint detection, translating the changepoint
problem within a discrete-state hidden Markov model that allows for nonparametric
modelling on the shape of the parameters between state transitions.

13

Chapter 2. Literature Review

2.1.4 Other extensions

Parallel PELT. In Tickle et al. (2020) we find two ways to increase the efficiency
of the PELT procedure by taking advantage of parallelization. Two algorithms are
presented: the first procedure, Chunk, separates the sequence into multiple segments
which are allocated to different cores; in the second procedure, Deal, each core
evaluates only a subset of the sequence derived from equally spaced points.

2.2 Binary Segmentation approaches

Binary Segmentation (BS), from Scott and Knott (1974) and Sen and Srivastava
(1975), is a procedure that aims to segment the sequence through an iterative divide-
and-conquer approach. For this reason, BS is often employed to extend single
changepoint procedures to multiple changes procedures, and hence it is one of the
most prominent methods in the literature.

2.2.1 An overview of the binary segmentation approaches

The idea behind Binary Segmentation is to test for a change by splitting a sequence
into two segments and to check if the cost over those two segments is smaller then
the cost computed on the whole sequence. For example if our test is based on a
log-likelihood ratio statistic, or similar, then we test if there is a τ that satisfy:

L(y1:τ) + L(yτ+1:n) + β < L(y1:n) (2.7)

with β ∈ R, and segment cost L(·), as in 2.2. If the condition in 2.7 is true for
at least one τ ∈ 1, . . . , n, then the τ that minimizes L(y1:τ) + L(yτ+1:n) is picked
as a changepoint and the test is then performed on the two newly generated splits.
The procedure is repeated until no further changepoints are detected on all resulting
segments. In Algorithm 4 we describe the Binary Segmentation as a recursive
procedure, where the first iteration would be simply given by BinSeg(y1:n, β).

In Killick et al. (2012) it is noted that while BS attempts to minimize the same
cost as OP in 2.3, it is not guaranteed that it will solve such minimization optimally;
as reported in Fryzlewicz (2014), BS is consistent “whether minimum spacing between
any two adjacent change-points is of order greater than n3/4”: for smaller segments
lengths BS might miss a change. The major advantage with respect to OP comes
from the fact that the BS procedure is of O(n log n) computational complexity: this
is because BS is a greedy procedure, in the sense that as soon as condition 2.7 is not
met, the corresponding segmentation is immediately discarded and never evaluated
again. The BS procedure essentially builds a directed tree, where branches point to
a search for a split over different subsets of the data. Branches are pruned as soon as

14

Chapter 2. Literature Review

Algorithm 4: Binary Segmentation – BinSeg(ys:t, β)

Data: ys:t = {ys, . . . , yt} a series of length t− s+ 1
Input: β > 0.

1 if t− s ≤ 1 then
2 Return {};
3 end
4 Q ←− min

τ∈{s,...,t}
[L(ys:τ) + L(yτ+1:t)− L(ys:t) + β] ;

5 if Q < 0 then
6 τ̂ ←− argmin

τ∈{s,...,t}
[L(ys:τ) + L(yτ+1:t)− L(ys:t)];

7 cp←− {τ̂ , BinSeg(ys:τ̂ , β), BinSeg(yτ̂+1:t, β)};
8 Return cp;

9 end
10 Return {};

no candidate splits meet the condition. In order to gain statistical power, two major
procedures have been introduced in the literature that can improve on the returned
segmentation: we illustrate those as follows.

Wild Binary Segmentation. WBS, Fryzlewicz (2014), and its extension WBS2
Fryzlewicz (2020) are multiple changepoints procedures that improve on the BS
changepoint estimation via computing the initial segmentation cost of BS multiple
times over M + 1 random subsets of the sequence, ys1:t1 , . . . , ysM :tM , y1:n, picking the
best subset according to what achieves the smallest segmentation cost and reiterating
the procedure over that sample accordingly. The idea behind WBS lies in the fact
that a favourable subset of the data ysm:tm could be drawn which contains a true
change sufficiently separated from both sides sm, tm of the sequence. By the inclusion
of the y1:n entire sequence amongst the subsets, it is guaranteed that WBS will do no
worse than the simple BS algorithm. An iterative procedure is detailed in Algorithm
5, again, as before, the algorithm is initiated with WildBinSeg(y1:n, β,M).

One of the major drawbacks of WBS is that in scenarios where we find frequent
changepoints, in order to retain a close-to-optimal estimation, one should draw
a higher number of M intervals: this can be problematic given that WBS has
computational complexity that grows linearly in the total length of the observations
of the subsets.

Seeded Binary Segmentation (SBS). Kovács et al. (2020) introduces the SBS
algorithm to mitigate the issues of WBS that arise from searching over random
segments of data. The idea is to eliminate the aleatory component from the
WBS procedure and to introduce a deterministic interval generating scheme such

15

Chapter 2. Literature Review

Algorithm 5: Wild Binary Segmentation – WildBinSeg(ys:t, β,M)

Data: ys:t = {ys, . . . , yt} a series of length t− s+ 1
Input: β > 0.

1 if t− s ≤ 1 then
2 Return {};
3 end
4 Draw M = {[s1, t1], . . . , [sM , tM]} tuples of subset indexes;
5 M←−M∪ {[1, n]}
6 Q ←− min

[sm,tm]∈M
τ∈{sm,...,tm}

[L(ysm:τ) + L(yτ+1:tm)− L(ysm:tm) + β] ;

7 if Q < 0 then
8 τ̂ ←− argmin

[sm,tm]∈M
τ∈{sm,...,tm}

[L(ysm:τ) + L(yτ+1:tm)− L(ysm:tm) + β] ;

9 cp←− {τ̂ , WildBinSeg(ys:τ̂ , β,M), WildBinSeg(yτ̂+1:t, β,M)};
10 Return cp;

11 end
12 Return {};

that intervals of larger lengths are less frequent than intervals of smaller lengths;
furthermore, the intervals are generated in such a way to cover uniformly the whole
sequence. That is, our intervals set will be:

M =

dlog 1
a

(n)e⋃
k=1

mk⋃
i=1

{[b(i− 1)ukc, d(i− 1)uk + lke]}, (2.8)

with 1/2 ≤ a < 1 being a decay parameter regulating the smallest segment length,
mk = 2 ∗ da1−k)e− 1, lk = nak−1, uk = (n− lk)/(mk− 1). The new generating scheme
falls exactly in place of the one in line 4 of Algorithm 5 with the rest of the procedure
being the same. In this way it is possible to obtain some theoretical guarantees on the
computational complexity of the method, which ends effectively being O(n log(n)),
and on the asymptotic optimality of the procedure.

Narrowest Over Threshold. NOT, from Baranowski et al. (2016), is an
alternative search scheme analogue to the BS schemes. Similarly to WBS it splits
data into subsets and performs a test on each subset. But to then construct the set
of estimated changepoints if follows the procedure:

1. keeps all segments whose test statistic is above some threshold;

2. orders these segments from shortest to longest;

16

Chapter 2. Literature Review

Figure 2.3: In black, the signal object of inference. In red, the best triangular
approximation of such signal for a change at τ = 350, on the left, τ = 500, in
the center, and τ = 750, on the right.

3. adds changepoints by processing the list of segments following the new order;
when each new changepoint is added later segments in the list that contain that
changepoint are removed.

The idea is that all segments kept in the first stage show evidence for a changepoint.
But we can most accurately estimate the position of a change if the segment only
contains a single changepoint – and this is most likely to be for the shortest segments.
Hence we process the segments from shortest to longest. As we do this we add the
estimated change from the shortest segment, then remove all subsequent segments that
contain the time at which that change occurred (as the signal in such segments may be
because of the detected change), and then reiterate the procedure. To motivate NOT,
let us consider the example in Figure 2.3. We observe a piecewise linear sequence of
100 observations with two true changes at 350 and 650. Let’s say we wish to obtain
the best `2 triangular approximation of such signal – i.e. performing a single change
estimation as in one iteration of BS. In such a scenario, if we had any BS scheme
in place, such as WBS or SBS, we would flag a false positive. WBS would in fact
estimate a change in the middle as the resulting segmentation is the one that achieves
the smallest segmentation cost – minimizing the `2 error. NOT avoids such error since
it would only search through the narrowest interval, which is very likely to contain
one single changepoint.

2.2.2 Extensions of Binary Segmentation

Possibly for their simplicity and ease of coding, many procedures rely on Binary
Segmentation. We present some, by noting that what follows is certainly not a
comprehensive list of such extensions.

17

Chapter 2. Literature Review

Multivariate changepoint procedures. Several multivariate procedures take
advantage of Binary Segmentation to extend to single change statistics to detect
multiple changes. In Wang and Samworth (2018) a statistics for sparse change-in-
mean is derived from the left singular vector of a CUSUM transformation on the time
series matrix. Similarly in Cho and Fryzlewicz (2015) a BS method for detection
of a change in the autocovariance and cross-covariance of a high-dimensional time
series. In Leonardi and Bühlmann (2016) we find an efficient multivariate change-in-
regression procedure.

Change in parameters of an ARCH model. In Fryzlewicz and Rao (2014) the
BASTA procedure performs multiple changepoint detection in the piecewise constant
parameters of an ARCH model. BASTA is a two step procedure consisting of an
initial transformation of the series into a piecewise constant mean process ut =
g(xt, xt−1, . . . , xt−k) for given g(·) and k, followed by a regular Binary Segmentation
approach. Multiple choices for g(·) are presented within the paper.

Non-stationary time-series. In Korkas and Fryzlewicz (2017) the WBS
segmentation procedure is extended to deal with change detection in the second-order
structure of a non-stationary time series. This is achieved through the decomposition
of the series through local wavelet periodograms.

Nonparametric approaches. Recently, Ross (2021) presented a way to
integrate nonparametric test statistics (like Mood, 1954) on a WBS scheme to build
a multiple changepoint procedure. Lastly, the procedure presented in Chapter 5 can
be essentially seen as an online nonparametric rolling window binary segmentation
approach.

2.3 Other approaches

We conclude the chapter by mentioning other approaches to changepoint detection
that do not directly fall in the super mentioned categories.

2.3.1 Sequential testing approaches

Here we present some offline sequential changepoint procedures based both on rolling
window statistics or on cumulative sums. A more comprehensive review of such
methodologies can be found in the background section of Chapter 4, which focus on
the online changepoint detection problem, as many of those procedures find their
roots in the sequential hypothesis testing literature. For a comprehensive review of
the sequential procedures see Tartakovsky et al. (2014).

The MOSUM approach. Moving sums statistics originate as monitoring scheme
procedures (Eiauer and Hackl, 1978; Chu et al., 1995) to be revisited recently as
multiple changepoint detection procedures, see Eichinger and Kirch (2018). The idea

18

Chapter 2. Literature Review

consists in a sequential evaluation of some test statistic in a rolling window, being a
subset of the data that contains the most recent observations up to some iteration.
The trace generated from the rolling window is then processed as a regular series in
order to reconstruct the changepoint locations. More formally, let y1:n = y1, . . . , yn be
a realization from some stochastic process. For example, at time t we can construct
the test statistics:

St = max
G≤τ≤t−G

|St,τ |, (2.9)

St,τ =
τ+G∑
i=τ+1

h(yi)−
τ∑

i=τ−G+1

h(yi). (2.10)

Where h(·) is an estimator function of the parameter of interest θ, G ∈ N is
the bandwidth parameter that controls the size of the window, being 2G. The
statistic compares the difference of two sub-samples within the rolling window: a
large difference is an indication of the presence of a change. Hence, intuitively,
the MOSUM procedure maps a general changepoint problem to a change-in-mean
problem. We compute the statistic for t ∈ G, . . . , n−G (where for t < G), obtaining
its trace SG:n−G. Then, to reconstruct the K changepoint estimates, for a given β,
find [lk, uk] : Slk:uk > β ∀ lk ≤ uk < lk+1; k ∈ 1, . . . , K the disjoint contiguous
sets of the statistics that are over the threshold β. Within these sets, the value
of t corresponding to the highest value of the statistics is picked as a changepoint.
One of the most immediate advantages of MOSUM lies in the linear computational
complexity of the procedure, being O(Gn), as only one pass over the entire sequence
is necessary to reconstruct the trace of the statistics.

As an example, in Figure 2.4 we find an illustration of the MOSUM procedure on
a Gaussian change-in-mean case. For this case, as reported in Eichinger and Kirch
(2018), the full statistics becomes:

St = max
G≤τ≤t−G

1

σ̂

∣∣∣∣∣ 1√
2G

(
τ+G∑
i=τ+1

yi −
τ∑

i=τ−G+1

yi

)∣∣∣∣∣ ,
where σ̂ is an estimate of the long-run variance necessary to ensure that the behaviour
of the partial sums is not affected by the number of changepoints. Choices for the
bandwidth parameter G, the threshold β and a long-run variance estimator for σ,
as well as asymptotic guarantees on the power of the test are provided within the
Eichinger and Kirch (2018).

For a general description of the MOSUM procedure and a comprehensive review
of its extensions, please refer to Reckrühm (2019).

Sequential Likelihood Ratio tests. Dette and Gösmann (2020) present a
sequential likelihood ratio test procedure to test for a single change in the parameters

19

Chapter 2. Literature Review

Figure 2.4: On top, a realization of a simple Gaussian change-in-mean scenario with
changes at 50 and 100. At the bottom, the value of the MOSUM statistics relative to
each time point. The dotted line corresponds to a threshold of 3.5, with the values
over the threshold highlighted in blue: in this case MOSUM correctly identifies the
two changepoints.

of some distribution. The procedure is based on cumulative sums of an estimator.
That is, we observe yt ∼ f(θt) for t = 1, . . . , n, and we wish to sequentially test for:

H0 : θ1 = · · · = θm = . . . ,

against
H1 : θ1 = · · · = θm = · · · = θτ 6= θτ+1 = θτ+2 = . . .

for m > 1 where y1:m is stable under the parameters of interest and τ ≥ m is a
changepoint. The sequential test statistics, up to time t, will be given by:

St = max
1≤τ<t

(
t∑

i=τ+1

h(yi)−
τ∑
i=1

h(yi)

)2

,

where h(·) is an estimator function of the parameter of interest θ. Reconstructing the
trace of such statistics up to time n has a computational complexity of O(n2), as for
computing the partial sums each iteration is linear in n. This issue is addressed in 4
where the computational complexity is of particular interest. In Dette and Gösmann
(2020) several test statistics are introduced to cover a more general class of parameters
and multivariate applications, amongst those the MOSUM statistics is derived as a
special case essentially obtaining an equivalent formulation to what already presented
in 2.9.

20

Chapter 2. Literature Review

2.3.2 Penalised approaches (fused lasso)

The idea behind lasso optimization approaches is to express the changepoint problem
as a `1 penalised convex optimization problem. This approach is relatively close to
the penalised optimization problem formulated in 2.4, where the difference between
the two optimization problems is essentially in the type of penalty applied to the
minimization. Originating from Harchaoui and Lévy-Leduc (2007), focusing on the
simple Gaussian change-in-mean case, the Cachalot1 procedure solves:

min
µ1:n

n∑
t=1

(yt − µt)2 + κ

n∑
t=2

|µt − µt−1| (2.11)

with κ > 0 being an `1 penalty on the magnitude of a change. A combined
LARS/LASSO and dynamical programming approach is then employed in order to
solve the optimization efficiently in O(n2).

A generalization to the multivariate case is derived in Bleakley and Vert (2011).
In Kim et al. (2009); Tibshirani et al. (2014), a similar optimization problem is solved,
with a penalty on the discrete derivative of the mean signal: as we are going to cover
this will be particularly helpful in case of a fluctuating mean signal. Similarly, as a
comparison to our `2 + `0 optimization method introduced in Chapter 3, in Section
3.6.3 we frame the LAVA `2 + `1 optimization problem (from Chernozhukov et al.,
2017) as a changepoint optimization problem.

2.3.3 Model Based approaches

The last approaches we review are based on formulating a model or log-likelihood of
the data with changes and estimate the resulting parameters through either a Bayesian
approach or EM approach.

Bayesian approaches. Historically, changepoint detection has always been of
interest to Bayesian Analysis with numerous works from the field (amongst those we
mention Raftery and Akman, 1986; Barry and Hartigan, 1993; Liu and Lawrence,
1999). Usually, the idea is to specify a model that allows for one or more changes and
to estimate the resulting parameters through the Bayesian inferential approach. A
prior can be placed either on the within-change parameters, the changepoint locations
or a point process regulating the distance between two successive changepoints.
To obtain inference from the posterior the sampling can be either done exactly
(for example we mention Fearnhead, 2006) or through MCMC (Stephens, 1994) or
reversible jump MCMC approaches (as in Green, 1995). The Bayesian approach
to changepoint detection differs from those introduced so far both in terms of the

1With possibly one of the most well thought acronyms in the literature, for CAtching
CHAngepoints with LassO.

21

Chapter 2. Literature Review

initial parameters and of the final results: a Bayesian methodology relies on prior
specifications and can therefore be quite sensitive to such choices; a richer output
is produced that can more easily quantify uncertainty about changes, but it can be
harder to present a simple summary of the estimates (see Siems et al., 2019).

Mixed Linear Modelling EM approaches. Picard et al. (2011) introduce
a procedure for performing multivariate changepoint detection through a blended
approach of Expectation-Maximization and Dynamical Programming. The procedure
relies on a mixed linear model with covariates and an additional parameter for
expressing some piecewise-constant signal. An EM procedure, namely the ECM
algorithm (Meng and Rubin, 1993), is then employed to estimate all the model
parameters. In this procedure the M step is broken into two sub-steps: an optimization
step for the parameters not subject to the changes, and a constrained dynamical
programming step for the optimization of the piecewise-constant parameters across
the multiple series.

HMM EM approaches. In this paradigm we wish to reconstruct the state of a
discrete Hidden Markov Model starting from the observations, assuming that each yi
is a realization of one of the Kth different models fk(yi), k = 1, . . . , K.

As an example, we present the Expectation Maximization Change Point (EMCP)
methodology from Chang and Lu (2016), a multiple segments multivariate change-
point procedure. They lay the complete log-likelihood function of the data, for
t = 1, . . . , n observations, j = 1, . . . ,m variates:

K∑
k=1

n∑
t=1

zk,t

m∑
j=1

log fk(yt,j, θk)

where fk(·) is the likelihood function for the data from group k – for instance, in the
Gaussian change-in-mean and variance fk(y) = 1

σk
√

2π
exp [−(y − µk)/2σ2

k] – and the

zkt ∈ {0, 1} is a Bernoulli random variable denoting belonging of a given observation
to a specific group and is defined as following:

zk,t =

{
1, if the tthobservation belongs to model k,

0, otherwise.

Estimations of both the zk,1:n variables, which are treated as unobserved data,
as well as model parameters θk is performed then through an iterative Expectation-
Maximization approach.

22

Chapter 3

Detecting Changes in
Autocorrelated and Fluctuating
Signals

3.1 Introduction

Detecting changes in data streams is a ubiquitous challenge across many modern
applications of statistics. It is important in such diverse areas as bioinformatics
(Olshen et al., 2004; Futschik et al., 2014), ion channels (Hotz et al., 2013), climate
records (Reeves et al., 2007), oceanographic data (Killick et al., 2010) and finance
(Kim et al., 2005). The most common and important change detection problem is
that of detecting changes in mean, and there have been a large number of different
approaches to this problem that have been proposed (e.g. Olshen et al., 2004; Killick
et al., 2012; Fryzlewicz, 2014; Frick et al., 2014; Maidstone et al., 2017; Eichinger and
Kirch, 2018; Fearnhead and Rigaill, 2019; Fryzlewicz, 2018, amongst many others).
Almost all of these methods are based on modelling the data as having a constant
mean between changes and the noise in the data being independent. Furthermore,
all changepoint methods require specifying some threshold or penalty that affects
the amount of evidence that there needs to be for a change before an additional
changepoint is detected. In general the methods have default choices of these
thresholds or penalties that have good theoretical properties under strong modelling
assumptions.

Whilst these methods perform well when analysing simulated data where the
assumptions of the method hold, they can be less reliable in real applications,
particularly if the default threshold or penalties are used. Reasons for this include the
noise in the data being autocorrelated, or the underlying mean fluctuating slightly
between the abrupt changes that one wishes to detect. To see this, consider change

23

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

0 1000 2000 3000 400010
00

00
12

00
00

14
00

00

Time

0 1000 2000 3000 400010
00

00
12

00
00

14
00

00

Time

0 1000 2000 3000 400010
00

00
12

00
00

14
00

00

Time

Figure 3.1: Segmentations of well-log data: wild binary segmentation using the
strengthened Schwarz information criteria (top); segmentation under square error loss
with penalty inflated to account for autocorrelation in measurement error (middle);
optimal segmentation from DeCAFS with default penalty (bottom). Each plot shows
the data (black line) the estimated mean (red line) and changepoint location (vertical
blue dashed lines).

detection for the well-log data (taken from Ruanaidh and Fitzgerald, 2012; Fearnhead
and Liu, 2011) shown in Figure 3.1. This data comes from lowering a probe into a
bore-hole, and taking measurements of the rock structure as the probe is lowered.
The data we plot has had outliers removed. As the probe moves from one rock strata
to another we expect to see an abrupt change in the signal from the measurements,
and it is these changes that an analyst would wish to detect. Previous analyses of
this data have shown that, marginally, the noise in the data is very well approximated
by a Gaussian distribution; but by eye we can see local fluctuations in the data that
suggest either autocorrelation in the measurement error, or structure in the mean
between the abrupt changes.

The top plot shows an analysis of the well-log data that uses wild binary
segmentation (Fryzlewicz, 2014) with the standard cusum test for a change in

24

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

mean, and then estimates the number of changepoints based on a strengthened
Schwarz information criteria. Both the cusum test and the strengthened Schwarz
information criteria are based on modelling assumptions of a constant mean between
changepoints and independent, identically-distributed (IID) Gaussian noise, and are
known to consistently estimate the number and location of the changepoints if these
assumptions are correct. However in this case we can see that it massively overfits the
number of changepoints. Similar results are obtained for standard implementation of
other algorithms for detecting changes in mean, see Figure 13 in the Supplementary
Material.

Lavielle and Moulines (2000) and Bardwell et al. (2019) suggest that if we estimate
changepoints by minimising the squared error loss of our fit with a penalty for each
change, then we can correct for potential autocorrelation in the noise by inflating the
penalty used for adding a changepoint. The middle plot of Figure 3.1 shows results
for such an approach (Bardwell et al., 2019); this gives an improved result but it still
noticeably overfits.

By comparison, the method we propose models both autocorrelation in the noise
and local fluctuations in the mean between changepoints – and analysis of the data
using default settings produces a much more reasonable segmentation of the data (see
bottom plot of Figure 3.1). This method is model-based, and assumes that the local
fluctuations in the mean are realisations of a random walk and that the noise process
is an AR(1) process. We then segment the data by minimising a penalised cost that
is based on the log-likelihood of our model together with a BIC penalty for adding a
changepoint.

The key algorithmic challenge with our approach is minimising the penalised cost.
In particular many existing dynamic programming approaches (e.g. Jackson et al.,
2005; Killick et al., 2012) do not work for our problem due to the dependence across
segments caused by the autocorrelated noise. We introduce a novel extension of the
functional pruned optimal partitioning algorithm of Maidstone et al. (2017), and we
call the resulting algorithm DeCAFS, for Detecting Changes in Autocorrelated and
Fluctuating Signals. It is both computationally efficient (analysis of the approx 4000
data points in the well-log data taking a fraction of a second on a standard laptop)
and guaranteed to find the best segmentation under our criteria.

Whilst we are unaware of any previous method that tries to model both
autocorrelation and local fluctuations, Chakar et al. (2017) introduced AR1Seg which
aims to detect changes in mean in the presence of autocorrelation. Their approach is
similar to ours if we remove the random walk component, as they aim to minimise
a penalised cost where the cost is the negative of the log-likelihood under a model
with an AR(1) noise process. However they were unable to minimise this penalised
cost, and instead minimised an approximation that removes the dependence across
segments. One consequence of using this approximation is that it often estimates two

25

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

consecutive changes at each changepoint, and AR1Seg uses a further post-processing
step to try and correct this. Moreover, our simulation results show that using the
approximation leads to a loss of power, particularly when the autocorrelation in the
noise is high.

Particularly if interest lies in estimating how the underlying mean of the data varies
over time, natural alternatives to DeCAFS are trend filtering methods (Kim et al.,
2009; Tibshirani et al., 2014) which estimate the mean function under an L1 penalty
on a suitably chosen discrete derivative of the mean. Depending on the order of the
derivative, these methods can fit a piecewise constant (in this case trend filtering
is equivalent to the fused lasso of Tibshirani et al., 2005), linear, or quadratic etc.
function to the mean. One advantage of trend filtering is its flexibility: depending
on the application one can fit mean functions with different degrees of smoothness.
However it does not allow one to jointly estimate a smoothly changing mean and
abrupt changes – the L1 penalty must be chosen to capture one or other of these
effects. This is particularly an issue if the main interest is in detecting abrupt changes
rather than estimating the mean. These issues are investigated empirically in Section
F of the Supplementary Material.

Distinguishing between local fluctuations and abrupt changes is possible by
methods that model the mean as a sum of functions (Jalali et al., 2013) – for example
one smoothly varying and one piecewise constant. And trend-filtering, or other
regularised estimators can then be used to estimate each component. The LAVA
approach of Chernozhukov et al. (2017) is one such approach, fitting the piecewise
constant function and the smoothly varying function using, respectively, an L1 and L2

penalty on the function’s first discrete derivative. The main difference between LAVA
and DeCAFS is thus that LAVA has an L1 penalty for abrupt changes, and DeCAFS
has an L0 penalty. If interest is primarily in detecting changes, previous work has
shown the use of an L0 penalty to be preferable to an L1 penalty – as the latter can
often over-fit the number of changes (see e.g. the empirical evidence in Fearnhead
et al., 2018; Jewell et al., 2020), and a post-processing step is often needed to correct
for this (Lin et al., 2017; Safikhani and Shojaie, 2020).

One important feature of modelling the random fluctuations in the mean via a
random walk, is that the information that a data point ys has about a change at time
t decays to 0 as |t − s| gets large. This is most easily seen if we consider applying
DeCAFS to detect a single abrupt change. We show in Section 3.5 that whether
DeCAFS detects a change at a time t depends on some contrast of the data before
and after t. This contrast compares a weighted mean of the data before t to a weighted
mean of the data after t, with the weights decaying (essentially) geometrically with
the length of time before/after t. This is appropriate for the random walk model
which enables e.g. the mean of yt+h to be very different to the mean at yt+1 if h > 0
is large, and thus yt+h contains little to no information about whether there has been

26

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

an abrupt change in the mean of yt+1 compared to the mean of yt. By contrast,
standard CUSUM methods for detecting a change in mean quantify the evidence for
a change at t by a contrast of the unweighted mean of the data before and after t
– thus each data point, yt+h, has the same amount of information about the change
regardless of the value of h. In situations where there are local fluctuations in the
mean but through some stationary process, such as a mean-reverting random walk,
data far from a change would still have a non-negligble amount of information about
it. In such situations, particularly if the segments are long, DeCAFS could have lower
power than CUSUM or other methods that ignore any local fluctuations in the data.
We investigate this empirically in Section A.4.2.

The outline of the paper is as follows. In the next section we introduce our model-
based approach and the associated penalised cost. In Section 3.3 we present DeCAFS,
a novel dynamic programming algorithm that can exactly minimise the penalised
cost. To implement our method we need estimates of the model parameters, and we
present a simple way of pre-processing the data to obtain these in Section 3.4. We
then look at the theoretical properties of the method. These justify the use of the
BIC penalty, show that our method has more power at detecting changes when our
model assumptions are correct than standard approaches, and also that we have some
robustness to model error – in that we can still consistently estimate the number
and location of the changepoints in such cases by adapting the penalty for adding a
changepoint. Sections 3.6 and 3.7 evaluate the new method on simulated and real
data; and the paper ends with a discussion.

Code implementing the new algorithm is available in the R package DeCAFS on
CRAN. The package and full code from our simulation study is also available at
github.com/gtromano/DeCAFS.

3.2 Modelling and Detecting Abrupt Changes

3.2.1 Model

Let y1:n = (y1, . . . , yn) ∈ Rn be a sequence of n observations, and assume we wish to
detect abrupt changes in the mean of this data in the presence of local fluctuations
and autocorrelated noise. We take a model-based approach where the signal vector is
a realisation of a random walk process with abrupt changes, and we super-impose an
AR(1) noise process.

So for t = 1, . . . , n,

yt = µt + εt, (3.1)

27

github.com/gtromano/DeCAFS

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

where for t = 2, . . . , n

µt = µt−1 + ηt + δt, with ηt ∼
iid
N (0, σ2

η), δt ∈ R, (3.2)

and δt = 0 except at time points immediately after a set of m changepoints, 0 < τ1 <
· · · < τm < n. That is δt = 0 unless t = τj +1 for some j. This model is unidentifiable
at changepoints. If τ is a changepoint, then whilst the data is informative about µτ+1

and µτ , we have no further information about the specific value of δτ+1 relative to
ητ+1. We thus take the convention that δτ+1 = µτ+1 − µτ and ητ+1 = 0, which is
the most likely value of ητ+1 under our model, and consistent with maximising the
likelihood criteria we introduce below. The noise process, εt is a stationary AR(1)
process with, for t = 2, . . . , n,

εt = φεt−1 + νt with νt ∼
iid
N (0, σ2

ν), (3.3)

for some autocorrelation parameter, φ with |φ| < 1 and ε1 ∼ N (0, σ2
ν/(1− φ2)).

Special cases of our model occur when φ = 0 or when σ2
η = 0. When φ = 0 our

noise process εt is then IID, and the model is equivalent to a random walk plus noise
with abrupt changes. When σ2

η = 0 we are detecting changes in mean with an AR(1)
noise process, resulting in a formulation equivalent to the one of Chakar et al. (2017).

3.2.2 Penalised Maximum Likelihood Approach

In the following we will assume that φ, σ2
η and σ2

ν are known; we consider robust
approaches to estimate these parameters from the data in Section 3.4. We can then
write down a type of likelihood for our model, defined as the joint density of the
observations, y1:n, and the local fluctuations in the mean, η2:n. We will express this
as a function of µ1:n and δ2:n. Writing f(·|·) for a generic conditional density, we have
that this is

L(y1:n;µ1:n, δ2:n) =

(
n∏
t=2

f(µt|µt−1, δt)

)
f(y1|µ1)

(
n∏
t=2

f(yt|yt−1, µt−1, µt)

)

∝

(
n∏
t=2

exp

{
−(µt − µt−1 − δt)2

2σ2
η

})
exp

{
− (y1 − µ1)2

2σ2
ν/(1− φ2)

}

×

(
n∏
t=2

exp

{
−((yt − µt)− φ(yt−1 − µt−1))2

2σ2
ν

})
.

We have used the specific Gaussian densities of our model, and dropped multiplicative
constants, to get the second expression.

28

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

If we knew the number of changepoints we could estimate their position by
maximising this likelihood subject to the constraints on the number of non-zero entries
of δ2:n. However, as we need to also estimate the number of changepoints we proceed
by maximising a penalised version of the log of the likelihood where we introduce a
penalty for each changepoint – this is a common approach to changepoint detection,
see e.g. Maidstone et al. (2017). It is customary to restate this as minimising
a penalised cost, rather than maximising a penalised likelihood, where the cost is
minus twice the log-likelihood. That is we estimate the number and location of the
changepoints by solving the following minimisation problem:

Qn = min
µ1:n
δ2:n

{
(1− φ2)γ(y1 − µ1)2 +

n∑
t=2

[
λ(µt − µt−1 − δt)2 + γ

(
(yt − µt)− φ(yt−1 − µt−1)

)2

+ β 1δt 6=0

]}
, (3.4)

where β > 0 is the penalty for adding a changepoint, λ = 1/σ2
η, γ = 1/σ2

ν , and
1 ∈ {0, 1} is an indicator function. For the special case of a constant mean between
changepoints, corresponding to σ2

η = 0, we require µt = µt−1 + δt ∀ t = 2, . . . , n and
simply drop the first term in the sum.

3.2.3 Dynamic Programming Recursion

We will use dynamic programming to minimise the penalised cost (3.4). The challenge
here is to deal with the dependence across changepoints due to the AR(1) noise process
which means that some standard dynamic approaches for changepoint detection, such
as optimal partitioning (Jackson et al., 2005) and PELT (Killick et al., 2012), cannot
be used. To overcome this, as in Rigaill (2015) or Maidstone et al. (2017), we define
the function µ 7→ Qt(µ) to be the minimum penalised cost for data y1:t conditional
on µt = µ,

Qt(µ) = min
µ1:t

δ2:t,µt=µ

{
(1− φ2)γ(y1 − µ1)2 +

t∑
i=2

[
λ(µi − µi−1 − δi)2 + γ

(
(yi − µi)− φ(yi−1 − µi−1)

)2

+ β 1δi 6=0

]}
.

So Qn = minµ∈RQn(µ); and the following proposition gives a recursion for Qt(µ).

Proposition 1 The set of functions {µ 7→ Qt(µ) , t = 1, . . . , n} satisfies

29

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

Q1(µ) = (1− φ2)γ(y1 − µ)2 and, for t = 2, . . . , n,

Qt(µ) = min
u∈R

{
Qt−1(u) + min{λ(µ− u)2, β}+ γ

(
(yt − µ)− φ(yt−1 − u)

)2
}
. (3.5)

The intuition behind the recursion is that we first condition on µt−1 = u, with the
term in braces being the minimum penalised cost for y1:t given u and µt = µ, and
then minimise over u. The cost in braces is the sum of three terms: (i) the minimum
penalised cost for y1:t−1 given u; (ii) the cost for the change in mean from u to µ; and
(iii) the cost of fitting data point yt with µt. The cost for the change in mean, (ii),
is just the minimum of the constant cost for adding a change and the quadratic cost
for a change due to the random walk. The recursion applies to the special case of a
constant mean between changepoints, where λ =∞, if we replace min{λ(µ− u)2, β}
with its limit as λ→∞, which is β1µ 6=u.

Whilst recursions of this form have been considered in earlier changepoint
algorithms (e.g. Maidstone et al., 2017; Hocking et al., 2020), the dependence between
the current mean u and the previous mean µ that appears in terms (ii) and (iii) makes
our recursion more challenging to solve. We next show one efficient way of solving by
combining existing functional pruning dynamic programming ideas with properties of
infimal convolutions.

3.3 Computationally Efficient Algorithm

3.3.1 The DeCAFS Algorithm

Algorithm 6 gives pseudo code for solving the dynamic programming recursion
introduced in Proposition 1. The key to implementing this algorithm is performing
the calculations in line 5, and how this can be done efficiently will be described
below. Throughout we give the algorithm for the case where there is a random walk
component, i.e. λ <∞, though it is trivial to adapt the algorithm to the λ =∞ case.

As well as solving the recursion for Qt(µ), Algorithm 6 shows how we can also
obtain the estimate of the mean, through a standard back-tracking step. The idea is
that our estimate of µn, µ̂n, is just the value of µ that maximises Qn(µ). We then loop
backwards through the data, and our estimate of µt is the value that minimises the
penalised cost for the data y1:t conditional on µt+1 = µ̂t+1, which can be calculated as
Bt(µ) in line 11.

Finally, as we obtain the estimates of the mean, we can also directly obtain the
estimated changepoint locations. It is straightforward to see, by examining the form
of the penalised cost, that the optimal solution for δ2:n has δt+1 6= 0 (and hence t is a
changepoint) if and only if λ(µ̂t+1 − µ̂t)2 > β.

30

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

Algorithm 6: DeCAFS

Data: y = y1:n a time series of length n
Input: β > 0, λ > 0, γ > 0 and 0 ≤ φ < 1.

1 begin Initialisation
2 Q1(µ)←− (1− φ2)γ(y1 − µ)2

3 end
4 for t = 2 to n do
5 Qt(µ)←−

min
u

{
Qt−1(u) + min{λ(µ− u)2, β}+ γ

(
(yt − µ)− φ(yt−1 − u)

)2
}

6 end
7 begin Backtracking
8 µ̂n ←− argminQn(µ)
9 τ̂ ←− n

10 for t = n− 1 to 1 do

11 Bt(µ)←− Qt(µ) + min{λ(µ− µ̂t+1)2, β}+ γ
(

(yt+1 − µ̂t+1)− φ(yt − µ)
)2

12 µ̂t ←− argminBt(µ)
13 if (µ̂t − µ̂t+1)2 > β/λ then
14 τ̂ ←− (t, τ̂)
15 end

16 end

17 end
18 Return µ̂1:n, τ̂

31

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

3.3.2 The Infimal Convolution

The main challenge with Algorithm 6 is implementing line 5. Firstly this needs a
compact way of characterising Qt(µ). This is possible as Q1(µ) is a quadratic function;
and the recursion maps piecewise quadratic functions to piecewise quadratic functions.
Hence Qt(µ) will be piecewise quadratic and can be defined by storing a partition of
the real-line together with the coefficients of the quadratics for each interval in this
partition.

Next we can simplify line 5 of Algorithm 6. As written line 5 involves minimising
a two-dimensional function, in (u, µ) ∈ R2, over the variable u. We can recast this
operation into a one-dimensional problem by introducing the concept of an infimal
convolution (see Chapter 12 of Bauschke and Combettes, 2011).

Definition 1 Let f be a real-valued function defined on R and ω a non-negative
scalar. We define INFf,∞(θ) = f(θ) and for ω > 0,

INFf,ω(θ) = min
u∈R

(
f(u) + ω(u− θ)2

)
, (3.6)

as the infimal convolution of f with a quadratic term.

The following proposition presents a reformulation of the update-rule into a
minimization involving infimal convolutions, for the case φ ≥ 0. The proof is in
Section A.2, together with details of equivalent results when φ < 0.

Proposition 2 Assume φ ≥ 0. The functions {Qt(µ) , t = 2, . . . , n} can be written
as

Qt(µ) = min
{
Q=
t (µ), Q6=t (µ)

}
,

where

Q=
t (µ) = INFQt−1,γφ+λ(µ) + γ

1−φ

(
yt − φyt−1 − (1− φ)µ

)2

,

Q6=t (µ) = INFQt−1,γφ(µ) + γ
1−φ

(
yt − φyt−1 − (1− φ)µ

)2

+ β ,

and

Qt−1(u) = Qt−1(u)− γφ(1− φ)

(
u− yt − φyt−1

1− φ

)2

.

3.3.3 Fast Infimal Convolution Computation

As noted above we can represent Qt by Qt = (q1
t , ..., q

s
t) where each qit is a quadratic

defined on some interval [di, di+1[with d1 = −∞ and ds+1 = +∞. It is this
representation of Qt that we update at each time step. Some operations involved
in solving the recursion, such as adding a quadratic to a piecewise quadratic, or

32

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

calculating the pointwise minimum of two piecewise quadratics are easy to perform
with a computational cost that is linear in the number of intervals (see e.g. Rigaill,
2015). The following theorem shows that a fast update for the infimal convolution of
a piecewise quadratic is also possible, and is important for developing a fast algorithm
for solving the dynamic programming recursions.

Theorem 1 Let Qt = (q1
t , ..., q

s
t) be the representation of the functional cost Qt. For

all ω ≥ 0, the representation returned by the infimal convolution INFQt,ω has the
following order-preserving form:

INFQt,ω = (INFqu1t , INFq
u2
t , ..., INFq

us∗−1

t , INFqus∗t) ,

with 1 = u1 < u2 < ... < us∗−1 < us∗ = s and s∗ ≤ s.

The key part of this result is that the order of the quadratics is not changed
when we apply the infimal convolution, and thus we can calculate INFQt,ω using a
linear scan over the real-line. The proof of this theorem is given in Appendix C of
the supplementary materials of Romano et al. (2021), and an example algorithm for
calculating INFQt,ω with complexity that is linear in s is shown in Section A.3.

3.4 Robust Parameter Estimation

Our optimisation problem (3.4) depends on three unknown parameters: σ2
η, σ

2
ν and

φ. We estimate these parameters by fitting to robust estimates of the variance of the
k-lag differenced data, zkt = yt+k − yt, for k ≥ 1.

Proposition 3 With the model defined by (3.1) – (3.3),

zkt ∼ N
(t+k∑
i=t+1

δi, kσ
2
η + 2

1− φk

1− φ2
σ2
ν

)
, t = 1, . . . , n− k.

Providing k is small relative to the average length of a segment, the mean of zkt will
be zero for most t: if there are m changes then at most km of the zkt s will overlap
a change and have a non-zero mean. A way to alleviate this issue is to estimate the
variance of zkt through a robust estimator, such as the median absolute difference from
the median, or MAD, estimator.

Fix K, and let vk be the MAD estimator of the variance of zkt for k = 1, . . . , K.
We estimate the parameters by minimising the least square fit to these estimates,

Sφ(σ2
η, σ

2
ν) =

K∑
k=1

(
kσ2

η + 2
1− φk

1− φ2
σ2
ν − vk

)2

.

33

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

In practice we can minimise this criteria by using a grid of values for φ and then for
each φ value analytically minimise with respect to σ2

η ≥ 0 and σ2
ν ≥ 0. Obviously, if

we are fitting a model without the random walk component we can set σ2
η = 0, or if

we wish to have uncorrelated noise we set φ = 0. A remark: the least square estimate
implicitly assumes that the zkt s are independent. Such an assumption does not hold
on our model, however, ignoring the dependence in the zkt s would just slightly reduce
the statistical efficiency of the estimator.

An empirical evaluation of this method for estimating the parameters is shown in
Appendix F.1 of the supplementary materials of Romano et al. (2021). These include
an investigation of the accuracy in situations where we have changepoints. In our
simulation study we use K = 10, though similar results were obtained as we varied
K.

3.5 Theoretical Properties

We can reformulate our model as a linear-regression. To do this it is helpful to
introduce new variables, η̃1:n, that give the cumulative effect of the random-walk
fluctuations. To simplify exposition it is further helpful to define this process so it
has an invertible covariance matrix. So we will let η̃1 ∼ N (0, σ2

η) and η̃t = η̃t−1 +ηt for
t = 2, . . . , n. For a set of m changepoints τ1:m, and defining τ0 = 0, we can introduce
a n × (m + 1) matrix Xτ0:m where the ith column is a column of τi−1 zeros followed
by n− τi−1 ones. Our model is then

y1:n = Xτ0:m∆ + ζ1:n, (3.7)

where ζ1:n is a vector of Gaussian random variables with

Var(ζ1:n) = Var(ε1:n) + Var(η̃1:n) := ΣAR + ΣRW

the sum of the variance matrices for the AR component of the model, ε1:n, and the
random walk component of the model, η̃1:n; and ∆ is a (m + 1) × 1 vector whose
first entry is µ1 − η̃1 and whose ith entry is δτi−1+1 the change at the (i − 1)th
changepoint. This formulation also allows us to consider the impact of model error
on DeCAFS. Later, when we consider its asymptotic properties, we will allow for the
data generating process to be (3.7) but with Var(ζ1:n) different from that assumed by
DeCAFS.

As shown in Section E of the Supplementary Material of Romano et al. (2021),
the unpenalised version of the cost that we minimise, conditional on a specific set of
changepoints, can be written as

C(τ1:m) = min
∆,η̃1:n,η̃1=0

[
(y1:n −Xτ0:m∆− η̃1:n)TΣ−1

AR(y1:n −Xτ0:m∆− η̃1:n) + η̃T1:nΣ−1
RWη̃1:n

]
,

34

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

where η̃1:n is assumed to be a column vector. Thus the penalised cost (3.4) is Fn =
minm,τ1:m [C(τ1:m) +mβ]. In the remainder of this section we will call C(τ1:m) the cost,
and C(τ1:m) +mβ the penalised cost.

Whilst our cost is obtained by minimising over η2:n, the following result shows
that it is equal to the weighted residual sum of squares from fitting the linear model
(3.7).

Proposition 4 The cost for fitting a model with changepoints, τ1:m is

C(τ1:m) = min
∆

(y1:n −Xτ0:m∆)T (ΣAR + ΣRW)−1 (y1:n −Xτ0:m∆) (3.8)

Let C0 denote the cost if we fit a model with no changepoints. The following corollary,
which follows from standard arguments, gives the behaviour of the cost under a null
model of no changepoints. This includes a bound on the impact of mis-specifying the
covariance matrix, for example due to mis-estimating the parameters of the AR(1) or
random walk components of the model, or if our model for the residuals is incorrect.

Corollary 1 Assume that data is generated from model (3.7) with m = 0 but with
ζ1:n a mean-zero Gaussian vector with Var(ζ1:n) = Σ. Let α+

n be the largest eigenvalue
of (ΣAR + ΣRW)−1Σ. If Σ = ΣAR + ΣRW then C0 − C(τ1:d) ∼ χ2

d. Otherwise, for any x

Pr(C0 − C(τ1:d) > x) ≤ Pr(χ2
d > x/α+

n),

Furthermore, if we estimate the number of changepoints using the penalised cost (3.4)
with penalty β = Cα+

n log n for any C > 2, then the estimated number of changepoints,
m̂, satisfies Pr(m̂ = 0)→ 1 as n→∞.

To gain insight into the behaviour of the procedure in the presence of changepoints,
and how it differs from standard standard change-in-mean procedures, it is helpful to
consider the reduction in cost if we add a single changepoint.

Proposition 5 Given a fixed changepoint location τ1:

(i) The reduction in cost for adding a single changepoint at τ1 can be written as
C0 − C(τ1) = (vTy1:n)2, for some vector v defined as

v =
1√

cτ1 − c2
0,τ1
/c0

{
(ΣAR + ΣRW)−1uτ1 −

c0,τ1

c0

(ΣAR + ΣRW)−1u0

}
,

where u0 is a column vector of n ones, uτ1 is a column vector of τ1 zeroes followed
by n− τ0 ones, and

c0 = uT0 (ΣAR+ΣRW)−1u0, c0,τ1 = uT0 (ΣAR+ΣRW)−1uτ1 , cτ1 = uTτ1(ΣAR+ΣRW)−1uτ1 .

35

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

(ii) The vector v in (i) satisfies
∑n

i=1 vi = 0 and vT (ΣAR + ΣRW)v = 1.

(iii) For any vector w that satisfies
∑n

i=1wi = 0 and wT (ΣAR + ΣRW)w = 1,(
n∑

i=τ1+1

wi

)2

≤

(
n∑

i=τ1+1

vi

)2

.

The vector v in part (i) of this proposition defines a projection of the data that
is used to determine whether to add a changepoint at τ1. The properties in part (ii)
mean that this projection is invariant to shifts of the data, and that the distribution
of the reduction in cost if our model is correct and there are no changes will be χ2

1.
The statistic vTy1:n can be viewed as analogous to the cusum statistic (Hinkley, 1971)
that is often used for a standard change-in-mean problem, and in fact if we set φ = 0
and ση = 0 so as to remove the auto-regressive and random-walk aspects of the model,
|vTy1:n| is just the standard cusum statistic. The power of our method to detect a
change at τ1 will be governed by the distribution of this projection applied to the
data in the segments immediately before and after τ1. For a single changepoint where
the mean changes by δ this distribution is a non-central chi-squared with 1 degree of
freedom and non-centrality parameter δ2(

∑n
i=τ1+1 vi)

2. Thus part (iii) shows that v is
the best linear projection, in terms of maximising the non-centrality parameter, over
all projections that are invariant to shifts in the data and that are scaled so that the
null distribution is χ2

1.
To gain insight into how the auto-regressive and random-walk parts of the model

affect the information in the data about a change we have plotted different projections
v for different model scenarios in the top row of Figure 3.2. The top-left plot
shows the projections if we have φ = 0 for different values of the random walk
variance. The projection, naturally, places more weight to data near the putative
changepoint, and the weight decays essentially geometrically as we move away from
the putative changepoint. In the top-right plot we show the impact of increasing the
autocorrelation of the AR(1) process, with the absolute value of the weight given to
data points immediately before and after the putative change increasing with φ.

A key feature of the random walk model is that for any fixed σ2
η > 0 the amount

of information about a change will be bounded as we increase the segment lengths
either side of the change. This is shown in the bottom-left plot of Figure 3.2 where we
show the non-centrality parameter for detecting a change in the middle of the data as
we vary n. For comparison we also show the non-centrality parameter of a test based
on the cusum statistic (scaled so that it also has a χ2

1 distribution under the null of
no change). We can see that ignoring local fluctuations in the mean, if they exist and
come from a random walk model, by using the cusum statistic leads to a reduction
of power as segment lengths increase. For comparison in the bottom right we show

36

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

0 20 40 60 80 100

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

n

v

0 20 40 60 80 100

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

n

v

100 200 300 400 500

0
2

4
6

8
10

n

c

100 200 300 400 500

0
5

10
15

20
25

30

n

c

Figure 3.2: Top row: projections of data v for detecting a change in the middle of
n = 100 data-points. Random walk model (top-left) for varying σ2

η of 0.03 (black), 0.02
(red) and 0.01 (green); AR(1) plus random walk model (top-right) for σ2

η = 0.01 and
varying φ of 0.4 (black), 0.2 (red) and 0.1 (green). In both plots the blue line shows
the standard cusum projection. Bottom row: non-centrality parameter for a χ2

1 test of
a change using the optimal projection (solid line) and the cusum projection (dashed
line) for a change of size 1 in the middle of the data as we vary n. Out-fill asymptotics
(bottom-left) where (σ2

η, φ) is (0.0025,0) (black), (0.01,0) (red), (0.0025,0.5) (green)
and (0.01,0.5) (blue); In-fill asymptotics (bottom-right) where for n = 50 (σ2

η, φ) is
(0.0025,0) (black), (0.01,0) (red), (0.0025,0.5) (green) and (0.01,0.5) (blue).

37

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

an equivalent comparison where we consider an infill asymptotic regime, so that as
n increases we let the random walk variance decay at a rate proportion to 1/n and
we increase the lag-1 autocorrelation appropriately. In this case using the optimal
projection gives a non-centrality parameter that increases with n, whereas the cusum
statistic has power that can be shown to be bounded as we increase n.

We now turn to the property of our method at detecting multiple changes. Based
on the above discussion, we will consider in-fill asymptotics as n→∞.

(C1) Let y1, . . . , yn be generated as a finite sample from a Gaussian process on [0, 1];
that is yi = z(i/n) where, for t ∈ [0, 1] z(t) = µ(t) + ζ(t), µ(t) is a piecewise
constant with m0 changepoints at locations r1, . . . , rm0 , and ζ(t) is a mean zero
Gaussian process. For a given n define the true changepoint locations as τ 0

i =
bnr0

i c. The change in mean at each changepoint is fixed and non-zero.

(C2) Assume there exists strictly positive constants cη, cν and cφ, such that we
implement DeCAFS with σ2

η = cη/n and either (i) φ = 0 and σ2
ν = cν ; or

(ii) φ = exp{−cφ/n} and σ2
ν = cν(1− exp{−2cφ/n}).

(C3) There exists an α such that for any large enough n if Σ0
n is the covariance of

the noise in the data generating model (C1), and Σ
(n)
AR + Σ

(n)
RW is the covariance

assumed by DeCAFS in (C2) then the largest eigenvalue of (Σ
(n)
AR + Σ

(n)
RW)−1Σ0

n

is less than α.

The two regimes covered by condition C2 are due to the different limiting behaviour
of an AR(1) model under in-fill asymptotics, depending on whether the AR(1) noise
is independent, case (i), or there is autocorrelation, case (ii). The form of σ2

ν in each
case ensures that the AR(1) process has fixed marginal variance, cν , for all values of
n.

The key condition here is (C3) which governs how accurate the model assumed
by DeCAFS is to the true data generating procedure. Clearly if the model is correct
then (C3) holds with α = 1. The following proposition gives upper bound on α in
the the case where the covariance of the data generating model is that of a random
walk plus AR(1) process, but with different parameter values to those assumed by
DeCAFS in (C2), e.g. due to mis-estimation of these parameters.

Proposition 6 Assume the noise process ζ(t) of the data generating process (C1) is
equal to a random walk plus an AR(1) process.

(i) If Cov(ζ(t), ζ(s)) = c0
η min(t, s) for t 6= s and Var(ζ(t)) = c0

ηt+cν, and DeCAFS
is implemented as in (C2)(i), then (C3) holds with α = max{c0

ν/cν , c
0
η/cη}.

38

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

(ii) If Cov(ζ(t), ζ(s)) = c0
η min(t, s)+c0

ν exp{−c0
φ|t−s|} and DeCAFS is implemented

as in (C2)(ii), then for any ε > 0 (C3) holds with

α = max

{
c0
ν

cν

c0
φ

cφ
(1 + ε),

c0
ν

cν

(
1 +

cφ
c0
φ

)
(1 + ε),

c0
η

cη

}

The following result shows that we can consistently estimate the number of
changepoints and gives a bound on the error in the estimate of changepoint locations,
if we use DeCAFS under an assumption of a maximum number of changepoints (the
assumption of a maximum number changes is for technical convenience, though is
common in similar results, e.g. Yao, 1988).

Theorem 2 Assume data, y1:n, is generated as described in (C1), and let m̂ and τ̂1:m̂

be the estimated number and location of the changepoints from DeCAFS implemented
with parameters given by (C2), penalty β = Cα log n for some C > 2, and a maximum
number of changes mmax ≥ m0. Then as n→∞: if φ > 0

Pr

(
m̂ = m0, max

i=1,...,m0

∣∣τ̂i − τ 0
i

∣∣ = 0

)
→ 1;

and if φ = 0

Pr

(
m̂ = m0, max

i=1,...,m0

∣∣τ̂i − τ 0
i

∣∣ ≤ (log n)2

)
→ 1.

The most striking part of this result is the very different behaviour between
φ = 0 and φ > 0. In the latter case, asymptotically we detect the position of the
changepoints without error. This is because the positive autocorrelation in the noise
across the changepoint helps us detect it. In fact, as n→∞ the signal for a change at
t comes just from the lag-1 difference, yt+1− yt. The variance of (yt+1− yt) is O(1/n),
and its mean is 0 except at changepoints, where it takes a fixed non-zero value. A
simple rule based on detecting a change at t if and only if (yt+1 − yt)2 is above some
threshold, c1(log n)/n for some suitably large constant c1, would consistently detect
the changes. For the infill asymptotics we consider, empirically DeCAFS converges
to such an approach as n→∞.

The theorem also gives insight into the choice of penalty β. It is natural to choose
this to be the smallest value that ensures consistency, as larger values will mean loss of
power for detecting changes. Assuming the DeCAFS model is correct and we have the
true hyper-parameters this suggests using β = 2 log n, the infimum of the penalties
that are valid according to the theorem. This is the value that we use within our
simulation study – though slightly inflating the penalty may be beneficial to account
for error in the estimated hyper-parameters or if we want to account for substantial
model error.

39

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

●

●●●

●

●●

●●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●
●
●

●●
●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●●
●●

●●
●
●

●●

●

●

●
●

●

●●

●

●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●●

●

●●●

●

●●

●

●●●

●

●

●

●

●
●

●

●
●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●
●●●

●

●

●

●●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●
●

●
●
●

●

●
●

●●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●●●

●

●

●

●

●●

●

●
●

●

●

●

●●
●
●

●

●

●
●
●

●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●
●
●
●

●
●●

●

●

●

●●●

●

●

●

●

●●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●●
●
●

●

●

●
●

●

●

●●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●
●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●
●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●

●●

●

●

●●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●

●●
●

●
●●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●

●●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●
●

●

●●

●

●●

●

●●

●

●●

●

●

●

●
●

●●

●
●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●

●●

●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●
●●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●
●

●●●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●
●
●●

●

●

●●●

●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●●
●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●●

●

●

●
●
●
●

●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●●

●

●●

●

●●

●

●

●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●
●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●
●

●

●●●●

●

●

●●

●
●

●
●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●●

●

●●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●●

●●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●
●
●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●
●
●

●●
●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●
●

●

●●
●

●

●

●●

●
●
●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●●

●
●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●●●●●●
●●●●●
●●
●●
●●●●
●●●●●●●●●●
●●●●●●
●
●●
●●●
●●●
●●●●●
●●●
●●●●●
●
●●
●●●●●●
●●●
●
●●●●●●●●●
●●●●●
●●●●
●●
●
●
●●●●
●
●
●●●●●●●●●●●
●●●
●●●●
●●●
●●
●●●●●●●
●●●●●●●●●
●●
●●●●●●●
●●
●●●●●
●
●●●●
●●
●●●●●●●●●
●●●●
●●●●●●●●●
●
●
●●●●
●
●●●●
●●●●●●●
●
●●●●
●●●●
●
●●
●●
●
●●
●
●●●
●
●●●●
●●●●
●●●
●●●●●●●●●●
●●●●●●●

●●
●
●●●●
●●
●
●●●●●●●●
●●●●●
●
●●●●●
●●●●●
●●
●●●
●●
●
●●●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●●
●●
●●
●
●●●●●●●●●●●
●
●●
●●●●●●
●●●
●
●●●
●●●●
●●
●●●●
●●●●●
●●●●●●●●
●●
●●●●●●●●●●●●●
●
●
●●●
●●●●●●●●●
●●
●
●
●●
●●●●●●
●
●●
●●●
●●
●
●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●
●●●●●
●●

●●●
●
●●●●●●●
●●
●
●●
●●●●●
●
●
●●●●●●
●
●●●●
●●●●
●●●●●
●●●●

●●
●●●●●●●●
●●
●
●●
●
●
●●
●●●●●
●●●
●●●●●
●
●●●
●●●
●●
●●●●●
●●●
●●●●
●●●
●●●
●●
●
●●●●●●●●
●●●●●●●●●
●●
●●●
●●●●●●●●●●
●
●●●●●●●
●●●●
●
●
●●●●●●
●●●
●●●●●●●●●●●●●
●●●
●
●●●
●●●
●●●
●●●●
●
●
●●●
●●
●
●●●●●●●●●●●●●

●
●●●●●●●●
●●●●●
●●●
●●●
●
●
●
●
●●
●●●●
●●●●●

●●●●●●●
●●
●
●●●
●
●●●●●
●●●●
●●●●●●●●
●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●
●●●●●
●●●
●●●
●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●
●●
●
●●●●●●●
●●●●
●●
●●●●●
●
●
●●
●
●●
●
●●●●●●●
●
●●●●
●●●●●
●●●
●
●●
●●
●●●●●●
●
●●
●
●
●●
●
●
●
●●●●
●●
●●●
●●
●●
●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●
●
●
●●
●●
●
●●
●●●
●●
●●
●●
●●
●
●●●●●●
●●
●
●●●●●●
●
●

●
●●●
●●
●
●●●
●●●●●●●●
●●●
●●●●●
●●●●●●●●●
●
●●●●●●
●●●●●●●
●●●
●●●
●●
●●
●
●●●●●●
●●●●●

●
●●
●●●
●●●●●
●●
●●●
●●
●●●
●●●●●
●●●●
●●
●●●●●●●●●
●
●●●●●
●●●
●
●●
●
●●
●●
●●
●
●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●●
●●●
●●
●
●●●
●●
●●
●●●●●●●●●●●●●●●●
●●●●●
●●●
●●●
●●●
●●●●●●●●●
●●●
●●
●
●●
●●●●●●●●●●●●
●●●
●●●●
●●●●●●
●●●●●●●●
●
●●●●●●
●
●●
●●●●●
●●
●●●
●
●
●
●
●●●●●
●●
●●●●
●●●●●●
●●●●
●●●●●●
●●●
●●●
●●●●●
●●
●●●●
●●●●
●
●●●●
●●●●●●●●●
●
●●
●
●●●
●
●●●
●
●
●●●●●●
●●●
●
●●●
●●●
●
●●
●●●●
●●●●
●●
●●●●●●
●
●●●
●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●
●
●●
●
●
●●●
●●●●
●
●

●
●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●
●●●●●●

●
●
●
●●●●
●●●●●●●
●
●●
●●●●●
●
●
●
●●●●●
●●●●●
●●●
●●●●●●
●●●●●●●
●●
●●●●●●●●●●●
●●●●●●●●
●●●●
●
●●
●●●●●●●●●●●●●●
●
●
●●●●
●●
●●
●●●
●●●●●●●●●
●●●
●●●
●●●●●
●●●●●●●●
●●
●
●
●
●●●
●●●●
●●
●●●●●
●●●
●●
●
●
●
●●●●
●●
●
●●●
●●●

●
●●●●●●
●
●●●●●●
●
●●●●●●
●
●●●●
●●●
●●
●●●●●●●●●
●●●
●
●
●
●
●●●●
●●
●
●●●●●●●●●
●●
●●●
●
●●●●●
●●

●
●●●●
●●●●
●●●●
●●●●●●●●●●●●●
●●
●●●●●
●
●
●●
●
●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●
●●●●
●
●●
●
●●●
●
●●●
●●
●
●●●●
●●
●
●●●●●●
●●
●
●
●●●●
●●●●●
●
●●●
●●
●●●●●●
●●●●●●
●●●
●●●●●●
●

●
●
●●●
●
●●●●●●●●
●
●●●●●●●●
●●
●
●
●●
●●●
●●●●●
●●●●●●●●●
●●●
●●
●●●●●●●
●●●
●●●●●
●●●●●●●●●●
●●●
●●
●●●●●
●●●●●●
●●●
●●
●
●●●
●●●
●●●●●●
●●

●
●●●●●●●●●
●
●
●
●●
●●●
●●
●●●●●
●●●●●
●
●●●●●●●
●
●
●●
●●
●●●●
●●●
●●
●
●
●●
●●●●●●
●●●●●●●●
●●●●●●●
●●

●
●
●●●●
●●
●
●●●●
●●●
●●
●●●
●
●●
●●
●●
●
●
●
●
●

●●●●●●●●●
●●
●●●
●
●●●●●●●
●
●●●●●●●●
●●●
●●
●●●●●●●●●●
●
●
●●●●●
●●●●
●●
●●●●●●●●●●
●●●●●●
●●●●
●●●●●●●●
●●●●●
●●
●●
●●
●●●
●●
●
●●●●●●
●●
●●●●
●●●●●●
●●●●●●
●●●●●●●
●●

●●●●
●●●
●
●●
●●●●
●
●●
●
●●●●●●
●●●●●●●
●●●●●●
●
●
●●●

●
●●
●●
●●●●●●
●●●
●●●●●●
●●●●●
●
●
●●●
●●●
●
●●●●●●●●●
●●
●●
●●
●●
●
●
●●●●●●●●
●●●●●●●
●
●●●●●●
●●●●●●
●●●●●
●●●●
●
●●
●●●●●
●●●●●●
●●●●●●●
●
●
●●
●●
●●●●
●
●●●●
●●
●
●●●
●●
●●●●●●
●●●●●
●●●●●●●
●●●
●
●
●●●●●●
●
●●
●●●
●●●●

●●●
●●
●●●●●●●
●
●
●●●●
●●●●●
●●●
●●
●●
●
●
●●●

●
●
●●●●●
●●●●●
●
●
●●
●
●●●●●●●
●●
●●●●●
●●●●●●●●●●●
●●
●
●●●
●●
●●
●
●●●●●
●
●●
●●●●●
●●●
●

●●●
●●●
●
●
●●●
●●
●●●●●●●
●
●
●
●●●●●●●●
●●
●●●●●●●●●●
●●●
●
●●
●●
●●●●
●●
●●●
●●
●●●
●●●●●
●
●
●●●●●●
●●●
●●
●●●●
●
●●●●●●●●
●●
●●
●●●
●●
●●
●●●●●
●
●●●●●●
●
●●●●●●●
●●
●●●●●
●●●●●●
●●●●
●●●●
●●●●
●
●●●●●
●●●●●●●●●●●●●●
●
●●
●●●●●

●●●●
●
●
●
●
●●●●●●●
●
●●●●
●
●
●●
●
●
●●●●●●●●●
●
●●●●●
●●●●●●
●
●●●
●
●●●●●●●●●●●
●
●●
●●●
●●
●●
●●●●●●●●
●●
●●●●●
●●●●●●●●●●
●●
●
●●●●●●●
●●●
●●●
●●●

●
●●●●
●●
●
●●
●●●●●
●
●●●●
●●
●●●
●●●●
●
●●●●
●●
●●●●●
●●
●●●
●●
●●●●

●●●
●
●●●●●●
●●●●●●●●●●●●
●●
●●●●
●
●●●
●●●
●
●●●
●
●●●
●●
●
●●●
●●●●●
●●●
●●
●●●●●●●●●
●●●●
●
●●●●●●●●

●●
●●●●●●
●●

●●●●●●●●
●●
●●●
●●●●
●●●
●●●●
●
●
●●
●
●●●●●●
●●●●●●
●●●●
●
●●●●●●●●
●
●●
●●
●●
●
●
●●●
●●●●●
●●●●●●●●●●●
●●●●●●
●
●●●
●
●●●●
●●●●
●●●
●●●
●●●●
●●
●●
●
●
●●
●●●●●●●
●●●
●●
●
●●●●
●●●●●●●
●●●●●●●●●●●
●
●
●●●●●●●●●
●
●●●
●
●●●
●
●●●
●●●
●●●
●●
●●
●●●●●
●●
●●●●●
●●●●●
●
●●●●
●●●
●●
●
●●
●●
●
●●●●●●
●●●●●●
●
●●●●●
●●

●
●●●
●●●●●●●●●●●●
●●●●
●
●●
●●●●
●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●
●●●
●●●●●●●
●
●●●●
●
●●
●●●●
●●●
●●
●●●●●●●●●●●
●●●●●
●●●●●●●●
●
●
●●●
●●●●●
●
●
●
●●
●●●●●●
●
●●●●●
●●●●●
●●●
●
●
●●
●
●●●●●
●●●
●●

●●●
●
●●●●●●●●
●●
●●
●
●●
●
●●●●
●
●●
●●
●●
●●
●
●●
●●
●●●●●●●●●●●●●●
●●●●●●
●●●
●●●
●
●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●●

●●●●
●●
●●●●●●●●●●●●●
●●●●
●●●
●●●●●●●●
●●●●●●
●●●●
●●
●
●
●●●●
●●●
●●●●
●●●●●
●
●
●●●●●●
●
●●●●●●
●●
●
●●●●●●●
●●●
●●●●●●
●●●●●●
●
●●
●●●●●●
●●
●●●●●●●
●●●●●●
●●
●●●
●●●●●●●
●
●●●
●
●●●●●●●●●●
●●
●
●●●●●●●●
●
●
●●●
●●●●
●●
●●●●
●●●●
●
●●
●●●●●●
●●
●●●
●●●●●●●●●●
●●●
●●●●●●●●●
●●●●
●●●●
●●●●●●●
●●●●●
●●
●●●●●●●

●●●●●
●●●●
●●
●●●●
●●●
●●●●●
●
●●
●●●●
●
●●●
●
●●●●
●
●●
●
●●●
●●
●●●●●
●●
●●
●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●●
●●●
●
●●●
●●●●
●
●
●●
●●●●
●●●●●●●
●●
●
●●
●●●●●●●
●●●●
●●
●
●●
●●●●●
●
●●●●●
●●
●●●
●
●●●●
●●●●●
●●
●
●●
●●
●●
●
●●●●●●
●●●●●
●●
●
●
●●
●●
●●●●
●●●●●
●
●
●●
●●●
●●
●●●
●●●
●●●
●
●●●●●●●
●●●●
●
●●●
●●
●●●
●●●
●●●●
●●●●●
●
●
●
●
●
●●
●●
●
●●
●
●
●●●●●

●
●●●●
●●
●●●●●●
●●●
●
●
●●●●●●●●
●●●
●●●
●●●●
●●
●●●●●
●●●
●●
●●
●
●
●
●●
●●●
●●●●●●●●
●●●●●●●●●
●●●

●
●●
●●
●●●●●●●●
●●
●●
●●●
●●●●
●●●●
●
●●●●●●●●●●●●
●●
●●●●●
●●●●
●●
●●●●
●
●●
●●●●●
●
●●
●●●●
●●●●
●●
●●●●●●●●
●
●●●●●●●●
●●●●
●●●●●●●●●
●
●●●●●
●●●●
●
●
●
●●
●●●●
●●●●●●
●●●●●●
●
●
●
●
●●●
●●
●●
●●●
●●●

●●●●●●●●●
●●
●●●
●●●●●
●
●●●●●
●●●●●●●
●●●●●●●●●
●●●
●●●●●●●●
●●●●
●●
●●●●●●●●●
●●●●●●●
●●
●●
●●
●●●●●●●
●
●
●●●●●●●●
●●●●●●●
●
●●
●●
●●●●●●●
●●
●
●●●●●
●●●●●●●●●●●
●●●
●
●
●●●●●●
●●
●
●
●●●
●●
●
●●●●●●●
●●●●●
●●●
●●●●●●●●
●
●
●●●
●
●
●●
●
●
●
●●●
●●●
●
●
●●
●●
●●●●●●●●●●●●●●
●●●●
●●●●
●●●●●●●
●●●●●●●
●●●●
●●●●●●●

●●
●
●●●●●●
●●
●
●●
●
●●●●●

●●●
●●
●●●●
●●●●
●
●
●●
●●
●●●
●●●
●
●●●●
●●●
●●●
●●●●●●●●●●●●
●●●●●
●●●
●●●●●●
●
●●●●●●
●●
●●●
●●
●●
●●
●●●●●
●●
●●●●●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●
●●●●
●●●●●●●●
●●●●
●
●●●●●
●●●●
●●●
●
●●●
●●
●
●●
●●●●●●●●●
●●
●●●
●●●●●●●●●●●
●●●●
●●●●●
●●●●●●
●●●●●
●

●●●●
●●
●●
●●●●●
●●●●●●●●●●●●●
●
●●
●●●●●●●
●
●●●
●
●●●
●
●
●●●●●●●●●●●●
●
●●●●●●
●●●●
●
●●●
●●●●
●●●●●●●●●●●●
●
●
●
●●●
●●●●●
●
●●●
●●
●●●●●●
●●●●●
●
●
●●
●●
●
●●●●●
●
●
●●
●●●

●●●●●
●
●●●●●●
●
●●●●●
●●
●●
●●
●●●●●●●
●●●
●
●●●●●
●●
●
●●●●●
●●●●●
●●●●●●●●●
●●●●
●
●
●●●●
●●●●
●●
●●
●●●●●●●●●
●●●●●●
●
●●
●●●●●●
●●●
●●●
●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●
●

●●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●
●
●

●
●

●

●●

●

●●

●
●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●
●

●
●

●●
●
●
●

●

●●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●
●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●●●
●

●

●

●
●

●●
●

●

●
●

●●●

●

●
●

●
●

●●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●
●

●
●
●●●

●

●●

●

●

●
●

●
●
●

●

●
●

●●

●

●●
●
●
●●

●
●
●

●●

●

●
●

●●
●

●

●
●
●
●
●

●

●

●

●●
●
●

●

●●

●

●

●

●
●

●

●

●
●
●
●

●

●●●

●

●

●

●

●

●

●●
●
●
●
●
●●
●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●
●

●
●

●

●
●●
●

●

●

●

●
●

●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●
●

●●
●

●●●
●
●

●●

●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●●●
●
●
●

●
●●
●
●

●

●●
●

●●

●

●
●

●
●

●

●

●
●
●●

●●

●●

●●
●

●●●●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●
●

●

●●
●
●●●

●

●

●

●

●

●●

●

●

●●
●
●
●

●

●

●
●

●●●

●

●

●
●

●

●●

●

●
●

●
●
●●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●
●
●●●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●●

●

●●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●
●
●

●

●
●

●

●
●●
●●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●
●●

●
●

●

●
●

●●●

●●

●
●
●●

●●

●●●

●

●●

●

●

●
●

●●●

●
●

●
●●

●

●

●
●

●
●
●

●●●

●

●●

●

●

●●

●●
●
●
●

●

●

●

●

●●

●

●

●●
●
●
●

●
●

●

●

●

●●●

●●●●

●

●

●●

●
●
●
●

●
●●
●
●●

●

●

●

●
●●
●●
●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●
●●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●●
●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●
●

●●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●

●●

●
●
●●
●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●
●
●
●

●●
●

●
●

●

●
●
●

●

●

●●

●

●
●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●●
●
●
●

●

●

●
●
●

●
●
●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●
●●

●●

●

●
●
●
●

●

●

●●

●●

●
●
●

●

●
●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●
●●

●

●●

●●
●

●

●

●

●

●
●

●

●
●

●●
●
●

●
●

●●●

●
●

●●
●

●
●
●

●
●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●●

●

●●●
●●

●●
●

●

●
●

●

●

●●
●

●

●

●●●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●
●

●
●●

●●

●

●●●●
●●
●

●
●
●●

●●
●
●
●
●
●

●

●

●

●

●

●
●

●●

●
●

●
●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●
●

●
●
●
●
●
●

●
●

●

●
●●

●●

●

●
●

●●

●

●●
●

●

●

●
●
●●●

●
●

●

●

●●

●●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●
●

●
●

●●

●
●

●

●
●

●

●
●
●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●●
●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●
●

●

●
●●●●
●●

●●

●
●
●

●

●
●

●

●

●

●

●

●
●●●●

●
●
●●

●

●

●●

●●
●

●●

●

●
●
●●

●

●
●●

●

●

●
●

●

●●
●

●

●

●
●

●●●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●●

●

●

●

●

●
●
●●●●●

●
●●
●
●

●●

●

●●●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●●

●
●

●
●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●●
●●

●
●
●●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●
●●●

●

●●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●●

●●●
●

●

●

●

●

●
●●

●●

●

●

●

●
●●

●●

●

●
●

●●

●
●

●

●

●

●

●●

●

●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●
●
●●

●●

●
●

●

●

●●

●

●

●

●

●

●
●●
●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●
●
●●
●●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●●
●

●●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●●
●

●

●●

●●

●●
●

●●

●
●
●

●

●

●●

●●

●
●

●
●
●●

●
●●
●

●

●

●
●
●

●

●
●
●

●

●

●

●●

●

●
●

●●

●

●
●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●
●

●

●

●
●

●
●
●
●

●

●

●

●
●
●

●

●

●
●
●●

●
●
●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●●
●●

●
●

●
●

●

●●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●●

●

●
●
●

●

●
●

●●●

●

●

●

●

●●
●
●●

●●

●
●

●

●●

●
●

●

●
●

●

●●
●

●

●

●●

●

●●●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●
●●

●

●
●
●

●

●

●
●

●
●

●

●●

●
●

●
●●
●●

●
●

●

●

●

●
●●

●

●
●●
●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●
●●
●
●

●

●

●

●●
●
●
●

●
●●

●

●

●
●

●
●
●

●
●

●

●
●

●

●●

●
●●
●

●●

●

●

●
●

●

●●

●

●

●
●●

●
●
●●●

●

●

●

●●●
●
●
●

●

●
●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●●

●

●
●
●

●

●

●●

●●●
●

●

●●
●

●

●●

●●

●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●
●●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●
●

●●

●
●
●

●●

●

●

●

●

●●
●

●●●

●
●

●

●

●

●●

●

●
●●●

●

●

●

●
●
●●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●
●●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●
●

●
●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●●

●
●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●●
●

●
●●

●

●
●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●●

●
●

●●●

●

●

●

●
●

●●
●

●

●

●

●
●
●

●●●
●

●●

●●●

●
●

●

●

●
●

●

●

●

●●

●●●●
●

●

●

●
●

●

●

●

●●●

●

●

●

●●

●●

●

●●

●

●

●

●

●●

●
●●●●

●
●

●

●
●
●
●
●
●
●

●●
●
●

●
●

●●●

●
●

●

●

●

●

●

●●

●
●

●
●●
●

●

●

●●●

●
●
●

●

●●

●

●
●

●

●

●●
●

●
●

●●

●●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●
●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●●

●●●

●

●

●

●

●●
●
●

●●
●●

●
●

●
●

●
●

●

●●●

●

●

●
●

●

●

●

●
●
●

●

●
●●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●●
●

●

●
●

●●

●

●

●

●
●
●

●
●●●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●
●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●
●
●

●
●

●●

●●

●

●●●
●

●
●

●

●
●

●
●

●

●●●●

●●●

●●

●

●

●

●

●
●
●
●●

●

●
●●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●
●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●
●

●●

●
●●
●
●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●●

●●

●
●

●
●●
●
●
●

●

●

●
●
●

●

●
●●
●

●
●

●

●●
●

●
●

●

●

●

●

●●
●

●

●

●
●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●●●
●

●

●

●

●
●
●
●

●●

●
●
●

●●
●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●
●
●

●

●

●

●
●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●●●●●

●

●

●●●

●
●

●

●

●●

●

●

●

●

●
●
●●

●
●

●
●●

●

●

●

●
●
●

●●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●●

●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●●
●
●

●

●
●●

●
●

●

●

●
●●

●

●

●
●

●
●●

●

●

●●

●

●●

●

●

●●
●
●

●
●●●

●

●
●●
●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●
●

●

●●●●

●●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●
●●

●
●

●

●●
●

●

●

●

●

●

●●

●
●
●
●

●
●

●●

●
●

●

●

●
●

●●

●●

●
●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●●●●●●

●

●●
●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●
●●
●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●●
●

●

●
●

●
●

●

●
●

●●

●

●
●●

●

●

●
●
●

●

●
●

●

●
●
●

●
●

●

●

●●
●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●●●
●
●

●
●●

●

●●●

●●

●

●●

●
●

●
●●

●

●
●

●

●

●
●
●

●●
●

●
●

●
●
●●

●

●

●

●

●
●●●
●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●●
●

●

●●

●●
●●

●
●

●●

●

●

●

●

●●

●

●

●
●

●●

●●●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●
●●
●
●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●
●●●

●●●●

●

●

●

●

●
●
●●

●

●
●

●
●
●

●
●●

●
●

●
●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●
●●

●●

●

●
●●

●
●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●●
●

●

●

●

●●
●●
●

●

●

●

●

●
●

●●
●●

●
●
●
●

●
●

●
●

●

●●
●●

●

●

●

●
●
●●

●

●
●●●
●

●

●
●

●

●
●

●
●●

●

●

●●
●

●

●

●

●●
●●

●

●●

●
●
●

●

●

●●

●
●
●
●
●

●

●

●
●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●
●
●
●

●
●
●
●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●●
●●

●

●●

●

●

●●
●

●●

●

●
●

●

●
●

●

●

●

●
●
●

●●●

●

●

●

●
●●

●
●

●
●

●

●

●●
●

●
●

●
●

●

●●

●

●●

●
●●

●●

●

●

●

●

●

●
●
●

●

●

●
●●

●●

●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●
●●●

●

●
●

●
●
●

●

●
●
●

●
●

●

●
●

●●
●

●
●●●

●

●

●
●
●

●

●
●

●

●●
●

●

●

●●

●

●●●

●
●

●

●

●●

●
●
●

●

●●●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●
●

●
●●

●
●

●

●

●

●
●

●●
●
●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●
●
●
●●

●

●
●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●●

●●

●

●
●

●

●●
●
●

●

●

●●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●●

●●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●●●

●●●●

●

●●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●●
●
●

●

●
●
●
●
●

●●

●
●

●

●

●●●
●

●

●
●●

●
●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●●
●

●

●●●

●

●

●
●

●

●●

●

●
●

●●

●
●
●

●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●

●●

●
●●

●
●
●

●
●

●

●

●●●

●

●●●

●●●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●●●
●●

●
●●

●

●

●

●●●
●
●

●
●

●
●●

●

●
●
●
●●

●

●
●●

●

●

●

●
●

●
●
●
●
●
●

●

●

●
●
●

●

●

●
●
●
●

●●●

●●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●

●●●

●

●

●
●●

●●
●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●●●
●●●
●●

●

●

●
●
●

●

●
●

●●

●
●
●
●

●●

●

●

●

●

●

●

●
●
●
●●

●
●
●

●

●

●

●
●

●

●

●

●
●

●●●

●
●
●
●

●

●
●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●●

●

●●

●

●

●
●●●

●●
●
●

●●

●

●

●

●●

●

●
●
●●●●●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●●

●

●●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●●●

●

●

●

●
●
●

●●

●
●
●

●

●

●●
●

●●●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●●

●
●●
●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●●

●

●●

●

●
●●

●●●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●
●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●●

●

●

●
●

●
●

●
●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●●

●
●
●●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●
●

●

●

●●●

●
●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●

●
●

●
●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●●
●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●●

●

●
●●

●

●
●

●

●●

●●

●

●●

●

●

●
●

●
●

●
●

●●

●●

●
●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●●
●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●
●
●●

●●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●●

●
●
●

●
●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●
●●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●
●

●●●

●●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●●

●●●

●
●

●
●

●●

●

●

●●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●
●

●
●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●●

●

●

●●●

●●

●

●

●
●

●

●

●●

●●

●

●●

●

●

●●
●●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●
●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●●

●
●

●

●●●
●●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●
●

●●

●

●

●
●●
●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●
●●

●
●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●
●●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●
●

●
●●
●

●
●

●

●
●●

●●●

●

●

●
●
●

●

●

●
●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●
●
●
●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●

●●

●
●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●
●

●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●●
●
●
●

●●
●

●

●
●

●
●
●
●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●●

●

●
●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●
●

●

●
●●

●●

●
●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●
●
●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●●

●
●

●

●

●

●

●
●

●

●

●
●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●●

●

●
●

●
●
●

●

●●

●●
●●

●
●

●

●

●

●●

●
●

●

●
●

●
●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●
●

●

●
●
●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●
●

●

●

●

●

●

●

●

●
●
●
●
●

●

●●

●
●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●
●

●

●
●●

●●

●

●

●●

●

●

●

●
●

●●

●

●

●
●●

●
●
●

●
●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●
●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●●●
●
●

●

●

●

●

●

●

●●

●

●
●
●●

●
●

●

●

●

●●

●

●●

●

●
●
●

●

●
●

●●●

●
●●
●

●
●

●

●

●●
●

●

●●

●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●●

●

●●

●
●

●

●

●

●●

●
●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●●

●●
●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●●

●
●

●
●

●
●●

●●

●

●●

●

●

●
●●

●

●

●
●
●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●
●

●
●

●
●

●
●
●

●●
●

●

●●

●
●

●

●

●●
●

●

●

●●

●
●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●●●●

●●
●

●

●

●●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●●●

●●
●

●

●

●

●

●●

●●

●

●

●●

●●
●

●

●
●●

●
●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●
●
●

●

●

●●

●

●●

●●●
●●

●
●
●

●●
●

●
●

●
●●●

●
●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●

●●
●

●●
●

●●
●

●●●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●●
●

●

●

●

●

●
●
●●

●
●
●

●

●

●

●●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●●
●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●●

●●

●●

●

●

●

●
●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●●

●
●●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●
●
●●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●●
●●
●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●●

●

●
●
●

●●

●
●●

●

●●●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●●
●●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●
●
●
●

●

●

●

●●

●

●

●
●
●
●

●
●

●
●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●●

●●
●

●

●●●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●●
●

●
●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●
●
●

●●
●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●
●

●

●

●
●

●●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●●

●●

●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●
●●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●●●

●
●●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●●
●
●

●

●
●
●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●
●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●●●

●
●

●●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●●

●

●
●

●

●
●
●

●

●
●

●

●●●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●
●

●

●

●●

●

●

●
●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●●

●

●

●
●

●

●
●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●
●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●
●
●

●
●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●

●
●

●
●

●

●
●●●
●●

●

●

●●
●
●

●

●
●

●
●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●●●

●
●

●
●

●

●●●●●●
●

●

●
●
●
●

●

●

●

●
●

●

●

●●●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●
●●

●

●●

●●
●

●●

●

●

●

●
●●

●
●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●●

●

●
●
●

●

●

●
●

●
●
●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●●●
●

●
●

●

●

●

●
●

●

●

●
●●
●

●
●

●●

●

●

●
●

●

●

●●
●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●●

●●

●
●

●

●

●

●

●
●

●●
●

●
●
●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●
●●
●
●

●

●
●
●●

●●

●

●

●

●

●
●●●

●
●
●

●
●

●

●

●
●
●

●

●●

●●
●

●

●

●

●●

●

●●

●
●

●

●●

●

●
●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●
●

●

●
●●
●
●

●●

●

●
●

●

●
●

●

●●
●●

●

●●

●●
●●

●
●
●●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

up updown

none rand1

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

−20

−10

0

10

−10

0

10

20

−10

−5

0

5

10

0

50

100

150

200

t

S
ig

na
l

Figure 3.3: Four different change scenarios. Top-left, no change present, top-right,
change pattern with 19 different changes, bottom-left up changes only, bottom-right,
up-down changes of the same magnitude. In this particular example data were
generated from an AR model with φ = 0.7, σν = 2.

3.6 Simulation Study

3.6.1 Comparison with Changepoint Methods

We now assess the performances of our algorithm in a simulation study on four
different change scenarios, illustrated in Figure 3.3. In all cases we run DeCAFS
with β = 2 log n, and estimate the parameters φ, ση, σν as described in Section 3.4.

Simulations were performed over a range of evenly-spaced values of φ, ση, σν .
There are no current algorithms that directly model local fluctuations in the mean, so
we compare with two approaches the assume a constant mean between changes: FPOP
(Maidstone et al., 2017) which also assumes IID noise, and AR1Seg (Chakar et al.,
2017) that models the noise as an AR(1) process. We compare default implementation
of each method, which involves robust estimates of the assumed model parameters.
We also compare an implementation of FPOP with an inflated penalty (Bardwell
et al., 2019) to account for the autocorrelated noise. To see the impact of possible
misestimation of the model parameters, we also implement DeCAFS and AR1Seg
using the true parameters when this is possible.

We focus on the accuracy of these methods at detecting the changepoints. We
deem a predict change as correct if it is within ±2 observations of a true changepoint.
As a measure of accuracy we use the F1 score, which is defined as the harmonic mean

40

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

of the precision (the proportion of detected changes which are correct) and the recall
(the proportion of true changes that are detected). The F1 score ranges from 0 to
1, where 1 corresponds to a perfect segmentation. Separate figures for precision and
recall can be found in Section A.5. Results reported are based over 100 replications
of each simulation experiment, with each simulated data having n = 5000.

In Figure 3.4A we report performances of the various algorithms as we vary φ for
fixed values of σν = 2 and ση = 0. In Figure 3.4B, we additionally fix φ = 0.85, but
we vary the size of changes. In these cases there is no random walk component and
the model assumed by AR1Seg is correct.

There are a number of conclusions to draw from these results. First we see that
the impact of estimating the parameters on the performance of DeCAFS and AR1Seg
is small. Second, we see that using a method which ignores autocorrelation but just
inflates the penalty for a change does surprisingly well unless the autocorrelation is
large, φ > 0.5, this is inline with results on the robustness of using a square error
cost for detecting changes in mean (Lavielle and Moulines, 2000). For high values of
φ, DeCAFS is the most accurate algorithm. The one exception are the simulations
where there are no changes: the default penalty choice for AR1Seg is such that it
rarely introduces a false positive.

In Figure 3.4C we explore the effect of local fluctuations in the mean by varying
ση. We see a quick drop off in performance for all methods as ση increases, consistent
with the fact that it is harder to detect abrupt changes when the local fluctuations
of the mean are greater. Across all experiments, DeCAFS was the most accurate
algorithm.

One word of caution when fitting the full DeCAFS model, is that when ση is
large it can be difficult to estimate the parameters, as a model with a very high
random walk variance produces data similar to that of a model with constant mean
but high autocorrelation. Whilst the impact on detecting changes of any errors when
estimating the parameters is small, it can lead to larger errors in the estimate of the
signal, µt: as different parameter estimates mean that the fluctuations in the data are
viewed as either fluctuations in the noise process or in the signal. An example of this
is shown in Section A.4.1.

3.6.2 Robustness to Model Mis-specification

We now investigate the performance of DeCAFS when its model is incorrect. First we
follow Chakar et al. (2017) and simulate data with a constant mean between changes
but with the noise process being AR(2), i.e. εt = φ1εt−1 + φ2εt−2 + νt. In Figure
3.5 we report F1 Scores for DeCAFS and AR1Seg as we vary range φ2. Obviously
as |φ2| increases, all algorithms perform worse, but the segmentations returned from
DeCAFS are the more reliable as we increase the level of model error.

41

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

up updown

none rand1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

φ

F
1S

co
re

A

up updown

none rand1

0 5 10 15 200 5 10 15 20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Jump Size
F

1S
co

re

B

up updown

none rand1

0 1 2 3 0 1 2 3

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

ση

F
1S

co
re

C

Algorithm

AR1Seg

AR1Seg est

DeCAFS

DeCAFS est

fpop

fpop Inf

Figure 3.4: F1 Scores on the 4 different scenarios. In A a pure AR(1) over a range
of values of φ, for fixed values of σν = 2, ση = 0 and a change of magnitude 10.
In B a pure AR(1) process with fixed φ = 0.85 and changes in the signal of various
magnitudes. In C the full model with φ = 0.85 for a range of values of ση. The grey
line represent the cross-section between parameters values in A, B and C. AR1Seg est.
and DeCAFS est. refer to the segmentation of the relative algorithms with estimated
parameters. Note, in B the results from DeCAFS and DeCAFS est overlap so only
one line is visible. Other algorithms use the true parameter values.

42

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

up updown

none rand1

−1.00 −0.75 −0.50 −0.25 0.00 −1.00 −0.75 −0.50 −0.25 0.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

φ2

F
1S

co
re Algorithm

AR1Seg est

DeCAFS est

Figure 3.5: F1 score on different scenarios with AR(2) noise as we vary φ2. Data
simulated fixing σν = 2, ση = 0 and φ1 = 0.3 over a change of size 20.

Second, we consider local fluctuations in the mean that are generated by a
sinusoidal process rather than the random walk model, see Figure 3.6B. In Figure
3.6A we compare performance of DeCAFS and AR1Seg as we vary the frequency of
the sinusoidal process. Again we see that DeCAFS gives more reliable segmentations
in these cases. In the three change scenarios performance decrease as we increase the
frequency of the process. In these cases it becomes significantly harder to detect any
changepoints, however DeCAFS still has higher scores than AR1Seg since it is more
robust and returns fewer false positives. Additional simulation results, showing the
robustness of DeCAFS to the mean fluctuations being from an Ornstein-Uhlenbeck
process or to the noise being AR(1) within a segment but independent across segments
are shown in Sections F and G in the Supplementary Material.

3.6.3 Comparison to LAVA

The LAVA method of Chernozhukov et al. (2017) can be applied to model a signal
as the sum of a piecewise constant function and a locally fluctuating function: and is
thus a natural alternative to DeCAFS. If we let X denote the n×n matrix whose ith
column has i− 1 zeroes followed by n− i+ 1 ones then LAVA can estimate the mean
µ1:n as X(f1:n + g1:n) where the vectors f and g minimise

(y −X(f1:n + g1:n))T (y −X(f1:n + g1:n)) + λ1||f1:n||1 + λ2||g1:n||22,

with || · ||1 and || · ||2 denoting, respectively, the L1 and L2 norms.

43

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

Algorithm AR1Seg est DeCAFS est

up updown

none rand1

0.0004 0.0008 0.0012 0.0016 0.0004 0.0008 0.0012 0.0016

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

frequency

F
1S

co
re

A

−30

−20

−10

0

10

20

0 1000 2000 3000 4000 5000
t

y

B

Figure 3.6: In A the F1Score on the 4 scenarios for the Sinusoidal Model for fixed
amplitude of 15, changes of size 5 and IID Gaussian noise with a variance of 4, as
we vary the frequency of the sinusoidal process. In B an example of a realization for
the updown scenario, vertical segments refer to estimated changepoint locations of
DeCAFS (in light green) and AR1Seg (in blue).

44

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

The interpretation of this is that (f + g)i is the change in the mean of the data
from time i − 1 to time i. The penalties are such that f1:n is sparse, and thus is
modelling the abrupt changes in the mean, while g1:n is dense and is accounting for
the local fluctuations. It is possible to show that DeCAFS is equivalent to LAVA if
we have independent noise and replace the L1 norm by an L0 norm.

We implemented LAVA using the lavash package in R. This implementation of
LAVA is substantially slower than DeCAFS, and empirically the computational cost
appears to increase with the cube of the number of data points. As a result we
compare DeCAFS with LAVA on simulated data of length n = 1000 (for which LAVA
takes, on average, 132 seconds and DeCAFS 0.02 seconds per dataset).

LAVA tunes λ1 by cross-validation. We used a plug-in value for λ2 based on the
oracle choice suggested in Chernozhukov et al. (2017). This choice depends on the
variance of the local fluctuations, i.e. the variance of the random walk component
in our model, and we implemented LAVA using both the true variance (denoted
LAVA), and using the same estimate of the variance as we use for DeCAFS (denoted
LAVA est). The plug-in approach seemed to give better results, and was substantially
faster than using cross-validation to tune λ2. It also makes a comparison with DeCAFS
easier, as in situations where neither method estimates any abrupt changes, the two
methods then give essentially identical estimates of the mean.

Results from analysing data simulated under a pure random-walk model (so φ = 0)
are shown in Figure 3.7. Whilst both method perform similarly at estimating the
underlying mean, we see that LAVA is less reliable at estimating the changepoint
locations – and often substantially over-estimates the number of changepoints. As
summarised in the introduction, this is not unexpected as it is common for methods
that use `1 penalties on the size of an abrupt change to overestimate the number of
changes (see e.g. Fearnhead et al., 2018; Jewell et al., 2020).

3.7 Gene Expression in Bacilus subtilis

We now evaluate DeCAFS on estimating the expression of cells in the bacteria
Bacilus subtilis. Specifically we analyze data from Nicolas et al. (2009), which is
data from tiling arrays with a resolution of less than 25 base pairs. Each array
contains several hundred thousand probes which are ordered according to their
position on the bacterial chromosome. For a probe, labelled t say, we get an
RNA expression measure, Yt. Figure 3.8 shows data from 2000 probes. Code and
data used in our analyses, presented below, are available on forgemia : https:

//forgemia.inra.fr/guillem.rigaill/decafsrna.
The underlying expression level is believed to undergo two types of transitions,

large changes which Nicolas et al. (2009) call shifts and small changes which they
call drifts. Thus it naturally fits our modelling framework of abrupt changes, the

45

https://forgemia.inra.fr/guillem.rigaill/decafsrna
https://forgemia.inra.fr/guillem.rigaill/decafsrna

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

Algorithm DeCAFS DeCAFS est LAVA LAVA est

updown

0.0 0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

ση

F
1S

co
re

A1 updown

0.0 0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

ση

P
re

ci
si

on

A2 updown

0.0 0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

ση

R
ec

al
l

A3

−60

−40

−20

0

20

40

0 50 100 150 200 250
t

y

B1

−60

−40

−20

0

20

40

0 50 100 150 200 250
t

y

B2

Figure 3.7: On top: comparison of the F1 Score in A1, Precision in A2 and MSE in
A3, for DeCAFS (in green) and LAVA (in red) with oracle initial parameters and the
relative results with estimated initial parameters (in lighter colours), on the updown
scenario for a random walk signal over a range of values of ση. On the bottom the
first 250 observations of two realization of the experiment with, in B1, ση equal to 0.5
and in B2 ση equal to 2. Again, the continuous line over the data points represent
the relative signal estimations of DeCAFS and LAVA; the segments their changepoint
locations estimates.

46

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

Figure 3.8: Data on 2000 bp of the plus-strand of the Bacilus subtilis chromosome.
Grey dots show the original data. The plain red line represents the estimated signal of
DeCAFS with a penalty of 10 log(n). The dashed black line represents the estimated
signal of hmmTiling.

shifts, between which there are local fluctuations caused by the drifts. To evaluate
the performance of DeCAFS at estimating how the gene expression levels vary across
the genome we will compare to the hmmTiling method of Nicolas et al. (2009). This
method fits a discrete state hidden Markov model to the data, with the states being the
gene expression level, and the dynamics of the hidden Markov model corresponding to
either drifts or shifts. As a comparison of computational cost for of the two methods,
DeCAFS takes about 7 minutes to analyse data from one of the strands, each of which
contains around 192,000 data points. Nicolas et al. (2009) reported a runtime of 5
hours and 36 minutes to analyse both strands.

A comparison of the estimated gene expression level from DeCAFS and from
hmmTiling, for a 2000 base pair region of the genome, is shown in Figure 3.8. We see
a close agreement in the estimated level for most of the region, except for a couple
of regions where hmmTiling estimates abrupt changes in gene expression level that
DeCAFS does not.

To evaluate which of DeCAFS and hmmTiling is more accurate, we follow
Nicolas et al. (2009) and see how well the estimated gene expression levels align
with bioinformatically predicted promoters and terminators. A promoter roughly
corresponds to the start of a gene, and a terminator the end, and we expect gene
expression to increase around a promoter and decrease around a terminator.

For promoters, consider all probe locations t from the tiling chip and consider a

47

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

Figure 3.9: Benchmark comparisons. The number of promoters (left) and terminators
(right) correctly predicted on the plus strand, M(δ) using a 22 bp distance cutoff, as
a function of the number of predicted breakpoints, R(δ). Plain black lines are the
results of hmmTiling (as reported in Figure 4 of Nicolas et al., 2009)). Dotted black
lines are the results of hmmTiling when considering all probes rather than only those
called transitions. Plain red lines are the results of DeCAFS using β = 8 log(n)
for promoters and 5 log(n) for terminators. These values were learned on the minus
strand using a data-driven approach.
The thin dark-green leaning line represent y = x.

threshold parameter δ. We can count the number of probe locations with a predicted
difference d̂t = µ̂t+1 − µ̂t strictly greater than δ. We call this R(δ). Among those
probes, we can count how many have a promoter nearby (within 22 base pairs). We
call this M(δ). By symmetry we can define an equivalent measure for terminators. A
method is better than another if for the same R(δ) it achieves a larger M(δ).

We used a data-driven approach to choose the penalty, β for DeCAFS, benefitting
from having separate data from the plus and minus strand of the chromosome.
For Figure 3.9 the penalty was learned on the minus strand data and tested on
the plus strand data. More specifically we ran DeCAFS on the minus strand for
β = {2 log(n), 2.5 log(n)...30 log(n)}. For each β we computed M(δ) for a fixed
R(δ) = 750 and took the β maximizing M(δ): 8 log(n) for promoters and 5 log(n)
for terminators.

Figure 3.9 plotsM(δ) againstR(δ) for the plus strand as we vary δ for DeCAFS and
two different estimates from hmmTiling. The first, hmmTiling.ori, are the prediction
presented in Nicolas et al. (2009). The second, hmmtTiling.all, are those obtained
when using all probes rather than only those called transitions by hmmTiling.

In the case of promoters the prediction of hmmTiling is slightly better than

48

Chapter 3. Detecting Changes in Autocorrelated and Fluctuating Signals

DeCAFS for lower thresholds but noticeably worse for higher thresholds. In the case
of terminators the prediction of DeCAFS are clearly better than those of hmmTiling.
Given that DeCAFS was not developed to analyze such data we believe that its
relatively good performances for promoters and better performances for terminators
is a sign of its versatility.

49

Chapter 4

Functional Pruning Online
Changepoint Detection

4.1 Introduction

Over the previous decade we have witnessed a renaissance of changepoint algorithms,
and they can now be seen to make a difference to many real-world applications.
Most of the current literature focuses on an analysis a posteriori of observing a
series of data; such a type of analysis is often referred to as offline changepoint
detection. However, as technology develops, the demand from several fields for
online changepoint detection procedures has increased drastically over recent years.
Examples include, but are not limited to, IT and cyber security (Jeske et al.,
2018; Tartakovsky et al., 2012; Peng et al., 2004); detecting gamma ray bursts
in astronomy (Fridman, 2010; Fuschino et al., 2019); detecting eathquake tremors
(Popescu and Aiordǎchioaie, 2017; Xie et al., 2019); industrial processes monitoring
(Pouliezos and Stavrakakis, 2013); detecting adverse health events (Clifford et al.,
2015); and monitoring the structural integrity of aeroplanes (Alvarez-Montoya et al.,
2020; Basseville et al., 2007).

The online setting raises computational challenges that are not present in offline
changepoint detection. A procedure needs to be sequential, in the sense that one
should process the observations as they become available, and at each iteration one
should make a decision whether to flag a changepoint based on the information to
date. The procedure needs to be able to run on a finite state machine for an indefinite
amount of iterations, i.e. be constant in memory; and it needs to be able to process
observations, at least on average, as quickly as they arrive. Many online changepoint
application settings have high frequency observations, and some also have limited
computational resources. For example, the observations from ECG data in the 2015
PhysioNet challenge (Clifford et al., 2015) are sampled at 240Hz, while methods for

50

Chapter 4. Functional Pruning Online Changepoint Detection

detecting gamma ray bursts (Fuschino et al., 2019) need to process high-frequency
observations and be able to be run on small computers on board micro-satellites. A
challenge with online changepoint algorithms is to meet this computational constraints
whilst still having close to optimal statistical properties.

This paper considers the univariate change in mean problem. Current online
changepoint methods with a linear computational cost include the method of Page
(1955) that assumes we know both the pre-change and post-change mean; or moving
window methods such as MOSUM. Whilst assuming the pre-change mean is known
is reasonable in many applications as there will be substantial data to estimate this
mean (though see discussion in Gösmann et al., 2019), the former approach can lose
power if the assumed size of change is wrong. For example, this method can have
almost no power to detect changes that are less than half the size of the assumed
change. Similarly, moving window methods can perform poorly if the window size is
inappropriate for the size the change. A small window size will mean little power at
detecting small changes, whilst too large a window will lead to delays in detecting
larger changes. See Section 4.2.1 for an example of these issues.

An alternative, with more robust statistical properties, is to e.g. apply a moving
window approach but consider all possible window sizes. In the known pre-change
mean setting this is known as the Page-cusum approach (Kirch et al., 2018) and is
the approach of Yu et al. (2020) for the case of an unknown pre-change mean. The
theoretical results in Yu et al. (2020) demonstrate the excellent statistical properties
of such a method. However current exact implementations of this idea have a
computational cost per iteration that is linear in the number of observations, and
thus have an overall quadratic computational cost. Yu et al. (2020) comment on
the challenge of developing faster algorithm with good statistical guarantees: ”we
are not aware of nor expect to see any theoretically-justified methods with linear
order computational costs”. This paper presents such an algorithm, which we call
Functional Online CuSUM (FOCuS). We develop FOCuS for detecting changes
in mean in univariate data, and it can be applied to settings where either the pre-
change mean is known or unknown. In both cases it has an average per iteration
computational cost that increases with the logarithm of the number of observations.
Furthermore, we develop an approximate version of FOCuS which empirically has
almost identical performance and has bounded cost per iteration. In the unknown
pre-change mean case FOCuS implements the method of Yu et al. (2020), and our
implementation of FOCuS can analyse 1 million observations in less than a second on
a common personal computer.

Much research on online changepoint methods has looked at how to implement
methods so that they have well characterised performance under the null hypothesis
of no change. There are two distinct criteria for quantifying a method’s behaviour
under the null, one is the average run length (Reynolds, 1975) which is the expected

51

Chapter 4. Functional Pruning Online Changepoint Detection

number of observations until we detect a change. The other is a significance level –
the probability of ever detecting a change if the method is run on infinitely long data.
In practice these two criteria effect the choice of threshold for a detection method.
If we wish to control the significance level then we need a threshold that increases
with the number of observations (see e.g. Kirch and Kamgaing, 2015), whereas if we
wish to control the average run length we can use a fixed threshold. The FOCuS
algorithm can be used with either approach – but for simplicity we will only use a
fixed threshold in this paper.

The outline of the paper is as follows. In Section 4.2 we consider the challenge
of detecting a univariate change in mean when the pre-change mean is assumed
known. We present the FOCuS algorithm which can be viewed as implementing
the procedure of Page (1955) simultaneously for all possible size of change. Our main
theoretical result shows that FOCuS achieves this with an average computational
cost per iteration that is logarithmic in the number of data points. Our bound on the
average per iteration cost is tight, and when processing the one millionth observation
roughly equates to the cost of evaluating 15 quadratics. In Section 4.3 we then give
two extensions of the FOCuS algorithm. First to the case where the pre-change mean
is unknown. This algorithm can be viewed as implementing the statistical tests of Yu
et al. (2020): but whereas their algorithms are either exact but with a linear cost per
iteration or approximate with a cost that is logarithmic in the number of iterations,
the FOCuS algorithm is exact and has an average cost that is logarithmic per iteration.
We do not present any statistical theory for FOCuS , but this is covered in Yu et al.
(2020). Second we show how to extend FOCuS to detecting changes in the presence
of outliers. In Section 4.4 we show a monitoring application for FOCuS on some AWS
Clowdwatch server instances. Finally, the paper concludes with a discussion.

4.2 Known pre-change mean

4.2.1 Problem Set-up and Background

Consider the problem of detecting a change in mean in univariate data. We will let
xt denote the data at time t, for t = 1, 2, We are interested in online detection,
that is after observing each new data point we wish to decide whether or not to flag
that a change has occurred. We will first assume that the pre-change mean is known.
Often the methods below are implemented in practice using a plug-in estimator for
the pre-change mean that is calculated from training data.

A common approach to this problem (see Kirch et al., 2018) is to use a cumulative
sum of score statistics, also know as a CUSUM based procedure. Assume we model
our data as coming from a parametric model with density f(x;µ) and denote the

52

Chapter 4. Functional Pruning Online Changepoint Detection

pre-change mean as µ0. Define the score statistic of an observation x as

H(x, µ) =
∂ log f(x;µ)

∂µ
.

Then if there is no change prior to time n

E (H(Xi, µ0)) = 0, for i = 1, . . . , n.

Thus evidence of a change prior to time n can be obtained by monitoring the absolute
values of partial sums of these score statistics, which we denote as

S(s, n) =
n∑

i=s+1

H(xi, µ0).

The idea is that these partial sums should be close to 0 if there is no change, and they
should diverge away from zero if there is a change.

For ease of presentation, and to make ideas concrete, in the following we will
consider the case where we have a Gaussian model for the data. In this case H(x, µ) =
(x− µ). Also as we are assuming µ0 is known, then without loss of generality we can
set µ0 = 0.

There have been a number of different choices of partial sums that we can monitor.
For detecting a change after observing xn, Kirch et al. (2018) mention the following
statistics

CUSUM C(n) =
1√
n
|S(0, n)|; (4.1)

MOSUM Mw(n) =
1√
w
|S(n− w, n)|; (4.2)

mMOSUM mMk(n) =
1√
nk
|S(n− bknc, n)|; (4.3)

Page-CUSUM P (n) = max
0≤w<n

1√
w
|S(n− w, n)|. (4.4)

The scale factor in each case is to normalise the cumulative sum S(·, ·) so as to
standardise its variance. In each case we would compare the statistic at time n with
some appropriate threshold, and detect a change prior to n if the statistic is above
the threshold. As discussed in the introduction the choice of threshold impacts the
properties of the test under the null. It is possible to choose thresholds that are
constant or that increase as n increases (Kirch et al., 2018), but for simplicity we will
use constant thresholds throughout.

The standard CUSUM statistic uses the partial sum of score statistics to time n.
For both the MOSUM procedure (Eiauer and Hackl (1978), Chu et al. (1995)) and

53

Chapter 4. Functional Pruning Online Changepoint Detection

mMOSUM procedure (originating in Chen and Tian, 2010) we need to specify a tuning
parameter. The MOSUM method uses the partial sum over a window of the most
recent w > 0 observations, whilst the mMOSUM fixes some proportion 0 < k < 1
and uses the partial sum over the most recent proportion k of the observations. All
three of these statistics are online, in that there is again only an O(1) update of the
statistics as we process each new data point. The Page-CUSUM maximises over all
possible partial sums ending at time n.

To understand the difference between CUSUM, MOSUM and Page-CUSUM we
implemented these methods for detecting a change at time t to some mean µ1 for
different values of t and µ1 and compared the detection delay of each statistics. Results
are shown in Figure 4.1. In Figure 4.1a, we simulated data with a change after 1000
observations and the size of change is chosen to give high power for the window size
of the MOSUM procedure. MOSUM and Page-CUSUM tend to detect a change
quickly. In the second example, shown in Figure 4.1b, we reduce the magnitude of
the change, and find that the MOSUM test loses power substantially and has a much
larger detection delay than Page-CUSUM. In our final example, see Figure 4.1c, we
have the same size of change as the first example, but now the change occurs after
8,000 observations. In this case we see that the CUSUM statistic behaves poorly.
This is because the CUSUM statistic has to average the signal from data after the
change with all the data prior to change, and this reduces the power of the test
statistic, particularly when there is substantial data pre-change. Both MOSUM and
Page-CUSUM perform as in the first example.

Whilst we do not show the performance of mMOSUM in these examples, it shares a
similar sensitivity to choice of window proportion, k, as the MOSUM does for window
size.

The Page-CUSUM tries to avoid the issues with choosing a window size within
the MOSUM method, and is equivalent to maximising the MOSUM statistic over
w. However current implementations of Page-CUSUM are not online – in fact
the computational cost of calculating max0≤s<n |S(s, n)| increases linearly with n,
resulting in an O(n2) computational complexity.

An alternative approach (Page, 1954, 1955) to detecting the change is based on
sequentially applying a likelihood ratio test under an assumed value for the post-
change mean, µ1. Under our Gaussian model with pre-change being 0, we have that
the contribution to the likelihood-ratio statistic from a single data point, xt is

LR(xt, µ1) = µ1

(µ1

2
− xt

)
(4.5)

At time n, the test-statistic for a change at time s is the sum of these terms from

54

Chapter 4. Functional Pruning Online Changepoint Detection

(a)

(b)

(c)

Figure 4.1: Detection delays of CUSUM (in green), MOSUM (in red, with w = 50)
and Page-CUSUM (in blue) on three sequences. The sequences were generated in the
following way: (a) a sequence of 2000 observations with a change of size 1 at 1000;
(b) similar to (a) but with a change in the mean of 0.2; (c) similar (a) again, but
with an additional 8 × 103 observations at the start of the sequence. Penalties were
tuned accordingly to the simulation study in Section 4.2.3. The solid grey line refers
to the true changepoint location, the dashed segments to the detection delays of the
super-mentioned procedures.

55

Chapter 4. Functional Pruning Online Changepoint Detection

t = s+ 1, . . . , n. As we do not know the time of the change, we maximise over s:

Qn,µ1 = max
0≤s<n

n∑
t=s+1

µ1

(µ1

2
− xt

)
.

We will call this statistic the sequential-Page statistic.
Whilst our definition of Qn,µ1 involves a sum over n terms, Page (1954) showed

that we can calculate Qn,µ1 recursively in constant time as:

Qn,µ1 = max
{

0, Qn−1,µ1 + µ1

(µ1

2
− xt

)}
. (4.6)

One issue with the sequential-Page statistic is the need to specify µ1, and a poor
choice of µ1 can substantially reduce the power to detect a change. This is similar to
the choice of window size for MOSUM. To partially overcome this, in both cases we
can implement the methods multiple times, for a grid of either window sizes or values
of µ1. Obviously, this comes with an increased computational cost.

4.2.2 FOCuS0 : solving the Page recursion for all µ1

Our idea is to solve the sequential-Page recursion simultaneously for all values of the
post-change mean. That is we can re-write (4.6) in terms of a recursion for a function
Qn(µ) of the post-change mean µ1 = µ. We then have Q0(µ) = 0 and for n = 1, . . . ,

Qn(µ) = max
{

0, Qn−1(µ) + µ
(
xn −

µ

2

)}
. (4.7)

We would then use maxQn(µ) as our test statistic. It is straightforward to see that
for any µ1, Qn(µ1) = Qn,µ1 . Thus if we can efficiently calculate Qn(µ) then our test
statistic is equivalent to the maximum value of the sequential-Page statistic over all
possible choices of post-change mean.

Furthermore, the following proposition shows that this test statistic is equivalent
to the Page-CUSUM statistic (4.4), or equivalently the maximum of the MOSUM
statistic (4.2) over all possible windows.

Proposition 7 The maximum of Qn(µ) satisfies

max
µ

Qn(µ) =
1

2
P (n)2 =

1

2
max
w

Mw(n)2,

where P (n) is the Page-CUSUM statistic and Mw(n) is the MOSUM statistic with
window size w.

56

Chapter 4. Functional Pruning Online Changepoint Detection

Algorithm 7: FOCuS0 (one iteration)

Data: xn the data at time n; Qn−1(µ) the cost function from the previous
iteration.

Input: λ > 0
1 Qn(µ)←− max

{
0, Qn−1(µ) + µ

(
xn − µ

2

)}
; // Algorithm 8 : amortized

O(1)
2 Qn ←− maxµQn(µ) ; // Theorem 5 : average O(log(n))
3 if Qn ≥ λ then
4 return n as a stopping point ;
5 end
6 return Qn(µ) for the next iteration.

The proof for this can be found in Appendix B.1.
A skeleton of the resulting algorithm for online changepoint detection is given in

Algorithm 7. We call this the Functional Online CuSUM (FOCuS) algorithm. To
be able to distinguish this version, that assumes a known pre-change mean, we call
Algorithm 7 FOCuS0 . The FOCuS0 algorithm is only useful if it is computationally
efficient, and in particular if we can implement Steps 1 and 2 efficiently. These steps
correspond to solving recursion (4.7) to get Qn(µ) from Qn−1(µ) and then maximising
Qn(µ). We will describe each of these steps in turn, and present results on their
average computational cost.

4.2.2.1 Step 1: updating the intervals and quadratics

For Step 1 of Algorithm 7 we propose to update the value of Qn(µ) separately for µ > 0
and µ < 0. These can be updated in an identical manner, so we will only describe
the update for µ > 0. We will use the fact that (4.7) maps piecewise quadratics
to piecewise quadratics, and hence Qn(µ) will be piecewise quadratic (see Maidstone
et al., 2017, for a similar idea) and can be stored as a list of ordered intervals of
µ together with the co-efficients of the quadratic for Qn(µ) on that interval. Let
St =

∑t
j=1 xj be the sum of the first t data points. The quadratic introduced at

iteration τ will be of the form

µ

(
n∑

t=τ+1

xt − (n− τ)
µ

2

)
= µ

(
(Sn − Sτ)− (n− τ)

µ

2

)
.

Thus, if at time n we know n and Sn, its co-efficients can be calculated if we store
τ and Sτ . This information stored for the quadratic does not need to be updated at
each iteration.

57

Chapter 4. Functional Pruning Online Changepoint Detection

As a result, to update Qn(µ) we need only add a quadratic, update the interval
associated with currently stored quadratics, and remove quadratics that are not longer
optimal for any µ (i.e. whose associated interval is the empty set). Intervals only
change due to comparisons between stored quadratics and the new quadratic. The
new quadratic is a constant at 0. A key observation, simplifying the functional update,
is that the difference between a quadratic introduced at iteration τ and 0 gives that
the new quadratic is better on the interval[

2
n∑

t=τ+1

xt
(n− τ)

, +∞

)
. (4.8)

Considering all τ we get get that the new quadratic is better than all others on[
2 max

τ

n∑
t=τ+1

xt
(n− τ)

, +∞

)
.

Therefore to update Qn(µ) we essentially need to recover

max
τ

n∑
t=τ+1

xt
(n− τ)

. (4.9)

Furthermore this argument shows that the lower bound for any existing quadratics is
either unchanged, if it is lower than this value, or that quadratic can be removed.

One can show that the set of changes in Qn(µ) are part of the convex hull of
the 2D points {(1, S1), (2, S2), · · · , (n, Sn)}, see Lemma 3 in the Appendix. In fact,
our algorithm for updating the list of quadratics is based on Melkman’s Algorithm
(Melkman, 1987) for calculating the the convex hull of a set of points, and is given
in Algorithm 8. A graphical representation of 4 iterations of the procedure is found
in Figure 4.2. As described above, Qn(µ) is defined by k quadratics, with associated
triples denotes as (τi, si, li) for i = 1, . . . , k. These are ordered so that 0 = l1 < · · · <
lk. The idea is that at time n+ 1 we need to find the value of l such that Qn(l) = 0,
by solving (4.9). We can do this by considering each quadratic in turn, starting with
kth quadratic and stepping through them in decreasing order. If we are considering
the ith quadratic we check whether Qn(li) < 0 or not. If it is we remove the quadratic
and move to the (i − 1)th quadratic (or stop if i = 1). If Qn(li) > 0 then l > li and
we find l as the positive value of µ such that the ith quadratic is equal to 0.

We can show that Algorithm 8 has an amortized per-iteration cost that is O(1).
The intuition is that each quadratic is added once and removed once, and otherwise
unchanged. Thus the average per-iteration cost is essentially the cost of adding and
of removing a quadratic.

58

Chapter 4. Functional Pruning Online Changepoint Detection

Figure 4.2: A graphical representation of FOCuS cost function across 4 iterations
from time 500 to 504 (left to right). Labels report the iterations where the quadratics
were added. The line being the newly added quadratic (hence yet to be updated).
We notice how the quadratic introduced at time 502, in purple, is pruned after just
two iterations, being no longer optimal.

Algorithm 8: Algorithm for max{0, Qn−1(µ) + µ(xn − µ/2} for µ > 0

Data: Q+
n (µ) = Q an ordered set of triples {qi = (τi, si, li) ∀ i = 1, . . . , k},

xn and Sn−1

1 Sn ←− Sn−1 + xn ; // update cumulative sum

2 qk+1 ←− (τk+1 = n, sk+1 = Sn, lk+1 =∞) ; // new quadratic

3 i←− k;
4 while 2(sk+1 − si)− (τk+1 − τi)li ≤ 0 and i ≥ 1 do
5 i←− i− 1;
6 end
7 lk+1 ←− 2(sk+1 − si)/(τk+1 − τi); // update new quadratic

8 if i 6= k then
9 Q←− Q \ {qi+1, . . . , qk}; // pruning old quadratic

10 end
11 return {Q, qk+1}, Sn

Theorem 3 The worst case complexity of Algorithm 8 for any data x1, . . . , xT is
O(T) and its amortized complexity per iteration is O(1).

Proof: At iteration n, let kn be the number of quadratics input, and let cn be the
number of times the algorithm repeats the while loop in Steps 4 to 6. Let C1 be the
cost of steps 1 to 3 and 7 to 11, and C2 be the cost of one set of steps 4 to 6. Then
the computational cost of one iteration of Algorithm 8 is C1 + cn × C2.

The key observation is that kn+1 = kn − (cn − 1) + 1. That is if we repeat Steps 4
to 6 cn times then we will remove cn− 1 quadratic in Step 9 and add one quadratic in

59

Chapter 4. Functional Pruning Online Changepoint Detection

Step 11. Furthermore k1 = 0 and kT+1 is the number of quadratics for QT (µ). Thus
the total computational cost is

T∑
n=1

(C1 + cnC2) = C1T + C2

T∑
n=1

cn = C1T + C2

T∑
n=1

(2 + kn − kn+1).

Due to the cancellations in the telescoping sum and the fact that k1 = 0 we have

T∑
n=1

cn = 2T − kT+1 ≤ 2T

Thus the theorem holds �
As the overall computational cost is linear in T , the expected cost per iteration

must be constant. The proof gives a form for the overhead in terms of the operations
in Algorithm 8. In practice this cost is observed to be negligible relative to the cost
of step 2 of Algorithm 7, namely that of maximising Qn(µ).

4.2.2.2 Step 2 : maximisation

To implement Step 2 of Algorithm 7 we first use the trivial observation that if xn > 0
then Qn(µ) < Qn−1(µ) for all µ < 0. Thus to check if maxµQn(µ) ≥ λ we need only
check this for µ > 0. Similarly if xn < 0 then we need only check for µ < 0. To
perform the check we just loop over all quadratics stored for either µ > 0 or µ < 0,
and for each one check if its maximum is greater than λ. For a quadratic with stored
triplet (τ, s, l) this involves checking whether

(Sn − s)2 ≥ 2λ(n− τ). (4.10)

If we flag a change at time n, then we can also output the value of τ corresponding
to the quadratic whose maximum is largest, and this will be an estimate of the time
of the change. The computational cost is thus proportional to number of quadratics
that are stored, and can be bounded using the following result.

Theorem 4 Let x1, . . . , xT , . . . be a realization of the process Xi = µi + εi where εi
are independent, identically distributed continuous random variables with mean 0. Let
the number of quadratics stored by FOCuS0 for µ > 0 at iteration T be #I0

1:T . Then
if µi is constant

E(#I0
1:T) ≤ (log(T) + 1),

while if µi has one change prior to T then

E(#I0
1:T) ≤ 2(log(T/2) + 1).

60

Chapter 4. Functional Pruning Online Changepoint Detection

The proof for this and can be found in Appendix B.3. By symmetry, the same
result holds for the number of quadratics stored for µ < 0. The conditions of the
data generating mechanism are weak – as the distribution of the noise can be any
continuous distribution providing the noise is independent.

The theorem shows that the expected per-iteration time and memory complexity
of FOCuS0 at time T is O(log T). Furthermore, the expected per-iteration cost is
essentially equal to checking (4.10) log(n) + 1 times if there has not been a change,
and for 2(log(n/2) + 1) if there has been an, as yet, undetected change. A change
of fixed size is detected in O(1) iterations, and thus the overall computational time,
for large T , will be dominated by the cost of iterations prior to the changepoint. For
data for size one million, the bound on the number of quadratics is less than 15.

The FOCuS0 algorithm is not strictly online, due to the cost per iteration not
being bounded. But it is simple to introduce a minor approximation that is online.
Assume we have a constraint that means we can find the maximum of at most P
quadratics per iteration. A simple approximation is to introduce grid of points ±mp

for mp ∈ R+, p = 1, ...P . There are then two natural approaches. One is that if
we have P + 1 quadratics stored we pruned to P quadratics by removing the first
quadratic whose interval does not contain a grid point. Alternatively we can keep all
quadratics but only find the maximum of the quadratics whose interval contains a grid
point. The advantage of this latter approach is that it avoids any approximations to
Qn(µ) which could propagate to future values of Qt(µ) for t > n. Both these methods
would dominate using the sequential-Page approach that used the same grid for µ1

values. For example, if Q̃n(µ) denotes the approximation to Qn(µ) using the first
approach, then we have Q̃n(µ1) = Qn,µ1 for all µ1 in our grid.

4.2.3 Simulation Study

We compare the FOCuS procedure with MOSUM, from (4.2) and the sequential
Page-CUSUM statistics, from (4.6). In particular, the Page-CUSUM statistics was
evaluated on grid of 25 values illustrated in Figure 4.3: the geometric grid is denser at
the center in order to maximise power over changes of smaller magnitudes; similarly,
MOSUM was evaluated over an equivalent set of window sizes such that wi = (λ/µ1,i)

2

with µ1,i being a Page-CUSUM grid point. We furthermore compare the FOCuS0

procedure with its approximation on a grid of 10 points, obtained from a subset of the
same grid. This is roughly equivalent the number of intervals stored in FOCuS0 over

a sequence of 10 thousand observations where no change is present (as
∑1×105

t=1 1/t ≈
9.789). In Figure 4.4 we find a comparison of the maximum of the FOCuS0 statistic
against the values of the Page-CUSUM statistic evaluated on the super mentioned
grid. We note that as the true post-change mean µ1 falls exactly on one of the grid
points of the Page-CUSUM statistics, then the value of the statistics for FOCuS0 and

61

Chapter 4. Functional Pruning Online Changepoint Detection

(a) Page-CUSUM (b) FOCuS0 approximation

Figure 4.3: On the left, the 25 points grid employed for the simulations concerning
the Page-CUSUM statitics, on the right, a subset of 10 grid points from the same
grid, needed for the relative FOCuS approximation.

Page are going to be equivalent. However, as the post-change mean µ1 falls exactly
in the middle of two grid points, then the FOCuS statistics is going to be higher the
Page-CUSUM statistic. Intuitively, Page-CUSUM should have an advantage whether
the true change does fall exactly on one grid point, whereas in other situations FOCuS
will perform better. On this observation, we build the following simulation study: we
first evaluate the average run length in function of various values of a fixed penalty.
Then we choose the smallest possible penalty for a guaranteed average run length,
and we evaluate the performances of a method through the detection delay.

We evaluate the run length in function of a fixed threshold up to two million
observations under the null N(0, 1). Stopping times were recorded for a given
threshold, and results were averaged across 100 different replicates. Results are
reported in Figure 4.5. We notice how, up to a fixed run length, MOSUM threshold
is lower then both FOCuS and Page-CUSUM. When comparing FOCuS with Page-
CUSUM, of the benefits of the latter is in the slightly smaller threshold – this is
expected as we have already denoted how the FOCuS0 statistics will always dominate
Page.

Fixed the thresholds as above, we compare the detection delay of the various
implementations. We superimpose on the previously generated sequences a piecewise
constant signal with a change at 1× 105, and we evaluate the average detection delay
by averaging the stopping time minus the real change location. The experiment
is then repeated for a range of change magnitudes, among those we find all the
Page-CUSUM grid points. Results are summarised in Table 4.1. We denote how
FOCuS0 shows a faster detection delay compared to the Page-CUSUM on changes of
smaller magnitudes < 0.05. On larger magnitudes, Page-CUSUM slightly outperforms

62

Chapter 4. Functional Pruning Online Changepoint Detection

(a)

(b)

Figure 4.4: A comparison of the FOCuS0 cost (in blue) against the evaluation of
the Page-CUSUM statistics on the grid introduced before (grey vertical lines) for
two sequences with a change of magnitude 0.48, in (a), and of 0.66, in (b). The
dashed black line refers to the true post-change mean. Blue labels refer to the
maximum achieved by FOCuS0 , grey labels to the value of the Page-CUSUM for
each corresponding grid point in both cases.

FOCuS whether the post change mean falls in proximity of a grid point – this is
because, again, at the grid points, both statistics have the same value, but Page’s
smaller threshold results in a faster detection. On the contrary, in between points,
FOCuS outperforms Page, and this effect becomes negligible for changes of larger
magnitudes. The FOCuS0 approximation suffers of a slower detection delay when

63

Chapter 4. Functional Pruning Online Changepoint Detection

Figure 4.5: Average Run Length up to 1 × 106 in function of a fixed threshold for
FOCuS0 , in green, for Page-CUSUM, in light green and for MOSUM, in red. Log
scale on the y axis.

compared to both Page-CUSUM and FOCuS0 , however this is again reduced for
larger magnitudes, and the method still outperforms MOSUM.

In Figure 4.4 we find a comparison of the FOCuS0 cost function and the
corresponding Page-CUSUM statistic evaluated on the various grid points. From
that it is possible to notice that as the true post-change mean µ1 falls exactly on one
of the grid points of the Page-CUSUM statistics, then FOCuS and Page are going
to be equivalent. However, in the case we have a post-change mean µ1 exactly in
the middle of two grid points, then the FOCuS statistics is going to outperform the
Page-CUSUM statistic. This difference is less significant as the size of the change
increases, and this explains why performances amongst the two implementations are
similar for changes of larger magnitudes.

4.3 Extensions of FOCuS

In this section we discuss how the functional recursion of (4.7) can be extended to
other models. We first show that Algorithm 8 also applies for the Gaussian unknown
pre-change mean model and we recover similar guarantees in terms of average runtime
complexity. For more complex models, we do not get such theoretical guarantees, but
functional pruning techniques developed in Rigaill (2015); Maidstone et al. (2017)

64

Chapter 4. Functional Pruning Online Changepoint Detection

Detection Delay
Magnitude Page-CUSUM FOCuS0 FOCuS0 10p MOSUM

0.010 327399 325288 327468 392577
0.017 105578 104713 105743 126189
0.030 34426 34069 34210 38879
0.050 12173 12326 12683 14270
0.053 11109 11088 11445 12833
0.070 6568 6495 6704 7666
0.092 4016 4019 4139 4692
0.100 3371 3371 3460 3857
0.159 1247 1264 1283 1518
0.200 800 815 818 916
0.250 513 510 512 598
0.278 410 417 417 465
0.300 357 353 355 407
0.400 208 207 207 245
0.483 141 141 141 164
0.500 133 132 132 151
0.600 95.2 95.3 95.6 110
0.700 70 70 70.3 82.5
0.800 51.9 52.5 53.4 60.5
0.840 48.2 48.3 48.8 54.2
0.900 42.8 42.8 43.4 47.5
1.000 35.2 35 35.8 38.6

Table 4.1: Detection delays for Page-CUSUM, FOCuS0 , and the FOCuS0

approximation on a 10 points grid for 20 change magnitudes. In particular, on the
left most column, we underline the magnitudes that fall exactly on the Page-CUSUM
gridpoints.

apply. We illustrate that they are empirically efficient (in O(log(T)) per iteration) for
a loss function robust to outliers proposed in Fearnhead and Rigaill (2019).

4.3.1 FOCuS when the pre-change mean is unknown

Assume we are observing a sequence of observations x1, . . . , xn distributed as a
N(µ0, σ) under the null and as N(µ1, σ) under the alternative, with σ known and
µ1 6= µ0. As suggested by Yu et al. (2020), a natural test for a change in the likelihood
ration statistic

Qn = max
τ∈{1,...,n}
µ0,µ1∈R

{
τ∑
t=1

(xt − µ0)2 −
n∑

t=τ+1

(xt − µ1)2

}
. (4.11)

Yu et al. (2020) present finite-sample results that demonstrate the statistical
optimality of such a test. They also present algorithms for evaluating this test statistic.
The fastest algorithm that avoids any approximation is O(n) in computational
complexity per iteration while being O(n) in storage, which make their methodology

65

Chapter 4. Functional Pruning Online Changepoint Detection

infeasible to a true online setting. For the rest of this paper will refer to such algorithm
as Yu-CUSUM.

Let us explain how we can solve (4.11) using the functional recursion of FOCuS0

. A key observation is that the difference in cost between a change at τ and a change
at n for any two means µ0 and µ1 can be written as:

τ∑
t=1

(xt−µ0)2+
n∑

t=τ+1

(xt−µ1)2−
n∑
t=1

(xt−µ0)2 = −(µ1−µ0)

(
2

n∑
τ+1

xt − µ0 − µ1

)
(4.12)

The right hand size can be rewritten as −δ(2
∑n

τ+1 xt −m) taking δ = µ1 − µ0 and
m = µ0 + µ1. As before we can consider separately the case δ > 0 (up-change) and
δ < 0 (down-change). We will discuss the case δ > 0 only, as the other case follows
immediately by symmetry. For δ > 0 the sign of (4.12) only depends on m, and we
recover, as in (4.8) for the known pre-change mean case, that a change at n is better
than a change at τ if m is in the interval :[

2
n∑

t=τ+1

xt
(n− τ)

, +∞

)
. (4.13)

Hence, we can update the intervals and quadratics corresponding to candidate changes
exactly as in Step 1 of FOCuS0 using Algorithm 8.

We provide in Appendix B.2 a pseudo-code description of the FOCuS algorithm
in case the pre-change mean is not known, but in essence there are only two small
differences between FOCuS and FOCuS0 :

1. For the interval update (step 1), in FOCuS0 for up-changes we could restrict
our attention to µ1 ∈ [µ0,+∞) (resp. (−∞, µ0] for down-changes), whereas in
FOCuS, not knowing the value of the first segment mean, we need to consider
all cases for m, i.e. m ∈ (−∞,+∞).

2. For the maximisation (step 2) in FOCuS0 we only need to optimize the value
of the last segment, whereas in FOCuS we also need to optimize the pre-change
mean.

We derive in Theorem 5 in appendix B.3 the same bound as FOCuS0 on the
expected number of candidates showing that the expected per-iteration time and
memory complexity of FOCuS at time T is O(log(T)).

4.3.2 FOCuS in the presence of outliers

Further extensions of FOCuS are to use different loss functions to the square error loss
obtained from a Gaussian log-likelihood. Motivated by the application in Section 4.4

66

Chapter 4. Functional Pruning Online Changepoint Detection

we will consider a robust loss function, the biweight loss, which enables us to detect
changepoints in the presence of outliers (see Fearnhead and Rigaill, 2019). We define
thie loss as

L(xt, µ1) = −max

{(µ1

2
− xt

)2

, K

}
, (4.14)

where K is a user specified threshold. Using that in our online setting we recover the
following functional recursion:

Qn(µ) = max

{
n∑
t=1

L(xt, 0), Qn−1(µ) + L(xn, µ)

}
. (4.15)

Using ideas described in Section 3.2 of Fearnhead and Rigaill (2019) it is straightfor-
ward to implement this recursion for all µ efficiently. For this model we are unable
to recover a bound on the expected number of candidate changepoints. However we
observed empirically that the cost for iteration T is in O(log(T)) (see Figure 4.6).

4.3.3 Simulation Study

In Figure 4.6 we find a comparison of the runtime between FOCuS0 , FOCuS , the
robust implementation introduced in (4.15) (R-FOCuS) and Algorithm 3 from Yu
et al. (2020), denoted as Yu-CUSUM. Runtimes were recorded for multiple finite
sequences of lengths ranging from 100 to 5× 104. To produce a fair comparison both
implementations were written in C++, all simulations were performed on a common
personal computer. We find little difference when comparing FOCuS0 with FOCuS
, both showing an empirical linear increase in timings with the latter being slightly
slower. When comparing FOCuS to Yu-CUSUM, we find a comparable runtime only
up to n = 100, after which FOCuS is generally faster, in particular on larger sequences,
given that Yu-CUSUM shows quadratic complexity. Lastly, we notice how R-FOCUS,
while still retaining a linear computational complexity, has a larger overhead compared
to the simpler implementations.

As one could estimate the mean of a Gaussian process when the pre-change mean
is unknown, and use that value to run the algorithms introduced in Section 4.2, the
second comparison we make is between FOCuS0 with the pre-change-mean known
learned over a training sequence and FOCuS with the pre-change mean unknown.
We study in particular the performances of FOCuS0 as we vary the size of training
data from 100 observations up to 1 × 105. We compare both average run-length as
a function of the threshold, and detection delay as a function of the magnitude of
a change. For each experiment, we report summaries over 100 replicates, and the
results on detection delay are for thresholds chosen so each algorithm has an average
run-length of 1× 106. In all cases we simulate data with 1× 105 data points prior to
the change. Results are summarised in Figure 4.7.

67

Chapter 4. Functional Pruning Online Changepoint Detection

Figure 4.6: Runtime in milliseconds of FOCuS0 , FOCuS , R-FOCuS and Yu-CUSUM
in function of the length of the sequence (log-scale on both axes). Grey lines refer to
an expected O(n) increase (dashed) and O(n2) increase (dotted).

FOCuS with pre-change out performs FOCuS0 . In part this is because it requires a
smaller threshold to achieve the same average run length. Furthermore the detection
delay of FOCuS0 can be substantially increased if the estimate of the pre-change
mean is close to post-change mean; whereas the reduction in detection delay when
the estimate of the pre-change mean is away from the post-change mean is much less.
The advantage of FOCuS is that it can improve its estimate of the pre-change mean
using the data prior to any change. Thus we see substantial benefits of FOCuS relative
to FOCuS0 when the amount of training data is small. It is only when the amount
of training data is of the same order as the amount of data prior to the change that
FOCuS0 gives similar results to FOCuS .

4.4 Application of FOCuS to the AWS Cloudwatch

CPU utilization

We now evaluate FOCuS by comparing with a bespoke anomaly detection algorithm
on the Amazon CPU utilization datasets from the the Numenta Anomaly Benchmark
(Ahmad et al., 2017). The aim with these datasets is to detect anomalous behaviours
in the CPU utilization of various Amazon Cloudwatch instances. For each dataset
anomalous behaviours have been manually flagged by experts, and those stand as the

68

Chapter 4. Functional Pruning Online Changepoint Detection

(a) Average run length in function of a
fixed threshold.

(b) Detection delay in function of various
magnitudes of a change.

Figure 4.7: Comparison between FOCuS pre-change unknown and pre-change known.
Blue line corresponds to FOCuS with pre-change unknown, while the other lines
correspond to FOCuS0 for different training set sizes: 100 (light green); 1000 (dark
green); 1× 104 (pink); and 1× 105 red. Both figures have a log-scale on the y axis.

ground truth. The data sets are shown in Figure 4.8, and demonstrate a range of
behaviour. As point anomalies are common we will use the R-FOCuS algorithm.

When evaluating algorithms we will follow the methodology in Ahmad et al.
(2017). A detection is deemed to be correct if it lies within ±0.05 · n of the true
anomaly, where n is the length of the time series; and multiple detection within the
window are allowed. A method can use the first 15% of each dataset, a portion of
data known to not include any anomalies, to set tuning parameters. We use this
data to tune both K in the biweight loss and the detection threshold as described in
Appendix B.4.

As some data sets have multiple anomalies to be detected, we have to adapt
R-FOCuS so that it does not stop once a change to some anomalous behaviour has
occurred. To adapt R-FOCuS we simply initiate the procedure again at the estimated
changepoint location after a detection is triggered. In order to reduce the number of
false positives and to extend the average run length of the algorithm, at each detection
we inflate the penalty by a factor of log(τs)/ log(τs−τs−1), with τ0, ..., τk being a vector
of estimated changepoint locations.

We compare R-FOCuS with numenta HTM, the best performing algorithm to
date on these data. Numenta HTM (Ahmad et al., 2017) is an anomaly detection

69

Chapter 4. Functional Pruning Online Changepoint Detection

algorithm that employs an unsupervised neural network model to work with temporal
data (Cui et al., 2016) to perform anomaly detection.

Results are summarised in Figure 4.8 and Table 4.2. We find that R-FOCuS has
better performances in term of Precision, the proportion of true anomalies detected,
and Recall, the proportion of detections that are true anomalies, compared with
Numenta HTM. On a case to case basis, in most of the sequences both algorithm
flagged correctly the anomalous behaviours. HTM overall achieves slightly shorter
detection delays (with the exception of f), however it produces more false positives
(13 false detections against 7 of R-FOCuS). In terms of missed detections, both
algorithms perform similarly, with R-FOCuS missing and anomaly in a which flagged
by HTM, whilst in d we observe the opposite.

Overall, this shows the flexibility of R-FOCuS for online change detection,
especially considering that R-FOCuS is a simpler approach which is operating under
model misspecification, and with significantly shorter computational run-times than
Numenta HTM (on 3000 observations R-FOCuS takes roughly 2 milliseconds against
the 4 minutes for HTM).

Detector Precision Recall

R-FOCuS 0.58 0.82
Numenta HTM 0.50 0.76

Table 4.2: Precision and Recall for R-FOCuS and Numenta HTM.

70

Chapter 4. Functional Pruning Online Changepoint Detection

−
1012

F
eb

 1
7

F
eb

 2
4

t

y

a

12

F
eb

 1
7

F
eb

 2
4

t

y

b

02550

F
eb

 1
7

F
eb

 2
4

t

y

c

−
15

0

−
10

0

−
5005010

0

A
pr

 0
7

A
pr

 1
4

t

y

d

025507510
0

A
pr

 1
4

A
pr

 2
1

t

y

e

04080

A
pr

 0
7

A
pr

 1
4

t

y

f

−
101

A
pr

 0
7

A
pr

 1
4

t

y

g

−
5005010

0

F
eb

 1
7

F
eb

 2
4

t

y

h

0510152025

F
eb

 1
7

F
eb

 2
4

t

y

i

020406080

A
pr

 1
4

A
pr

 2
1

t

y

j

an
om

al
y

F
O

C
uS

nu
m

en
ta

 H
T

M

tr
ue

F
ig

u
re

4.
8:

T
h
e

8
(a

-
j)

d
iff

er
en

t
ti

m
e

se
ri

es
of

A
W

S
C

lo
u
d
w

at
ch

C
P

U
u
ti

li
za

ti
on

.
G

re
en

,
re

d
an

d
b
lu

e
se

gm
en

ts
co

rr
es

p
on

d
,

re
sp

ec
ti

ve
ly

,
to

th
e

re
al

an
d

es
ti

m
at

ed
an

om
al

y
lo

ca
ti

on
s

of
R

-F
O

C
u
S

an
d

N
u
m

en
ta

H
T

M
.

T
h
e

gr
ee

n
re

ct
an

gl
e

ar
ou

n
d

ea
ch

an
om

al
y

is
th

e
an

om
al

y
w

in
d
ow

(t
h
e

ar
ea

in
w

h
ic

h
an

an
om

al
y

m
u
st

b
e

d
et

ec
te

d
to

co
u
n
t

as
a

tr
u
e

p
os

it
iv

e)
.

M
u
lt

ip
le

d
et

ec
ti

on
s

w
it

h
in

th
e

gr
ee

n
li
n
es

ar
e

al
lo

w
ed

,
an

d
ar

e
n
ot

co
n
si

d
er

ed
as

fa
ls

e
p

os
it

iv
es

.
T

h
e

d
as

h
ed

li
n
e

co
rr

es
p

on
d
s

to
th

e
p
ro

b
at

io
n

p
er

io
d
,

u
se

d
fo

r
tr

ai
n
in

g
of

tu
n
in

g
p
ar

am
et

er
s:

d
et

ec
ti

on
s

b
ef

or
e

th
e

d
as

h
ed

li
n
e

ar
e

n
ot

ac
co

u
n
te

d
fo

r
in

th
e

fi
n
al

re
su

lt
.

71

Chapter 5

A Nonparametric Approach to
Online Anomaly Detection

5.1 Introduction

The challenge of sequential nonparametric changepoint detection has seen significant
development in recent years. See, for example, Tartakovsky et al. (2014) for an
excellent introduction to the area. Contributions include the work of Gordon and
Pollak (1994), Ross and Adams (2012), and Padilla et al. (2019), for example, who
introduce novel approaches to detect changes in an unknown distribution. Others,
including Chakraborti and van de Wiel (2008); Hawkins and Deng (2010); Murakami
and Matsuki (2010); Ross et al. (2011); Mukherjee and Chakraborti (2012); Liu
et al. (2013); Wang et al. (2017) and Coelho et al. (2017) seek to address a different
nonparametric challenge: the sequential detection of changes in the mean, scale, or
the location of the data. Such methods have also found application in a range of
fields including monitoring financial systems (Pepelyshev and Polunchenko, 2017),
monitoring viral intrusion in computer networks (Tartakovsky and Rozovskĭı, 2007),
detecting changes in social networks (Chen, 2019), genome sequencing (Siegmund,
2013), and radiological data (Padilla et al., 2019).

Our work is motivated by novel challenges increasingly encountered within many
contemporary digital settings, such as those found in the telecommunications sector.
In such environments it is increasingly important to perform device-side analyses on
units with limited computational power and data storage capability or adding as
little computational overhead as possible. Existing methods, such as those mentioned
above are unsuitable for use in such cases as they require the entire data stream to be
stored and analysed a posteriori, whereas our memory-constrained setting makes this
impossible. As a consequence, an online approach that uses a lighter data footprint
is required.

72

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

The first example we present, encountered by an industrial collaborator, can be
seen in Figure 5.1. Here we display two sample data sets of a key operational metric
that are routinely monitored to identify problems with networking devices. Figure
5.1(a) displays data from a healthy device, whereas the data in Figure 5.1(c) contains
an event that triggers a user intervention. Note, in particular how the structure of the
data changes in the region when the event occurs. This can perhaps be more clearly
seen in Figures 5.1(b,d). The ideal, therefore, is to be able to (i) identify the start
of changing structure in advance of the user being required to start an intervention –
we call the correct detection of such an event an ‘anticipation’; (ii) using an approach
that does not necessarily require the same underlying distribution pre- and post-
change and (iii) can still permit (more subtle) non-anomalous changes in structure
that occur over time due to typical operational issues (e.g. electrical interference, line
optimisation etc).

(a) (b)

(c) (d)

Figure 5.1: Example of telecoms operational data: (a) a series without an event, and
(c) a series with an event taking place between the two red lines. The corresponding
kernel density estimates are presented in (b) and (d) respectively.

The second example aims at monitoring for the movement of a DualShock

73

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

controller through the y-axis reading from the accelerometer. Each data stream
consists of 2000 observations, over 100 different data series. The controller is then
directly or indirectly moved at a known time, changing its state. In Figure 5.2 we
present an example of each of the four different types of movement considered, and
remark that we model the movement of the controller as a change in distribution. The
aim of this application is to detect the presence of an user trough the movement of
the controller as quickly as possible. An online efficient method is required due to the
high frequency at which the data is recorded and not to have a huge computational
overhead.

(a) (b)

(c) (d)

Figure 5.2: Examples of the four different types of movement experienced by the
controller. These correspond to picking up the controller (a), sitting on a sofa where
the controller is lying (b), shaking the controller (c), and sliding the controller along
a table (d).

Many existing methods, such as those mentioned above, are unsuitable for
use in this setting as they typically require the entire data stream to be stored.

74

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

Unfortunately in our problem setting, such memory constraints are no longer possible.
To overcome this one might, for example, consider adopting an online nonparametric
changepoint detection approach using a sliding window, such as in the MOSUM
test (Chu et al., 1995; Eichinger and Kirch, 2018; Kirch et al., 2018; Meier et al.,
2021). Alternatively a control chart based approach, e.g. Ross and Adams (2012),
might be considered. Unfortunately, as described above, our telecoms operational
metric can exhibit non-anomalous shifts in mean and variance. Such structure, while
operationally acceptable, may cause a control chart based approach to return excessive
false alarms due to the cumulative nature of the test statistic. Consequently we choose
to adopt a sliding window to guard against this. Further, existing nonparametric
sequential changepoint detection methods prove unsuitable as they do not expect the
null distribution to change over time. To this end we introduce a new windowed,
nonparametric procedure to detect sequential changes in an online setting. Taken
from the Latin, nunc (‘now’), our approach provides a Nonparametric UNbounded
Changepoint (NUNC) detection.

We propose two variants of NUNC: NUNC Local, and NUNC Global. The
first of these algorithms, NUNC Local, performs the detection in a sliding window,
considering only the points inside this window. This allows for the implementation
to work in an online setting. The second, NUNC Global, uses an efficient updating
step to compare the distribution of the historic data seen with the distribution of the
data inside the sliding window; if these differ significantly, a change is identified. The
rest of this paper is organised as follows: In Section 5.2 we outline the methodology
behind our new sequential tests. In particular, we detail the existing nonparametric
changepoint methods our work is based upon, and in Section 5.2.1 we provide details
of our two new window-based changepoint detection tests. The remainder of the
section then explores the properties of the test, including the choice of quantiles and
threshold in Section 5.2.2. We then explore the performance of NUNC Local and
NUNC Global using both simulated scenarios (Section 5.3) and data arising from the
previously described telecommunications setting (Section 5.4).

5.2 Background and Methodology

Our approach builds on the recent work of Zou et al. (2014) and Haynes et al. (2017a),
utilising a nonparametric likelihood ratio test as the basis for the proposed sequential
Nonparametric test. In so doing, the method permits a range of data distributions
to be modelled, without the need for restrictive parametric assumptions. Below we
introduce both NUNC approaches, and provide a discussion of their various features
including computational performance and the choice of quantiles. However, prior to
doing so, we review the pertinent literature on nonparametric changepoint methods.

We begin by outlining some notation. Assume that we observe a data stream

75

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

of real valued independent observations x1, x2, . . . , xt, and that the data stream can
contain a changepoint, at some (unknown) time point τ . Further, assume that x1

is the start of this data stream, xt is the most recently observed point, and that
for j > i, xi:j = xi . . . , xj denotes a segment of the data. If a change is present in
the data at τ1, then we refer to x1, . . . , xτ1 as the pre-change segment, drawn from
a distribution F1(·). Similarly, xτ1+1, . . . xτ2 are considered to be drawn from post-
change distribution, F2(·), with F1 6= F2.

Following Zou et al. (2014), let Fi:t(q) denote the (unknown) cumulative distribu-
tion function (CDF) for the segment xi, . . . , xt, and F̂1:t(q) as its associated empirical
CDF. I.e.

F̂1:t(q) =
1

t

{
t∑

j=1

I(xj < q) + 0.5× I(xj = q)

}
. (5.1)

Under the assumption that the data are independent, then the empirical CDF will
follow a Binomial distribution. That is,

tF̂1:t(q) ∼ Binom(t, F1:t(q)). (5.2)

Using the Binomial distribution, we write the log-likelihood of the segment
xτ1+1, . . . , xτ2 as

L(xτ1+1:τ2 ; q) = (τ2−τ1)
[
F̂τ1+1:τ2(q) log(F̂τ1+1:τ2(q))− (1− F̂τ1+1:τ2(q)) log(1− F̂τ1+1:τ2(q))

]
.

(5.3)
Consequently, equation (5.3) can be used to form a likelihood ratio test statistic for
the detection of a change at a single quantile of the distribution as follows:

max
1≤τ≤t

L(x1:τ ; q) + L(xτ+1:t; q)− L(x1:t; q).

Following Zou et al. (2014) and Haynes et al. (2017a), this test statistic can
be averaged over multiple quantiles, q1, . . . , qK , in order to search for a change in
distribution. The statistic for such a test can be formulated as follows:

CK(x1:t) = max
1≤τ≤t

1

K

K∑
k=1

2 [L(x1:τ ; qk) + L(xτ+1:t; qk)− L(x1:t; qk)] . (5.4)

Here K is the fixed number of quantiles to be averaged over. Haynes et al. (2017a)
propose that a value of K is chosen that is proportionate to log(t). The choice of
quantiles at which the empirical CDF can be evaluated will be discussed later in
Section 5.2.2.

Using this test, a changepoint is declared when CK(x1:t) − β ≥ 0. Thus the
stopping time for our test becomes

max
1≤τ≤t

K∑
k=1

2 [L(x1:τ ; qk) + L(xτ+1:t; qk)− L(x1:t; qk)] ≥ Kβ, (5.5)

76

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

where β is the threshold for the test.
Having outlined how the existing (offline) nonparametric tests work, and how the

cost function from this work can be used to devise a stopping rule for a sequential
changepoint detection test, we are now in a position to introduce our two variant
nonparateric approaches.

5.2.1 Two Sequential Changepoint Detection Algorithms

We now introduce two different, yet related, approaches that can be adopted within
this nonparametric framework: NUNC Local and NUNC Global. Common to both is
the use of a sliding window, and the test statistic given in equation (5.4). Where the
two approaches differ, however, is the manner in which the data observed outside the
window are handled. In NUNC Local, a simplistic perspective is adopted, taking the
data contained within the sliding window into account – i.e., previously seen points
that fall outside this window are forgotten. The advantage of this approach is that
the sequential test is immune to false alarms that might be caused, for example, by
a natural drift in the underlying distribution of the data. The drawback, however, is
that the empirical CDF must be estimated only from the data in the window and so
any historic information is lost.

NUNC Global seeks to overcome the short-comings of NUNC Local. Specifically,
NUNC Global stores the empirical CDF that has been estimated using all data
observed so far, and tests whether the data from such empirical distribution differ
from the data observed in the current window. In Section 5.4 we will seek to
contrast the differences between these to variants. However, prior to this, we describe
both search methods more carefully, whilst also describing various properties and
recommendations.

5.2.1.1 NUNC Local

Our first method takes a sliding window of size W and performs the test on the data
within this sliding window. In the sliding window of points we have that

Qlocalt = max
t−W+1≤τ≤t

K∑
k=1

2 [L(xt−W+1:τ ; qk) + L(xτ+1:t; qk)− L(xt−W+1:t; qk)] , (5.6)

where K is the number of quantiles and β is the test threshold. When Qlocalt ≥ Kβ
then the algorithm stops at time t and declares that a change has occurred at time τ .
A description of NUNC Local pseudocode can be found in Algorithm 9.

The choice of the parameters for NUNC Local, including the window size,
quantiles, and threshold; will be discussed in Section 5.2.2 and in simulations in
Section 5.3. We remark here, however, that the choice of K and the size of the

77

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

window is related to the computational cost of NUNC Local. In particular, this cost
is K · O(W 2).

Algorithm 9: NUNC Local Algorithm

Data: {xt−W+1, ..., xt−1, xt}, the last W realizations from a data generating
process X.

Input: β > 0, K < W , q1, . . . , qk quantiles
1 c←− −log(2W − 1);

2 Q ←− max
t−W+1≤τ≤t

[∑K
k=1 2

(
L(x(t−W):τ ; qk) + L(xτ+1:t; qk)− L(x(t−W):t; qk)

)]
;

3 τ ∗ ←− arg max
t−W+1≤τ≤t

[∑K
k=1 2

(
L(x(t−W):τ ; qk) + L(xτ+1:t; qk)− L(x(t−W):t; qk)

)]
;

4 if Q ≥ Kβ then
5 Return τ ∗ as a changepoint
6 end

In order to reduce the computational requirements of NUNC Local, which is
quadratic in window size, it is possible to instead perform the search on a subset
of the points in the sliding window. In this setting, we obtain the stopping condition:

max
τ∈BJ

K∑
k=1

2 [L(xt−W+1:τ ; qk) + L(xτ+1:t; qk)− L(xt−W+1:t; qk)] ≥ Kβ, (5.7)

where BJ ⊂ {t − W + 1, . . . , t}. This corresponds to changing the maximisation
in Algorithm refalg: Forgetting to taking place over the set BJ rather than the
entire window. Using a subset of size J << W , the computational cost of NUNC
Approximate is reduced to JK · O(W). To find a suitable subset of values to search
inside the sliding window, we first note that intuitively it only makes sense to search
for a change in the right hand half of the window. This is because the data in the
left of the window has already been scanned for a change several times. Moreover,
we can also establish the following: that there exists a point on the right hand side
of the window such that a changepoint cannot be detected to the right of this point.

For any quantile q the test statistic is bounded such that

L(xt−W+1:τ ; q) +L(xτ+1:t; q)−L(xt−W+1:t; q) ≤ −
τ

W
log

τ

W
− (W − τ) log

(
W − τ
W

)
.

(5.8)
Furthermore, for fixed W , this equation is decreasing as τ increases, and so if τ ∗ is
the point such that

− τ
∗

W
log

τ ∗

W
− (W − τ ∗) log

(
W − τ ∗

W

)
≤ β

2

78

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

then for τ > τ ∗ detection of a change is impossible.

Proof 1 See Appendix.

As a consequence of Proposition 6, only a portion of the right hand side of the window
needs to checked, and the value of this cutoff can be found, with the value for τ ∗ being
calculated numerically. Further computational efficiencies can be realised for NUNC
Local if it only performed on a spaced out grid of points. This is due to the value of
the test statistic being correlated at nearby points. Consequently, if segmenting the
data at t does not return a change, then it is unlikely that a change will be detected at
t+ 1. As a result, we propose to use an equally spaced grid of J points starting from
the centre of the window, after it has been trimmed using the value of τ ∗. However,
one drawback of using the grid method is that there will be a higher detection delay
for smaller values of J . This is due to it taking longer for the change to reach a
point that we are checking. As such, we conclude that there is a trade-off between
computational efficiency and detection delay when using the approximated algorithm.

5.2.1.2 NUNC Global

NUNC Global differs from the NUNC Local. Specifically it tests whether or not the
data in the window comes from a different distribution to all the data seen so far.
To store the information in a memory efficient manner, we again fix K quantiles and
update the longrun empirical CDF, denoted by z

(t)
W (·), each time a point leaves the

sliding window. The recursive equations for this update step are as follows:

z
(W)
W (q) = F̂1:W (q),

z
(t+1)
W (q) =

1

t−W + 1

[
(t−W)z

(t)
W (q) + F̂(t−W+1):(t−W+1)(q)

]
, t ≥ W. (5.9)

I.e. the long run empirical CDF is updated to take into account the point that will
leave the sliding window at the next iteration. The Global algorithm then compares
the distribution for the long run empirical CDF to the distribution of the data in the
sliding window, denoted by F̂t−W+1:m(·).

To implement this approach, we need to obtain a CDF estimate of the full data.
This is given by a weighted mixture of the long run empirical CDF and the current
segment empirical CDF estimate. Assuming we are at time, m, and have a sliding
window of size, W , we write this as

F̂full(q) = F̂1:t(q) =
t−W
t

z
(t)
W (q) +

W

t
F̂t−W+1:t(q).

79

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

With these distributions in place, we can obtain the equivalent likelihoods, given
respectively by

L(x1:t−W ; t) = (t−W)
[
z

(t)
W (q) log(z

(t)
W (q))− (1− z(t)

W (q)) log(1− z(t)
W (q))

]
L(xt−W+1:t; t) = W

[
F̂t−W+1:t(q) log(F̂t−W+1:t(q))− (1− Ft−W+1:t(q)) log(1− F̂t−W+1:t(q))

]
L(x1:t; t) = t

[
F̂full(q) log(F̂full(q))− (1− F̂full(q)) log(1− F̂full(q))

]
. (5.10)

The test statistic is then given by:

Qglobalt =
K∑
k=1

2 [L(x1:t−W ; qk) + L(xt−W+1:t; qk)− L(x1:t; qk)] . (5.11)

When Qglobalt ≥ Kβ we stop and declare a change at time t. Pseudocode outlining
the Global algorithm is provided in Algorithm 10. We note that the computational
cost of NUNC Global is KO(W).

Algorithm 10: NUNC Global Algorithm

Data: x(t−W+1):W , the last W realizations from a data generating process X;

z
(t)
W (qk) for qk ∈ t1:K

Input: β > 0; K < W ; t1:K the fixed quantiles.
1 Q ←−

∑K
k=1 2 [L(x1:t−W ; qk) + L(xt−W+1:t; qk)− L(x1:t; qk)];

2 if Q ≥ Kβ then
3 Return t−W as a changepoint.
4 else

5 z
(t+1)
W (qk)←− 1

t−W+1

[
(t−W)z

(t)
W (qk) +F(t−W+1):(t−W+1)(qk)

]
for qk ∈ q1:K .

6 end

The advantage of this approach, over NUNC Local, is that only K pieces of
information are required to store information about the estimate of the CDF of the
null distribution, irrespective of the number of points observed so far or the size of
the sliding window, satisfying the memory constraint requirement of our application.

5.2.2 Parameter selection

The execution of both NUNC Local and Global require the selection of a various
parameters, including the K quantiles q1, . . . , qk and threshold β. Additionally, the
size of the sliding window W must be chosen with care. In practice, W be chosen

80

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

based on specific knowledge of the application and data generating process at hand.
We defer further discussion of this until Section 5.3, where we consider the impact of
W on different simulation scenarios.

Next we turn to the challenge of choosing the K quantiles q1, . . . , qk. The value
of K itself should be chosen to be proportionate to log(W), in line with the method
proposed by Haynes et al. (2017a). In particular, the value K = d4 log(n)e was
proposed, see Haynes et al. (2017a, Section 4.3) for details. Given K, one approach to
choosing the {qk} would be to evaluate evenly spaced empirical quantiles. However,
an alternative approach is motivated by Haynes et al. (2017a, Section 3.1)). That is,
we select qk such that

qk = F̂−1
(

1 + (2W + 1) exp
[c
K

(2k − 1)
])−1

, (5.12)

where c = − log(2W − 1). The reason for making such a choice is that this gives a
higher weight to values in the tail of the distribution (Haynes et al., 2017a), allowing
for more effective change detection. In the Local algorithm, the qk will be updated
as the window changes; in the Global algorithm, however, these K points are fixed in
time. As such, the values of qk must be obtained using the first W points of data the
algorithm analyses. In some situations, however, this issue can be avoided because
there is prior knowledge of the underlying distribution for the data. In this case known
quantiles can be utilised rather than estimating them from the data.

Another important requirement for the two algorithms presented here, as in
other sequential changepoint methods, is the ability to control the false alarm rate
(Tartakovsky et al., 2014). In general, the value of β will be tuned so that the
probability of a false alarm for data under the null hypothesis is set to some level
α. This will be the case, for instance, in the telecommunications application where
the threshold value will be tuned on devices where no even is detected. That said,
we can follow a similar approach to that of Eichinger and Kirch (2018) to obtain
an idea of how beta relates to the probability of a false alarm. Indeed, we can
(asymptotically) approximate the distribution of each term in the sum of equation
(5.6) by a chi-squared-1 distribution (Wilks, 1938). This is the asymptotic distribution
of the likelihood-ratio test for a fixed t, τ , and q, assuming independent identically
distributed (i.i.d.) data. With this approximation, it can be shown that: If β is
chosen such that β = max {β1, β2}, where

β1 = 1− 8K−1 log

(
α

W (t−W + 1)

)
β2 = 1 + 2

√
2 log

(
W (t−W + 1)

α

)
,

then the probability of a false detection by time t is bounded above by α.

81

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

Proof 2 This result follows from bounds on the tail of sums of chi-squared distribu-
tions and a Bonferonni correction – see the Appendix for details.

It should be noted, that in situations where the window size is large this bound
may be conservative due to it being an asymptotic bound. Furthermore, when the
assumptions of data independence and identical distribution are not met, this bound
may not hold, as illustrated in simulations. In such settings we suggest selecting a
threshold by tuning on a data stream that does not contain any changes.

If using an approximate grid of size J < W , then it is necessary to replace the
values of W in the above proposition with the value J . Furthermore, as a corollary
to Proposition 5.2.2, a bound can be obtained for use in NUNC Global.

Corollary 2 If β is chosen such that β = max {β1, β2}, where

β1 = 1− 8K−1 log

(
α

(t−W + 1)

)
β2 = 1 + 2

√
2 log

(
(t−W + 1)

α

)
,

then the probability of a false detection by time t is bounded above by α.

Proof 3 The proofs follows similarly to Proposition 5.2.2, however we perform only
one test, rather than W tests, per window.

Now that the methodology behind NUNC has been presented, and methods for
quantile and threshold selection discussed, we consider its performance within various
simulation settings.

5.3 Simulation Study

In this section we perform examine properties of both NUNC approaches in various
simulation settings. These can be see in Figure 5.3. The first (Figure 5.3(a)) is a
change in the mixture proportions of a bi-modal Gaussian distribution, whilst the
second example considers a change in the scale of a Cauchy Distribution. The third
setting is a change in the amplitude of a sinusoidal process, and the final setting is
that of a change in the drift parameter of an Ornstein-Uhlenbeck (OU) process. Both
the sinusoidal and OU examples are included to highlight how NUNC performs when
the independence assumption is not met. Realisations of each of these data generating
processes can be seen in Figure 5.3.

In what follows, we explore the performance of each method across the four given
scenarios. In particular we consider the influence of window size on the power, and

82

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

(a) (b)

(c) (d)

Figure 5.3: Four different simulations scenarios: (a) change in the amplitude of a
sinusoidal process; (b) change in scale of a Cauchy distribution; (c) change in mixture
proportions of a bi-modal Gaussian distribution; and (d) change in the drift parameter
of an Ornstein–Uhlenbeck process.

83

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

the detection delay, of the test. In each setting we will also compare the NUNC-based
tests against a MOSUM test, as implemented by Meier et al. (2021), a competitor
nonparametric online changepoint algorithm that has a lightweight data footprint.

5.3.1 False Alarm Probability

We begin by considering the false alarm rates returned by the three methods (NUNC
Local, NUNC Global and MOSUM) for 100 replicates of each of our four data
generating scenarios, without a change being present. In each case, the series
generated was of length 1000, with K = 20 and W = 150 for NUNC Local and
NUNC Global. For comparison, we also compared against the equivalent MOSUM
procedure (i.e. W = 150, and other settings set to default). The resulting false alarm
rates for a range of thresholds can be seen in Figure 5.4.

To explore the practical utility of Proposition 5.2.2, we compare the thresholds
required for the i.i.d. multi-modal Gaussian and Cauchy change-in-scale false alarm
rate when seeking to achieve a 10% false alarm rate. Our study highlights that penalty
values of 9 and 10 are required by the NUNC Global algorithm for the multi-modal
Gaussian and Cauchy scenarios respectively. In these two settings, penalties of 11.6
and 12.6 respectively were required for NUNC Local. This compares favourably with
the approximate penalty values selected using Proposition 5.2.2 (9.51 and 12.30 for
the Global and Local cases respectively). Unsurprisingly, in the case of the (non-i.i.d.,
temporally dependent) sinusoidal and OU scenarios, the penalties required for a 10%
false alarm rate differ from those provided by Proposition 5.2.2.

5.3.2 Detection Power and Detection Delay

We now turn to consider the detection power and detection delay of the NUNC
algorithms in a variety of settings. Following Tartakovsky et al. (2014), we define
the detection power as the probability that a changepoint is detected after it has
occurred, and the detection delay as the difference between the stopping time of the
test and the time the changepoint is known to have emerged. Again we focus on 100
replicates of each of the four scenarios displayed in Figure 5.3, where each series is of
length 1000 and the change occurs at time t = 300. In each case we seek to estimate
the detection power and detection delay, controlling the false alarm rate at 10% and
allowing the window size W of the algorithms to vary.

Results for the detection power, and detection delay, are summarised in Tables 5.1
and 5.2 respectively. It is notable that NUNC is able to detect changes in a variety
of settings, including those where the data has time-dependent structure. We also
note that NUNC Global outperforms NUNC Local in most cases, except when the
underlying distribution is sinusoidal. This is perhaps to be expected since NUNC

84

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

(a) (b) (c)

Figure 5.4: The False Alarm rate for increasing threshold values for the four different
simulation scenarios analysed with (a) NUNC Local, (b) NUNC Global and (c)
MOSUM. The dotted line indicates a false alarm rate of 0.10, and the error bars
indicate two standard deviations. In each plot the simulation scenarios are represented
by sinusoidal change-in-amplitude (dark blue); the Cauchy change-in-scale (light
blue); in emerald green, the change-in-mixture proportions (emerald green); and the
change-in-drift in a OU process (light green).

Global incorporates the long-run empirical CDF which stores the historical data.
This allows for better identification of departures from the null when the data is
stationary. When the data is non-stationary, however, this is not so beneficial and so
the performance of NUNC Local is comparable.

Turning to consider the results obtained for the detection delay, displayed in Table
5.2, it is evident that NUNC Local demonstrates stronger performance than that of
NUNC Global. This is as expected, because NUNC Global checks if the distribution
of the data in the window differs from the long run empirical CDF, whereas NUNC
Local checks each point in the window (after pruning as per Proposition 1) for a
changepoint within the window.

In comparison to the MOSUM, the detection power of NUNC typically exceeds it
except in the specific case of multi-modal data being analysed with a large window.
The reason MOSUM performs so well in this case is due to the fact that the change in
mixture proportions can also be cast as a change in mean. For the sinusoidal process,
however, the non-stationarity of the data means that the threshold that is required is
too high for detection to take place.

The results in Table 5.1 also illustrate how, as one might expect, the performance
of NUNC Local improves for stationary data as the size of the window increases.
Specifically, the larger window provides a better estimate of the CDF of the
(stationary) data stream, which in turn makes it easier to identify when a change

85

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

has occurred. The price for this increased power, however, comes in the form of an
increase in computational cost due to the larger window size. As such, there is a
trade off between detection power and the computational burden of NUNC Local.
For NUNC Global, on the other hand, in many situations the use of the long run
CDF provides a better estimate of the distribution under the null. This somewhat
reduces the need to increase the window size.

5.4 Applications

5.4.1 Monitoring Operational Performances of Network De-
vices

We now revisit the telecommunications example, briefly introduced in Section 5.1, to
explore the utility of NUNC in this setting. Recall that the data consists of historic
records of a key operational metric routinely monitored on devices that have limited
computational power and data storage capability. We have records for 473 such
devices, of which 133 were known to contain a (series specific) event that triggered
a user intervention. Due to the specifics of the application, engineers believed that
it is possible to identify the start of the event in the operational data before a user
identifies and makes an intervention. If this is true, then it would be desirable to
identify the start of changing structure in advance of the user identifying and making
an intervention. We call the correct detection of such a change in advance of user
identification, an ‘anticipation’. Conversely, the detection of such an event before it
is resolved is called a ‘detection’. The aim of this exploratory analysis, therefore, is to
identify to what extent NUNC can (a) identify the correct (event-containing) series
and (b) to what extent it can be used to ‘anticipate’ or ‘detect’.

Before summarising the results, we briefly discuss the various parameter choices
made: specifically, the threshold β, the window size W , and the choice of K. In line
with Haynes et al. (2017a), we choose K = d4 log(W)e. The choice of β was made to
control the false alarm rate at a desired level after discussion with domain experts.
In this particular setting, false alarms can be tolerated if this results in improved
identification of real events. Consequently a false alarm rate of 15% was selected. In
order to identify the appropriate value of β to achieve this, we first fix a window size
and then perform NUNC on the 340 data series without the event, choosing a value
of β that gives the desired false alarm rate. NUNC is then applied to the 133 series
known to contain an event using this β, for the chosen window size, to explore the
power of the approach for different window sizes. A similar process is also used to
implement the MOSUM test; again, the threshold is chosen to control the false alarm
rate at 15% for a given window size.

In Figure 5.5(a) we present the anticipation rate for a range of window sizes. As

86

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

W
in

d
o
w

5
0

1
0
0

1
5
0

2
0
0

P
ro

ce
ss

L
o
ca

l
G

lo
b

a
l

M
O

S
U

M
L

o
ca

l
G

lo
b

a
l

M
O

S
U

M
L

o
ca

l
G

lo
b

a
l

M
O

S
U

M
L

o
ca

l
G

lo
b

a
l

M
O

S
U

M
C

a
u

ch
y

0
.5

6
0
.9

0
.0

2
0
.7

1
0
.8
9

0
.0

5
0
.8

1
0
.9
1

0
.0

2
0
.8

5
0
.9
1

0
.0

1
M

u
lt

im
o
d

a
l

0
.4

5
0
.8
7

0
.4

3
0
.3

1
0
.7
9

0
.7

1
0
.5

8
0
.8

0
.9
2

0
.5

8
0
.8

3
0
.9
2

S
in

u
so

id
a
l

0
.9
5

0
0
.9

3
1

0
.9

2
0

0
.1

7
0
.9
1

0
0
.9
8

0
.9

2
0

O
U

0
.2

5
0
.9
2

0
.4

2
0
.4

7
0
.9
1

0
.6

8
0
.3

6
0
.9

0
.8

6
0
.7

9
0
.9
3

0
.9
3

T
ab

le
5.

1:
D

et
ec

ti
on

p
ow

er
of

N
U

N
C

L
o
ca

l,
N

U
N

C
G

lo
b
al

,
an

d
th

e
M

O
S
U

M
fo

r
va

ri
ou

s
w

in
d
ow

si
ze

s,
w

it
h

th
e

b
es

t
p

er
fo

rm
an

ce
fo

r
ea

ch
sc

en
ar

io
h
ig

h
li
gh

te
d

in
b

ol
d
.

W
in

d
o
w

5
0

1
0
0

1
5
0

2
0
0

P
ro

ce
ss

L
o
ca

l
G

lo
b

a
l

M
O

S
U

M
L

o
ca

l
G

lo
b

a
l

M
O

S
U

M
L

o
ca

l
G

lo
b

a
l

M
O

S
U

M
L

o
ca

l
G

lo
b

a
l

M
O

S
U

M
C

a
u

ch
y

1
5
0
.1

6
6
7
.1
3

3
4
5

5
1
.6
7

1
0
9
.3

9
2
1
1

7
2
.9
9

1
3
3
.6

4
4
9
4

4
8
.9
6

1
4
3
.6

9
2
8
5

M
u

lt
im

o
d

a
l

2
8
5
.2

9
1
3
1
.4
6

1
6
9
.2

1
2
8
5
.8

2
2
3
8
.6

3
4
9
.2
3

2
4
2
.5

9
2
6
6
.9

6
4
8
.0
3

2
0
6
.0

9
2
9
7
.0

5
5
9
.0
7

S
in

u
so

id
a
l

1
9
.5
9

In
f

4
1
1
.6

9
5

1
0
2
.0

3
In

f
9
.1
6

1
5
9
.3

In
f

7
.5
8

2
3
8
.6

1
In

f
O

U
2
8
4
.3

2
1
1
5
.8
8

1
7
3
.8

8
2
4
6
.7

1
1
3
6
.8

1
7
7
.6
5

2
4
2
.8

5
1
7
3
.0

1
7
8
.8
3

1
5
5
.7

2
2
1
.0

6
8
1
.3
4

T
ab

le
5.

2:
A

ve
ra

ge
d
et

ec
ti

on
d
el

ay
of

N
U

N
C

L
o
ca

l,
N

U
N

C
G

lo
b
al

,
an

d
th

e
M

O
S
U

M
fo

r
va

ri
ou

s
w

in
d
ow

si
ze

s,
w

it
h

th
e

b
es

t
p

er
fo

rm
an

ce
fo

r
ea

ch
sc

en
ar

io
h
ig

h
li
gh

te
d

in
b

ol
d
.

N
ot

e
th

at
in

li
n
e

w
it

h
T

ar
ta

ko
v
sk

y
et

al
.

(2
01

4)
,

if
n
o

d
et

ec
ti

on
ta

ke
s

p
la

ce
th

en
th

is
co

rr
es

p
on

d
s

to
a

d
et

ec
ti

on
d
el

ay
of

in
fi
n
it

y.

87

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

(a) (b)

Figure 5.5: In (a) comparison of anticipation rates achieved by the Local (Solid Line)
and Global (Dashed Line) variants of NUNC, and the MOSUM (Dotted Line), for
varying window sizes, for a window size of 100 and a false alarm rate of 15%. In (b) a
histogram illustrating the distribution of the time between the detection of an event
by NUNC Local and the report by a customer, for a window size of 100 and a false
alarm rate of 15%.

can be seen, a window of size between 80 and 120 performs the best, with NUNC
Local correctly identifying (i.e. anticipating) > 50% of events in advance of user
intervention. We also note that NUNC outperforms the MOSUM for various choices
of W . One reason for this is because the MOSUM test threshold is set to avoid
detecting the non-anomalous changes in mean that many of the series exhibit, and
this reduces detection power.

False Alarms 1% 5% 10% 15%
Local 0.08 (0.37) 0.28 (0.59) 0.38 (0.68) 0.51 (0.77)
Global 0.03 (0.36) 0.06 (0.51) 0.20 (0.67) 0.35 (0.76)

MOSUM 0.02 (0.02) 0.04 (0.08) 0.05 (0.10) 0.06 (0.12)

Table 5.3: Table illustrating proportion of events anticipated (and detected) for
varying rates of false alarms for both NUNC Local and NUNC Global.

Finally, for a fixed window size (W = 100) we explore the anticipation and
detection rate as the false alarm rate (or equivalently β) varies. The results are
summarised in Table 5.3, and Figure 5.6.

From the results presented, one remark that can be made is that the detection
power for NUNC Local and NUNC Global is similar, with both achieving over 75%
for a false alarm rate of 15% and window of W = 100, but the anticipation power of
NUNC Local is significantly better for a range of false alarm rates and window sizes.
As in the simulations on detection delay, this is due to the way that NUNC Local

88

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

(a) (b)

Figure 5.6: Comparison of event anticipation (a) and event detection (b) rates
achieved by both the Local (Solid Line) and Global (Dashed Line) variants of NUNC,
and the MOSUM (dotted line), for a window of size W = 100 and a false alarm rate
of 15%.

checks every point within the window for a change, allowing for a shorter detection
delay. A second observation is that NUNC achieves better results than the MOSUM
in terms of both anticipation, and power, as the false alarm rate varies.

5.4.2 Controller Data Analysis

In this section we perform an analysis of a DualShock controller movement dataset.
As described in the introduction, the corpus contains 100 data streams consists of
2000 observations each. The aim of the analysis is to detect a change in the physical
state of the controller, which could be either directly or indirectly associated with the
presence of a user.

To measure the performance of NUNC we perform NUNC Local, the NUNC local
approximation from 5.7 (referred as NUNC Approx), NUNC Global, and the MOSUM
on each data stream. We record a successful detection if a change is identified after
the known time of the change, we record the detection delay as the difference between
the stopping time and the time at which the real event occurred. In Table 5.4 we
present the results for the detection test using K = 15, a window of size 100, for
NUNC Approx J = 5, and the β value set according to Proposition to give a false
alarm rate of 1%. To allow for a comparison with the MOSUM procedure we tune its
threshold so that the false alarm rate is controlled at 1% on the data streams before
movement occurs.

As can be seen from the results in Table 5.4, the performance of NUNC outstrips
that of the competitor. Furthermore, NUNC Local is able to offer the best
performance in terms of power but it is only marginally better than NUNC Global.

89

Chapter 5. A Nonparametric Approach to Online Anomaly Detection

Method Power Delay Delay sd
NUNC Local 0.79 98.68 162.63

NUNC Approx 0.77 149.35 221.45
NUNC Global 0.76 90.71 100.76

MOSUM 0.31 96.68 179.67

Table 5.4: Table depicting the performance of the variants of NUNC and the MOSUM
on the controller movement dataset.

We also see that NUNC Approx offers comparable detection power with NUNC Local,
for a saving of as many as 95× 1901 checks for a change, however the use of a smaller
grid drastically increases the detection delay.

One aspect of NUNC Local that can also be explored in this application is how
the detection power can be affected by both too small, or too large, a penalty value.
Indeed, too small a penalty results in early detections that are recorded as false
positives and reduce detection power, whereas too large a penalty results in missed
detections. This is depicted in Figure 5.7. The problem is less apparent for the
Global variant, however, because of the use of the historic information stored in the
long run CDF. Finally, we observe that the detection power for larger thresholds
is increased for NUNC Local for a larger window; this is because a larger window
contains the changepoint for a longer period of time, offering more opportunities for
detection at the expense of enhanced computational cost. By fixing the number of
checks completed, however, NUNC Approx affords this extra power without this extra
cost. This demonstrates the power of the method.

(a) (b)

Figure 5.7: Detection power of NUNC Local (blue), NUNC Global (red), and NUNC
Approx (green) for a window size of 100 (a) and 200 (b) with respect to changing
values of β.

90

Chapter 6

Remarks and Conclusions

Three novel methodologies were introduced during the course of this thesis: (a)
DeCAFS, extending the FPOP recursion to a more sophisticated model accounting for
both autocorrelation in the noise and a fluctuating mean signal; (b) FOCuS, extending
the sequential Page-CUSUM statistics to an online analysis to deal with a pre-change
mean unknown and to more sophisticated models; and (c) NUNC Local and Global:
two related, nonparametric changepoint methods with a lightweight data footprint.

Concerning DeCAFS and FOCuS, there are various ways of developing the
recursions, that build on other extensions of the functional pruning version of optimal
partitioning. For example, conditions on the underlying mean object of inference
could be implemented to produce inference constrained to specific change patterns
(Hocking et al., 2020), or a geometric decay on the mean between segments (Jewell
et al., 2020). Of major interest is a derivation of a multidimensional recursion, as
this is one of the limiting factors of the functional pruning recursions, as they are
currently restricted to the one-dimensional case. This could be solved either exactly
thanks to the recent findings of Runge (2020), or through a grid-based approximation
on the domain of the parameters.

Ultimately, based on the latest functional pruning developments, the goal is
to derive a versatile offline and online multivariate changepoint detection method.
Ideally, such a method should be capable of dealing with non-standard change patterns
and scenarios, various stochastic processes, whilst also being robust to outliers and
model misspecification. One possible way of doing so would be to embed the online
changepoint problem within a discrete-state hidden Markov model as seen in Runge
et al. (2020a), encoding all the novel recursions on the different state transitions.

Concerning NUNC, we denote how the Global implementation offers greater power
in instances where there is a stationary underlying null distribution for the data
(cf. Section 5.3.2). Conversely NUNC Local shows greater resilience and is able
to outperform NUNC Global in settings where the process contains time-dependent

91

Chapter 6. Remarks and Conclusions

or other non-independent structures, such as in the examples that we considered.
As with any approach, NUNC has various weaknesses that might be identified for
criticism. For example, the estimation of the empirical CDF from windowed data
means that gradual changes are likely to go undetected. In addition, as identified
by our simulation study, NUNC Global struggles with changing structure in time-
dependent series. The investigation of potential alternatives to the NUNC framework,
that can resolve such weaknesses, are left as avenues for future research.

Lastly, some work could be done in order to provide better initialization values for
each method, which could lead to further improvements on the statistical performance
of each method respectively. For instance, work could be done to improve the initial
estimation of parameters ση, σν and φ for DeCAFS, or providing a procedure to pick
W the window size and K the number of quantiles for NUNC. This is particularly
challenging in an online scenario, as no look-up-ahead is allowed and therefore there
is the need for online estimators to learn and adapt parameters iteratively.

92

Appendix A

DeCAFS

A.1 Proof of Proposition 1

The initial condition for Q1(µ) follows immediately from its definition.
Then, for t ∈ {2, ..., n}, we need to condition the problem separately on whether

or not we have a changepoint. If we consider no change in the mean of the signal,
then we can we can re-arrange the cost at time t based on the cost at time t − 1 in
the following way:

Qt(µ|δt = 0) = min
u

{
Qt−1(u) + λ(µ− u)2 + γ

(
(yt − µ)− φ(yt−1 − u)

)2
}
.

Similarly, when we have a change:

Qt(µ|δt 6= 0) = min
u,δ

{
Qt−1(u) + λ(µ− u− δ)2 + γ

(
(yt − µ)− φ(yt−1 − u)

)2

+ β

}
= min

u

{
Qt−1(u) + γ

(
(yt − µ)− φ(yt−1 − u)

)2

+ β

}

where the second equality comes from minimising over δ.
Lastly, to obtain the whole cost at time t we take the minimum of these two

functions:

Qt(µ) = min {Qt(µ|δt = 0), Qt(µ|δt 6= 0)}

= min
u

{
Qt−1(u) + min{λ(µ− u)2, β}+ γ

(
(yt − µ)− φ(yt−1 − u)

)2
}
.

�

93

Appendix A. DeCAFS

A.2 Proof of Proposition 2

From the result obtained in Appendix A.1, simple, albeit tedious, algebraic manipu-
lation enables us to re-write the recursions for Qt(µ|δt 6= 0) and Qt(µ|δt = 0) in terms
of the infimal convolution operator. Let zt = yt − φyt−1.

For Qt(µ|δt 6= 0), we can rearrange

γ
(

(yt − µ)− φ(yt−1 − u)
)2

= γ(zt − µ+ φu)2

= γ(zt − µ)2 + γφ2u2 + 2γφuzt − 2γφuµ

= γ(zt − µ)2 + γφ2u2 + 2γφuzt + γφ(u− µ)2 − γφu2 − γφµ2

= γφ(u− µ)2 − γφ(1− φ)

(
u− zt

1− φ

)2

+ γφ
z2
t

1− φ
+ γ(zt − µ)2 − γφµ2

Hence, we have

Qt(µ|δt 6= 0) = min
u∈R

[
Qt−1(u)− γφ(1− φ)

(
u− zt

1− φ

)2

+ γφ(u− µ)2

]
+

γ

1− φ
(zt − (1− φ)µ)2 + β

= INFQt−1,γφ(µ) +
γ

1− φ

(
zt − (1− φ)µ

)2

+ β = Q 6=t (µ),

where

Qt−1(u) = Qt−1(u)− γφ(1− φ)

(
u− zt

1− φ

)2

.

Similar, for Qt(µ|δt = 0), we can rearrange

λ(µ− u)2 + γ
(

(yt − µ)− φ(yt−1 − u)
)2

= (γφ+ λ)(u− µ)2 − γφ(1− φ)

(
u− zt

1− φ

)2

+ γφ
z2
t

1− φ
+ γ(zt − µ)2 − γφµ2.

Hence

Qt(µ|δt = 0) = INFQt−1,γφ+λ(µ) +
γ

1− φ

(
zt − (1− φ)µ

)2

= Q=
t (µ),

where Qt−1 is defined above. �

94

Appendix A. DeCAFS

Comment 1 If φ < 0 then γφ < 0 and the infimal convolution INFQt−1,γφ(µ) is not
defined. In this case we make a transformation of variable v = −u so that

Qt(µ|δt 6= 0) = min
v∈R

[
Qt−1(−v)− γφ(1− φ)

(
−v − zt

1− φ

)2

+ γφ(−v − µ)2

]
+

γ

1− φ
(zt − (1− φ)µ)2 + β

= min
v∈R

[
Qt−1(−v)− γφ(1− φ)

(
v +

zt
1− φ

)2

− |γφ|(v2 + 2µv + µ2)

]
+

γ

1− φ
(zt − (1− φ)µ)2 + β

= min
v∈R

[
Qt−1(−v)− γφ(1− φ)

(
v +

zt
1− φ

)2

+ |γφ|(v2 − 2µv + µ)2 + 2γφ(v2 + µ2)

]
+

γ

1− φ
(zt − (1− φ)µ)2 + β

= min
v∈R

[
Qt−1(−v)− γφ(1− φ)

(
v +

zt
1− φ

)2

+ 2γφv2 + |γφ|(v − µ)2

]
+

γ

1− φ
(zt − (1− φ)µ)2 + 2γφµ2 + β

= INFQ̃t−1,|γφ|(µ) +
γ

1− φ

(
zt − (1− φ)µ

)2

+ 2γφµ2 + β,

where

Q̃t−1(u) = Qt−1(−u)− γφ(1− φ)

(
u+

zt
1− φ

)2

+ 2γφu2.

Similarly if γφ+ λ < 0 then we need to make a similar change to the equation for
Qt(µ|δt = 0). This becomes

Qt(µ|δt = 0) = INFQ̄t−1,|γφ+λ|(µ) +
γ

1− φ

(
zt − (1− φ)µ

)2

+ 2(γφ+ λ)µ2,

where

Q̄t−1(u) = Qt−1(−u)− γφ(1− φ)

(
u+

zt
1− φ

)2

+ 2(γφ+ λ)v2.

If φ < 0 then γφ < 0 and the infimal convolution INFQt−1,γφ(µ) is not defined. In

this case we make a transformation of variable ũ = −u and φ̃ = −φ so that

γ
(

(yt − µ)− φ(yt−1 − u)
)2

= γ(zt − µ+ φu)2 = γ(zt − µ+ φ̃ũ)2

= γφ(ũ− µ)2 − γφ̃(1− φ̃)

(
ũ− zt

1− φ̃

)2

+ γφ̃
z2
t

1− φ̃
+ γ(zt − µ)2 − γφ̃µ2,

95

Appendix A. DeCAFS

by the same manipulation as given at the start of this section.
Thus using that Qt−1(u) = Qt−1(ũ) we obtain

Qt(µ|δt 6= 0) = min
ũ∈R

[
Qt−1(−ũ)− γφ̃(1− φ̃)

(
ũ− zt

1− φ̃

)2

+ γφ̃(ũ− µ)2

]
+

γ

1− φ̃
(zt − (1− φ̃)µ)2 + β

= INFQ̃t−1,γφ̃
(µ) +

γ

1− φ̃

(
zt − (1− φ̃)µ

)2

+ β = Q6=t (µ),

where

Q̃t−1(u) = Qt−1(−u)− γφ̃(1− φ̃)

(
ũ− zt

1− φ̃

)2

.

Similarly, using the same transformation ũ = −u and φ̃ = −φ we also derive

Qt(µ|δt = 0) = INFQ̃t−1,γφ̃+λ(µ) +
γ

1− φ̃

(
zt − (1− φ̃)µ

)2

= Q=
t (µ),

where Q̃t−1 is defined above. �

A.3 Algorithm for INFQt,ω

Algorithm 11 shows how we can now calculate INFQt,ω in a linear-in-piece O(s) time
complexity. In this algorithm we have input qi∗ = INFqit, where qit is the ith piecewise
quadratic from Qt with i ∈ {1, ..., s}. Algorithm 11 computes the intervals, domi

∗ such
that {domui

∗ , i = 1, ..., s∗} is the partition of the real line for INFQt,ω, with Q∗ storing
the associated quadratics for each interval in this partition. In Algorithm 11 we use
the list-operator Last(l) to designate the last element of the list l; indexLast(l),

96

Appendix A. DeCAFS

delete Last(l) to get the associated index of the last element or to delete this element.

Algorithm 11: INFQt,ω pruning

Input: List of ordered quadratics (q1
∗, q

2
∗, . . . , q

s−1
∗ , qs∗)

1 begin Initialization: Q∗ means ”Remaining quadratics” and LB ”Left
Bound”

2 Q∗ ←− (q1
∗); LB ←− (−∞)

3 end
4 for i = 2 to s do
5 j ←− indexLast(Q∗)
6 µi : qi∗(µi)− qj∗(µi) = 0 with qi∗(µ) < qj∗(µ) for µ > µi close to µi
7 while µi < Last(LB) do
8 delete Last(Q∗); delete Last(LB)
9 j ←− indexLast(Q∗)

10 µi : qi∗(µi)− qj∗(µi) = 0 with qi∗(µ) < qj∗(µ) for µ > µi close to µi
11 end
12 Q∗ ←− (Q∗, q

i
∗); LB ←− (LB, µi)

13 end
14 s∗ = #LB (the number of element in LB)
15 for i = 1 to s∗ − 1 do
16 domi

∗ =]LB(i), LB(i+ 1)]
17 end
18 doms∗

∗ =]LB(s∗),+∞[
19 Return Q∗ and (dom1

∗, ...,dom
s∗
∗)

A.4 Additional Empirical Results

A.4.1 Distorted Parameter Estimation

To see what might happen in case of a distorted parameter estimation, as mentioned
in the simulation study of Section 3.6, please refer to Figure A.1. We can see there,
how even when misspecifying the model, in this case via fitting a pure AR(1) when
there was some drift in the signal, we find a distorted signal µ estimation, however
we are still able to reconstruct the changepoint locations relatively well. A complete
simulation study on the behaviour of the estimator is in the supplementary materials
of Romano et al. (2021).

97

Appendix A. DeCAFS

●●●
●●●●
●●●●●
●●
●
●●●●●●●●●
●●
●●●
●●●●
●●●●●●●●●●●●●●
●●
●●
●●
●
●
●●●●●
●●●●
●●●●
●●●●●
●
●●●●●●●●●●●●●
●●
●●●●●

●●●
●●
●●
●●
●●●
●
●●
●●
●●
●●
●
●●
●●●●●●●●
●●●●
●●
●
●
●●
●
●●
●
●●
●
●
●●●
●●●●●●
●
●●●●●●
●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●
●
●
●●
●●●
●●●●●
●●●●●●●●
●●●
●●●●●
●●
●
●●●
●●
●
●●●●
●●
●●●●●
●
●
●●●●●●●●
●
●●

●
●●
●
●
●●●●●
●●●●●●
●●●●●●●●●●●●●●
●
●
●●●●●
●●●
●
●●
●
●●
●
●●●●
●●●●●●●●●●
●
●●●●
●
●●
●●
●●●●●●●●●●●●●
●●●●
●●●
●●●●
●●
●●●●●
●●●
●●●●●●●●●●●
●●●●●●●
●●●●
●
●
●
●●
●●●●●
●
●●
●●●
●
●●●●●●●●●●
●●●●●●
●●
●
●
●●●●
●●
●●●
●
●
●●
●●●●●●●●
●●●
●
●●●●●
●●●●●
●●
●●●
●●●●●●●
●●●●●●●●●●●
●●●
●●●●
●
●●
●●●●●
●
●●●●
●●●●●●
●●

●●
●
●
●●
●●●●●●●●●●
●
●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●●●●●●●
●●●●●●
●
●●●●●●●●●●
●●●●●
●●●●●●
●●
●●●
●●
●●
●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●
●●●
●●●●●●
●
●●
●●●●●●●
●
●●●
●●●●●●
●●●
●●●●
●●
●●●●●●●
●
●●
●●●
●●
●●●●●
●●
●●●●●●●●
●●●●●●●
●●●●●
●●●
●●●●●
●●
●●
●●
●
●●
●
●●●●
●●●●
●
●
●●●●
●●●●●●●●●●
●●
●●●●●●
●●
●●

●●●
●●●●
●●
●●●●
●●●
●
●
●
●
●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●
●●
●
●●●
●
●●
●●●●
●●●●
●●●●●●
●
●●●
●
●●
●
●●●
●●●●●
●
●●
●●●
●●●●●
●●●●●
●
●●●●●●●
●●
●●
●●●●●●●
●●
●●
●
●
●●
●●●●
●●●●●●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●●●●●
●
●●
●●●●●●●●●●
●●
●●●
●●●●●●●
●●●
●
●●●●
●●●●●●
●●●
●●●
●
●●●●●●●
●
●●●
●●●●●
●●
●●
●●●
●●●●●●●●
●●

●●●●
●●●●●
●
●●●●●●
●
●●
●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●
●
●●●
●●●●
●●●●●●●●●●
●●●●
●
●
●
●●●
●●●●●
●●
●●●●●●●●
●●
●●●
●●●●●●
●●
●
●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●
●
●●
●●●●●
●●●●
●●●●●●
●●●
●●●●●
●●●●
●●●●
●●●●●●●●●●
●●
●●●●
●●
●●●●●●
●●●●●●
●
●●●●●
●
●●●
●●●●●●
●●
●●●●●
●●●
●●●●
●●●●
●●
●●●
●●●●

●●●●●
●●●●
●●●●●
●
●●
●●
●●●
●●●●●●●●●●●
●●●●
●
●●
●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●
●●●●●●●●
●●
●●
●●●●●●●●●●●●
●●●●●●
●●
●
●●●
●●●●
●●●●●
●●●
●●
●●
●●●●●
●
●●
●
●●●
●●●●
●●●
●●●●●●
●●●
●●●●●●●
●●●●
●●●●●●●●●
●●●
●●●●
●●●●●
●●●●●●●●
●●●
●●
●●●●
●
●●●●●●●●
●
●●●●●●
●●●
●
●
●●●
●●
●●●●
●●●●
●●●●
●●
●●●

●●●
●●
●
●●
●●●●●
●●
●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●
●
●●●●●●●●●
●
●
●●
●●●●●●●●
●●
●●
●●●●●●●
●●●●●
●●
●●
●●●●
●●●●●●●
●●●●●
●●●●●
●●●●●●●●●
●●
●●●●
●●●●●●
●●●●●
●●
●●●●●●●●●●●●
●●
●●●●
●●●●
●●●●●
●●●●
●●●●
●●●●●●●●●
●●●●●●●
●●●●●
●●
●●●●
●
●
●●
●●●
●●●
●●●●●●●
●●●●
●
●●●●●●

●●
●
●●●
●
●

●●●
●●●●
●●●●●●
●
●●●
●●●●●
●●
●●●●●●
●●●●●●●●●●
●
●●
●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●
●●●●●
●●
●
●
●●●●●●
●●
●
●●●●●●●
●
●●●●●●●●●●●
●
●●
●
●●●●●●●●●●
●●●●●
●
●●●
●●●●
●●●
●●●●●●●●●
●●●
●●●●●●
●
●●
●
●
●●●●
●●●
●●●●
●●
●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●
●●●●
●
●●●
●●
●●●●●●●●●●
●●●
●
●●●
●●●●●●
●

●●●●●
●
●●●●●●
●●
●●
●
●●●
●
●
●●●●
●●●
●
●
●●
●●●●●
●
●●●●●●●●
●●●●
●●●
●●●
●●●●
●
●●●●●●●
●
●
●●●●
●●
●●●●●●●●
●●●
●●●●●
●●●●●●
●
●●
●●●●●
●●●
●●●●●●
●●●
●
●●●●
●●●●●●
●●●
●
●●●
●●●●
●●●
●●
●●●
●●●
●●
●●●●
●●
●●●●●●
●●●●
●●●
●●●●●
●●●
●●●●
●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●
●●●●●
●
●●●●
●
●●●●
●●●●●

●●●●●
●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●
●
●●
●●
●
●
●●●●●●
●●●
●●●
●●●●●●●
●●
●●●●●●●
●●
●
●
●
●●●●●●●
●●●
●●●●●●●
●
●●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●
●
●●
●
●●●
●●
●●
●
●●●●●●●
●●●
●●●●
●●
●●●
●●●
●
●
●●●
●●●●
●●●●
●●●
●●●●
●
●●●
●●●●●
●●●●●●
●●●●
●●●●●●●●●
●●●●●●
●
●●●
●●●
●●●●
●●
●●●●
●
●●●●
●●●●
●
●●
●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●
●●
●
●●●
●●●●
●●
●
●●●●●●
●●●●●
●●●●
●●
●●●●●●●●●
●●●●●●●
●●●
●●●●●
●●●●●
●●
●●
●●●●●
●
●●
●●●●●●●●
●
●
●●●●●
●●●
●●●●●
●
●●●
●●●●●●●
●●

●●●●●●●●●●●●●●●●
●●●
●●
●●
●
●
●
●

●●●●
●●●●●
●●
●●●●●●●
●●●
●●●●●●●
●●●●●●●
●
●●●●●
●●●●●
●●●●●
●●●
●●●●●●●●
●●●●●
●●●●●●
●
●●●
●●●
●●●●●●●●●●
●●●●●
●●●●●●
●
●●

●
●
●●●
●
●
●●
●
●●●
●
●●●●●●
●●
●●●●●
●●●●●●●●●
●●●●
●●●●●
●●
●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●
●
●●
●
●●●
●●●●●
●
●●●●
●●●●
●●●●●●●●
●●●●●●●●●●●
●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●
●●●
●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●●●
●●
●●●●
●●●●●
●
●●●●
●●
●●
●●●●●

●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●
●●●●●●●
●●●●●
●●●●●●●
●●
●●
●●●●●
●●●●●●
●
●
●●
●●●●●●●
●●●●●●
●●●●
●●
●●●●
●
●●●●●●●●
●
●●●●●
●●●●
●●●●●
●●
●
●●●
●●●●●
●●●●●●
●●
●●●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●
●●

●●
●●●
●●●
●
●●
●●●●
●●●●●●●●●●
●●●●
●●●
●
●
●●
●●●●
●●
●
●●●●●
●●●●
●●●●●●
●●●●●
●●
●●●
●●
●●

●●
●●●●●●●●●●
●●
●●●
●
●
●●●
●●
●
●●●●
●●●●●●●●●●●●
●●●
●●●
●
●●●●●●●●●●●●●●
●●●●
●●
●●●●●●
●●●●
●●
●●●●●●
●●●●●●●
●
●
●●●●●●●
●
●●
●
●●
●
●
●●
●●●●●●●●●●●●●●●●
●●●●●●
●●
●●●
●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●
●●
●●●●
●
●●●
●●●●●
●●
●●●●
●●●●●●●
●●●
●●●
●
●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●
●●●●
●●●●

●●
●●
●●●●
●●
●●
●●●●
●●●
●●
●●●●
●●●●●●
●
●●●
●
●●●●●●●●

●●●●●
●●
●●●
●
●
●●●●
●
●●●●●●●●●●●●●●●
●●
●●●●
●●●
●●●
●●●
●●●●●●
●●●●●●
●
●●●●●●●
●
●●
●
●●●●●
●●●●●●●
●●●●
●
●●●●●●
●●●●●●●●●
●●●●●
●●●
●●●
●●●●●
●●●●●●●●●●●●
●
●●
●●●●●
●●●●●●●●●
●●
●●●●
●
●
●●●●●●●●●●
●●●
●●●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●

●●●●●●●
●●
●●●
●●
●●●●
●
●●●●●●●●
●●
●●●●
●
●●●●●
●
●●●●
●●●●●●●●●●
●
●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●
●●●●
●
●●●●
●●
●●●●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●
●
●
●●●●●●●●●
●●
●
●●●●●
●●●●●
●●●●
●●●●
●●●●●●●●●●
●●●●●●
●
●●●●
●●●●
●
●●●●●
●

●●●
●●
●●●●●●●
●●●●●
●
●●●●
●●●●
●●
●
●●●
●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●

●●
●●●●●
●●
●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●
●
●●
●●●
●
●
●●●●
●
●●●
●●
●●●●●
●
●●●
●●●●
●●●●
●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●
●●●
●
●●●●●●●
●
●●●●●●
●●●●●●●●●
●●●
●●●
●●●
●●
●●
●
●●●●●
●●●●
●●●●●●●
●
●●●●
●●●
●●
●●●●●●●
●●
●
●●●
●
●●●●
●●
●●●
●●
●
●
●●
●●●●●●●●
●●●●
●●
●●●
●●
●●●●
●●
●●●
●●●
●●●

●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●
●
●●●
●●●
●
●●●●●●●●●●
●●●
●
●●
●●
●
●●
●●●
●●●●●●●
●●
●●
●●●●●●
●
●
●●
●●●●
●●●
●●●●●●●●●
●●●●
●●●●●
●
●
●●
●●●●●●●●●
●●
●●
●●●●●
●●●
●●
●●●●●●
●●●
●●●●●●●●●
●●
●●
●●●●
●●●
●●●
●
●●
●●●●●●●
●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●
●●●●●●●
●●
●●
●●●●
●
●
●●●●●
●●●●
●
●●
●●●●
●
●●
●
●●●●●
●●●●●

●●
●
●●●●
●●●●●●●
●
●
●●
●●●●
●
●
●●●
●●●●
●●●●●
●●●
●●●●●
●
●●●●●
●●●●●●●●
●
●●
●●●
●●●●
●●●●
●
●●●●●●●
●●●●●
●●●●●●●
●●●●
●●
●
●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●
●●●●
●●●●●●
●●●●
●●
●
●
●●
●
●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●●●●●●●

●●●●●●●●●
●
●●●
●●●

●●
●●●●
●
●
●
●●●
●●●●●●
●●●●●●

●
●
●●
●●●
●●●●
●●●●●
●
●●●●●●●
●●●●●
●●●●●●●
●●●
●
●●
●
●●●●●●
●●●●●
●
●●
●
●●●●●●●●●●●
●●●●●●●●●●
●
●
●●
●
●●●●●●●
●●●●●
●●●●●●●●●●●●
●
●
●●
●●●
●●●
●●●
●●●●
●●●●●●●
●
●●●
●●●
●
●●●●●
●●●
●●●●●
●●●
●●
●●●●

●●
●●●●
●●●
●
●●●●●●●●
●●●●●
●
●●
●
●●●●●
●●●●●
●●
●●
●●
●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●●
●
●●●●●●
●●●●●●●

●●●
●●●●
●●●●●
●●
●
●●●●●●●●●
●●
●●●
●●●●
●●●●●●●●●●●●●●
●●
●●
●●
●
●
●●●●●
●●●●
●●●●
●●●●●
●
●●●●●●●●●●●●●
●●
●●●●●

●●●
●●
●●
●●
●●●
●
●●
●●
●●
●●
●
●●
●●●●●●●●
●●●●
●●
●
●
●●
●
●●
●
●●
●
●
●●●
●●●●●●
●
●●●●●●
●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●
●
●
●●
●●●
●●●●●
●●●●●●●●
●●●
●●●●●
●●
●
●●●
●●
●
●●●●
●●
●●●●●
●
●
●●●●●●●●
●
●●

●
●●
●
●
●●●●●
●●●●●●
●●●●●●●●●●●●●●
●
●
●●●●●
●●●
●
●●
●
●●
●
●●●●
●●●●●●●●●●
●
●●●●
●
●●
●●
●●●●●●●●●●●●●
●●●●
●●●
●●●●
●●
●●●●●
●●●
●●●●●●●●●●●
●●●●●●●
●●●●
●
●
●
●●
●●●●●
●
●●
●●●
●
●●●●●●●●●●
●●●●●●
●●
●
●
●●●●
●●
●●●
●
●
●●
●●●●●●●●
●●●
●
●●●●●
●●●●●
●●
●●●
●●●●●●●
●●●●●●●●●●●
●●●
●●●●
●
●●
●●●●●
●
●●●●
●●●●●●
●●

●●
●
●
●●
●●●●●●●●●●
●
●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●●●●●●●
●●●●●●
●
●●●●●●●●●●
●●●●●
●●●●●●
●●
●●●
●●
●●
●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●
●●●
●●●●●●
●
●●
●●●●●●●
●
●●●
●●●●●●
●●●
●●●●
●●
●●●●●●●
●
●●
●●●
●●
●●●●●
●●
●●●●●●●●
●●●●●●●
●●●●●
●●●
●●●●●
●●
●●
●●
●
●●
●
●●●●
●●●●
●
●
●●●●
●●●●●●●●●●
●●
●●●●●●
●●
●●

●●●
●●●●
●●
●●●●
●●●
●
●
●
●
●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●
●●
●
●●●
●
●●
●●●●
●●●●
●●●●●●
●
●●●
●
●●
●
●●●
●●●●●
●
●●
●●●
●●●●●
●●●●●
●
●●●●●●●
●●
●●
●●●●●●●
●●
●●
●
●
●●
●●●●
●●●●●●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●●●●●
●
●●
●●●●●●●●●●
●●
●●●
●●●●●●●
●●●
●
●●●●
●●●●●●
●●●
●●●
●
●●●●●●●
●
●●●
●●●●●
●●
●●
●●●
●●●●●●●●
●●

●●●●
●●●●●
●
●●●●●●
●
●●
●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●
●
●●●
●●●●
●●●●●●●●●●
●●●●
●
●
●
●●●
●●●●●
●●
●●●●●●●●
●●
●●●
●●●●●●
●●
●
●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●
●
●●
●●●●●
●●●●
●●●●●●
●●●
●●●●●
●●●●
●●●●
●●●●●●●●●●
●●
●●●●
●●
●●●●●●
●●●●●●
●
●●●●●
●
●●●
●●●●●●
●●
●●●●●
●●●
●●●●
●●●●
●●
●●●
●●●●

●●●●●
●●●●
●●●●●
●
●●
●●
●●●
●●●●●●●●●●●
●●●●
●
●●
●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●
●●●●●●●●
●●
●●
●●●●●●●●●●●●
●●●●●●
●●
●
●●●
●●●●
●●●●●
●●●
●●
●●
●●●●●
●
●●
●
●●●
●●●●
●●●
●●●●●●
●●●
●●●●●●●
●●●●
●●●●●●●●●
●●●
●●●●
●●●●●
●●●●●●●●
●●●
●●
●●●●
●
●●●●●●●●
●
●●●●●●
●●●
●
●
●●●
●●
●●●●
●●●●
●●●●
●●
●●●

●●●
●●
●
●●
●●●●●
●●
●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●
●
●●●●●●●●●
●
●
●●
●●●●●●●●
●●
●●
●●●●●●●
●●●●●
●●
●●
●●●●
●●●●●●●
●●●●●
●●●●●
●●●●●●●●●
●●
●●●●
●●●●●●
●●●●●
●●
●●●●●●●●●●●●
●●
●●●●
●●●●
●●●●●
●●●●
●●●●
●●●●●●●●●
●●●●●●●
●●●●●
●●
●●●●
●
●
●●
●●●
●●●
●●●●●●●
●●●●
●
●●●●●●

●●
●
●●●
●
●

●●●
●●●●
●●●●●●
●
●●●
●●●●●
●●
●●●●●●
●●●●●●●●●●
●
●●
●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●
●●●●●
●●
●
●
●●●●●●
●●
●
●●●●●●●
●
●●●●●●●●●●●
●
●●
●
●●●●●●●●●●
●●●●●
●
●●●
●●●●
●●●
●●●●●●●●●
●●●
●●●●●●
●
●●
●
●
●●●●
●●●
●●●●
●●
●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●
●●●●
●
●●●
●●
●●●●●●●●●●
●●●
●
●●●
●●●●●●
●

●●●●●
●
●●●●●●
●●
●●
●
●●●
●
●
●●●●
●●●
●
●
●●
●●●●●
●
●●●●●●●●
●●●●
●●●
●●●
●●●●
●
●●●●●●●
●
●
●●●●
●●
●●●●●●●●
●●●
●●●●●
●●●●●●
●
●●
●●●●●
●●●
●●●●●●
●●●
●
●●●●
●●●●●●
●●●
●
●●●
●●●●
●●●
●●
●●●
●●●
●●
●●●●
●●
●●●●●●
●●●●
●●●
●●●●●
●●●
●●●●
●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●
●●●●●
●
●●●●
●
●●●●
●●●●●

●●●●●
●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●
●
●●
●●
●
●
●●●●●●
●●●
●●●
●●●●●●●
●●
●●●●●●●
●●
●
●
●
●●●●●●●
●●●
●●●●●●●
●
●●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●
●
●●
●
●●●
●●
●●
●
●●●●●●●
●●●
●●●●
●●
●●●
●●●
●
●
●●●
●●●●
●●●●
●●●
●●●●
●
●●●
●●●●●
●●●●●●
●●●●
●●●●●●●●●
●●●●●●
●
●●●
●●●
●●●●
●●
●●●●
●
●●●●
●●●●
●
●●
●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●
●●
●
●●●
●●●●
●●
●
●●●●●●
●●●●●
●●●●
●●
●●●●●●●●●
●●●●●●●
●●●
●●●●●
●●●●●
●●
●●
●●●●●
●
●●
●●●●●●●●
●
●
●●●●●
●●●
●●●●●
●
●●●
●●●●●●●
●●

●●●●●●●●●●●●●●●●
●●●
●●
●●
●
●
●
●

●●●●
●●●●●
●●
●●●●●●●
●●●
●●●●●●●
●●●●●●●
●
●●●●●
●●●●●
●●●●●
●●●
●●●●●●●●
●●●●●
●●●●●●
●
●●●
●●●
●●●●●●●●●●
●●●●●
●●●●●●
●
●●

●
●
●●●
●
●
●●
●
●●●
●
●●●●●●
●●
●●●●●
●●●●●●●●●
●●●●
●●●●●
●●
●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●
●
●●
●
●●●
●●●●●
●
●●●●
●●●●
●●●●●●●●
●●●●●●●●●●●
●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●
●●●
●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●●●
●●
●●●●
●●●●●
●
●●●●
●●
●●
●●●●●

●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●
●●●●●●●
●●●●●
●●●●●●●
●●
●●
●●●●●
●●●●●●
●
●
●●
●●●●●●●
●●●●●●
●●●●
●●
●●●●
●
●●●●●●●●
●
●●●●●
●●●●
●●●●●
●●
●
●●●
●●●●●
●●●●●●
●●
●●●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●
●●

●●
●●●
●●●
●
●●
●●●●
●●●●●●●●●●
●●●●
●●●
●
●
●●
●●●●
●●
●
●●●●●
●●●●
●●●●●●
●●●●●
●●
●●●
●●
●●

●●
●●●●●●●●●●
●●
●●●
●
●
●●●
●●
●
●●●●
●●●●●●●●●●●●
●●●
●●●
●
●●●●●●●●●●●●●●
●●●●
●●
●●●●●●
●●●●
●●
●●●●●●
●●●●●●●
●
●
●●●●●●●
●
●●
●
●●
●
●
●●
●●●●●●●●●●●●●●●●
●●●●●●
●●
●●●
●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●
●●
●●●●
●
●●●
●●●●●
●●
●●●●
●●●●●●●
●●●
●●●
●
●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●
●●●●
●●●●

●●
●●
●●●●
●●
●●
●●●●
●●●
●●
●●●●
●●●●●●
●
●●●
●
●●●●●●●●

●●●●●
●●
●●●
●
●
●●●●
●
●●●●●●●●●●●●●●●
●●
●●●●
●●●
●●●
●●●
●●●●●●
●●●●●●
●
●●●●●●●
●
●●
●
●●●●●
●●●●●●●
●●●●
●
●●●●●●
●●●●●●●●●
●●●●●
●●●
●●●
●●●●●
●●●●●●●●●●●●
●
●●
●●●●●
●●●●●●●●●
●●
●●●●
●
●
●●●●●●●●●●
●●●
●●●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●

●●●●●●●
●●
●●●
●●
●●●●
●
●●●●●●●●
●●
●●●●
●
●●●●●
●
●●●●
●●●●●●●●●●
●
●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●
●●●●
●
●●●●
●●
●●●●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●
●
●
●●●●●●●●●
●●
●
●●●●●
●●●●●
●●●●
●●●●
●●●●●●●●●●
●●●●●●
●
●●●●
●●●●
●
●●●●●
●

●●●
●●
●●●●●●●
●●●●●
●
●●●●
●●●●
●●
●
●●●
●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●

●●
●●●●●
●●
●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●
●
●●
●●●
●
●
●●●●
●
●●●
●●
●●●●●
●
●●●
●●●●
●●●●
●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●
●●●
●
●●●●●●●
●
●●●●●●
●●●●●●●●●
●●●
●●●
●●●
●●
●●
●
●●●●●
●●●●
●●●●●●●
●
●●●●
●●●
●●
●●●●●●●
●●
●
●●●
●
●●●●
●●
●●●
●●
●
●
●●
●●●●●●●●
●●●●
●●
●●●
●●
●●●●
●●
●●●
●●●
●●●

●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●
●
●●●
●●●
●
●●●●●●●●●●
●●●
●
●●
●●
●
●●
●●●
●●●●●●●
●●
●●
●●●●●●
●
●
●●
●●●●
●●●
●●●●●●●●●
●●●●
●●●●●
●
●
●●
●●●●●●●●●
●●
●●
●●●●●
●●●
●●
●●●●●●
●●●
●●●●●●●●●
●●
●●
●●●●
●●●
●●●
●
●●
●●●●●●●
●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●
●●●●●●●
●●
●●
●●●●
●
●
●●●●●
●●●●
●
●●
●●●●
●
●●
●
●●●●●
●●●●●

●●
●
●●●●
●●●●●●●
●
●
●●
●●●●
●
●
●●●
●●●●
●●●●●
●●●
●●●●●
●
●●●●●
●●●●●●●●
●
●●
●●●
●●●●
●●●●
●
●●●●●●●
●●●●●
●●●●●●●
●●●●
●●
●
●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●
●●●●
●●●●●●
●●●●
●●
●
●
●●
●
●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●●●●●●●

●●●●●●●●●
●
●●●
●●●

●●
●●●●
●
●
●
●●●
●●●●●●
●●●●●●

●
●
●●
●●●
●●●●
●●●●●
●
●●●●●●●
●●●●●
●●●●●●●
●●●
●
●●
●
●●●●●●
●●●●●
●
●●
●
●●●●●●●●●●●
●●●●●●●●●●
●
●
●●
●
●●●●●●●
●●●●●
●●●●●●●●●●●●
●
●
●●
●●●
●●●
●●●
●●●●
●●●●●●●
●
●●●
●●●
●
●●●●●
●●●
●●●●●
●●●
●●
●●●●

●●
●●●●
●●●
●
●●●●●●●●
●●●●●
●
●●
●
●●●●●
●●●●●
●●
●●
●●
●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●●
●
●●●●●●
●●●●●●●

−400

−300

−200

−100

0

0 1000 2000 3000 4000 5000
t

y

Algorithm

DeCAFS

DeCAFS.est

Figure A.1: An example of a sequence generated with ση = 4, σν = 2, φ = 0.14, with
relative signal and changepoints estimates of DeCAFS with real parameter values
compared to DeCAFS with estimated ones. On this particular sequence, our estimator
returns values for initial parameters of σ̂η = 0, σ̂ν = 4.6, φ̂ = 0.98, resulting in a
distorted signal estimation.

A.4.2 Comparison of DeCAFS and AR1Seg on a Ornstein-
Uhlenbeck process

We compare performances of both DeCAFS and AR1Seg from Chakar et al. (2017) on
a discrete Ornstein-Uhlenbeck process with abrupt changes. Let y1:n = (y1, . . . , yn) ∈
Rn a sequence of n realizations of the process:

yt = µt + εt t = 1, . . . , n

where for t = 2, . . . , n

µt = ft + νt

and εt ∼
iid
N (0, σ2), ft is a piecewise constant signal we wish to infer the changes

of whether ft 6= ft−1, and finally νt is a discrete Ornstein–Uhlenbeck process defined
by:

νt = νt−1 − θνt−1 + σνηt; with ηt ∼
iid
N (0, σ2

η).

Differently from the RW process introduced in the main model in Equation 3.1
the OU process is a mean reverting process, which rather then diverging as a pure
Random Process would do, it reverts to its original initial value. This is regulated by

98

Appendix A. DeCAFS

the parameter θ, where it can be seen that for θ = 0 we observe a pure Random Walk
process.

We performed a small simulation study comparable to the previous ones, which
is summarised in Figure A.2, where we report the average F1 scores of DeCAFS and
AR1Seg over 100 replicates of each experiment. Separate figures for precision and
recall can be found in Appendix A.5, Figure A.7.

up updown

none rand1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

θ

F
1S

co
re Algorithm

AR1Seg est

DeCAFS est

Figure A.2: F1 score on different scenarios with an underlying OU process as we vary
θ. Data simulated fixing σν = 1, ση = 1 and σ = 1 over a change of size 10.

We denote how DeCAFS is relatively robust to this kind of model misspecification,
producing good changepoints estimates overall, especially for larger values of θ. As a
matter of fact, for θ ≈ 1 we have in fact a simple AR(1) noise with changes: in this
scenario AR1Seg matches DeCAFS performances.

A.5 Additional Simulation Results

In Figures A.3 and A.4 we summarize the results of the first simulation of Section 3.6
in terms of Precision (the proportion of detected changes which are correct) and
Recall (the proportion of true changes that are detected). Similarly, Figure A.5
shows Precision and Recall for the simulation with an AR(2) noise, Figure A.6 shows
Precision and Recall for the simulation with an underlying sinusoidal signal, and
Figure A.7 shows Precision and Recall for the simulations where the local fluctations
in the mean are from an Ornstein-Uhlenbeck process.

99

Appendix A. DeCAFS

up updown

none rand1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

φ

P
re

ci
si

on

A

up updown

none rand1

0 5 10 15 200 5 10 15 20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Jump Size

P
re

ci
si

on

B

up updown

none rand1

0 1 2 3 0 1 2 3

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

ση

P
re

ci
si

on

C

Algorithm

AR1Seg

AR1Seg est

DeCAFS

DeCAFS est

fpop

fpop Inf

Figure A.3: Precision on the 4 different scenarios from the main simulation study of
Section 3.6. Should be read in conjunction with Figure 3.4.

100

Appendix A. DeCAFS

up updown

none rand1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

φ

R
ec

al
l

A

up updown

none rand1

0 5 10 15 200 5 10 15 20

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Jump Size

R
ec

al
l

B

up updown

none rand1

0 1 2 3 0 1 2 3

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

ση

R
ec

al
l

C

Algorithm

AR1Seg

AR1Seg est

DeCAFS

DeCAFS est

fpop

fpop Inf

Figure A.4: Recall on the 4 different scenarios from the main simulation study of
Section 3.6. Should be read in conjunction with Figure 3.4.

101

Appendix A. DeCAFS

up updown

none rand1

−1.00 −0.75 −0.50 −0.25 0.00 −1.00 −0.75 −0.50 −0.25 0.00

0.900

0.925

0.950

0.975

1.000

0.900

0.925

0.950

0.975

1.000

φ2

P
re

ci
si

on Algorithm

AR1Seg est

DeCAFS est

(a)

up updown

none rand1

−1.00 −0.75 −0.50 −0.25 0.00 −1.00 −0.75 −0.50 −0.25 0.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

φ2

R
ec

al
l Algorithm

AR1Seg est

DeCAFS est

(b)

Figure A.5: Precision (a) and Recall (b) on different scenarios with a AR(2) noise.
Should be read in conjunction with Figure 3.5.

102

Appendix A. DeCAFS

up updown

none rand1

0.0004 0.0008 0.0012 0.0016 0.0004 0.0008 0.0012 0.0016

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

frequency

P
re

ci
si

on Algorithm

AR1Seg est

DeCAFS est

(a)

up updown

none rand1

0.0004 0.0008 0.0012 0.0016 0.0004 0.0008 0.0012 0.0016

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

frequency

R
ec

al
l Algorithm

AR1Seg est

DeCAFS est

(b)

Figure A.6: Precision (a) and Recall (b) on different scenarios with an underlying
sinusoidal process. Should be read in conjunction with Figure 3.6.

103

Appendix A. DeCAFS

up updown

none rand1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.6

0.8

1.0

0.6

0.8

1.0

θ

P
re

ci
si

on Algorithm

AR1Seg est

DeCAFS est

(a)

up updown

none rand1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

θ

R
ec

al
l Algorithm

AR1Seg est

DeCAFS est

(b)

Figure A.7: Precision (a) and Recall (b) on different scenarios with an underlying
Ornstein-Uhlenbeck process. Should be read in conjunction with Figure A.2.

104

Appendix A. DeCAFS

rand1 up updown

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.4

0.6

0.8

1.0

φ

F
1S

co
re

Algorithm AR1Seg est DeCAFS est

(a)
rand1 up updown

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.4

0.6

0.8

1.0

φ

P
re

ci
si

on

(b)

rand1 up updown

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.4

0.6

0.8

1.0

φ

R
ec

al
l

(c)

Figure A.8: F1 score (a), Precision (b) and Recall (c) on 3 different change scenarios
with an independent between-the-changes AR(1) noise as we vary φ. Data simulated
fixing σν = 2 over a change of size 10.

As an extension on the simple AR(1) noise (Figure 3.4 A), we investigate a further
case of model misspecification. Differently to what already shown, we now assume
independence in the AR(1) noise across the various segments. Results for F1Score,
Precision and Recall across the 3 change scenarios are summarised in Figures A.8.
For values of φ ≤ 0.5 DeCAFS has comparable performances to the ones of the model
where we have dependence across segment. Throughout DeCAFS tends to perform
similarly to or better than AR1Seg.

Figure A.9 shows a comparison between LAVA and DeCAFS when the mean is
sinusoidal with abrupt jumps.

105

Appendix A. DeCAFS

Algorithm DeCAFS est LAVA LAVA est

updown

1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

amplitude

F
1S

co
re

A1 updown

1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

amplitude

P
re

ci
si

on

A2 updown

1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

amplitude

R
ec

al
l

A3

−20

−10

0

10

0 50 100 150 200 250
t

y

B1

−20

−10

0

10

0 50 100 150 200 250
t

y

B2

Figure A.9: On top: comparison of the F1 Score, in A1, Precision in A2 and Recall,
in A3, for DeCAFS est (in light green) and LAVA (red) and LAVA est (in orange)
on the updown scenario for a sinusoidal signal over a range of different amplitudes.
On the bottom the first 250 observations of two realization of the experiment with an
amplitude of 2, in B1 with no changes, whilst in B2 with 20 changes. The continuous
line over the data points represent the relative signal estimations of DeCAFS est
LAVA oracle, and LAVA est; the segments their changepoint locations estimates. In
B1, in particular, LAVA est and DeCAFS est have an almost equal signal estimation.

106

Appendix B

FOCuS

B.1 Proof of Proposition 7

It is straightforward to show, for example by induction, that the solution Qn(µ) to
recursion (4.7) can be written in the form

Qn(µ) = max
τ=1,...,n

{
n∑
i=τ

µ
(
xi −

µ

2

)}
.

Hence

max
µ

Qn(µ) = max
τ=1,...,n

{
max
µ

n∑
i=τ

µ
(
xi −

µ

2

)}

= max
τ=1,...,n

1

2

n∑
i=τ

(∑n
j=τ xj

n− τ + 1

)2

= max
w=1,...,n

1

2
w

(∑n
j=n−w+1 xj

w

)2

The second line uses the fact that the maximum over µ is when µ is the sample mean
of xτ :n. The terms in the final expression are just (1/2)Mw(n)2 as required. The result
in terms of P (n) follows directly from P (n) = maxwMw(n). �

B.2 Focus pseudo-code

One way to deal with the pre-change mean unknown case is to split the total cost
function in two components, one for the pre-change and the post-change means. We
introduce the recursion:

107

Appendix B. FOCuS

Q0
n(µ) = Q0

n−1(µ) + µ(2xn − µ)

Q1
n(µ) = max{Q1

n−1(µ) + µ(2xn − µ), max
µ

Q0
n(µ)},

where Qn = maxµQ
1
n(µ) − maxµQ

0
n(µ). A description of the algorithm is found in

algorithm 12. Compared to FOCuS0 we observe a minor additional computational
overhead from the need of storing, updating and maximising the Q0

n cost.

Algorithm 12: FOCuS (one iteration) – Pre-Change mean unknown

Data: xt, the last realization from a data generating process X;
Q0
n−1(µ), Q1

n−1(µ) the cost functions from the previous iteration.
Input: λ > 0

1 Q0
n(µ)←− Q0

n−1(µ) + µ(2xn − µ);
2 Q1

n(µ)←− max{maxµQ
0
n(µ), Q1

n−1(µ) + µ(2xn − µ)} ; // Algorithm 8

3 Qn ←− maxµQ
1
n(µ)−maxµQ

0
n(µ) ; // Theorem 5 : average O(log(n))

4 if Qn ≥ λ then
5 return n as a stopping point ;
6 end
7 return Q0

n−1(µ), Q1
n−1(µ) for the next iteration.

B.3 On the expected number of changes stored by

Focus

B.3.1 Variants of the FOCuS implementations

We study the number of candidate changepoints τ ∈ {1, · · · , n} stored by FOCuS
at each iteration. We first report three different variants of the FOCuS optimization
introduced in Chapter 4. We can have:

• FOCuS0 which solves the problem for a known pre-change mean µ0 (typically
0) and unknown post-change mean µ1.

Q0
n = max

τ∈{1,...,n}
µ0=0,µ1 ∈ R

{
τ∑
t=1

(xt − µ0)2 −
n∑

t=τ+1

(xt − µ1)2

}
. (B.1)

This problem is solved through Algorithm 8, an algorithm similar to the
Melkman’s algorithm (Melkman, 1987).

108

Appendix B. FOCuS

• FOCuS which solves the problem for both unknown pre-change and post-change
means:

Qn = max
τ∈{1,...,n}
µ1,µ0∈R

{
τ∑
t=1

(xt − µ0)2 −
n∑

t=τ+1

(xt − µ1)2

}
. (B.2)

• FOCuSopt which solves the problem in the case we do not know the first segment
mean and the value of this mean is optimized:

Qoptn = max
τ∈{1,...,n}
µ1∈R

{
max
µ0

τ∑
t=1

(xt − µ0)2 −
n∑

t=τ+1

(xt − µ1)2

}
. (B.3)

This is solved in Appendix B.2. This can be done in a similar fashion to the
functional-pruning update of the pDPA algorithm with one change (Rigaill,
2015).

B.3.2 Assumptions and definitions

We assume that:
xi = µi + εi, (B.4)

where εi are i.i.d with a continuous distribution and µi is a piecewise constant signal
in 1 or 2 pieces. We denote a true changepoint with τ ∗.

We define the cost of a segmentation xi:j with a change at τ as:

qi:j,τ (µ0, µ1) =
τ∑
t=i

(xt − µ0)2 +

j∑
t=τ+1

(xt − µ1)2.

with pre-change and post-change means µ0 and µ1. As a convention, for j = τ , we
take: qi:j,j(µ0, µ1) =

∑j
t=i(xt − µ0)2.

Sets of changepoint candidates. We call I0
i:j the set of candidate changepoints

stored by FOCuS0, Ii:j the set stored by FOCuS, and IOpti:j the one stored by FOCuSopt.
By definition those will be:

I0
i:j = {τ | ∃ µ1, ∀τ ′ 6= τ, qi:j,τ (0, µ1) < qi:j,τ ′(0, µ1)} ,
Ii:j = {τ | ∃ µ0, µ1,∀τ ′ 6= τ, qi:j,τ (µ0, µ1) < qi:j,τ ′(µ0, µ1)} ,

IOpti:j =

{
τ | ∃ µ1, ∀τ ′ 6= τ, min

µ0
qi:j,τ (µ0, µ1) < min

µ0
qi:j,τ ′(µ0, µ1)

}
.

109

Appendix B. FOCuS

We will first show that I0
i:j and IOpti:j are in Ii:j. Our goal will then be to control

the size of the set Ii:j of candidate changepoints stored by FOCuS . To this end, we
will consider separately the sets of positive and negative changes:

I+
i:j = {τ | ∃ µ0 < µ1,∀τ ′ 6= τ, qi:j,τ (µ0, µ1) < qi:j,τ ′(µ0, µ1)} . (B.5)

I−i:j = {τ | ∃ µ0 > µ1,∀τ ′ 6= τ, qi:j,τ (µ0, µ1) < qi:j,τ ′(µ0, µ1)} . (B.6)

B.3.3 Main results

On the assumption of a realization from (B.4) we can get the following bound on the
number of changepoints stored by FOCuS0, FOCuS and FOCuSopt.

Theorem 5 For all n ≥ 1

E(#I0
1:n) ≤ E(#I1:n) and E(#IOpt1:n) ≤ E(#I1:n)

For D = 0 we have:

E(#I+
1:n) = E(#I−1:n) =

n∑
1

1/t ≤ (1 + log(n))

and

E(#I1:n) = 2
n∑
1

1/t ≤ 2(1 + log(n)).

For D = 1 we have
E(#I1:n) ≤ 4(1 + log(n/2)).

Overview of the proof. The proof to this theorem relies on a combination of three
lemmas, summarized here:

1. Lemma 1: Ii:j includes both IOpti:j and I0
i:j;

2. Lemma 2: for i ≤ j < k we have I+
i:k ⊆ I

+
i:j ∪ I+

j+1:k;

3. Lemma 3: Ii:j is the set of extreme points of the sequence Si:j;

and Lemma 4, that controls the number of extreme point of a random-walk (derived
from Andersen, 1955; Abramson, 2012). The four lemmas are covered in details and
proven in Appendix B.3.5.

110

Appendix B. FOCuS

0

20

40

60

40 50 60
Bound

N
b.

ob
se

rv
ed

type.signal

no−change

one−change

For signals with no or one change of size n=1024 to 4194304

Figure B.1: Number of observed candidate stored by FOCuS for signals with no change
or with one change. The two black lines represent the function y = x and y = 0.5x.
Red and blue line are the fitted regression lines for respectively the no-change and
single-change scenarios.

Proof 4 Using lemma 1 we obtain the first two inequalities.
For D = 0 we apply Lemma 4 both on I+

1:n and I−1:n.
For D = 1, using lemma 2 we get that

I+
M(x1:n) ⊆ I+

M(x1:τ∗) ∪ I+
M(xτ∗+1:n).

We then apply lemma 4 on I+
M(x1:τ∗) and I+

M(xτ∗+1:n). The worst case is obtained for
τ ∗ = n/2. By symmetry on I−M(x1:n) we obtain the final result. �

B.3.4 Empirical bound evaluation

To illustrate the bound of Theorem 5 we simulate signals of various length n (from
n = 210 to n = 1022) without no change (5 replicates) and with one change (100
replicates). We then record the number of candidates stored by FOCuS . Where a
change was present, its location was sampled uniformly between 1 and n−1. Similarly,
the change magnitude sampled uniformly at random in [0, 4]. Results are summarised
in figure B.1. We denote how the observed number of candidates is always less than
4(log(n) + 1), with the average being around 2(log(n) + 1).

111

Appendix B. FOCuS

B.3.5 Inclusions and convex hull Lemmas

We begin with the two inclusion lemmas.

Lemma 1
I0

1:n ⊆ I1:n and IOpt1:n ⊆ I1:n

Proof 5 We get the first inclusion by definition of I0
1:n and I1:n.

Consider a change τ in IOpt1:n . Then there exists µ1 such that for all τ ′ 6= τ

minµ0q1:n,τ (µ0, µ1) ≤ min
µ0

q1:n,τ ′(µ0, µ1).

Defining µ̂ = minµ0 q1:n,τ (µ0, µ1), we get:

qi:j,τ (µ̂, µ1) = min
µ0

qi:j,τ (µ0, µ1) < min
µ0

qi:j,τ ′(µ0, µ1) ≤ qi:j,τ ′(µ̂, µ1).

Therefore τ is also in I1:n. �

Lemma 2 For i ≤ j ≤ k
I+
i:k ⊆ I+

i:j ∪ I+
j+1:k (B.7)

I−i:k ⊆ I−i:j ∪ I−j+1:k (B.8)

Proof 6 Consider any τ in (i + 1 : j) ∩ I+
i:j, then by definition and using equation

(B.9) we get that

∃ µ0, µ1,∀ τ ′ 6= τ, qi:j,τ (µ0, µ1) < qi:j,τ ′(µ0, µ1),

therefore τ is also in I+
i:k. We proceed similarly for any τ in (j + 1 : k) ∩ I+

j+1:k. By

symmetry, we get the result for I−i:k. �

A useful identity For any τ , τ ′, µ0 and µ1 we have that

qi:j,τ (µ0, µ1)− qi:j,τ ′(µ0, µ1) = (µ0 − µ1)

(
2

τ ′∑
τ+1

xt − µ0 − µ1

)
, (B.9)

which does not depend on i and j. This identity simplifies the proof of the following
lemma which relates the set I+

i:j and I−i:j to the convex hull of Si:j.

Lemma 3 The set of τ in I+
i:j are the extreme points of the largest convex minorant

of the sequence Si:j. By symmetry, the set of τ in I−i:j are the extreme points of the
smallest concave majorant of Si:j.

112

Appendix B. FOCuS

Proof 7 Using equation (B.9), we get that if τ ′ is in I+
i:j it must be that for any τ

and τ ′′

x̄τ+1:τ ′ < x̄τ ′+1:τ ,

with x̄τ+1:τ ′ =
∑τ ′
t=τ+1 xt

τ ′−τ . This is equivalent to for all τ and τ ′′:

Sτ ′ − Sτ
τ ′ − τ

<
Sτ ′′ − Sτ ′
τ ′′ − τ ′

,

and therefore is part of the largest convex minorant of the sequence Si:j.
We get the result on I−i:j by symmetry. �

The next lemma is based on Andersen (1955).

Lemma 4 Assuming the xt follow an i.i.d continuous distribution on i : j with µt =
µi for all t in i : j then E(#I+

i:j) = E(#I−i:j) =
∑j−i−1

1 1/(t+ 1)

Proof 8 We use lemma 3 and then apply Andersen (1955) (definitions at pages 1
and 2, then pages 23-24). �

B.4 Estimation of initial parameters

We propose a simple sequential estimator for the initial parameters needed to run
FOCuS in an semi-supervised manner. The basic idea to tune the λ threshold value
is to run the FOCuS procedure without a threshold on at most w values, for w � n,
then compute:

λ(w) = max{max
µ

Qi(µ) ∀ i = 1, 2, . . . w}

Using such value as a penalty will very naively ensure that the FOCuS procedure will
run for at least w observations. The next step would be the one of inflating this value
λ(w) in order to provide a longer average run length to the algorithm: which is we
set λ = κλ(w). On the application within Section 4.4 simply found that the value of
κ = log(w+m)

log(w)
(1− σ̂) with w = 300, m = 700 and σ̂ being an estimate of the standard

deviation of y1, . . . , yw produced reasonable results.
For tuning the K parameter of the bi-weight loss, one could simply store the initial

w values and, if any observation within 1.5 interquantile ranges of those values are
present, i.e. if we are in presence of outliers, then simply tune the K to be the highest
occurring value within this limit. Then, one can simply run FOCuS as described
above to tune the λ parameter with the newly found K. In total, this estimation
adds a linear in w computational overhead, which consist in temporarily storing the
initial w values and performing the estimation of the K.

113

Appendix C

NUNC

C.1 Proof of Proposition 6

Proof 9 In order to prove the desired bound, we focus on the extreme case where
either x1:τ < q and xτ+1:W > q, or vice versa, and note that this case maximises the
expression

L(xt−W+1:τ ; q) + L(xτ+1:t; q)− L(xt−W+1:t; q), (C.1)

for any quantile q.
By writing out the likelihoods in the above equation, it can be observed that

L(xt−W+1:τ ; q) = 0, L(xτ+1:t; q) = 0, and

L(xt−W+1:t; q) =
τ

W
log

τ

W
− (W − τ) log

(
W − τ
W

)
(C.2)

in the case where each x1:τ > q and xτ+1:W < q. We also have

L(xt−W+1:t; q) = − τ

W
log

τ

W
+ (W − τ) log

(
W − τ
W

)
(C.3)

when x1:τ < q and xτ+1:W > q. Given both τ
W

and W−τ
W

are less than one, the log
terms in equations (C.2) and (C.3) are both negative. As such, we can bound both
equations (C.2) and (C.3) above by the following bound:

L(xt−W+1:t; q) ≤ −
τ

W
log

τ

W
− (W − τ) log

(
W − τ
W

)
.

As this case dealt with the maximum of equation (C.1), this then means that for any
quantile q and window of data x1, . . . , xW we have that

L(xt−W+1:τ ; q) +L(xτ+1:t; q)−L(xt−W+1:t; q) ≤ −
τ

W
log

τ

W
− (W − τ) log

(
W − τ
W

)
,

(C.4)

114

Appendix C. NUNC

as required. Additionally, we note that this equation is decreasing in τ for fixed W .
We then consider the test statistic, given by equation (5.5). As a result of the

bound in equation (C.4) if

2K

[
− τ

W
log

τ

W
− (W − τ) log

(
W − τ
W

)]
≤ Kβ

then detection is impossible, as the bound for the test statistic does not exceed the
threshold for the test. As a result, we conclude that if

− τ
∗

W
log

τ ∗

W
− (W − τ ∗) log

(
W − τ
W

)
≤ β

2

then due to the fact the expression decreases as τ increases then for τ > τ ∗ detection
is impossible. This completes the proof.

C.2 Proof of Proposition 5.2.2

Proof 10 A false alarm by the time t under NUNC Local can be written as

= P

(
t⋃

s=W

max
s−W+1≤τ≤s

K∑
k=1

2 [L(xs−W+1:τ ; qk) + L(xτ+1:s; qk)− L(xs−W+1:s; qk)] ≥ Kβ

)

≤
t∑

s=W

s∑
τ=s−W+1

P

(
K∑
k=1

2 [L(xs−W+1:τ ; qk) + L(xτ+1:s; qk)− L(xs−W+1:s; qk)] ≥ Kβ

)
(C.5)

The next part of the proof uses the fact that, under the i.i.d. assumption,
asymptotically for any quantile the following holds

2 [L(xs−W+1:τ ; qk) + L(xτ+1:s; qk)− L(xs−W+1:s; qk)] ∼ χ2
1.

As in Wainwright (2019), it can be shown that if a random variable Xi follows a
χ2

1 distribution then it is Sub-Exponential with parameters 4 and 4. That is, Xi ∼
SE(4, 4).

Under dependence, as is the case between different quantiles, if Xi ∼ SE(ν2
i , bi)

then
∑n

i=1Xi − E(Xi) ∼ SE
(

(
∑n

i=1 νi)
2
,maxi bi

)
, and so

K∑
k=1

[L(xs−W+1:τ ; qk) + L(xτ+1:s; qk)− L(xs−W+1:s; qk)]−K ∼ SE(4K2, 4).

115

Appendix C. NUNC

We then use a well known bound on the subexponential tail (Vershynin, 2018) to obtain

t∑
s=W

s∑
τ=s−W+1

P

(
K∑
k=1

2 [L(xs−W+1:τ ; qk) + L(xτ+1:s; qk)− L(xs−W+1:s; qk)] ≥ Kβ

)

=
t∑

s=W

s∑
τ=s−W+1

P

(
K∑
k=1

2 [L(xs−W+1:τ ; qk) + L(xτ+1:s; qk)− L(xs−W+1:s; qk)]−K ≥ Kβ −K

)

≤ W (t−W + 1) exp

(
−1

2
min

{
Kβ −K

4
,
(Kβ −K)2

4K2

})
. (C.6)

We can set this final line equal to α to control our desired false alarm rate. We
have two cases in equation (C.6) and must bound above by the largest of these. The
first case is that

W (t−W + 1) exp

(
−Kβ1 −K

8

)
= α

in which case we choose

β1 = 1− 8K−1 log

(
α

W (t−W + 1)

)
.

On the other hand we have the case where

W (t−W + 1) exp

(
−(Kβ2 −K)2

8K2

)
= α

and solving this gives

β2 = 1 + 2

√
2 log

(
W (t−W + 1)

α

)
.

We then choose the larger of β1 and β2, completing the proof.

116

Bibliography

Abramson, J. S. (2012). Some minorants and majorants of random walks and Lévy
processes. PhD thesis, UC Berkeley.

Ahmad, S., Lavin, A., Purdy, S., and Agha, Z. (2017). Unsupervised real-time
anomaly detection for streaming data. Neurocomputing, 262:134–147.

Alvarez-Montoya, J., Carvajal-Castrillón, A., and Sierra-Pérez, J. (2020). In-flight
and wireless damage detection in a uav composite wing using fiber optic sensors
and strain field pattern recognition. Mechanical Systems and Signal Processing,
136:106526.

Andersen, E. S. (1955). On the fluctuations of sums of random variables ii.
Mathematica Scandinavica, pages 195–223.

Baranowski, R., Chen, Y., and Fryzlewicz, P. (2016). Narrowest-over-threshold
detection of multiple change-points and change-point-like features. arXiv preprint
arXiv:1609.00293.

Bardwell, L., Fearnhead, P., Eckley, I. A., Smith, S., and Spott, M. (2019). Most
recent changepoint detection in panel data. Technometrics, 61(1):88–98.

Barry, D. and Hartigan, J. A. (1993). A bayesian analysis for change point problems.
Journal of the American Statistical Association, 88(421):309–319.

Basseville, M., Benveniste, A., Goursat, M., and Meve, L. (2007). In-flight vibration
monitoring of aeronautical structures. IEEE Control Systems Magazine, 27(5):27–
42.

Bauschke, H. H. and Combettes, P. L. (2011). Convex analysis and monotone operator
theory in Hilbert spaces, volume 408. Springer.

Bleakley, K. and Vert, J.-P. (2011). The group fused lasso for multiple change-point
detection. arXiv preprint arXiv:1106.4199.

117

Bibliography

Chakar, S., Lebarbier, E., Lévy-Leduc, C., and Robin, S. (2017). A robust
approach for estimating change-points in the mean of an AR(1) process. Bernoulli,
23(2):1408–1447.

Chakraborti, S. and van de Wiel, M. A. (2008). A nonparametric control chart based
on the mann-whitney statistic. Institute of Mathematical Statistics Collections,
page 156–172.

Chang, S.-T. and Lu, K.-P. (2016). Change-point detection for shifts in control
charts using em change-point algorithms. Quality and Reliability Engineering
International, 32(3):889–900.

Chen, H. (2019). Sequential change-point detection based on nearest neighbors. Ann.
Statist., 47(3):1381–1407.

Chen, Z. and Tian, Z. (2010). Modified procedures for change point monitoring in
linear models. Mathematics and computers in simulation, 81(1):62–75.

Chernozhukov, V., Hansen, C., and Liao, Y. (2017). A lava attack on the recovery of
sums of dense and sparse signals. The Annals of Statistics.

Cho, H. and Fryzlewicz, P. (2015). Multiple-change-point detection for high
dimensional time series via sparsified binary segmentation. Journal of the Royal
Statistical Society: Series B: Statistical Methodology, pages 475–507.

Chu, C.-S. J., Hornik, K., and Kaun, C.-M. (1995). Mosum tests for parameter
constancy. Biometrika, 82(3):603–617.

Clifford, G. D., Silva, I., Moody, B., Li, Q., Kella, D., Shahin, A., Kooistra, T., Perry,
D., and Mark, R. G. (2015). The physionet/computing in cardiology challenge
2015: reducing false arrhythmia alarms in the icu. In 2015 Computing in Cardiology
Conference (CinC), pages 273–276. IEEE.

Coelho, M., Graham, M., and Chakraborti, S. (2017). Nonparametric signed-rank
control charts with variable sampling intervals. Quality and Reliability Engineering
International, 33(8):2181–2192.

Cui, Y., Ahmad, S., and Hawkins, J. (2016). Continuous online sequence learning with
an unsupervised neural network model. Neural computation, 28(11):2474–2504.

Dette, H. and Gösmann, J. (2020). A likelihood ratio approach to sequential change
point detection for a general class of parameters. Journal of the American Statistical
Association, 115(531):1361–1377.

118

Bibliography

Eco, U. (1995). How to travel with a salmon: and other essays, chapter How to write
an introduction. HMH.

Eiauer, P. and Hackl, P. (1978). The use of mosums for quality control. Technometrics,
20(4):431–436.

Eichinger, B. and Kirch, C. (2018). A mosum procedure for the estimation of multiple
random change points. Bernoulli, 24(1):526–564.

Fearnhead, P. (2006). Exact and efficient bayesian inference for multiple changepoint
problems. Statistics and computing, 16(2):203–213.

Fearnhead, P. and Liu, Z. (2011). Efficient Bayesian analysis of multiple changepoint
models with dependence across segments. Statistics and Computing, 21(2):217–229.

Fearnhead, P., Maidstone, R., and Letchford, A. (2018). Detecting changes in slope
with an l0 penalty. Journal of Computational and Graphical Statistics, pages 1–11.

Fearnhead, P. and Rigaill, G. (2019). Changepoint detection in the presence of
outliers. Journal of the American Statistical Association, 114(525):169–183.

Fisch, A., Bardwell, L., and Eckley, I. A. (2020). Real time anomaly detection and
categorisation. arXiv preprint arXiv:2009.06670.

Fisch, A., Eckley, I. A., and Fearnhead, P. (2018). A linear time method for the
detection of point and collective anomalies. arXiv preprint arXiv:1806.01947.

Fisch, A., Eckley, I. A., and Fearnhead, P. (2019). Subset multivariate collective and
point anomaly detection. arXiv preprint arXiv:1909.01691.

Frick, K., Munk, A., and Sieling, H. (2014). Multiscale change-point inference. Journal
of the Royal Statistical Society: Series B, 76(3):495–580.

Fridman, P. (2010). A method of detecting radio transients. Monthly Notices of the
Royal Astronomical Society, 409(2):808–820.

Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection.
Annals of Statistics, 42:2243–2281.

Fryzlewicz, P. (2018). Tail-greedy bottom-up data decompositions and fast multiple
change-point detection. The Annals of Statistics, 46(6B):3390–3421.

Fryzlewicz, P. (2020). Detecting possibly frequent change-points: wild binary
segmentation 2 and steepest-drop model selection. Journal of the Korean Statistical
Society, 49(4):1027–1070.

119

Bibliography

Fryzlewicz, P. and Rao, S. S. (2014). Multiple-change-point detection for auto-
regressive conditional heteroscedastic processes. Journal of the Royal Statistical
Society: Series B: Statistical Methodology, pages 903–924.

Fuschino, F., Campana, R., Labanti, C., Evangelista, Y., Feroci, M., Burderi, L.,
Fiore, F., Ambrosino, F., Baldazzi, G., Bellutti, P., et al. (2019). Hermes: An
ultra-wide band x and gamma-ray transient monitor on board a nano-satellite
constellation. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 936:199–203.

Futschik, A., Hotz, T., Munk, A., and Sieling, H. (2014). Multiscale DNA partitioning:
statistical evidence for segments. Bioinformatics, 30(16):2255–2262.

Gordon, L. and Pollak, M. (1994). An efficient sequential nonparametric scheme for
detecting a change of distribution. The Annals of Statistics, 22(2):763 – 804.

Gösmann, J., Kley, T., and Dette, H. (2019). A new approach for open-end sequential
change point monitoring. arXiv preprint arXiv:1906.03225.

Green, P. J. (1995). Reversible jump markov chain monte carlo computation and
bayesian model determination. Biometrika, 82(4):711–732.

Harchaoui, Z. and Lévy-Leduc, C. (2007). Catching change-points with lasso. In
NIPS, volume 617, page 624.

Hawkins, D. M. and Deng, Q. (2010). A nonparametric change-point control chart.
Journal of Quality Technology, 42(2):165–173.

Haynes, K., Eckley, I. A., and Fearnhead, P. (2017a). Computationally efficient
changepoint detection for a range of penalties. Journal of Computational and
Graphical Statistics, 26(1):134–143.

Haynes, K., Fearnhead, P., and Eckley, I. A. (2017b). A computationally efficient
nonparametric approach for changepoint detection. Statistics and Computing,
27(5):1293–1305.

Hinkley, D. V. (1971). Inference about the change-point from cumulative sum tests.
Biometrika, 58(3):509–523.

Hocking, T. D., Rigaill, G., Fearnhead, P., and Bourque, G. (2017). A log-linear time
algorithm for constrained changepoint detection. arXiv preprint arXiv:1703.03352.

Hocking, T. D., Rigaill, G., Fearnhead, P., and Bourque, G. (2020). Constrained
dynamic programming and supervised penalty learning algorithms for peak
detection in genomic data. Journal of Machine Learning Research.

120

Bibliography

Hotz, T., Schütte, O. M., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C.,
and Munk, A. (2013). Idealizing ion channel recordings by a jump segmentation
multiresolution filter. IEEE Transactions on Nanobioscience, 12(4):376–386.

Huber, P. J. (2004). Robust statistics, volume 523. John Wiley & Sons.

Jackson, B., Scargle, J. D., Barnes, D., Arabhi, S., Alt, A., Gioumousis, P., Gwin, E.,
Sangtrakulcharoen, P., Tan, L., and Tsai, T. T. (2005). An algorithm for optimal
partitioning of data on an interval. IEEE Signal Processing Letters, 12(2):105–108.

Jalali, A., Ravikumar, P., and Sanghavi, S. (2013). A dirty model for multiple sparse
regression. IEEE Transactions on Information Theory, 59(12):7947–7968.

Jeske, D. R., Stevens, N. T., Tartakovsky, A. G., and Wilson, J. D. (2018). Statistical
methods for network surveillance. Applied Stochastic Models in Business and
Industry, 34(4):425–445.

Jewell, S. W., Hocking, T. D., Fearnhead, P., and Witten, D. M. (2020). Fast
nonconvex deconvolution of calcium imaging data. Biostatistics, 21(4):709–726.

Killick, R., Eckley, I. A., Ewans, K., and Jonathan, P. (2010). Detection of
changes in variance of oceanographic time-series using changepoint analysis. Ocean
Engineering, 37(13):1120–1126.

Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal detection of changepoints
with a linear computational cost. Journal of the American Statistical Association,
107(500):1590–1598.

Kim, C.-J., Morley, J. C., and Nelson, C. R. (2005). The structural break in the
equity premium. Journal of Business & Economic Statistics, 23(2):181–191.

Kim, S.-J., Koh, K., Boyd, S., and Gorinevsky, D. (2009). l1 trend filtering. SIAM
review, 51(2):339–360.

Kirch, C. and Kamgaing, J. T. (2015). On the use of estimating functions in
monitoring time series for change points. Journal of Statistical Planning and
Inference, 161:25–49.

Kirch, C., Weber, S., et al. (2018). Modified sequential change point procedures based
on estimating functions. Electronic Journal of Statistics, 12(1):1579–1613.

Korkas, K. K. and Fryzlewicz, P. (2017). Multiple change-point detection for non-
stationary time series using wild binary segmentation. Statistica Sinica, pages 287–
311.

121

Bibliography

Kovács, S., Li, H., Bühlmann, P., and Munk, A. (2020). Seeded binary segmentation:
A general methodology for fast and optimal change point detection. arXiv preprint
arXiv:2002.06633.

Lavielle, M. and Moulines, E. (2000). Least-squares estimation of an unknown number
of shifts in a time series. Journal of Time Series Analysis, 21(1):33–59.

Leonardi, F. and Bühlmann, P. (2016). Computationally efficient change point
detection for high-dimensional regression. arXiv preprint arXiv:1601.03704.

Lin, K., Sharpnack, J. L., Rinaldo, A., and Tibshirani, R. J. (2017). A sharp error
analysis for the fused lasso, with application to approximate changepoint screening.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 30, pages 6884–6893. Curran Associates, Inc.

Liu, J. S. and Lawrence, C. E. (1999). Bayesian inference on biopolymer models.
Bioinformatics (Oxford, England), 15(1):38–52.

Liu, L., Zi, X., Zhang, J., and Wang, Z. (2013). A sequential rank-based
nonparametric adaptive ewma control chart. Communications in Statistics -
Simulation and Computation, 42(4):841–859.

Maidstone, R., Hocking, T., Rigaill, G., and Fearnhead, P. (2017). On optimal
multiple changepoint algorithms for large data. Statistics and Computing,
27(2):519–533.

Meier, A., Kirch, C., and Cho, H. (2021). mosum: A package for moving sums in
change-point analysis. Journal of Statistical Software, 97(8):1–42.

Melkman, A. A. (1987). On-line construction of the convex hull of a simple polyline.
Information Processing Letters, 25(1):11–12.

Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ecm
algorithm: A general framework. Biometrika, 80(2):267–278.

Mood, A. M. (1954). On the asymptotic efficiency of certain nonparametric two-
sample tests. The Annals of Mathematical Statistics, pages 514–522.

Mukherjee, A. and Chakraborti, S. (2012). A distribution-free control chart for
the joint monitoring of location and scale. Quality and Reliability Engineering
International, 28(3):335–352.

122

Bibliography

Murakami, H. and Matsuki, T. (2010). A nonparametric control chart based on the
mood statistic for dispersion. The International Journal of Advanced Manufacturing
Technology, 49:757–763.

Nicolas, P., Leduc, A., Robin, S., Rasmussen, S., Jarmer, H., and Bessières, P. (2009).
Transcriptional landscape estimation from tiling array data using a model of signal
shift and drift. Bioinformatics, 25(18):2341–2347.

Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. (2004). Circular binary
segmentation for the analysis of array-based DNA copy number data. Biostatistics,
5:557–572.

Padilla, O. H. M., Athey, A., Reinhart, A., and Scott, J. G. (2019).
Sequential nonparametric tests for a change in distribution: An application to
detecting radiological anomalies. Journal of the American Statistical Association,
114(526):514–528.

Page, E. (1955). A test for a change in a parameter occurring at an unknown point.
Biometrika, 42(3/4):523–527.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2):100–115.

Peng, T., Leckie, C., and Ramamohanarao, K. (2004). Proactively detecting
distributed denial of service attacks using source ip address monitoring. In
International conference on research in networking, pages 771–782. Springer.

Pepelyshev, A. and Polunchenko, A. (2017). Real-time financial surveillance via
quickest change-point detection methods. Statistics and its interface, 10:93–106.

Picard, F., Lebarbier, É., Budinská, E., and Robin, S. (2011). Joint segmentation of
multivariate gaussian processes using mixed linear models. Computational Statistics
& Data Analysis, 55(2):1160–1170.

Popescu, T. D. and Aiordǎchioaie, D. (2017). New procedure for change detection
operating on rényi entropy with application in seismic signals processing. Circuits,
Systems, and Signal Processing, 36(9):3778–3798.

Pouliezos, A. and Stavrakakis, G. S. (2013). Real time fault monitoring of industrial
processes, volume 12. Springer Science & Business Media.

Raftery, A. E. and Akman, V. (1986). Bayesian analysis of a poisson process with a
change-point. Biometrika, pages 85–89.

Reckrühm, K. (2019). Estimating multiple structural breaks in time series-a
generalized mosum approach based on estimating functions.

123

Bibliography

Reeves, J., Chen, J., Wang, X. L., Lund, R., and Lu, Q. Q. (2007). A review and
comparison of changepoint detection techniques for climate data. Journal of Applied
Meteorology and Climatology, 46(6):900–915.

Reynolds, M. R. (1975). Approximations to the average run length in cumulative sum
control charts. Technometrics, 17(1):65–71.

Rigaill, G. (2010). Pruned dynamic programming for optimal multiple change-point
detection. arXiv preprint arXiv:1004.0887, 17.

Rigaill, G. (2015). A pruned dynamic programming algorithm to recover the best
segmentations with 1 to kmax change-points. Journal de la Societe Francaise de
Statistique, 156(4):180–205.

Romano, G., Rigaill, G., Runge, V., and Fearnhead, P. (2021). Detecting abrupt
changes in the presence of local fluctuations and autocorrelated noise. Journal of
the American Statistical Association, 0(0):1–16.

Ross, G. J. (2021). Nonparametric detection of multiple location-scale change points
via wild binary segmentation. arXiv preprint arXiv:2107.01742.

Ross, G. J. and Adams, N. M. (2012). Two nonparametric control charts for detecting
arbitrary distribution changes. Journal of Quality Technology, 44(2):102–116.

Ross, G. J., Tasoulis, D. K., and Adams, N. M. (2011). Nonparametric monitoring of
data streams for changes in location and scale. Technometrics, 53(4):379–389.

Ruanaidh, J. J. O. and Fitzgerald, W. J. (2012). Numerical Bayesian methods applied
to signal processing. Springer Science & Business Media.

Runge, V. (2020). Is a finite intersection of balls covered by a finite union of balls in
euclidean spaces? Journal of Optimization Theory and Applications, 187(2):431–
447.

Runge, V., Hocking, T. D., Romano, G., Afghah, F., Fearnhead, P., and Rigaill,
G. (2020a). gfpop: an r package for univariate graph-constrained change-point
detection. arXiv preprint arXiv:2002.03646.

Runge, V., Pascucci, M., and de Boishebert, N. D. (2020b). Change-in-slope
optimal partitioning algorithm in a finite-size parameter space. arXiv preprint
arXiv:2012.11573.

Safikhani, A. and Shojaie, A. (2020). Joint structural break detection and parameter
estimation in high-dimensional non-stationary var models. Journal of the American
Statistical Association, (just-accepted):1–26.

124

Bibliography

Scott, A. J. and Knott, M. (1974). A cluster analysis method for grouping means in
the analysis of variance. Biometrics, 30(3):507–512.

Sen, A. and Srivastava, M. S. (1975). On tests for detecting change in mean. The
Annals of statistics, pages 98–108.

Siegmund, D. (2013). Change-points: From sequential detection to biology and back.
Sequential Analysis, 32(1):2–14.

Siems, T., Hellmuth, M., and Liebscher, V. (2019). Simultaneous credible regions for
multiple changepoint locations. Journal of Computational and Graphical Statistics,
28(2):290–298.

Stephens, D. A. (1994). Bayesian retrospective multiple-changepoint identification.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 43(1):159–
178.

Tartakovsky, A., Nikiforov, I., and Basseville, M. (2014). Sequential Analysis:
Hypothesis Testing and Changepoint Detection. CRC Press.

Tartakovsky, A. G., Polunchenko, A. S., and Sokolov, G. (2012). Efficient computer
network anomaly detection by changepoint detection methods. IEEE Journal of
Selected Topics in Signal Processing, 7(1):4–11.

Tartakovsky, A. G. and Rozovskĭı, B. L. (2007). A nonparametric multichart cusum
test for rapid intrusion detection. In in: Proc. Joint Statistical Meetings, 7–11
August 2007, volume 7, page 11. Citeseer.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity
and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 67(1):91–108.

Tibshirani, R. J. et al. (2014). Adaptive piecewise polynomial estimation via trend
filtering. The Annals of Statistics, 42(1):285–323.

Tickle, S., Eckley, I., Fearnhead, P., and Haynes, K. (2020). Parallelization of a
common changepoint detection method. Journal of Computational and Graphical
Statistics, 29(1):149–161.

Vershynin, R. (2018). High-dimensional probability: an introduction with applications
in data science, page 37. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press.

125

Bibliography

Wainwright, M. (2019). High-dimensional statistics: a non-asymptotic viewpoint.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press.

Wang, D., Zhang, L., and Xiong, Q. (2017). A non parametric cusum control chart
based on the mann–whitney statistic. Communications in Statistics - Theory and
Methods, 46(10):4713–4725.

Wang, T. and Samworth, R. J. (2018). High dimensional change point estimation
via sparse projection. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 80(1):57–83.

Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing
composite hypotheses. The Annals of Mathematical Statistics, 9(1):60 – 62.

Xie, L., Xie, Y., and Moustakides, G. V. (2019). Asynchronous multi-sensor change-
point detection for seismic tremors. In 2019 IEEE International Symposium on
Information Theory (ISIT), pages 787–791. IEEE.

Yao, Y.-C. (1988). Estimating the number of change-points via Schwarz’s criterion.
Statistics & Probability Letters, 6(3):181–189.

Yao, Y.-C. and Au, S.-T. (1989). Least-squares estimation of a step function. Sankhyā:
The Indian Journal of Statistics, Series A, pages 370–381.

Yu, Y., Padilla, O. H. M., Wang, D., and Rinaldo, A. (2020). A note on online change
point detection. arXiv preprint arXiv:2006.03283.

Zou, C., Yin, G., Feng, L., Wang, Z., et al. (2014). Nonparametric maximum
likelihood approach to multiple change-point problems. The Annals of Statistics,
42(3):970–1002.

126

	Introduction
	Literature Review
	Constrained and Penalised Approaches
	An overview of the constrained and penalised approaches
	Extensions to different models
	Extensions to different Change Scenarios
	Other extensions

	Binary Segmentation approaches
	An overview of the binary segmentation approaches
	Extensions of Binary Segmentation

	Other approaches
	Sequential testing approaches
	Penalised approaches (fused lasso)
	Model Based approaches

	Detecting Changes in Autocorrelated and Fluctuating Signals
	Introduction
	Modelling and Detecting Abrupt Changes
	Model
	Penalised Maximum Likelihood Approach
	Dynamic Programming Recursion

	Computationally Efficient Algorithm
	The DeCAFS Algorithm
	The Infimal Convolution
	Fast Infimal Convolution Computation

	Robust Parameter Estimation
	Theoretical Properties
	Simulation Study
	Comparison with Changepoint Methods
	Robustness to Model Mis-specification
	Comparison to LAVA

	Gene Expression in Bacilus subtilis

	Functional Pruning Online Changepoint Detection
	Introduction
	Known pre-change mean
	Problem Set-up and Background
	FOCuS0 : solving the Page recursion for all 1
	Step 1: updating the intervals and quadratics
	Step 2 : maximisation

	Simulation Study

	Extensions of FOCuS
	FOCuS when the pre-change mean is unknown
	FOCuS in the presence of outliers
	Simulation Study

	Application of FOCuS to the AWS Cloudwatch CPU utilization

	A Nonparametric Approach to Online Anomaly Detection
	Introduction
	Background and Methodology
	Two Sequential Changepoint Detection Algorithms
	NUNC Local
	NUNC Global

	Parameter selection

	Simulation Study
	False Alarm Probability
	Detection Power and Detection Delay

	Applications
	Monitoring Operational Performances of Network Devices
	Controller Data Analysis

	Remarks and Conclusions
	Appendix DeCAFS
	Proof of Proposition 1
	Proof of Proposition 2
	Algorithm for INFQt,
	Additional Empirical Results
	Distorted Parameter Estimation
	Comparison of DeCAFS and AR1Seg on a Ornstein-Uhlenbeck process

	Additional Simulation Results

	Appendix FOCuS
	Proof of Proposition 7
	Focus pseudo-code
	On the expected number of changes stored by Focus
	Variants of the FOCuS implementations
	Assumptions and definitions
	Main results
	Empirical bound evaluation
	Inclusions and convex hull Lemmas

	Estimation of initial parameters

	Appendix NUNC
	Proof of Proposition 6
	Proof of Proposition 5.2.2

	Bibliography

